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Abstract

We consider the problem of developing a production load plan in a dynamic
environment for 2 make-to-order system. The demand process is assumed to be
stochastic. Each unit of demand has associated with it a due-date: A due-date
may be rigid and cannot be violated, or are non-rigid and can be violated at
a cost. The objective of our problem is to choose 2 loading policy from the
class of admissible policies to optimize a performance measure subject to the
due-date constraints.

In particular, the performance measure we are interested in is a function of
the smoothness of production and the mean inventory level. The production
smoothness of an individual station is measured by the variance in the output
process of the station. The smoothness of a multi-machine system is defined
as a function of the variancer., in production level of the individual stations that
comprise the system.

We develop production plans that minimize a function of the variance in
production and inventory holding costs while meeting the due-dates of the jobs
for a one machine system. Then, we relax the rigid due-date assumption and
develop several models that incorporate tardiness costs which we use to identify
the optimal loading policy. Finally, we generalize the one machine rigid due-
date model to multi-machine systems, considering both a serial line and a job
shop.

Advisor: Stephen C. Graves, Professor of Management Science
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Chapter 1

Introduction

1.1 Problem Description and Motivation

1.1.1 The generic problem

A make-to-order production facility may find that some of its customers are very
strict about enforcing the delivery date of orders, while others are willing to accept
late jobs. With respect to the first set, the producer may feel compelled to satisfy
the requested due-dates for strategic reasons. One incentive is that failure to do so
will result in loss of the customer. If this customer represents a significant source of
income, then the producer has little clout in the situation. We refer to these jobs as
having rigid due dates. The other type of customer may be of low priority either due
to its relative size or due to the coercive power of the producer. For this reason, it
may not be compelling for the producer to satisfy the due-date requests of this class

of jobs. We refer to this class of jobs as having non-rigid due-dates.
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This scenario is typical for a producer who simultaneously operates in several
different markets. The type of due-date requested and honored is indicative of the
relative strength of the producer and consumer in each of the individual markets. In
a highly competitive supply market one would expect to see rigid due-dates. In a
more oligopolistic setting, in which the producer has a relatively captive market, we
anticipate that there is some more interaction between the two agents. This type of
producer is found in the middle of a supply chain. In otker words, the customer to

whom we will be referring is itself a producer for another good.

An important problem in this context is planning for production. In particular,
the production manager must take into account operational costs and strategic con-
siderations and develop a production strategy to accomodate the various demands.
We first present an example of this problem and provide a brief overview of the specific

issues at hand.

1.1.2 Example

We found a scenario similar to the one vscribed above at the printing facility operated
by the International Paper Corporation (1P} iz Framingham, MA. In this operation,
they print cartons for use in beverage containment, e.g., milk, orange juice. First,
they receive rollstock paper from other IP locations. For processing, the paper is
printed with the appropriate messages, cut, and scored, and then a vertical seam is
placed on the carton. The customer will then fiil the carton and perform any other

necessary sealing operations.

To summarize the sequence of events: The cusiomer places an order to the IP
facility. This order consists of information on the physical specifications of the carton,
an order quantity, and a due-date. IP’s response to the order varies. For example,

in the case that the mammoth Hood dairy is the customer, the order is accomodated
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in the schedule in such a way that the due-date can be satisfied. If, however, the
customer is a smaller “mom-and-pop” operation, and the shopfloor is congested then
IP may feel that it may be unable to meet the due-date request. In this case, they
either attempt to do some negotiation to set back the requested due-date, or indicate

that the work may be delayed and that the dairy will have to accomodate itself.

Although there is a well-established group of customers, the orders themselves
arrive randomly. IP may have some idea of the requirements, but they are not
informed about special promotions etc., ahead cf time. This type of information
is often kept secret for strategic reasons. Additionally, the products themselves are
changing: the panels change frequently, e.g., new missing children are put on the

cartons every two weeks.

The IP facility operates as a classic make-to-order system; the units ordered vary
drastically from customer to customer, and from the same customer from period to
period, and so only finished gocds inventory for contracted orders can be held. In
this type of environment there is a need for models for production planning and
smoothing. These models should indicate in what manner the system will determine

production levels to satisfy the demand requirements.

1.1.3 Elements of the model

We consider a dynamic, make-to-order production environment in which the demand
arrivals are stochastic and each unit has a different due-date. We want to devise
a production strategy to satisfy these due-date requirements according to different

objectives. We discuss this further as follows.
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Production Strategy

A production strategy is a plan indicating how and when work is to be processed.
There are two perspectives of this: At a detailed level, we follow the progress of
individual jobs. In this case, issues of sequencing, starting/completion times, and
setups arise. In the example of carton printing, the order in which the jobs are
processed is significant: for example, jobs which share colors require less time for
setups since the rollers require less cleaning between jobs. From this perspective, the

production strategy is referred to as detailed scheduling or dispatching .

This type of scheduling is done on the shopfloor, perhaps in conjunction with the
actual machine operators. The time frame here is very tight. Precise information is
kept about exact starting and completion times, specific processing requirements for
the individual jobs.

At a more aggregate level of detail, the production plan is set via a loading policy .
Loading is concerned with setting workload levels, not with the processing of individ-
ual jobs. As such, a total quantity of work is set for production in a particular period,
with the decision of which among those awaiting processing to release determined by

the particular dispatching rule being employed.

This perspective is typically held by the plant manager, who views the operation
in a global way. The time scale is broader, with a period being anywhere from one

day to a week or month.

In this thesis we are primarily concerned with developing a loading policy ap-
propriate for our context. The more detailed type of analysis is too complicated in
this dynamic-stochastic setting, given that most due-date problems of any complexity
in a static environment are already NP-complete. More significantly, an aggregate
perspective will be useful for the plant manager in terms of setting workforce levels,

assessing input material requirements, and projecting overtime costs over a particular
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horizon. We return to these points in the discussion section.

Due-date Constraints

As we have indicated above there are two classes of jobs, each distinguished by whether
its due-date is considered rigid or non-rigid. A constraint corresponding to a rigid
due-date is easily interpretable- the production level of the system must be set in
such a way to ensure that all orders in this class are delivered on time. A feasible

production strategy satisfies all rigid due-date constraints.

A non-rigid due-date corresponds to the class of work where the due-date is vi-
olable. In particular, the customer may request a due-date, but is willing to accept
late delivery of an order, albeit at some cost to the producer. This may take the form

of price-cuts for the customer.

Objective Functions

The type of objective functions we propose are expressed in terms of costs, and
for a given mathematical program representing the production strategy, we seck to
minimize the cost function. Silver[67] identifies the primary costs of a production

strategy in a stochastic environment:

1. Basic production costs
2. Cost of changes in production rate

3. Inventory and shortage costs

Shortage costs are not relevant in a make-to-order context. Instead we will propose

that waiting costs are of interest, particularly in the case in which we have violable
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due-dates. The objective functions that we will propose are expressed as functions of

these costs.

When the costs associated with changes in the production level are significant,
one component of the objective is to minimize these variations; this is referred to
as smoothing. It may be that the form of the cost function associated with the
variability in the production level dominates. In this case the entire objective function
is consistent with smoothing, and encompasses all of the relevant costs. We will often
refer to planning and smoothing interchangeably, although they represent different

concepts.

1.1.4 References
Planning

Previous research in production planning has concentrated exclusively on make-to-
stock systems. For the sake of continuity, we do not describe this literature in too

much detail here. Representatives of this work are given in an annotated bibliography.

In a make-to-stock system with stochastic demand requirements, one strategy for
satisfying demand is to build up inventories, which then vary to absorb some of the
randomness. Backordering is often permitted, i.e., inventory can go “negative”. This
is not possible in a make-to-order context. Cruickshanks, Drescher and Graves [84]
were the first to look at the planning and smoothing problem in the context of a make-

to-order system. They identify two strategies to accomodate demand fluctuations:

1. vary production to match the demand rate

2. maintain an approximately constant production rate while varying the delivery

time of orders depending on the shop load
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In their work they modify the problem and propose a third option. Suppose that
the customer in addition to placing a particular order, also specifies a fixed delivery
leadtime. The leadtime is the same for all customers. They define the planning win-
dow to be the difference between the delivery lead time and the production leadtime

for a unit.

They identify variation in production level to be a significant cost. Thus, the
objective is to achieve a smoothing benefit over this planning window. Suppose that
the planning window is of length N and the production time is one period long. In
their approach, they approximate the per-period production rates over this window
by the strategy specified by option (2) above; the delivery time window quoted to the
customer is of length N. They show via a simulation study that this can be a good

approximation.

Due-dates

In the context of due-dates, there are three types of interactions of due-dates with

the scheduling constraints.

1. Due-date is exogenous, i.e., quoted by the customer and it is rigid

2. Due-date is exogenous and is flexible

3. Due-date is endogenous, i.e., quoted by the producer and is either rigid or
flexible

All of the research addressing scheduling with due-dates in a dynamic environment
addresses the problem of setting an appropriate endogenous due-date. The work done
in the first two areas is expressed in a static environment with capacity restrictions.
The typical objective seeks either a feasible schedule (1) or minimization of a function

of the tardiness of the given jobs (2).
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Motivation for joint consideration

The context of planning together with exogenous due-dates restrictions in a dynamic
environment has received no attention in the literature. Although there is an abun-
dance of work related to due-date issues none of it is applicable to the scenario we

have described.

There is tremendous scope for research in this area becuase of its relevance in
today’s increasingly competitive production environment. Stalk[91] identifies time as
the key variable of competitive advantage in today’s marketplace. The emergence of
JIT technologies is an example of this. This heightens the need for planning schemes

which explicitly consider due-dates.

The primary difference in the motivation of our problem coinpared to the bulk of
the literature is that we want to plan production to accomodate externally generated

stresses on the system.

1.2 Outline

In this (Lesis we will first present a model for a one-machine, single-product system,
when all jobs have rigid due-dates. The structure we devise for this problem lends
itself to a relaxation in which we can analyze the problem in the context of non-
rigid due-dates. The analysis and techniques for the one-machine problem will then

generalize to larger systems, e.g., serial lines and job-shops.

We begin by describing the problem in more detail and developing a basic model.
We first propose a finite horizon dynamic programming formulation for the problem
in which all due-dates are rigid. The solution of this formulation we refer to as a

linear loading policy.
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We then use this policy in the context of an infinite horizon problem. The policy
is workload-dependent, requiring that the production level is set as a function of
the workload queue each period. We determine the optimal policy as a function
of the parameters. Then, we show that this policy is equivalent to an assignment
policy in which the current queue length is ignored. Next, we examine the inventory

implications of implementing such « policy.

We then describe two models in which all due-dates are non-rigid. First we present
a model in which all of the customer requests are for the jobs to be done “as soon as
possible.” In the second model, we have the customers entering with a specific due-
date request, but with the option that they are willing to accept work even after its
due-date. The cost to the producer of a late delivery is included in the optimization

program in addition to the original terms.

Then, in a multi-machine context ‘;ve consider the problem of setting workload
levels for an entire system of ma,chine;. To do this we first extend the concepts
used in the 1-machine case to be appropriate in the larger system. An important
consideration here is that our smoothing objective for a one-machine system is well-
defined- measured by the variance in the output process of the system. In a multi-
machine system, it is not clear how to evaluate the smoothing objective. We consider
several objective functions that are functions of the variance in output processes of
individual machines and propose heuristics. Additionally, now we must also account
for the presence of work-in-process inventory, which is not relevant in a one-machine

systern.

Finally, we discuss the appropriateness of our models. We conclude with directions

for future research.
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Chapter 2

The One Machine System: Rigid
Due-Dates

2.1 Outline

In this chapter we consider the problem of production planning for a one-machine,
make-to-order system which must accomodate stochastic demand arrivals, each with
a rigid due-date. We begin with a discussion of the costs and constraints of interest.
Then we formulate a finite horizon dynamic program to describe the discrete-time,
dynamic problem. However, the solution to this is too difficult to characterize in
closed form. When we relax the constraints on the production level, we find that the

optimal production level is linear in the qunutity of unfinished work.

A well-known problem with finite horizon analyses is the resolution of end-term
effects. We would like to evaluate the performance of a policy over an infinite horizon.

In particular, we consider the linear policy suggested by the solution of the uncon-
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strained finite horizon problem in the infinite horizon. The measure of performance
is a function of the variation in the production level over time, and the long-run

inventory holding costs.

2.2 A Model for Rigid Due-dates

We describe a discrete-time model of a one machine single-product system. We discuss
our assumptions, notation, relevant costs, and constraints. We present the problem

in a very general form, and then consider several, more tractable special cases.

2.2.1 Assumptions

o The system is uncapacitated. This is clearly a very strong assumption, but need
not be taken literally. There are several perspectives on this. It is possible in
some scenarios that the acquisition of additional capacity is casy. Consider a
facility which has the potential to operate on three shifts, but normally operates
on only one or two. Here, additional capacity has a cost in terms of overtime
payments, but it is a feasible option to add shifts. Another useful interpreta-
tion of this is that we can assume that the system is costlessly uncapacitated,
and see whether the production policies we propose are restricted by capacity
limitations. If capacity does pose a constraint, then it might indicate that the
purchase of additional capacity is warranted or that the production policy is
not applicable and needs to be modified. Finally, suppose that in the objective
function there is a term representing variance in production level. Minimizing

this would serve as a kind of surrogate for a capa.bity constraint.

e Jobs arrive at the beginning of each period ¢, each with an integer leadtime 7,

indicating that the unit is due at the beginning of period ¢t +j. We assume that
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this due-date cannot be violated, although we may process jobs early without
penalty in order to satisfy the due-date. This work processed ahead of its due-

date is held as finished goods inventory.

e Each job requires exactly one unit of processing time, and this is independent
of the total amount of work processed concurrently. The idea here is that each
unit of demand has the same quantity of processing requirements. This is not
to say that the actual processing is the same for all jobs, but that the amount
of time required is the same. In our carton printing example, the jobs differ
in terms of the colors and print plates required; however, these distinctions are
addressed in the setup stage, and once the press is running, the processing time
requirements are essentially the same. We can then normalize the processing

requirements to one unit.

In the case that a job requires k > 1 units of processing, we can split this into

k jobs of unit length, each with the same due-date.

o All work scheduled for production in period ¢ will be completed by the beginning
of period t + 1 (or at the end of period t). This assumption is not very strong

when the processing time is significantly less than the length of a period.

e The revenue generated by each unit of work is identical, and so we consider only

the cost minimization aspect of the problem.

e All work enters with a due-date no longer than N periods from the current time

period, where N is the length of the time horizon considered by the planner.

2.2.2 Notation

Notationally, we need to account for two types of information. First, each period ¢

we are interested in the realization of the stochastic demand quantities, and in the
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value chosen for the decision variable, the production level in period ¢. Second, we
want to maintain information about the time remaining in the due-date window for
each job. We will use a superscript and a subscript for this accounting, as described

below.

Additionally, the notation we choose is indicative of the type of variable involved.
In particular, a lower-case variable represents a scalar quantity, while an upper-case
letter denotes a vector. The elements of a vector however, are given in upper-case
form with the appropriate sub- and super-scripts. The exception to this is the use of
greek letters, which also designate vector quantitites. Matrices are given by italicized

upper-case letters; the elements of the matrix are given by lowercase letters.

e Di i =1,...,N is a random variable, denoting the demand in units of work
that arrives at the beginning of period t and is due at the beginning of period
t +:. Here, the subscript indicates the time of observation, and the superscript
the length of the due-date window. D: is independent of Dl # 7, and the

L : e .
mean and variance of D} are D, and o?, respectively.

In vector notation we have D, with elements D}, i = 1,...,N. We assume
Dy, D¢, . . . are independent, identically distributed random vectors, with mean
D = {D’} and covariance matrix, Cov(D) = diag{o?}.

° f)t+1 is the sum of all of the demands due at the beginning of period ¢ + 1, i.e.,
-DH-I =N Di_, +1- We use this notation to indicate the delivery quantity that
has to be satsified during period ¢.

e W/ i =1,...,N denotes the total quantity of work known to be due at the
beginning of period ¢+ ¢ that has not been processed at the beginning of period
t. This observation is made after the arrival of D,. W, is the vector of unpro-
cessed or remaining demand, ordered by due date at the beginning of the t—th

period with elements W;. Again, we have the subscript ¢ denoting the time
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of observation, while the superscript ¢ accounts for the time remaining in the

due-date window. We depict this in Figure (2.2.2).

e Pii=1,...,N is the control variable set at the beginning of period ¢ (but after
observing D,) indicating the quantity of W} that contributes to the production
quantity during period ¢t. This is conceptually a little tricky. Here we want
to reiterate the distinction between a loading policy and a dispatch protocol.
The loading policy indicates how much work is to be processed in a particular
period without regard for the identities of individual jobs. The dispatch protocol
distinguishes the jobs and then indicates the actual order ic which they are

processed.

In setting a load quantity, we want to consider all of the unfinished work re-
maining in the system, in this case, ordered by the due-date, and given by W;.
Looking over the length of the planning horizon, we think of “drawing” work
from periods further out in the horizon to contribute to the production level
set for this period. In other words, we explicitly consider how much work we
anticipate for future peiiods in setting this period’s production. Depending on
our objective function we may choose to process some of the work early as a
hedge against future uncertainty. In Figure (2.2.2) we show how this may be

done.

We will not address the form of the dispatch protocol in this section, but defer

the discussion until the context of non-rigid due-dates.

P, is the production vector in period t with elements P/. The actual quantity
processed in period ¢ is given by Y, P{. In shorthand, this is eP, , where e

denotes the N-vector of 1’s. For ease of notation, p; = eP,, which is the total

production during period ¢.

® z; is a scalar quantity denoting the completed work due at the beginning of

period t + 1 or later, i.e., finished goods inventory at the beginning of period t.
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The description of the model is given via the following:

Stochastic characterization of D,
Dynamics of the state variables: W;, z,
Constraints on P,

Costs

Objective Function

2.2.3 Dynamics of the state variables: W;, z

The state of the system at the beginning of period ¢ is given by the quantity (W;, z).

It evolves according to:
VV:H =W - Pt + D:+1 (2.1)

In other words, in period ¢, a certain portion of W;*! is set for production, given by
P;*'. The remainder becomes a part of W}, , in period (t + 1) along with the new

arrivals in period (¢ + 1) that are due at the beginning of period ¢ + 7 + 1.

In vector notation, this is given by:
Wiy = C(Wy — P) + Dy (2.2)

where C is an N x N 0 — 1 matrix, with 1’s on the upper diagonal and 0's elsewhere.

Premultiplication by C' advances the workloads by one period.

The flow balance for 2 is given by:
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Zpr =2t pe — DH-I (2.3)

This indicates that the finished goods inventory in period ¢+1 is equal to the finished
goods inventory level of period ¢, adjusted by the net value of an addition of the
production in period ¢ and subtraction of demand due at the beginning of period
t+1.

2.2.4 Constraints

There are two types of constraints associated with our planning problem: One ad-
dresses due-date satisfaction and the second requires production to be non-negative

and bounded by the available work.

The requirement to meet due dates is expressed by:

A

K41 > .Dg Vi (2.4)

In other words, the finished gcods inventory at the beginning of the period ¢ must

be sufficient to cover the demands due at the beginning of the period.

There is no backlogging in this model, and so, the production level must always

be non-negative:
P >0 Vi, t (2.5)

Additionally, we have a make-to-order system, so that we do not produce more than

has been ordered:

P <W Vi, t (2.6)
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In fact, we can make these constraints a little more concise. Note that P} is not
really a decision variable at all, but in any feasible solution must be equal to the
level of unfinished work due in period ¢ + 1, W;'. Thus, constraints (2.4) - (2.6) are
equivalently given by

0SP <Wii=2,...,NVt (2.7)
and

P =WVt (2.8)

}

From now, we only refer to the constraints (2.7) and (2.8).

2.2.5 Costs and Objective Function

As we have noted earlier, there are three primary costs of interest in setting a pro-
duction policy:
1. “Regular” production costs.

2. Cost of changes in production rate, or “smoothing” costs.

3. Inventory costs.

We assume production costs are given by a linear function, increasing in the output
level. However, these costs are independent of the production policy and can thus be

ignored.

We assume the cost of changes in the production rate can be represented as a

convex function. Suppose we know the long run, optimal level of production, p*,
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based on historical data, stationarity of the demand processes, etc. The system is
set up to accomodate this; for example, this accounts for the labor force level. A
production level higher than this requires the use of overtime, which grows at least
linearly with the excess over p*. Work released at a lower level indicates that the
system is being under-utilized. Again, given as a cost we can envison linear costs,
increasing in either direction away from p*. Taken together, the two costs can be
given by either a quadratic, or more generally, a convex function, minimized at the

apriori designated p*, where p* = ¥ D’

The minimization of these particular costs is often called a smoothing objective,
in refcrence to the attempt to “smooth” out the variations in the production level.
More generally, the planning problem itself is, in somewhat of a misnomer, called the
smoothing problem; this is valid when the variation in production level is identified

as the primary cost of interest.

There are two types of inventory costs, corresponding to holding finished goods
inventory and to holding unfinished work. In thc make-to-order environment of our
model, and with the assumption that all work requires exactly one unit of processing
time, the traditional issues associated with WIP inventory do not arise in the one
machine scenario. We return to this in the multi-machine model. However, if we
assume that a customer does not take receipt of work until its specified due date,
then it is of interest to see how much finished goods inventory is held. In particular,
there is a well-known tradeoff between smoothing the output process and holding
inventory. In this make-to-order system some of the work is done ahead of time
to achieve the desired smoothing benefits. In doing so, however, we must bear the
associated storage costs. We assume that the inventory costs are incurred according
to the level of goods being stored and the length of time for which they are held. This

we represent by a linear function.
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Before we quantify these costs, we want to identify a third type of cost, a waiting
cost. This is the cost representing the delay in processing work after its arrival. This
concept does not have tremendous applicability in the context of rigid due-dates,
given that all work generates the same revenue, as long as the due-dates are satisfied.
However, this cost becomes important when we introduce flexible due-dates. We

mention it here for the sake of completeness, but discuss the details later.

Combining all of these costs we propose that a cost function convex in the state
variables (W4, z;) and the production level P; is appropriate. This form of function has
been suggested by many researchers in the study of production planning for make-to-
stock systems. Some have chosen a specific quadratic function, while several others
have considered a general convex form. Representatives of these models are given in

the bibliography.

To be more specific, the per period cost ¢; is given by ¢,(W,, 2z, P;). We suggest
that c((Wy, z¢, Pt) have the following form:

Ct("Vt, 2, Pt) = ft(Pt - P.')2 + gozy Vi (2-9)

for positive constants f;, g;. Th~ values may be generated empirically or may other-
wise be given to reflect the relative importance of the different components. The first
term captures the smoothing cost, assigning a penalty for production in either direc-

tion away from the optimum. The second term represents finished goods inventory

costs.

There are several types of objective functions that may be appropriate, dependent
upon whether the time horizon of the problem is finite or infinite. For a finite horizon

of length T we consider

T
P AR Z;Ct(“"hzhpt) (2.10)
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For a problem with an infinite horizon a reasonable objective function is
min Ep, [e(W, zt, Pr)) (2.11)

From this, we now proceed by considering in turn a finite horizon and then an
infinite horizon problem. In particular, we analyze the finite horizon problem with

the idea that it offers insight into the analysis of the infinite horizon problem.

2.2.8 A Finite Horizon Dynamic Programming Formulation

Consider a finite horizon version of the problem over a planning horizon of length T
Note the distinction between the length of the planning horizon and the length of the
due-date window, which has an upper bound of N. Without loss of generality, we

only consider scenarios for which N << T.

In addition to the per period cost described above, we need to assume that there
is a terminal cost incurred in period T'. We assume that this cost has a similar form,

given by:
er(Wr, zr) = Wi FrWr + grar (2.12)

with known constant scalar gr and a positive semidefinite matrix of constants Fr.
This latter quantity is designed to capture a flavor of the production costs of the
remaining unfinished work. Note that there is no production decision in the final

period, and thus we do not include it as an argument in the terminal cost term.

The control P, is constrained to take values from the set of feasible control policies
Pi(Wh, 2¢), where



P (Wi, 2e) = {(Pi(We, 2)0 S PP < W/ i=2,..., NV, Pl =W} Vt} (2.13)

Note that the set of feasible controls is independent of z;. Let i be a mapping of

the state (W;, z;) into the control P.. A control policy is a sequence of such functions

T = {fto, 15+ -+, BT-1}

Suppose we have a sequence of functions # = {go, g1, ..., -1} wWhere gy maps
(Wi, z¢) into P, = p(W4, 2;), and is such that u(Wh, 2;) € Po(Wh, z). All such policies
n are called admissible. The class of all admissible policies we denote II.

For an admissible policy * = {P,,... Pr_;} and given an initial (Wj, z,), the total

expected cost over the planning horizon is

T-1
Jw(Wo, Zo) = ED.,¢=0.....T-1{E ct("Vta 24y Pt) + CT(WT, ZT)} (2-14)

t=0
where c; are given, for t =1,...,T.

The optimal control policy #* minimizes the cost where
Jw‘(WOa ZO) = I‘Peill':ll JR(WO’ 20) (2'15)

In the standard DP methodology, the approach to solve the finite herizon program
uses Bellman’s principle of optimality. For more details on the methodology, see
Bertsekas(87].

In our context, we can state the principle of optimality as follows: Let

7 = {Ugs B1s- -1 BT} (2.16)

be an optimal policy.
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Consider the subproblem at time ¢ with state (W, 2;). We want to minimize the

“cost-to-go” from time ¢ to time T, denoted Jy(W4, 2;) and given as :

T-1
Jg(Wg,Zg) = PI}}!& E{CT(WT, zT) + Z ck[Wk, Zk, [I(Wk, Zk)]} (2.17)
¢l ¢ T k-_“

and assume that when using =*, the state (W;, 2;) occurs with positive probability.
‘L'hen the truncated policy {u;, ft54y,- .-, 471} i8 optimal for the subproblem. Con-
tinuing for all ¢, and using this in the dynamic programming algorithm, we have

that
J,‘(Wo, Zo) = Jo(Wo, Zo) (218)

where the function Jo(Wo, 20) is given by the recursion

JT(WT,zt) = CT(WT,zT)
J‘(m’zt) = I:]ell'lll EDc+1 {ct(u’h 2ty Pt) + JH-l(vVH-la zH-l)} (2'19)

If n; = pg (W, 2:) minimizes the right-hand-side of (2.19) for each (W, z;) and ¢, then
7 = {ug, #3s- - - » 47—, } is optimal.

The solution proceeds via backwards recursion begirning with period (T' —1). At

each stage, the optimization problem we need to sclve is:

J(We,z,) = n}n;i‘n fi(pe — p*)? + g2 + Ep,yy {Je1(Wis, 2e41) } (2.20)

Note that there are only (N — 1) decision variables, P} i = 2,..., N although we

will refer to the entire vector P; as a decision quantity.

Period (T — 1) We want to solve:

Jr-1(Wr-1, 21-1)
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g,l‘il} fr-i(ePr_y — p*)? + gr-1211

+Ep, {Jr{Wr,21)}

= min fr_i(ePr-1 —p*)? + gr-1211
Pr_y

+Ep, {WEFrWr + grer)

N .
= ’I,frﬂ_g Jr-1(ePr_y ~ 2:-151)2 + gr-121-1

=1

+Ep {[C(Wr-1 = Pr_1) + Dr|* Fr|[C(Wr-y — Pr_1) + Dr1]
+gr(2r-1 + Pr-1 — Dr)} (2.21)

where the second expression follows by subsiicuting in (2.12). Then, using (2.2) and
(2.3) to substitute for Wz and zr the third expression follows.

This is difficult to solve in a closed form expression for arbitary values of Fr,gr
since we cannot guarantee satisfaction of 0 < P§_, < Wi_,,i = 2,..., N. Suppose,
instead that we solve the unconstrained version of the problem. The solution to this
problem is a lower bound to the constrained version. In the case that the solution
is feasible then it is optimal. Is there any insight that we can gain by considering
this less restrictive version? In particular, recall that the primary motivation of this
analysis is not to characterize the solution to the finite horizon problem exactly, but
to suggest a type of policy that is reasonable for the infinite horizon problem. Our
approach will be to see what the form of the solution to the unconstrained problem is
for the finite horizon case. We then add conditions to impose feasibility and evaluate

the policy’s behavior in the infinite horizon.

Differentiating (2.21) with respect to Pr_,, and solving, we find that the Kuhp-
Tucker conditions apply and that we get

PT.'-I = AT-] WT—l + BT..] (2.22)

where Ar_; = {a;;} is an N x N matrix of constants, and Br_; is a vector of constants.
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In particular these constants arise in solving for N x N system of equations that we get
by setting the gradient of (2.21) to 0. Since (2.21) already has an assumed quadratic

form, this follows.

Substituting Py_, into (2.21) we find that the form of Jr_,(Wr_y, 27-1) is given
by

Jr-y(Wr—1, 2021) = Wi_ FrsWr-y + §r120-1 + hp_i W, (2.23)
for some constants j-'T-l, gr-1, 7;1-_1. These constants are generated when the linear

form of Pj_, is substituted into (2.21).

Coutinuing the recursion in this manner, we find that the optimization problem

at each stage has a solution of the form

Ji(We, 20) = WEFEW, + Goz + bW, (2.24)
following from a solution

P; = AW, + B, | (2.25)

where j'-g, Jts h and A;, B; are calculated constants. Given terminal costs for Fr, gr,

the constants %, §q, k. and A;, B, are calculable for all 2.

Presumably, for a given set of constants, we can solve the constrained finite hori-
zon problem through some sort of enumerative technique. We have examined the
unconstrained version, however, because we are more interested in the form of the
solution than in the exact values. Thus, we have shown that the optimal solution
is linear in the unfinished workload vector. In the next section, we offer sufficient

conditions for feasibility and consider only those linear policies within that set.
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2.2.7 An infinite horizon problem

In the context of an infinite horizon problem, the objective function that we will

consider is given by:
min Ep, [e(We, 2, F1)] (2.26)

Because we are considering steady-state behavior of the system and of particular
production policics, we drop the time dependence on the per period cost, i.e., f; =

f,9: = g Vt for a given f and g. Equation (2.2€) b~romes:

min Ep,[f(p: — 7°)* + 92] (2.27)

and applying the expectation through:
n}.i‘n fVar{p] + gE[z] (2.28)

Motivated by the form of the policy generated by the finite horizon problem, we
propose analyzing the policy linear in W; for the infinite horizon problem. Several
modifications need to be made to accomodate such a policy for the infinte horizon
version of the problem. First, the parameters should be independent of ¢, with a

form:
P,=AW,+ B (2.29)

where A is an square matrix of dimension N and B is an N vector. Given such a
policy, we assume that a constant amount of productibn is guaranteed each period
as determined by the elements of B (or, if any elements of B are negative, then a

constant amount is being withdrawn).
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We contend that this is a rezsonable class of policy because of our analysis of the
finite horizon model. The time-index is dropped because we are assuming an infinite-

history for the problem. We have previously defined that feasibility corresponds to
0SP <W! i=2,...,NVt
and
Pl =w}wt
The approach here w*!! be to choose the optimal policy from the class of policies that
satisfy the following conditions for feasibility

Property 1 — Sufficient conditions for feasibility are:

1. B=0 and

2. A= {a;;} is diagonal witha;; =1, 0<¢; <1, i=2,...,N

The first condition is not only sufficient, but it is necessary for feasibility. For example,
when W, = 0, but B # 0, P, = B violates the feasibility requirement. Togethes with
the first condition, then, we argue that the characterization of A is sufficient for
feasibility. For cne, a;; = 1 corresponds to P! = W}, and thus all work that remains
in period ¢t with a due-date of ¢ + 1 is produced in the current period. Additionally,
by construction the constraints 0 < P} < W{ i = 2,... N hold. The 0 < P{ portion
indicates that the production level is always non-negative, i.e., no backlogging of
demand. P} < W follows since we have a make-to-order system and only process

orders that have actually been placed.

This production release policy can be more compactly described as
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=W, (2.30)
where a is an N x 1 vector with elements a; = a;;. a; represents the fraction of W}

that will be produced in period ¢. We have a; = 1. Equation (2.30) follows because

Pt = CTPt
= el AW,

= o'W,

The dynamics of W. become:

Wil = Wi-P+ D
= Wi —aW;+ D7}
= (1-a)W;+ D3}

Or, more concisely, in vector form
W1 = CAW, + Dyyy (2.31)

where C is as described above. A isan N x N diagonal matrix with elements a;; =

1 — @, ie., A= I — A, where I is the identity matrix.

241 = Zt+pe— D¢+1 (2.32)
z +aT W, - ﬁt«u

where Dy, is the accumulation of all of the demands due at the beginning of period

t+1,1e, Dy, = E.N-_-l D:—i+1'

Now, to choose the best linear policy from the class given by (2.29), we solve the
following progrim, denoted II(Var[p], E[z])
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min f Var[p] + gE[z] I(Var|pi], E[z])

s.t.

The assumption of the linear production policy enables us to evaluate the quantities

Varip,], Elz] as a function of & and the demand realizations D,.

First, to compute the unfinished workload level of period t + 1, we assume an

infinite history and then recursively substitute (2.31) into itself :

W = CAW’:+D¢+1

= SICAPFDpn (2.33)

k=0

One can show that [CAJ* = [0], k > N, and so, the summation in (2.33) will converge.

Evaluating the mean, we have the vector

EW)] = E[y.[CA'D]
Nt

= E[Y[CAID)
k=0
= [I-CA™'D (2.34)
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where

(1 —(1-ay) 0 0 . 0 ]
0 1 —(1-—«13) 0 . 0
.. |6 o 1 ~(1-as) ... 0
r-CAl=| o
.1 —(1—ap) |
e 0 1 -

and inverting this quantity,

(1 1—a) (I-a)(l—0a3) Q—o0x)(l—as)l—0ag) ... 0 O

0o 1 (1 - as) l-ca)(l—0g) ...0 0

U — A = (‘1 0 1 C (1-a) .00
.1 (1-ap)

.01

More concisely,
[I - CAI™* = {b;}
where

bi =1

b.~,-=9fori>j

b.'j = (1 - a;+1)(1 - a,-+2) .o (1 - aj)for t < J
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From this we then have that

(1, g, O3, ...)[I-Cfi 1= (1, 1, l,...)

By (2.33) the production level is given by:

pe = o'W,
= of Y [CA*D,_; (2.35)
k=0

Applying the expectation operator to (2.35) and given the stationarity of the

demand process,

Elp) = oT[I-CA"'D
N
=YD
Jj=1

N .
37 (2.36)

i=1

which follows from E[W,] and evaluation of [I — CA]™. as anticipated. Similarly,
from (2.35), we find that

Varlp = o 3 [CAFCov(D)ATC (2.37)
k=0

We show how this simplifies to a more intuitive representation and is easier compu-

tationally.

Property 2

N _
Varlp] = a;0? (2.38)

=1

where a; = (1 - ;)%a;-, +a}
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a1 =1

There are two ways in which to evaluate the expression for the variance in equation
(2.37). The first way is to examine each of the terms in the expression explicitly and
then to manipulate the matrices directly. The second way to evaluate this quantity
is more intuitive, and we make an argument for this by using a specific example to

generate the terms.

Given a matrix A, let the i-jth element be denoted A{ . Suppose that we have a
diagonal N-matrix M = diag{m;;}. Applying the update operator C to this matrix,
we find that the resulting matrix C M moves the elements up onto successively higher

diagonals. In the matrix representation, this is given by

Migrit1 1=t+1

CM)i =
(CM): {o j#i+1

In general, the i-jth element of the quantity |[C M]*

([CMJ*)i = { (')"i+k,i+k i=i+k

else

We refer to the upper diagonal on which there are non-zero terms as the kth diagonal.

In what follows we present two ways in which to evaluate (2.37).

Approach 1: Matrix Manipulation
Consider the kth term of the expression, which we denote by S

Sk = [CAJ*Cov(D)[ATCT)*
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From above, we know that

ATk — (I-aize) j=i+k

else

Recall that Cov(D) is a diagonal matrix. Applying the pre- and post-multiplication

terms, we find that Sy is also a diagonal matrix.

A (1 —aipa)?0?, i=1,2,...,N—k
k‘-=
0 i=N—-k+1,N—-k+2,...,N

When we add up these terms for all of the matrices in (2.37), and then apply a pre-

and post-muliplication of the vector a we get the desired result.

Approach 2: Enumeration Argument

Alternatively, we argue that (2.37) is simply an enumeration of all of the paths that
work can take and the corresponding impact on the variance in the production level
of the station. Here a “path” refers to the cumulative information indicating how

many periods the job sat in the queue, given its due-date slack at the time, and the
period in which it was finally produced.

We make this argument via a specific example. Consider the term a3 which we

argue accounts for the variation in production of D?. Writing out the terms,

az = (1 - 03)2(12 + ag
= (1-as)’[(1 — 23)’ar + o] + o3

= (1—-a3)*(l —aa)®+(1 - a3)’a3 + ol
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The third term corresponds to the contribution by the a3 D? quantity processed imme-
diately upon its entry to the system. (1 —a3)a;D? is delayed one period and then pro-
cessed, accounting for the second term. Finally, a quantity equal to (1 —a3)(1 —a3)D?

is delayed a full two periods, and then processed the period before its due-date.

For computing the mean level of finished goods inventory, repeated substitution
of z, in (2.32) yields:

Zier = Zi+p — D

= Zt1+Ppi-1— bz +p— -DH-I

t—-1
= Y (Pt-j ~ D) + 20

=0
0 N-1 .. .

= Z(O‘T Y (CA)'Diyizj — Deya-j) (2.39)
=0 =0

where the expression for p,_; is derived above, and we assume that zo = 0.

Property 3 Taking exzpectations on (2.89), we find

N . :
Elz] =) 6D’ (240)
j=2
where b; =b;_1(1 —a;)+(j — 1)a;
and b] =0
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The argument for the validity of this expression is similar to that of the production
variance. For example, a portion of D} is held for 2 days after processing, another
portion is held for 1 day after processing, and the remainder is processed immediately
prior to delivery. The factors corresponding to these are embedded in the bs value.
a

From here, rather than consider the entire optimization program all at once, we
proceed in a sequential fashion. We examine in turn each of the individual terms
and then the full program. This will enable us to characterize completely a type
of solution and then to indicate how it is affected by the introduction of conflicting
objectives. In particular, we want to decide on how to set the a; values by taking

into account how the performance measures depend upon the parameters.

The case in which there are only holding costs to minimize is simple. Then, we
consider only the smoothing properties of a poiicy, as measured by the variance in
the production level. Finally, we consider the full program and see how to set the

parameters when the objective function has the two conflicting terms.

Minimization of Holding Cost: II(E[z])

Consider only having to incur a finished goods inventory costs:
n},i‘n gE[z)] I(E[z])

s.t.

To solve this program we argue as follows:
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Consider the feasible policy

a=1, a=03=2,...,N

By Equation (2.40) we have that b; = 0 Vj. In this case, E[z)] = 0 and this must be
an optimal policy, since we know that z, > 0.

This policy corresponds to delaying the processing of a job until the period before
its due-date. There are no penalties associated with she production level, and thus,

since the system is uncapacitated

Minimization of Smoothing Costs: II(Var[p])

In this case, there are only costs associated with the variability in production level

The program corresponding to this is:

méin fVar[p‘] H(Var[p,])

s.t.

Because f is a constant in the optimization, we will assume that f = 1.

Property 4 a; =3 =>qa; =1}

We proceed inductively:

The property is truefori=1: a; =1 and a; =1

Assume truefori =n —1: ay_1 = 2y and a5y = 715
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For it = n:

a, = (1—ay)ap-1+0?

_ 1, 1 1,

= (1 n) n—1 +(n)

- % (2.41)
a

When a; = } then from (2.41),

N 1 2
Varlp] =) 79 (2.42)

=1
Property 5 a; = } minimizes

N
2 aio}

=1

where a; = (1 —a;)%a;y + o}

ay =1

The recursion
a; = (1 —a;)%a;—y + o? (2.43)

is a convex function of a; for a;_; > 0. Since a; =1 > 0, the sequence {a;} generated
by (2.43) is non-negative for 0 < a; < 1. For a fixed value of a;_; (generated via the

sequence @;_2,@;—3...a), (2.43) is minimized for

- Qi
14a;

]

(2.44)



N Xof|Var(p) | A% || X o7 | Var(p) | A% || X o7 | Var(p:) | A%

3 1.83 1.36 26 3 1.83 39 6 3 50
5 || 2.28 1.46 36 5 2.28 54 15 5 67
10 || 2.93 1.55 47 10 2.93 71 55 10 82

Table 2.1: % Reduction production variance A%, ¢; = -:- vs input

Substituting this into (2.43),

ai-1 PN
(= 2.45
¢ 14+ [/ F ( )

Choosing a; = 13=1= and with initial value @, = 1, the entire sequence {a;}
follows with cach ¢; = % To show optimality: In (2.43), a; is increasing in a;_; and

so min a; follows when {mina;_,} is set, and ¢; is given by (2.44).

To get a sense for what the exact value of the objective function (II(Var(p,)) is,

we evaluate it for a few specific values of N at the optimal solution, a; = 1.

Our choices for 07 in Table (2.1) above indicate the relative quantities of the
variance of the individual demand streams. o? = 1 represents the equai level of
variability in each of the demands. o? = ¢ captures the increasing level of uncertainty
of demand streams with long due-date window requests. Conversely, 6? = 1 associates
the most variance with demand with very short due-date windows. For this last case,
the least smcothing is possible, as we see comparing the A% values, denoting the

percentage decrease in the output stream versus the incoming demand.

The striking observation about the result we have here is that the optimal o; is
independent of the value of ?. At first, this seems counterintuitive; however, the

structure of the recursion function is such that all of the o7 terms drop out and the
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policy is simply a function of the requested due-date leadtime.

Minimization of costs of variance and finished goods inventory

Suppose now we append the finished goods costs to the objective function. We
expect that the optimal parameter values 0 < a; < %Vi, with the introduction of
this conflicting term in the objective function. This follows because the inventory
term will seek to delay the production of work so as to not incur any storage costs.
Analytically, the problem becomes harder because the inclusion of this inventory term
in the objective function disrupts the nice structure we had when we only considered

one of the terms individually.

Formally, the program under consideration is:

N N .
min f Y ai0?+¢Y 4D I(Var[p], E{z])

i=1 i=1

s.t.

0SC¥,’<1

o) = 1
where the a;, b; terms are generated by
— 2 2 =
aiy1 = 6i(l —aip)’ +aiy a =1

biyi = b(l — aipa) +toi b=0

As we have noted above, this program is difficult to solve to optimality because
of the complete dependence of the a;, b; terms on each other. We have to resort to

some bounding procedures to find good solutions.
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Bounds on the Optimal Solution and a Sequential Search Heuristic An
upper bound to the program II(Var[p], E[z]) is given by the evaluation of any feasible
set of {o;}. In this section we want to suggest reasonable bounds and discuss how to
improve upon them. To do this, we make assumptions about the actual or relative
values of the constants f,g, a?,ﬁi,i =1,...,N. In particular, we assume that f =

g=1.

Upper Bounds Plugging the set a; = 1 into II(Var(p,], E[z]) we find that the value

of the objective function is:

|
o =

N N (: .
Y zat+ Z(Li—l)ﬁ' (2.46)
=1 =1

Because o; = } is feasible, we have that (2.46) is an upper bound on the optimal
solution. Additional assumptions about o? and 7' lead to more specific bounds. For
example, we evaluate (2.46) by assuming values for the parameters associated with
a particular demand stream 17:, o?. As could be expected, this is not a very strong
bound.

The next heuristic we consider we call a sequential search heuristic. In evaluating

the terms corresponding to the jth demand stream, we have:

a1 = ai(l — i)’ +aly,
bisi = bi(l — aipa) +iaip

The choice for a;4, is a function of [ay, ay,...,q;], but not a function of any «a; j >

¢ + 1. Since
ai10%; + B D = (ai(l — i) + 02y1)o + (0i(1 — i) + i) D

is convex in a;4;, we propose doing a local 1-directional search of the form:
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o Initialize: o3 =1,08; =1,5, =0
o Given fixed [0, ay,...,q;]
e Solve
. i+1
min a;410%, + B D’
which corresponds to

Qirs = 2802, + (b — '.)D““
e 2(a; + 1)o?,,

We can guarantee that a; < 1 for ¢ > 1. This follows because in the ratio

. . . . 2a; .2 .
given for a;y,, (b; — i) < Ofor all ¢, and the ratio ﬂ::_—:ﬁ; = (‘f#ﬁ < 1. Thus,
to guarantee feasibility

2(a; +1)o?y,

}

E J
aj,, = max{0,

Lower Bounds Finding a lower bound to the program is more difficult. This is be-
cause the traditional approach is to dualize a constraint and then apply some kind of
updating scheme, such as subgradient steps or dual-ascent methods. Unfortunately,
the constraint that is the most desirable to relax, a; = 1, is difficult to relax with-
out developing an entirely new model. The difficulty arises because of the recursive

constraints— relaxing one constraint effectively relaxes all of them!

One lower bound we can get is the optimal solution to either the smoothing
problem or the inventory problem in isolation. However, the inventory problem is
trivial because the optimal cost of that problem is 0- recall that the optimal « results

in all work being produced one period before its due-date.

With smoothing as the sole objective, we found o; = } to be the optimal parameter
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values. In particular, we now offer that the optimal value of that program is trivially
a lower bound on the optimal value of II(Var[p,), E[2]). This follows because we
have minimized the variance function and so introduction of any non-negative valued

function of inventory has to be at least as great.

However, as one would expect, this lower bound is pretty poor when inventory
holding costs are significant. When f = g = 1, this equates the importance of the
costs due to smoothing and holding inventory. When f =1 and g — 0 it becomes a
good bound, and in fact, all three of the solutions are equal.

However, in terms of comparison studies, we see how the sequential heuristic
(which yields feasible solutions— a; = 1 is the intialization value) outperforms the
values corresponding to the II(a; = }) solution. In the sequence of figures that
follow, Figures (2.2.7)-(2.2.7), we assume that f = g =1 and that D = 1Vj. Then,
we vary the o? levels. For a given value of N, there are N demand classes each with
D’ =1 and different variance levels. The figures depict the value of O(Var[p, E[z])

according to the two solutions.
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20.00 ¢+
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Figure 2-3: I(Var[pi], E[2]) : ¢? = ‘%-,ﬁ’ =1
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Cumulative Demand
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Next, we briefly consider a different type of policy which we refer to as an assign-
ment policy. We show that the linear policy we have described here is essentially o
fixed assignment of work upon entry to the system. This is counterintuitive to the

construction that the production level is a function of the current work in queue.

An assignment policy

We now describe a policy in which production levels are set but ignore the current
workload queue. The policy that we described above sets the production ievel as a
linear function of the unfinished workload. Here, we propose a policy in which all
of the incoming demand in period ¢, Di, i = 1,..., N is permanently and feasibly

scheduled for production at time .

We introduce some additional notation:

¢ X;: Quantity slated for production in period ¢ +3i. Because work is permanently
assigned to a period, a feasible work assignment consists of jobs that have due-
dates that can vary from ¢t + i+ 1 to t + N —i. The vector X; = {X}} then

represents the assignments over the planning horizon as of period ¢.

o Y} is the assignment made to period i+t in period ¢ from the incoming demand.
We have that X; = Xj*! + Y. The vector of this assignment is given by
Y. = {¥'}.

The motivation for this type of policy arises because there are often rigidities in
the system, making it difficult to re-schedule work. We assume the assignment takes
a particular form. To make an interesting basis for comparison, we consider a linear

policy:

Y, = BD, (2.47)
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where B = {b;;} and b;; is the quantity of Dj assigned to period ¢ + j. More formally,
this type of policy follows from a dynamic programming model similar to that used

in the development of the workload policy of the previous section.

Feasibility of this type of policy is guaranteed by :

1. b; >0

3. B upper triangular, i.e., b; =0 > j

The first two items ensure that all work is assigned and the production level is non-
negative. The last constraint in conjunction with the first two then satisfies due-date

requirements. A matrix B that satisfies these constraints is a feasible assignment.

Theorem 1 Every assignment policy of the form Y, = BD, with B a feastble assign-

ment matriz determines a unique independent workload policy of the form p, = oTW,.

Initially, this seems surprising, since the first policy p; = o W, explicitly considers
the cumulative work ordered by due-date, and the second policy, Y; = BD, ignores
the current state of the system. However, to see this, consider the following: Suppose
we have a demand quantity Di. According to the workload policy we will produce
; of it in period t, leaving (1 — o;)Dj unfinished. In period (¢ + 1), @;—; of the
(1 — @;)Di remainder is processed. This is equivalent to, in period ¢ itself assigning
a; Di for production in period £, a;_;(1 — a;) D} for production in period ( + 1) etc.
In other words, by; = ay,by; = ai-1(1 — &),...b;; = ay(l — a3)...(1 — ;). Thus,

given a set of {a;} we can generate the b;;.
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2.2.8 Computational Testing

In this chapter we have undertaken a modelling exercise and an extensive derivation
which has suggested the use of a linear loading policy. In the literature, the linear
policy is often used, justified for its analytic tractability and its ease in implementa-
tion. How well does this policy perform in practice? How do other dynamic policies
compare? The optimal a vector for II(Var{p]) was independent of o7 for all demand
streams Di. This is an appealing, robust policy since it requires no information about
the variance of the input demand stream for setting parameter values. Is it possible
that we could do better by explicitly looking at the queue? We proposed a sequential
heuristic for solving II(Var[p], E[2;]). Unlike II(Var[p;]), the solution here is given

as a function of the mean and variance of the input demand streams.

In this section we discuss some computational studies that might be worth pursu-
ing for certain problem specific circumstances. Of special interest here is II(Var[p,]].
For one, in this 1-machine context the presence of finished goods inventory may
not be very crucial to the overall economic value of the system. Historically, as we
have noted previously, the smoothing problem has been somewhat interchangeable
with the planning problem for the reason that the costs associated with variation
in production level are significantly greater than those for holding inventory. We

defer computational work for II(Var[p,], E{2]) to the reader with a specific problem

instance.

We propose a heuristic that has as its motivation the following: We have at our
disposal two types of information. For one, we know the mean demand level of the
input demand streams. This is a long-run type of quantity. However, in the short-
run, we can look at the current workload level of the system as a factor in setting
the production level. In the policy that we propose we want to maintain a balance
between the long term information we know about the demand process and more

timely information about the actual realization of the current queue length.
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Assume that there is only one demand stream. We know that the inputs for D} are
“approximately” equal to the mean, although they may vary significantly from D'. I
a more myopic sense suppose we want to exploit information about the current status
of the queue. Intuitively, over a window of j periods we want to produce “on average”
Z‘—‘ﬂ;& during each of those periods. Cruickshanks et al [84] did a simulation study

of this latter policy, in the case that there are no due-date restrictions.

To quantify these observations, we propose a parametric heuristic where the pa-
rameter weights the two types of information at hand to determine the production

level.

We make the following assumptions in our simulation study:

e Dispatch policy is FIFO. We need this (or some dispatch rule in order to update
the workload queue)

e The distribution function for the input demand stream is known and given

We denote the policy we have described here by G. It has the form:

Za_; lt + (1 _ 7)EJ

where 0 <4 <1 is a relative weight on the two types of information that we possess.

Additionally, we need to ensure that all work meets its due-date constraints. To

satisfy this

+(1-7)D, W} G

N wi
Pl = max{'y———-):"; Wi

The study here simulates the arrivals to the system of a particular demand process,

and then sets the parameter v at a level to minimize the variance in the actual
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production level when the production rule is given by G. In particular, we briefly

describe the form of the simulation:

Initialize:
Set v = .05
Select demand stream DY, i.e., the leadtime request on the input stream

Select T’ and a}

Iteration
Generate D;"t =1,...,T, T =Length of the simulation horizon
For t > t,,is calculate production variance
Update minimum production variance
Update y — v+ .05
Update D’ and o}

This simulation essentially loops through the possible values for the mean and
variance of a demand stream and then updates the v factor. For each we calculate
the production variance after time ¢,,;,, which is the time at which steady-state values

can be computed.

The form of the distribution function for arrivals is a factor in the simulation.
We have examined this policy when the demand process has either a Poisson or
Normal distribution. In Figure (2.2.8) we depict the differences in the variance in
production level in three scenarios for D}. First, we have the minimum variance in
production under the linear policy that is distribution independent. Then we have
the minimum production variance values when the demand streams are Poisson and
Normal. For the Poisson distribution, the mean and variance of the function are the

same; we considered values for D° € {1,2,...,10}. To be an interesting comparison,
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we specified the Normal distribution such that D= o2, and the simulation also runs
over the same range of values for the parameters. In Figure (2.2.8) we depict a similar

case, now with the demand stream D).

In particular, note that the linear policy falls somewhere between the minimum

variance achieved. It performs better than the Poisson, but not as well as the Normal.

Comments on Computational Work

In modelling any dynamic physical system, there are a large number of possibilities
for doing simulation studies. In the problem we have been discussing, to do any
significant computational work we need to devise the simulation to be problem spe-
cific. The problem we have posed is a fairly general system with an objective that
is relatively aggregate in scope. In using it, there needs to be detailed discussion
about setting the parameters that weight the smoothing and inventory terms of the
program II(Var[p], E[z]). We have really only considered a simulation of a different
type of “policy”(really just a rule that captured a trade-off between two perspectives
on setting production level) for the program II(Var[p]). The more general problem
can be very context-specific, and we defer the study to later more computationally
motivated projects. We did some preliminary computational work for I1(Var[p,]) be-
cause of the unique feature that the optimal policy is independent of the moments of
the demand process. We found then, in some cases it performs better than the simple
parametric rule we devised, but that this is very much a function of the distribution

function of the input stream.

2.2.9 Conclusions of the Basic Rigid Due-DateModel

In this section our objective was to describe and model the problem of developing a
production loading policy in the presence of rigid due-date constraints. We did this

by considering a restricted form of model in a finite horizon dynamic program. This
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suggested a linear production policy. We then did an analysis of the problem for the
infinite horizon probiem when this type of policy is implemented.

In the next sections, we will consider two types of extensions. First, we relax the
rigidity of due-dates, and permit due-dates to be violated, with some associated cost
for the late delivery of an order. Then, we see how o use the results of the one-
machine system in the context of a larger type of manufacturing system with rigid
due-date constraints. In both extensions we analyze the type of linear policy that we

have introduced here.
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Chapter 3

Non-Rigid Due-Dates

3.1 Problem Description

We have developed a loading policy for the one machine system that has a certain
cost objective as a function of the machine’s output process, and must satisfy rigid,
exogenously-given due-dates. The assumption of rigidity reflects a market in which
there is a relatively strong influence of the customer vis a vis the supplier. Consider
now a situation in which the producer is relatively stronger than the customer in
a market. This might arise as follows: The customer is smaller than the average
customer, and as a result, exerts less influence. However, if the supplier is not a
monopolist in this market, there is always a possibility that the customer will change
to another supplier, albeit at a cost. In this scenario, satisfying the due-dates for the
customer is not as crucial, but there is still incentive to meet the due-date requests

in reasonable time. We refer to these non-rigid due-dates as being violable due-dates.

Previously, the production process was driven simultaneously by constraints to
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meet the demand due-dates, and the objective function to minimize costs. In the
models we consider now, there is no longer a rigid due-date constraint. We incorporate
an incentive for processing work via the objective function directly: There is no
additional cost if the order is satisfied by its requested due-date; otherwise, the cost

is increasing in the completion time.

We need to modify some of the assumptions and incorporate additional notation
for the modelling of work with violable due-dates. We first present all of the notation

that may be of interest in this section and then discuss several models.

3.1.1 Preliminaries
Notation

The major distinction between the model for the rigid and violable cases is that
for the violable scenario we will be maintaining separate queues for the individual
demand streams DJ. Previously the queues were indexed by the remaining due-date

slack time.

Much of the notation we will use in this section is the same as that used for the
rigid due-date model- in particular, those used to denote the demand processes and
the production policy. However, we assume that the reader knows that the context
here is one of non-rigid due-dates. As follows we detail the additional notation we

will be using.

e We refer to D} as demand class J, corresponding to the work that arrives in
period ¢ with a j-day due-date leadtime request. For example, Df_l,D{_z, ...

are also members of this class.
o T/ € Z* is a random variable for the length of time it takes for demand stream
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D! to complete processing. Specifically, suppose the quantity that enters in
period ¢ with a j-day leadtime is Di. Here, T} is the number of periods it
takes for the entire quantity D7 to be processed. If Tf < j, then the request
is satisfied within the requested leadtime. If T/ > j, then the order is tardy.
Incorporation of this tardiness component is the motivation of this chapier.

pri(.) is the probability mass function associated with T?.

e U/ € R* is the quantity of unfinished work belonging to demand class j at
the beginning of period ¢. The vector of these values is {U} }. Here we are not
maintaining any ordering of work in terms of the remaining due-date slack as
we did in the case of rigid due-dates; rather, we maintain a distinct queue for
each demand class, with the idea of evaluating how long it takes work to make

it through the queue, since it may be longer than its requested due-date.

In this way, U7 differs fundamentally from W/, which was used to keep track
of unfinished work indexed by the slack remaining in the due-date window.
As a consequence W} was the amalgamation of several demand streams. U/
represents the unfinished work from one particular demand stream, each of

which will be considered individually.

° h,-(T,j ) : Z+ — R is the lateness cost for members of D} that took T? periods to

complete processing. Lateness can take on both negative and positive values.

Assumptions and Model

e Incoming demand streams are independent. We reiterate this assumption that
we had previously because we will be implementing separate policies for the

individual demand streams.
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e We assume the lateness function has the form:
a;(j—T)) Ti<j
b(T{ —3) T} >j
aj,b; >0 (3.1)

hi(TY) = {

According to this function, there are linear penalties for both early and late
completion of work when there is a requested leadtime j. Thus, the penalty
for producing work early, corresponding to a finished goods inventory cost, is
decreasing and linear at rate e; with respect to completion time T/ = j, at which
point there is no penalty. Similarly, the costs associated with late production

are linear at rate b;.

This form is very common in the literature for make-to-stock systems and seems
appropriate for modelling the trade-off costs in our model. This exact form is
not necessary for the development that follows. Penalties are assessed here on
average behavior, whereas previously there was an infinite cost on late work

which changed the structure of the problem.

As noted above, lateness can be either negative or positive(i.e., tardiness). In
this way, we have modified the characterization of the inventory holding costs to be
incorporated into this lateness function. Thus, early completion times incur holding

costs as before.

3.1.2 Production Policy and Dynamics of System

As before, we will be analyzing a linear production policy. Previously, with the rigid
due-date constraint, we set the production level as a linear function of the workload
vector, indexed by due-date slack. Now, we are permitting work to be late, and so we

modify the structure of the loading policy. In the case of rigid due-dates, we found
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that we could essentially aggregate demand streams by merging work according to
the leadtime slack. This is not possible in this case, since one of the things we need to
evaluate is the waiting time for each demand class. Thus, in cur analysis, we propose
a linear type of policy for an individual demand class; because we do not have the
due-date restriction, we maintain a single queue of unfinished work, with the order
of removal from the queue given by the dispatch policy. This method is also used
in Cruickshanks et al[84] in which their primary objective is to assess the smoothing
properties of a linear type of model. More detail of this is given in the Annotated

Bibliography.

The linear policy for setting the production level is given by:
P} = B;Ui | (3.2)

where 0 < 8; <1 is a scalar valued parameter. As in the rigid model, we are still
pursuing a production policy that is linear in the unfinised work.Previously, we con-
structed a rigid structure to ensure the satis!action of due-dates. Now, without that
restriction, we do not maintain information about the actual quantity of work with
a particular due-date. Instead, we maintain information according to the individual

demand classes.

Let B = [B1,B;-..,Bn] be the vector of the parameters for the N individual
demand streams. Also, let B = diag(B) and B = I — B. This constraint reflects
the “softness” of the due-dates; previously, we kept track of the due-date slack but in

this type of rule we do not need the tight constraint.
The dynamics of the system under this type of linear rule are given by:

Uiy = U] — P + D, (3.3)

70



Substituting in the production policy, (3.2), this gives
Ul = Ui -PUi +Diyy
= (1- ﬁj)Utj + -D{+1
In vector notation, this corresponds to
Uygr = BUi+ Dy
where B = diag((1 — §7)).

We propose that our objective be to select a production policy from among the

class of linear policies given by (3.2) that solves the following:

N N ) ,
min}  fVar[P]+ 3 E{hy(TIMD; .. (3-4)
s.t.
0<8;<1Vy

We consider two special cases of the program (3.4). In the first we assume that all
work enters without any due date, but the cost function is increasing in its completion
time. In the second model we consider a more general model in which work enters

with non-identical due-date requests, but these dates are violable.

Assuming an infinite history of the process, we have the following lemmas:
Property 8 Under a policy of the form given in (3.2)
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Var[P}] = 5 _Pi ,B, o3 Vj (3.5)

Proof: Given

P} = B;Uj | (36)
we repeatedly substitute (3.4) into (3.6)

Ui =(1-B;)U., + D}

to get

2(1 ~ B;)'Di_, (3.7)

1=0

result follows.O

Given the characterization of P/ above in (3.7), we can calculate some other

quantities of interest:

Property 7
j
a.E[Uj] = D (3.8)
ﬂa
b.E[T}] = = | (3.9)
ﬂ:‘
Proof: a. By the same approach as above, we find that
Z(l - B;)'Di_; (3.10)

=0
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Then,
EM]=M§O#WMA

= f:(l - 8D

t'=0'
D
Bi

b. When we apply Little’s Law to this system, we get that
E|U{] = D’ B[]

where E[U] is the average queue length and T is the mean arrival rate for demand

class 3.0

Role of a dispatch rule

Although we have maintained our primary interest in loading policies, the violable
due-date option forces us to consider the interaction of the loading scheme with the
dispatch protocol. This was of peripheral interest in the case of the rigid due-dates
because given a feasible loading policy there is no incentive for faster processing,

although there may be interest in delay because of inventory holding costs.

The motivation for the specification of a dispatch policy is that we need to explic-
itly evaluate the distribution function of the waiting times for each demand class. The
length of the wait then gives an indication of the costs that are incurred. Process-
ing significantly before the due-date means that inventory costs are assessed, while

processing after the requested due-date result in late delivery costs.

In this context, several different dispatch protocols may be of interest. We offer
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the following as examples of priority schemes which are a function of arrival time to

the system:

e FIFO: Jobs are processed in order of earliest time of entry, i.e., “ First-In-First-

Out”
e LIFO: Most recent arrivals are processed first, i.e., “ Last-In-First-Out”

e SIRO:“Service-In-Random-Order” — Jobs chosen at random according to a prob-

ability function

Dispatch protocols may also (and commonly) be given by other non-arrival time-
based considerations. For example, it might be the case that there are economies to
be gained by processing certain jobs concurrently. This might be because of savings

in setups, maintenance, etc.

In this analysis we will be considering the SIRO and FIFO policies. FIFO is a
very common type of dispatch policy. We show how to generate the mean waiting
costs given the distribution function for the input demand stream, Di. SIRO may
be of somewhat general interest in the context that one of the non-arrival time based
dispatch policies is being implemented. When one of these policies is being used,
it may appear from an aggregate level that the work is being chosen arbitrarily.
An additional benefit is that the policy constitutes an upper bound on the FIFO
discipline, and requires no information about the distribution function for Dj. Then,

we also discuss some lower bounds applicable to any dispatch policy.

3.1.3 Case 1: No due dates

Customers who do not quote a due date, but want the work done “as soon as possible”,

are implicitly quoting a soft due date of 1 period. Thus, in this model we have only
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one type of demand stream entering which does not have a specific due-date but
seeks immediate processing. More concisely, we have exactly one incoming stream,
D}, the scalar demand entering in period ¢, with mean El, and variance o2. No
inventory is held since all work is delivered immediately. The trade-off is between
production (smoothing) and waiting delays. Applying the expectation and variance

operators, and making the simplifications corresponding to this special case, we obtain
the optimization program (3.4):

min fVar[p] + hE[T}]D,
1

s.t.

064 <1

(3.11)

(3.12)

Substituting (3.5) and (3.9) into (3.11), our optimization program becomes:

. B 11
min f2 -'1,31 of + hlﬁl-D, s.t.
0<A <1

Result 1 The optimal value of the parameter, 3} given by:

= 1
2v/h1D h]D! <1
B = \/2761-?-;’11'5: S

1 else

(3.13)

Proof: EEJE{ is convex and increasing on [0,1] as in Figure (3-1).
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9.2 0.4 0.6 0.8 1

Figure 3-1: ;2 f = 50,hy = 5,D; = 1,0 = 1

3- is convex and decreasing on [0,1] as in Figure (3-2)

100

0.2 0.4 0.6 0.8 i

Figure 3-2: hy 2D, f =50,k =5,D, =1,0 =1

The minimum of the two terms will either occur in the interval or to the right of
the interval, depending on the values of f, by, 02, D;.

Since the sum is convex the critical point yields the unconstrained minimum to
(3.13). When we differentiate (3.13)

1-—-1_ 11
D= fnG—pgy ﬂl)ﬂ Dy g =0

Solving for the positive root of B; we have

d .. B
a_ﬂllfz _ﬂlag + hl

—4h, D, +/16(k,D;,)? — 4(2fo? — b, D,)(—4h,D;)
2(2fo — D)

—2h, D} +2y/2fo2h, D}

2f012 - hlﬁ:

B
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2D, (y2fo} - /1 D))
2fo? — h\D,

_ 2y/mD;
2fof + h1D:

If the minimum of the function occurs for #; > 1 then £, = 1 is the minimum on the

interval. Equivalently,

mD; <1

<
A<l 2fo? =

0.2 0.4 0.6 0.8 1

Figure 3-3: f38-0% + 1D, f =50,k =5,D, =1,0? =1

3.1.4 Case 2: D] with Violable Due-date Requests

In this section we consider the general case with N demand classes. In Case 1
there were no holding costs. Now with N demand classes, i.e., due-date leadtimes
€ {1,2,...,,N}, there are penalties for early production (holding costs) as well zs

for late production (tardiness costs).

For different values, the analysis will be the same. The assumption that D] V j ¢
are independent, means that we can consider separately the optimization problem for

each demand class. That is, the optimization problem for demand class j is:
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~ j hd
min fVar(F] + 3 a(j — )pri(t) + 3 b(j — )prs(#)] Woriginal
) t=1 t=5+41

s.t.
0<p6;<1

In this case we know the variance term, but we still need to determine the dis-
tribution function for 7/. To characterize pri(t) we need to assume a form for the
dispatch policy. Among the dispatch policies we have discussed, we consider two:
FIFO and SIRO. As we will see, we need the entire distribution function of Di for
analysis of the FIFO policy. Alternatively, we can consider some bounds on this so-
lution. The SIRO policy yields an upper bound on Iloriginat and we also present an

easily evaluated lower bound.

FIF¥O policy

In this section we want to evaluate the function E[h;(T})] under a FIFO policy, where
h;() is given by the lateness function (3.1). To do this we proceed in the following

way:

e Find the distribution functions for the queue length and for the “devolution”
of the queue length

e Use the pdf of U/ to derive the probability mass function for T/

o Evaluate E[h,—(th )] and choose B; to minimize H{;-IFO
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This progression corresponds to the complete sequence of generating the cost contri-
bution associated with 7/. However, it may be useful to bypass explicit derivation
of one of these functions, instead assuming that it has a particular form and proceed
through the remainder of the sequence. For example, we might want to apriori as-
sume that the pdf of T/ is known and given; then we use this to evaluate E[hj(T,j ol
directly and continue through the remainder of the sequence to choose the optimal

B;. We conclude with a numerical example of the full sequence of the derivation.

Distribution function for U/

To find the distribution function for U} we take the following approach: Suppose
we observe the queue at time ¢ and take a “snapshot” of its length. In successive
periods we do not observe the queue itself, with respect to new arrivals. Instead, we
track decrements in the snapshot queue, as work is processed each period. We then
characterize the distribution function for this “devolution” of the queue and use it to

characterize the distribution function for the queue length itself.
We begin with the basic equations of dynamics:
Ui = U_,~P.,+Dj
which as in (3.10) becomes

Ui = 31— B)Di, | (3.14)

k=0

Following the development in Graves[86), we introduce
Ui (r)

which represents the work remaining in the snapshot queue for demand class j at the
beginning of period t 4+ r when the initial snapshot was taken at the beginning of

period t.
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Ui(r) = Uli(r—1)-PL, (3.15)
= UL.(0)- Y PL, (3.16)
k=1

with U7 (0) = U} from above.

In this way, U} (r) > 0 corresponds to the queue associated with class j that
has been there at least r periods. U(r) < 0 means that none of the current queue
has been there for r periods and that a quantity of work equal to |Uj(r)| has been
processed in addition to the original Ui_,(0) > 0.

Substituting into (3.14) and (3.16) for the P} terms and rearranging according to
time indices we obtain

o0

Ui_,(0) = ,g(l — B)*Di_—. (3.17)
and )
Ui(r) = Y (1-B)*Dis, — 3B Y (1-B)*Di_,,
k=0 s=1 k=0
00 . r-1 .
= Z(l - ﬂj)r.‘-.Dg-r-—. - Z(l - (1 - ﬂj)k)D:_k (318)
8=0 k=1

Immediately from this, given T’ and 0'?, we can get the mean and variance of

Ui(r).

Property 8

E[Ui(r)] = [ﬂij — D (3.19)
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(1-8)

VarlUi()] = ls5is

7 1)’ (3.20)

To see these:

E[U; (r)]
= B =)Dl — 30— (1= £))DL
- a-prt- fé(l _(-BD
- {ki(l—ﬂ,)" ;":ll}ﬁ’
= [ ,BJIBJ ~(r—- 1)]D"
= [z -]’ D
Var[Ui(r)]
= Var[X%(l ﬂ)r-HDg-r-a_’;l(l‘—(l_ﬂj)k)D{—k]
= Sla-mrers § I +-'z':1[(1 B
- {;l[(l—ﬂ,)*12+;i:ll}a2
)
- ogp T
= Lyt~ (=1} o
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If we know the distribution function for Df , then the characterization given in

(3.18) allows us to determine the distribution of the queue length.

How difficult is it to find fyi()(u)? Consider the following: Let X be a random
variable with probability density function fx(z), and finite mean x and finite variance

v2. Given an infinite sequence of X;’s with X; ~ X, let Y be a random variable defined

by

Y = 'yXl + ’72X3 + ’73X3 +... (321)
0<y<1 (3.22)

Under what conditions can we apply a Central Limit type of theorem and conclude
that (3.21) has a Normal distribution? The most traditional type of Central Limit
Theorem holds for independent, identically distributed random variables. Here, the
terms in (3.21) are independent but not identically distributed. If, however, each of
the terms fB'X; satisfies Liapunov’s condition, then the CLT may be employed. (A
discussion of Liapunov condition is given in the Appendix. Loosely, we require that
X;, in addition to finite mean and variance, have some finite higher central moment,

i, E[[Xn — E[Xa]P*),36>0)

We use this result to characterize the distribution of Uj(r),r = 0,1,2,... as given
in (3.17) and (3.18). In particular we assume that Liapunov’s condition is satisfied
by the realizations of Di. Applying CLT to (3.17) is straightforward. It follows that
D o?

—_ _-.7..__)

UH0) ~ NG 352

which holds regardless of the distribution of D. This characterization is useful be-

cause it yields the distribution function of the queue length.
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Now, for Uj(r) given as above,

Ui(r) = go(l _B)HDL,, - :21(1 —(1-B)Di

We can apply the CLT to the first term given here. What about the second term?

There are two cases:

1. Di ~ N(ﬁi,af)

2. Di ~ fpi(d) where E[D{] = D’ and Var[Di] = 2.
Case 1: DI ~ N (ﬁ,a;‘-‘) Because D is Normal, we can make use of the following:

Given two random variables X, X; where

Xl ~ N(#lavf)
X ~ N(l‘h”‘f‘)

define
Y = .X1 o Xg
Then,

Y ~ N(p1— p2, ] +v3)

In this way,

i) ~ Mg =D gt 4 = 1))

Case 2: D} ~ fp;(d) where E[D]] = D and Var[Dj] = o}
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Again, evaluation of the first term in (3.18) is straightforward, with

S -0k, ~ NS D (G B

However, now that D;' is not Normal the evaluation becomes more involved. The
pdf for the second term is derived by the (r — 1)-fold convolution of each of the
(1—-(1—B;)*)Di_k =1,...r —1 elements. We require the exact form of fp;(d), and

then convolve the Normal first term with this latter function.

From this, then it would seem that it is preferable (given the option) to have
Di ~ N (-ﬁj,aj?). In many cases it may be a reasonable assumption, and from Case

1, we see it is nicely tractable. However, there is an important caveat about D} ~

N, o?):
Pr{Di <0}>0

i.e., there is positive probability for negative demand realizations, contradicting a
preliminary assumption of the model. To resolve this one may need to do some other

work in implementation.

Use the pdf of U} (r) to derive the probability mass function for T/
Assume that U/ (r)r =0,1,... has a known distribution function. Recall that T/ is a
random variable for the length of time it takes for the entire quantity D] to complete
processing. If T} < j, then the request is satisfied within the requested leadtime. If
T? > j, then the order is tardy.

The foliowing holds:

Property 9
Uir)>0 < Ti>r
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yielding

Pr{Ui(r) >0} = Pr{Ti >r}

Ui (r) is the snapshot queue associated with class j at time . In particular, at time
t it includes the realizaiion of Di. We know that Uj(r) > 0 means that there is a
queue of positive length associated with class j that has been there at least r periods.
Since work is processed in a FIFO fashion, when U} (r) > 0 this means that the entire
quantity D} cannot have been processed. Conversely, T/ > r means that the snapshot

queue at time ¢ is not empty after r periods, i.e., U} (r)=20D

Of particular interest, we note that Pr{U;(r) > 0} is decreasing in the value of
r, so the probability of waiting a very long time becomes small. In Figure (3-4) we
show this for Ui (r) ~ N(g,,v?).

Figure 3-4: Pr{U}(r) >0} | r: Curve moves left with r |

Using this relation, we generate the complement of the distribution function for
T}:
_ . r—-1
Fri(r)=Pr{T? >r}=[1-3 pri(?)] (3.23)

t=1

Then, using elementary methods, we derive the probability mass function with

Pr{T} = r] = Fri(r) = Fri(r +1)
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Evaluate E[h;(T})] and choose B; to minimize I}z

Given that the loading policy is given by P/ = ﬂ,-U,j , we expect that the E[h,-(’_l’,j )]
term should be a function of 8;. To complete the analysis, then, we set the §; level
so that IIrjro is minimized. This latter, however, is difficult to do analytically,
because of the analytic form of the Normal distribution. The optimization requires a

computational analysis to set the 3; levels.

Example

We illustrate this derivation by considering the problem for demand stream D?. For
different values of 35, we get different distribution functicns for T, shown in Figures
(3-5)-(3-8), with D = 1, ¢ = 1. In the case that f5 is small, the waiting time
distribution is Normal-looking, although it is truncated for values < 0. When ;s is
large Pr{T} > k} gets small very quickly for values of k > 2.

Figure 3-6: Distribution of T} 85 = .2

Then, for a fixed value for Bs, we can calculate the expected value of Ippo.

To set the optimal value of the parameter, we must explicitly vary s € [0,1]. The
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Figure 3-8: Distribution of T} fs = .8

resulting shape of the Ilprro(Bs) curve is a function of the parameter values f,a,b.

We illustrate these for some extreme parameter values in Figures (3-9)-(3-10).

Figure 3-9: Ipjpo : f =1, =100,b =1

Comments on FIFO In this section we have seen how to analyze the waiting tirme
distribution for a demand class under a linear type of production policy. There were

several limitations that we encountered:

Assumption of DI ~ N (_D—j,a?) may not be appropriate if %’- < 2or3d.
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Figure 3-10: Hpiro : f=1,a =1,b=100

When D! is not Normal, then the evaluation of the distribution function for Uj(r)

may be difficult.

Optimal value for parameter §; must be evaluated numerically instead of analyti-

cally.

Because the use of a FIFO policy may not always be appropriate or may be too
difficult to evaluate, we consider another dispatch rule that serves as an upper bound
on this solution and is more analytically tractable. Additionally, we offer a lower

bound that is valid for any dispatch rule.

SIRO policy

Property 10 When the dispatch policy is SIRO, the probability mass function for

T; is given by a geometric function of the form:
prs(t) = Bi(1 = B;)F! t=1,2,... (3.24)

Proof: Consider a unit of work in class j that enters in period ty, denoted A{,,- We
include it in the queue of unfinished work U;’o The loading policy specifies that j; of

,’o is processed in period ¢y. Since the dispatch policy is SIRO, work is chosen with
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uniform equal probability.
Ps{A} chosen} = ]U‘ P+ {A_chosen|Ui, = u} fyi{u)du
3

= /w' é:;"""fw(“)d“
= B

Continuing in this way we see that this probability is independent of the value of
Ui, t =to,to+1,..., given that a particular unit of work is a member of U}. In this
way the probability of any unit of work being chosen is independent of the unfinished

work in queue. Since
Pr{A chosen|Ai, € Ui} = B; Vt (3.25)

we see that

Pr{T! =k} = Pr{Ajchosen in period t +k —1}
= (1-8)'6

Thus, T/ has a geometric distribution. Note that when the dispatch policy is SIRO,
T/ is independent of Di.

Given

pri(t) = B;(1 = B} t=1,2,... Vj

we evaluate the E{h;(T})} as

BT} = Yali—080- )"+ 3 e -B0 — )
t=1 t=3+1
alifi+ (1 =Y 1] | H1 - By

Bi Bi
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Then the full optimization program for the jth stream is given by:
B, alifit(l— gy —1] b —.ﬂj)"

I%i'nf2 - B B; B;
s.t.
0<h <1

This function is not convex for all values of f,a,b— See Figure(3-11) However, we can
use numerical metkods to find the solution in a straighforward way. Alternatively,
we can find a lower bound that will hold in general as a function of these parameters.
We discuss this in more detail next. This lower bound is valid under both FIFO and
SIRO policies.

Figure 3-11: I po: f =1,a=100,b=1,j =5

Figure 3-12: II'};-,RO :f=1,a=1,0=100,5 =5
Upper Bound

To establish the upper bound on the E[k; (T)] under a FIFO policy we draw upon

some stochastic order relations between the dispatch policies.
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Property 11 °

E[T}(SIRO)] = E[T;(FIFO)]

Var|T{(SIRO)] > Var[T{(FIFO)]

We denote this by

T{(SIRO) >, T{(FIFO)
See Kleinrock[69)].

Property 12 If X and Y are nonnegative random variables such that E[X] = E[Y],
then

X >,Y < E[h(X)] > E[h(Y)] for all convez h
Proof: See Ross[84]
Property 13 (Ilsiro) is an upper bound on (Ilpiro)

Proof: Follows from above properties
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Lower Bound

Property 14 Jensen’s Inequality: Given a random variable X and a conver function

9,

Elg(X)] 2 9(E[X])

Proof: Standard iterative convexity argument. See Ross[87)

Property 15 The solution to

1 .
mmEf2 7+ - ,)* + b5 — 4)* (3.26)
Jj=1 J ]
s.t.
0<B;<1Vj

is a lower bound on Il,piginal

Proof: This follows directly by Jensen’s Inequality.

Again, we decompose the problem by demand class. The problem for demand

class j:
' rmnf Bi +a;(j — )++b-(—1-—-')+ ( B;
5; —B; i\J B; 5 . J (B5)
s.t.
0<8; <1 (3.27)
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Because at most one of the terms (j — 31-;)"', (-pl,- — 7)* will be strictly positive, we

consider individually the following two programs:

min f-E B+ aili - —) IH(5;)
s.t.

1

j <B; <1

min f5 2 + (g =) m(6;)
s.t.

OSﬂjSl

J

In IE( B;), both _f’.i.. and (j — —‘-)+ are increasing over [%,1]. Clearly, then, the
function is minimized at Bi = -—, with IT§ ( = 21_1

In ITj (ﬂ,), is increasing and convex on [0, l] while (-- — J) is decreasing and
convex on [0, ;] and so, the minimizing B; is in [0, }] Vj, f,b. Since the sum of the

terms is convex, solving

il + g~ = (3.28)

yields critical point ﬁj.

From this, we can characterize the solution to II’(;) by:

TE(B;) = mm{ JTH(83)} (3.29)



where 3L is the solution to H{(i—)

To get some intuition about the relative impact of the parameters, f,a,b in Fig-
ures (3-13)-(3-15) we show how the value of Il¥(8;) varies. In particular, when either
a or b is a dominant term, we find that I17(f;) is minimized for §; = % which in
Figure (3-13) and Figure (3-14) is given by 8; = 0.2. This is not a surprising result
because f; = } is the value for which the function, bounded below by 0, essentially
reaches the value 0. f; takes on different values only in the presence of significant
smoothing costs, which in particular, emphasize larger values of 3; to dampen out
the variations.

100

0.3 0.4 0.6 0.8 1

Figure 3-13: IF(B;): f=1,a=100,b=1,j=5

200
100

0.2 0.4 0.6 0.8 i
Figure 3-14: I’(B;): f =1,a=1,6=100,5 = 5

In the case that f is large, then [1/(;) is minimized for §; < % as in Figure (3-15),

approximately the solution to the problem with only smoothing costs.
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Figure 3-15: II/(;): f =100,a =1,b=1,j=5

3.1.5 Comments

In this chapter we have examined the problem of setting appropriate parameter values
for the program (Il,riginat) When the rigid due-date constraint is relaxed. In partic-
ular, we were able to distinguish between the situation in which all work demands
immediate delivery and the situation in which there are several demand classes, each
with a different leadtime request. Now, although work may be delivered late, there
may be a significant penalty associated with it. We did an analysis of (Il,rigina) under
two types of dispatch policies, and also offered a lower bound on the problem that is
independent of the dispatch rule.

3.2 Appendix

Liapunov’s Condition This is a Central Limit theorem for independent random vari-
ables each with a finite mean and (2 + é)th central moment, for some § > 0. For
n=12,...,let X, be a random variable with finite mean E[X,,] and finite (2 + 6)th
moment u(2 + 6;n) = E[|X, — E[X,]|**’]. Let the sequence {X,} be independent,
and let Z,, be defined by

S, — E[S,]

Zn— U[Sn] Sn=Xl+X2+---+Xn
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Then,

Jim @,(u) = e

holds if

. 1 2 .

in which ?[S,] = Y, Var[X}]
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Chapter 4

Multi-Machine Systems

4.1 Rigid due-dates and multi-machine systems

4.1.1 Problem Description

In this chapter, we consider the due-date constrained production planning problem for
multi-machine systems. Qur ultimate objective is to indicate how to set production
levels for a job shop system. A job shop system is a manufacturing facility which
consists of a set of machines, and incoming jobs require processing on some finite
subset of these machines, determined according to the characteristics of the individual
order. The job shop facility is the most general type of manufacturing environment.
In the previous section we have considered one of these machines in isolation, or h: .
assumed that there is exactly one machine in the shop. In what follows we consider
the problem for the special case of a serial line: given a set of ordered machines, all

incoming demand follows the same fixed processing sequence. Serial lines represent
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the next higher degree of complexity from the 1-machine system. We then propose to
cast the job shop environment as a set of these serial lines, and to apply the analysis

of the serial lines to the general system.

We begin by developing a model for a serial production line. The analysis draws
upon the results of the one-machine system. Then, as the next extension, we consider

a job shop configuration which we interpret as a finite set of these serial lines.

Some of the questions that arise in the context of a larger system:

1. What is the progression of work through each of the machines in the line?
2. How do we ensure due-date feasibility?

3. What is an appropriate objective function?

e To determine how work is satisfied at each station, we need to assume a form for
the production policy. Again, we examine the linear class of policies. In terms
of the progression of work from machine to machine, we assume that a demand
unit requires one unit of processing time at each machine on the line. Upon
completion at machine i, it enters the queue of unfinished work at machine
¢+ 1. After completion at machine m a job enters a finished goods inventory
and waits until its due-date before being picked up by the customer who had

placed the order. We discuss this in more detail shortly.

e In scheduling the workload at each machine in this system to maintain due-date
feasibility, we have tvro options: First, we can maintain information about the
workload al each machine in terms of the duc-date slack, i.e., remaining time
until the due-date, for completion at the end of the system. Alternatively, we

can divide up the total leadtime into sub-leadtimes for the individual machines.

To illustrate the distinction between the two perspectives, suppose we have a

four machine seriai line, and in period ¢ we have a realization of the demand
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stream D}. In the first case, we trace the course of the D® quantity at each
station for each period until its due-date at the beginning of period ¢ + 8. In
this case we need to keep track of feasibility requiremensis, i.e, the due-date
and the processing requirements at all dov. -tream stations. In particular, we

set the parameters of the linear policy to guarantee job completion within the

due-date.

In the second model we can choose to set rigid sub-leadtimes at the individual
machines so that all work spends at least one unit of time at the machine, and
that the overall system due-date is satisfied. With respect to the example, for
instance we might have the following: machine 1 has a leadtime of 2 periods,
machine 2 has a leadtime of 2 periods, machine 3 has a leadtime of 3 periods, and
machine 4 has a leadtime of 1 period. This division is feasible for the original
exogenous leadtime. Then we would schedule each machine independently, as

we did previously for the one machine case.

We refer to the first approack as a system due-date scheme. In the second
~pproach, we view the problem as one of setting internal due-dates for each
machine. The systemic perspective is more appropriate to a higher-level man-
ager. The second seems more relevant at an operational level since it is easier

to give machine due-dates to individual operators.

In extending the objective function to a larger system, we need to define what
smoothness and inventory mean with respect to the larger system. The exten-

sion of the objective function for the one machine problem to the larger system
is
m
min Y _(u;Var[pi] + v E[z;)) (4.1)
i=1
where u; and v; are weight factors for the production variance and inventory
coets, respectively, at stage i. p; is the production level of machine 7 in period
t, z; is the inventory level at machine ¢ in period t. We clarify these quantities

within the context of each of the models that we will be developing.
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We briefly present notation that is applicable for both of the models that we
will be studying. We begin by presenting a uniform linear policy that is the logical
extension of the optimal one machine policy. This policy will provide a benchmark

against which we evaluate the performance of the two models we will be developing.

The remainder of the chapter is in two parts, considering in turn the system due-
date scheme and the internal due-date scheme for a serial production line. For each
raodel, we begin with a section of additional notation and assumptions. We present
an analysis of each model and discuss the results. Then we directly compare the two
models. Finally, we propose how the model can be extended to a more general job

shop environment.

4.1.2 Notation and Modelling an m-Station Serial Line

Much of the notation in this section should look familiar, since we have only modified
previous notation for the one machine rigid due-date model by adding another sub-
script to indicate the machine in reference. Here we present notation that is applicable

for both models. We defer presentation of model-specific notation.

e m machines in the system, arranged in series

e N Maximum length of a requested due-date window, and without loss of gen-

erality, the length of the planning horizon

. D{ j =1,..., N is a random variable, denoting the demand in units of work that
arrives at the beginning of period ¢ and is due at the beginning of period ¢ -+ j.
Df is independent of D¥ j # k, and the mean and variance of Di are -D-j, and 0'1?,
respectively. In vector notation we have D, with elements D}, j = 1,...,N. We
assume Dy, D;,,,... are independent, identically distributed random vectors,

with mean D = {ﬁj} and covariance matrix, Cov(D) = diag{a?}.
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Since each job will require exactly one period of processing at each of these
stations, we restrict the due dates on incoming demand so that they are feasible.
Thus, we require that all demand have a due date of at least m periods, i.e.,

Di=0,j=1,...,m—1.

We have not yet identified terms for queue length, inventory, etc.The meaning of
these particular quantities differs slightly, and discuss the full definition within the

context of the model.

4.2 A Uniform Linear Policy (L)

The structure of the rigid due-date problem has been getting progressively more
difficult: We began with only smoothing costs for a 1-machine system, then we in-
corporated finished goods inventory costs, and now we are looking at larger systems
which may have both smoothing and inventory costs associated with each machine.
As a result, we have proposed heuristics to generate feasible solutions that we argue
are “good” in some way. Typically, given a heuristic for a minimization problem, the
traditional way to verify that the heuristic performs well is to find a good lower bound
and demonstrate that the heuristic is “close”. However, for the rigid due-date prob-
lem, it is difficult to relax the constraints, because they are all intertwined, having

been recursively defined.

One lower bound that we can offer: Suppose we drop the machine subscripts and
assess the performance of the entire system as a “black box”. The solution of this is
a lower bound on the full multi-machine problem. To accomodate this interpretation,
we apply a slight modification of the analysis of the one-machine system. Consider
the problem for D, k > m. By simply inputting this into the 1-machine problem,

we find that many of the solutions will be infeasible to (Q2), since it is possible for
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some quantity of work to be processed in fewer than m periods. Instead, we have to
assume that D¥ waits for m - 1 periods outside the system. With this restriction,
we are effectively forcing the job to be processed immediately at the first m — 1
stations, with full freedom for the remaining ¥ — m days for choosing the period of
production. However, this is a very weak bound on the muiti-machine problem. We
propose the following approach, which, although not as rigorous a comparison, has

intuitive appeal, and may prove a more satisfying and realistic resolution.

Instead of worrying about finding a strong lower bound to the problem, suppose
we compare the performance of one of our heuristics to the performance of a simple

rule that we call a Uniform Linear Policy: (L)

In particular, this is defined by specifying that the set of parameters {a{ } is given
by

1

Policy (L) corresponds to setting the parameters equal to the inverse of the remainder
of the feasible due-date window remaining. For example, consider a specific {a{}
and the quantity Wi. The work at machine i at the begirning of period ¢ has
J — (m — 1) periods remaining at machine ¢ in order to be feasible for completion
at the last machine. Policy (L) indicates that we should just produce j_(}n_'.) of the
work remaining. This policy is actually a very simpie, popular policy to set production

levels; in spirit it is a multi-machine version of the 1-machine solution in which we
spread work uniformly over the due-date window while maintaining feasible progress
through the systemn. Here we have the additional requirement of taking into account
the number of streams remaining to finish processing in the system. This seems to

be an appropriate policy against which we can compare our heuristics because it is

an extension of the 1-machine case.
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4.3 System Due-Dates

4.3.1 Motivation

In modelling a system due-date accounting scheme we are interested in inter-machine
effects, and control of the system as a unit. Clearly, there are a large variety of policies
to consider. Again, we propose a linear rule as the extension of the policy we studied
for the one machine problem. There is some additional basis for this in the literature,
as in Graves[86] where it is used in the context of setting preduction levels for a job
shop, albeit without the due-date restriction. For one, it is a reasonably tractable
policy with a theoretical basis as described for the one machine case. Another is that

it is fairly straightforward to implement.

In this model all of the machines are simply stages within a single production
system. The primary information that we record is the workloads ordered by due-
date slack. In this case, when we refer to the due-date slack on a job, it indicates
the time remaining to finish processing at all m stations. Thus, at each machine, we
have a vector of work similar to that of the 1-machine system, however we impose

restrictions to maintain system feasibility. The details here follow after the notation.

This section begins with some of the preliminary features of the system due-date

model. We then discuss techniques for evaluation of the model.

4.3.2 Modelling the System Due-Date Model

Here we offer some additional notation and assumptions that are specific to our

modelling of the system due-date approach.
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Notation

e 5% denotes the arrivals to machine i in period t with a system due-date slack
of j periods. S;; is the vector of arrivals to machine ¢ in period ¢, with elements

S,

° VV,’, J=1...,N, ¢ =1,...,m is the total quantity of work awaiting machine
¢ at the beginning of period ¢ that is due at the beginning of period ¢t + ;7. W,
is the vector of unprocessed or remaining demand at machine 7, ordered by due

date at the beginning of the t—th period with elements Wj.

e P,i=1,...,N is the control variable representing the quantity of Wi that is
produced at machine ¢ during period t. P, is the production vector in pericd
t with elements P,’, The actual quantity processed at machine ¢ in period t is
given by Z_?’:m P,’t In shorthand, this is eP;, where e is the N-vector of 1’s.
For ease of notation, the total production at machine i during period ¢ is given

by Dit = eP;.

® z;; is a scalar quantity denoting work that has finished processing at machine
¢ but has not yet been processed at machine i + 1. For machines 1,...,m —1
this corresponds to work-in-process inventory, still in the “pipeline,” given by
P E;-\':m I'V,-’;_l',. For the mth station, this quantity is finished goods inventory,
and these units remain here until their due-dates at which time they are picked

up the customers.

To summarize the super- and sub-scripts for the vector-valued quantities S;,, Wi, P
Subscript ¢ denotes the time of observation ¢, the subscript ¢ denotes machine z, and

the superscript j indicates that j periods remain in the due-date slack for the system.
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Production Policy and Optimization Program

Given a workload level of W',-’;,, the unfinished work at station ¢ at the beginning
of period ¢ that has a system due-date slack of length j, the linear production rule

corresponds to
Pl = oW

From the definition above, P;’, is the quantity of VV;’, that contributes to the cumulative
production quantity of machine i during period ¢, Py. a; is an N x 1 vector with

elements o. o represents the fraction of W3, that will be produced in period .

Given in vector form
Py = AW, (4.2)

with A; = diag(a;). This is the multi-machine extension of the production policy,

P, = AW, that we studied for the 1-machine system.

As we have indicated, the objective function we are interested in is the minimiza-

tion of

i(u;Var[pu] + v;E[z;t])

i=1

Because we have a make-to-order system, we require that 0 < o < 1. Since we
consider only demand vectors D; that are satisfiable, (x,’ is a dummy parameter for
j < m—i+1 (we arbitrarily set these of = 0). Now, in order to ensure that the
due date constraint is satisfied, and given that it must complete processing at the ith

station at least m — ¢ periods before its due date, we require that o ~**' = 1.
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In this way, the optimization program we consider is:

min i(u;Var[p“] + v; Elzy]) (4.3)

=1

where

In this optimization program we will be seeking to set values for the parameters,

{a} for each machine i and the elements of each of these vectors.

Dynamics of Input and Output Processes at Each Machine

The input process to machine z + 1 in period t + 1 is the production level of machine
¢ in period {. We maintain information about this according to the due-date slack.

To cxpress the arrival stream to machine i:
Sg-i-l,t-}-l =P.‘J;:-l t=1...,m-1
with
Sjy=Dj i=1,....m—1

Consider a unit of work that is at machine ¢ at the beginning of period ¢ with j + 1
days in its due-date slack and is processed during this period; this unit becomes a
part of the arrival stream to machine i + 1 at the beginning of period ¢ + 1, now with
Jj days remaining in its due-date slack. For the first machine, the input is given by

the elements of the demand process realization D;.
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To express this in vector form:
Sit1t41 = CFy (4.4)

where C is an update matrix, given by the appropriately dimensioned matrix with
I’s on the upper diagonal, and 0’s elsewhere. Making the substitution of (4.2) into

this expression
Sit1041 = CAW; (4.5)

where W}, is station i’s workload vector in period ¢, A; = diag(e;), and C is the

update matrix.
The dyramics of the workload queue at station 7 are given by

J — j+1 J+1 ]
VVi,t-u = u’i,t - Pi,t + S:',t+l

(1- a{“)W’;’f’ + Sij,¢+1

where the first equation expresses the basic equation of change for the variable W,-’:,,
and the second equation is the substitution of the production policy into the produc-
tion level of period ¢. In particular, each period we have new additions to workload
queue ¢, ordered by the system due-date slack; this is the input stream S’,J ¢« The work
present in period ¢, with a j + 1-day leadtime is decremented by the amount of the
production P,-’:,; the remainder has a j-day leadtime slack at the beginning of period

t+ 1.

The vector representation of this is given by:
Wit = CA.-VV.-, + Sien (4.6)

where A; = I — A;.
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As we have defined it above, for the first m — 1 machines, the inventory level at
machine ¢ is work that has finished processing at machine : but has not yet been

processed at machine ¢ + 1. The dynamics of the inventory level evolve by:
Zit41 = Zig + Pit — Pig1t t=1,....m—1

Each period it is updated by additions that correspond to production at machine z,

and subtractions as work is produced at machine z + 1.

As we noted above, z;; is actually the aggregation of the workload queue of ma-

chine ¢z + 1. In other words,

N -
zi't=2m{l’l,t i=1,...,m—1 (4.7)

i=

We use this relationship later to characterize the dynamics of the inventory level in

more detail.

The representation for the inventory at the mth machine, z, ., differs in terms
of the work removed each period. In this case, work is removed from finished goods
inventory as jobs are delivered to the customer when they reach their respective due-

dates. The work that is due at the beginning of period ¢ is Eﬁil Df_j, given by the

accumulation of each stream Dj that arrived j periods previous, i.e., Dj_;.

N
— J
Zmt+1 = Zmt + Pmt — Z Dt_j+1
)=l

Here we have limited ourselves to the basic dynamics of the system. We develop

these further and use them in analyzing the optimization programs.
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Special Cases

For the model that maintains system due-dates, we evaluate the objective function
under three cases, in increasing order of complexity, the simpler cases yielding some

intuition that may prove useful for the more complex cases.

(Ql)v;:OVi, u,-=0£¢kuk9£0
(Q2) v;=0Vi, v, #0 3%

(Q3) Not all v;, u; 0, i.e., the general case

In special case (Q1) we are only interested in the variance in production level at
machine k. This could represent a situation in which, relative to other machines, we
have primary interest in maintaining tight control over the performance of the single
machine. This may be the case if machine k is a bottleneck in the line, or its capacity
is very close to the mean demand level and the system is sensitive to deviations
in the production level at this machine. Under scenario (Q2), we recognize that the
production variance at several machines is of issue, to different but significant degrees.
Thus, while we may identify one particular machine as being of primary importance,
there may be other machines crucial to the overall performance of the system. For
this, {Q2) represents the minimization of the weighted sum of the production variance
of all of the machines in the line. (Q3) is the most general of the cases, representing
the full problem for the serial line, minimization of the weighted sum of production

variances and inventory levels.

We note that problems (Q1) and (Q2) are of great interest in their own right, not
just as a special, simplified cases of (@3). This is the case because when we impose a
due-date constraint then there is likely to be only minimal variation in the inventory

level over the class of reasonable feasible policies.
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4.3.3 Preliminary Results for the System Due-Date Prob-

lem

Before we raove on to actually solving each of the optimization programs indicated
in the three cases above, we offer some preliminary analysis of the problem that we

use to characterize the objective functions (Q1)-(Q3).

We recursively use the dynamic representation of S;, and W;, given above in (4.5)
and (4.6), respectively to express the W;, in terms of the original demand inputs to
the system. In turn, we use this to express the dynamics of the production process,
and the inventory levels. We then evaluate the mean and variance of the production
process, and the mean of the inventory process for use in the optimization program
(4.3).

From the 1-machine problem we have that

W, = Cl‘i"Vin.z‘FDt

= z: [CAA]hDg..h
h=0

In this m-machine problem, this corresponds to the characterization of the workload

at machine 1:

Wie= 3 [CAM Dy,

h; =0

In turn, Wi, is the initial condition upon which we‘compute the W;, terms for

downstream stations, ¢ > 1.
The recursion for W;, begins as:

Wienn = ). [CA]"S; 4,

hi=0
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= Z [CA{]h‘CAg’-—IW'—l,t—h.'—l

h;=0

with [CA.-]"" =0 for h; > N.

In this expression, the first equation expresses that machine 7 41 has inputs from
machine i, as well as leftover work from previous periods. Additionally, we need to
account for the number of periods that work has stayed at a particular machine. The
input from machine ¢, in turn, has a particular relationship to inputs from machine
¢—1, and so on. To summarize: At each substituion that we do on the intial equation
of dynamics, we are stepping back one unit of time, and adding in the impact of a
machine one machine further back in the serial line. In this way, we generate all of

the paths that a job may have taken by the time it exists as an element in the queue

VV:'+1,:+1

Continuing in this form, making substitutions, and using the characterization of

Wi, we find that

u’i+1,t+1 =
Y [CAin]1CA Y [CAICA:...CAL Y [CAIMD, . (48)
hiy1=0 hi=0 h1=0 j=1"7

In both production and inventory characterizations, we apply the vector a; to the
W; above. In this representation, W;; contains all of the information about the paths

that the jobs teok to get to this position.

In what follows, we use the characterization of the workioad dynamic to evaluate

several quantities of interest:

111



Mean production level for station i, E[p;;]
Variance in production level for station i, Var[p;)

Mean inventory level for station i, E[2;]

We evaluate these quantities of the m-station serial production system when each of

the machines operates under a policy of the form
pie = oWy

We find that E[p;] = }:;-v:l ﬁj, which follows intuitively. The expressions for Var[p;]
and FE[z;] require more effort; in particular, we evaluate each one using recursive

functions.

Property 16

Elpl = 31 (+9)

oy

We pursue an inductive argumient here rather than computing directly from the
expression above in (4.8).
1. Equation holds for k£ =1 trivially.
2. Assume it holds for k = n.

3. Letk=n+1:

Epni1] = Elpnsrgn] = EleqWogaen)
= an EWoi1]

= az_'_lE[C/in-{.anﬂ,t + CAW,

= aZ-H E [Z[CfinH]kCAﬂ Wi e—x]

k=0

112



= ol YIC A CAEW,]

k=0

= ol [I — CApnpa] "CALE[W,]
N .

D

j=m

To verify the last equality, we note that

apll = ChAnp] ' =

This follows because [I — CA,4,] is the matrix with 1’s on the diagonal, and
1- a{;H) on the upper diagonal. Inversion and then premulitplication of this
quantity by ol , is a vector of 1’s (See Chapter 2).

eC AL E[W,] = E[p,] = ﬁ 14

j=m

corresponds to the inductive assumption D

Next, we take a different approach to establish the computational expressions for
the terms Var[p;] and Elz;]. The arguments we make are an accounting system for

the different paths that a demand stream may take in proceeding through the system.

Suppose we have a serial line of length . When we add a station to the end of
the line, the input to the  + 1st machine is the smoothed output stream, ordered
by system due date, of the rath machine. To evaluate the variance in the production
policy of the 7 + 1st station under the linear production rule described above, we

view the original m-machine system as a “black box,” with appropriate input and
g PP p
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output processes, and the m + 1st machine as the “2nd” machine in series with the
black box system.

Property 17

N '
Varlpul = Y i(k)o? (4.16)

where
zi(k) = (-2 VE) + ()l (R i=1,... k~1

with tnilial conditions

’(k) 0 j<m-—-i+l,t=1,...,k-1
T; =
1l j=m—1+1

and
zi(k) = q
given by

a = (1-of’a]" +(al) j<m-k+1

ap~kl =

Using the representation for Wiy 1,41 in the equation (4.8) to find the Var[piy1,41],

Var[aiy W] =
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00

Varlaiga Y [CAm] 4 CA: Y [CAIN...CA Z[CAI]MD,_E;_I,,,J,]

hip1=0 hi=0 h1=0

aig1 Y [CAia)¥*1CA;...Cov[Dlaiy Y. [CAun]**+CANT

hiy1=0 hiy1=0

Clearly (or, rather, not so clearly) this is a difficult expression to evaluate. How-
ever, to calculate the actual terms we make use of properties of the parameters a{ ,
and of the structure of the production policy, whereby a fixed fraction is allocated
for production from all of the feasible elements of the workload vector. In particular,
there are certain terms that drop out of the calculation because they represent infea-
sible terms; e.g., we can discount work at machine i with due-date slack of less than
m — ¢ periods. To actually calculate the value of Var{p;;141], we account for only
the feasible terms and accumulate all of the values. We do this in a recursive way, as

we detail next.

In the expression for variance, there is a telescoping dependence of the terms in the
calculation. The z! terms are an accounting for the “paths” that a demand stream

may have taken. In particular:

zi(k) denotes the contribution to the variance term when a unit of work is at machine
i+ with a due-date slack of length j for calculation of the variance term associated
with machine k. The k argument is a marker for which set of initial conditions
need to be applied.

z3(k) is used to calculate the variance of the production at machine k. It
corresponds to the impact of demand stream D! on machine k, given that it

arrives first at machine 1.
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To see this, consider
zi(k) = (1 — a2l D (k) + (od)2B70 (k) (411)

Suppose we have a unit of work at machine i with a j-day due-date slack. (e?) of it
is processed in the current period, and moves to the next machine at the end of the
period. The variance in the production level due to this is (of )2z (k). (1 — o) of
it remains at this machine and the due-date slack decreases by one unit in the next
period, yielding the (1 — of )2z~ (k) term.

We show that the expression for Var[pn, accounts for all of the paths. Similar
arguments hold for all of the other Var[p;] terms. Each term follows by generating
the terms given in the representation of W, in the equation (4.8). First, we have
that 62 = 0 for j < m, and thus, :t{(m)a‘} = 0,j < m, since only feasible demands
are included. Consider the term zJ*(m). In our model, D, i.e., demand entering in
period t and due at the beginning of period ¢ 4 m, must be processed immediately
by each machine in the line. The relevant release coefficient at each station 7 is

a™~*! = 1. Thus the contribution to the variance in production at station m in

period t + m — 1 due to DJ* is [I%,(al*~"1)262 = o2.

Demand D}**! has the flexibility to be delayed (i.e., not processed immediately) at
at most one station. In period (t +m), D*¥! and D**! will both contribute to py,m,
and thus the parameters associated with the routings of these demands will contribute
to the z"*! term. A portion of D{**! is processed immediately at each of the m
stations, equal to [T, of*"**2D]**', and thus requiring a [, (a}*"*+?)%0?2, ,, term in
the variance. For the portion of D*1! that is delayed, there are m choices for the site
of the delay. The quantity delayed at station i is {1 — af*~**') [TiZ} o7 +?} D11,

with a contribution of {(1 — a*~*")? [T} (a]*~7*?)?}0?,,, to the variance.

Calculation of the z]"*!(m) accounts for all of these terms. For the case in which
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m = 3, we look at the contribution by Dj}:
71 = (1 -af)* + (a1)*(1 = a3)* + (a])*(a3)*(1 — 03)” + (a})*(a3)*(e3)?

The first term accounts for one period of delay at machine 1. The second term
indicates immediate processing at machine 1, and delay at machine 2. The third
term has immediate processing at machine 1 and 2, with delay at machine 3. The
last term has immediate processing at all of the machines for a fraction of Df equal to
(af)(a3)(ad)Df and a contribution to the variance of (af)?(a3)?(a2)?c2. Rearranging

the terms, we get
z1 = (1= a})’ + (a1)*{(1 - @3)* + (e})’[(1 — &3)* + (e3)*]}

which corresponds to the statement above. The argument continues in this fashion,

accounting for all the “paths”. O

The significance of this representation is that for specific parameter values we can

systematically evaluate the variance term.

Property 18

N . R
Elzi) = ) yi(k)D’ (4.12)

j=m

where
yi (k) = odylsi (k) + (1 — of )i~ (k)

with initializations:

yi(k) = oiTi + (1 — )yl ™ (k) k=1,...,m—1
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where
T =1+(1 -4 )T
and

Tl:n-k-l-l =1

[ ]
0 k=m
m—k+1 L‘ =
Yk () {1 k<m
(-]
yi(ra)=(G — 1ol +(1 —al)yii(m) k=1,...,m—1
with

Ym(m) =0

Here, again, we use the representation of W;, given in (4.8) to express Elz;].

We have that E[zy] = E[LN, Wi,,,] i = 1,...,m — 1. Applying the expectation

operator,

EWia] =
E[ Y [CAi]"*1CA;...CA Z[CAI]h‘Dt__E.' N
j=1""

hi41=0 hy=0

Again, we know that this expression is difficult to evaluate. Rather, we use the

recursive form of this expression in order to actually calculate the value of this term.
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The recursive argument for the correctness of the E|z;] term is similar to that given for
the variance expression. We account for all of the demand streams and the quantity
of work, ordered by due-date slack that comes from an individual demand stream.

Consider the dynamics for y? (k):
yi(k) = I (k)1 — of) + oyl (k)

o W3, is produced at machine i in period t. This quantity then enters z;4y;. This
corresponds to the ofyir1 (k) term. (1—af) of it remains at this machine and the due-
date slack decreases by one unit in the next period, yielding the (1 — of )2ij 1 term.
With respect to the calculation of yj(k), (1 — ed)W},, j > m — k + 1 is left behind
in the queue, and awaits another period for the decision of production at machine
k. What about the quantity a‘,';W;f, that is produced? How long does it remain in
the inventory of machine k? It stays as long as it is not produced at machine & + 1.
This quantity is captured in T,'Z . In a sense it represents the expected time that work
entering zj; with a j-day leadtime rernains in this inventory. Thus, it has the terms

corresponding to the linear parameters of the machine immediately succeeding it.

In this recursive way, we can account for all of the paths by which a demand
stream arrives to machine k. Without going through the enumerative argument to
prove the form of E[z;], we argue that we account for all of the demand streams:
Work enters Wy, with the length of the due-date slack varying from m — k + 1 to
N —k, and then appropriate fractions of these enter the inventory for (j —1) periods,

where j is the due-date slack. O

Recursive form for calculating z!(k) and y(k)

We summarize how to generate the zI(k) and y?(k) values as follows:

Given {a]} Vi, j
with a1 =1

=0 j<m—i+l
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Generate zi(k):

Initialize
zz,_kq-l( k) =1
1‘{ (lc) = a{
where

& = (1 - afaf™ + (ol

a;:n—’ﬁ’l =1

Recursion
t=k
begin
i=i-1
begin

j=2,3a°“’N—(m—i)

() = i B (R)
=k) = oy 5 ;%In‘(k)

end

end
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Generate y}(k): with initializations:

o
yi(m) = (j = 1od + (1 —od)yi (m) k=1,...,m -1
with
Ym(m) =0
o
o
T =1+~ )T}
and
T’:n-k-l-l =1
yi(k) = aiTiZ +(1- ai)yi'l(k) k=1,...,m-1
Recursion
i=k
begin
t=1—1
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begin

i=23,...,N—(m—i)

yi(k) = yi 7 (B)(1 - of) + edylii (F)

end

end
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4.3.4 Analysis of System Due-Date Problems (Q1)-(Q3)

In each of the cases that we will be discussing for the system due-date model, we offer
a heuristic that takes into account some local information about the cost function
and uses as a subroutine results from the 1-machine model. The solutions that we

get via the heuristic we compare to the solution offered by policy (L).

(Q1) System Due-Dates: v; =0Vi, u; =0i#k, up #0

The optimization program for this case is given as:

min uiVar([p] (@1)

where

m—i+1 =1

The expression for the variance of the kth machine is given above, which we repeat

here:
N .
Var[p] = Zw{(k)a?
j=m
where

gik) = (11—l (k) + ()l (k)i=1,...,k -1
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with initial conditions as detailed above.

i 0 j<m—itl,i=1,... k-1
T3 =
l j=m-2+1

and
zi(k) = o}
given by

4 = (1-ojfai" +(cof)’ j<m—k+1

m—-k+1 __
ay = 1

Consider the recursion function
zi(k) = (1—af)zlD(k) + ()R i=1,...,k -1

Given any set of {a}}, we have that

e zi(k) is monotonic in zi~'(k),zi%(k),...

e zl(k) is monotonic in z;’_,-,ll (k),:l;f',:ll (k), ...
Thus, to minimize
N -
3 =),
j=m
We begin by minimizing (“from left-to-right ")

{205 (k) 2P (R), - 2 (R))
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then

{0 R, SR, o (R)

and finally

{z1'(k), 27" e (k)y...,zy (k)}

How then, do we minimize a particular z(k) term? Suppose we have the set of
optimal {z:(k)},r = k,k—1...,iand s=m —r +1,...,N and additionally, we
have {z:(k)} s=m—i+1,m—i+2,...,5 — 1. To find the optimal z}(k) we need
to find the optimal of for the recursion

z}(k) = (1 = af)*z{ 7D (k) + (od 2l (F) (413)
Note that for the fixed z¥~"(k) and zgﬁl)(k) that we are given, zi(k) is convex in
(o). Differentiating (4.13) and solving for (o?) yields

LI z{—l(k)
YT (k) + 2l (k)

and making the substitution to (4.13)

o) < B _
= v e RN

In the initialization portion, the parameters for the kth machine are set according
to the same recursion that we used for the 1-machine model. And so it follows that
under objective function (Q1}, when the objective function is min uxVar|py], the

optimal policy at the kth machine itself is the same as the optimal policy for the
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one machine system. What about the value of the upstream parameters? {o*} is
decreasing but of* > m—:-‘-_-a-, j=m—i+1,...,N where the of* = ﬁh is the
policy under (L) and corresponds to the previous one machine optimal control. Thus,
more work is processed early at upstream machines, giving longer due date windows
over which to smooth production at machine k. In this way, although for machine &
there is positive benefit to having a reasonably smooth output stream at an upstream
station, the crucial thing is to do so while moving the workload through the series of
machines 1,2,...,k — 1 to maximize the length of the due date windows which are

input to the kth station.

Again, we fiad that the optimal parameter values are independent of both the o?
and the parameter u;. Given the one machine result this is not surprising. Essentially,
we want the production level to be as uniform as possible. This holds regardless of
the original input stream. This follows because of the monotonicity properties of the

recursion, as in the 1-machine case.

Solution of (Q1):
To summarize how to generate the (k) terms that we require:
1. Initialize according to

zp k) =1

zi(k) = a]
where
. 1
a = —
FTi—(m—k)
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2. Recursion

= k)l (k)
=i 1(k) + 271 (F)

(k) =

Example:(Q1)

We consider a specific instance of the problem (Q1} that we have identified above.

In this example, we assume that

¢ The number of stations m = 4
e N = 8, with arrival processes given by D}, D5, D¢ DI, D¢

e The weight factor u; = 1 for each of the machines, k =1,...,m

We evaluate each of the functions
zi(k)

for each demand stream {D{ } 7 =4,...,8 and for each of the machines in the line
k=1,...,4. The {a‘,’ } values that we use are generated by the specification of the
optimal {o]} values that we derived via solution of (Q1).

In figures (4-1)-(4-4) we compare the solutions to (Q1) above and the solution
that the policy (L) affords. Note that the zj(1) values are identical; policy (L) is the
optimal 1-machine solution, and so the parameters under this objective function are
the same. As k gets larger, we find that the solution given for (Q1) does successively
better than policy (L). We aggregate these results in Table (4.2).
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0.00 t t t |

Figure 4-1: zj(1) : Policies (Q1) and (L) withm =4, N =8

x1(2)
1.00
0.80-
é 0.60 1
;, 0.40
0.20
0.00 ¢ : + i
4 5 6 7 8
Demand

Figure 4-2: £}(2) : Policies (Q1) and (L) with m =4, N =8

“ : “ QLK) | L [%A]

Table 4.1: z;(k): % improvement of Q1(k) vs L
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Q1
1.00 (@n
e Poiicy
0.80 ¢ (L)
é 0.89 ¢
> 0.40 4
0.20 ¢+
0.00
4

Figure 4-3: zi(3) : Policies (Q1) and (L) withm =4, N =8

x1(4)
1.00

0.80 +
g 0.60 +
> 0.40 4

0.20 ¢+

0.00

Figure 4-4: z(4) : Policies (Q1) and (L) withm =4, N = 8
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(Q2) System Due-Dates: v; =0 Vi, u; #0 3

The program (Q2) in this case minimizes the weighted sum of the production variances

of the m stations in the line.

min i u;Var[p;) (@2)

=1

0<al <1Vi=1,...,m

it =

where the variance for machine k is given by the recursive function above. Although
each of the Var[p;)] terms is convex in an individual [af] V7, Var[p;] is not convex
in the other {a;}. This makes the problem very difficult, with no special structure
to exploit as we did in the 1-machine case and in (Q1). In this section we present
a heuristic for finding a good solution to (Q2). We will use some local information

about the function to generate a good feasible solution.

From (Q1), given an objective function min u;Var[py], we can recursively com-
pute the optimal parameters for upstream machines, {a{ }e, with j =m—i+1,...,N.
The downstream values can be set arbitrarily as long as the solution is feasible; for
example, we can have otf =1lj=m-t+1,...,Nwithi=k+1,...,N. We use

this result to suggest a heuristic to set parameter values for (Q2).

The heuristic we suggest here uses the result of (Q1) to do some local optimization.
Consider a small version of the problem. Suppose we are interested in setting the

parameters at two machines k and !/, so that we have
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min u;Var[pe] + v Var([py) (4.14)

where k < I, with u; > u;.

Heuristic Q2:(2-machine optimization in m-station line)

1. Solve minw;Var[py]. Apply the recursive function to set oy, e_y,...,a;. For

a;,i > [ set a;' =1,7=m—1t+1,...,N. Denote this solution by &.

2. Solve min u,Var(p:] and set vectors o, ax—y,...,a;. From the solution to
min u,Var[pu] above, use the recursive function to set vectors upstream from
machine k between machines k+1 10 machine [, to get oy, 1, . .., ax41. Denote

these values by & = {&;} i =1,...,k.

3. Now, let,

a* = arg rg'llin uVar[pe] + wiVar[py] (4.15)

The decision about which of these vectors to choose is a function of the weight pa-

rameters,

Heuristic Q2:(m-machine case) We indicate the generalization of the 2-machine
heuristic of (Q2) to a k-machine heuristic. Essentially, we begin by ranking all of
the machines and then undertake a pairwise comparison of the machines, using the

2-machine criterion to update a current “best” vector of a parameters.

1. Rank order the u; terms.

2. Solve minuiVar([py]. Apply the recursive function to set ay,c;_y,... ,a;, and
set the values of the upstream parameters to ar," = 1. Denote these values by

a={&}i=1,...,k
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3. Begin with the machines with the two largest weights, u; and u;. Update the
vectors according to Q2(2 — machine). Output here is a vector. Take this
vector in conjunction with the vector with the next greatest weight and repeat

heuristic Q2(2 — machine) for these two.

Examples: Q2 In what follows we consider in turn the following policies

1. Q2A(2 — machine)
2. Q2B(2 — machine)

3. Linear rule (L)

We use the 4-machine serial line that we described earlier. Following Heuristic

Q2(2 -- machine), we solve
min uzVar|[ps,]
From this we get

a; = {0.00,1.00,0.50,0.33,0.25,0.20,0.17,0.14}
& = {0.00,0.00,1.00,0.67,0.50,0.40,0.33,0.29}
& = {0.00,0.00,0.00,1.00,0.75,0.60,0.50,0.43}

To complete the solution so that it is feasible, we set
&, = {1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00}
Denote this solution by & where

& = {Gy, ag, 3,04}
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LIl Q(2)A — (2machine) | Q(2)B — (2machine) l (L) |

i)l =(1) z1(3) zi(1) z1(3) zi(1) | #i(3)
4] 1.00 1.00 1.00 1.00 1.00 | 1.00
5] 0.63 0.25 0.50 0.33 0.50 | 0.38
6 | 0.46 0.10 0.33 0.17 || 0.33 | 0.20
7]0.37 0.05 0.25 010 || 0.25 | 0.13
8 | 0.30 0.03 0.20 0.07 || 0-20 | 0.09

Table 4.2: Var(p;) at machines 1 and 3 under different policies

We use these values of the parameters & to generate the zj(k) values; we summarize

these values in Table (4.2).

We use these values of & to then evaluate the function

N .
3. 7i(3)(&) = 1.43

i=1

and

N -
Y2 (1)(&) =2.75
Jj=1
And so the value of the objective function becomes
%12.75 + u31.43

We compare this to the value of the solution given for case B.

In solution (B), we use the terms {@j, &3, 84} since & = &;,for i = 2,3,4. Only
the value for the parameters at machine 1 change, since we re-solve to minimize

Var[pi). Thus,

&; = {0.00,0.00,0.00, 1.00,0.50, 0.33, 0.25,0.20}
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10.79
8.47

Table 4.3: Evaluation of (Q2)
From this we find that

N .
> =(3)(&) = 1.67

i=1
and

N

3. i(1)(&) = 228
i=1
And so the value of the objective function becomes

u12.28 + U31 .67

The choice of whether to select & or & is then a function of the relative values of u,

and u3. Thus, choose & when
u32.75 + u31.43 < 1;2.28 + u31.67
else choose &. Equivalently, choose & when
u; < .5lus
Example:(Q2)

In Table (4.3) we make assume values for (u;,u3) and evaluate the corresponding

values of (Q2):
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machine
1 2 3 4
z4(2) f| 2.28 | 1.80 | 1.70 | 1.68
ya(2) || 7.50 } 6.25 | 5.62 | 0.62

Table 4.4: Variance and inventory terms for machine ¢

(@3) System Due-Dates: v; u; not all 0

The objective function we consider now is:
min u;Var[pi] + viE[zi) (@3)

This is the most general form of the problem that we have been considering. The
complexity of (Q2) was significantly greater than that of (Q1), but we were still
able to generate a reasonable heuristic. The inclusion of the inventory terms greatly
increases the difficulty of the type of optimization we are attempting. The type of local
optimization that we did for the 1-machine problem does not work here because of the
form of the functions. However, because we have a computationally straightforward
way in which to evaluate the function, we can make some observations, “rules of

thumb”, and verify them numerically.

There is ample opportunity for computational testing here. In particular, consider
the uniform linear (L) that we have repeatedly used as the benchmark against which
to evaluate other policies. It is a good starting point for this problem: For one, it sets
production levels to be relatively smooth, although we have seen that these values are
not optimal in the sense of either (Q1) or (Q2). The benefit of the policy not being

optimally smooth is that the inventory levels may not have reached the same levels.

From Table (4.4) we see how the process becomes progressively smoother and the

quantity of inventory held decreases.
The type of testing that we envision here is with respect to the values of the
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|] ||E;1|Ex.2|E§.3|Ex.4|

w | 1 4 4 1

u | 4 1 1 1
Tws 1 4 1 4
[ 4 1 1 4

Table 4.5: Matrix of test examples: Specify u;, v; values

parameters. In particular, we consider situations in which we might be interested
in approximating the program (Q?) by either (@1) or (Q2) in the case that the
smoothing terms dominate, or offer the lower bound in the case that the inventory

terms dominate.
Example:(Q3) The optimization we are looking for is:
min u; Var[p ;] + v1E[214] + usVar[ps] + vaE[z3,]

However, we have difficulty solving this, so we evaluate the objective function at
certain values of the paramters. In particular, we evaluate the objective function at
the solutions given by the problems (Q2) and policy (L). The function we are looking

at is:
u121(1) + viya (1) + usz1(3) + v331(3) (4.16)

In Table (4.5) we make assumptions on values for u;,v;,u3,vs to create four test
examples. Our idea here in making assumptions on the values of the parameters
u3,v1,U3,v3 is to indicate the relative importance of the parameters. In Example
1, the inventory terms dominate, with u; = u3 = 1,v; = v3 = 4. The situation is

reversed in Example 2. Examples 3 and 4 indicate which of the machines dominate.

In Table (4.6) we evaluate the function given in equation (4.16), under the different
policies available. In particular, evaluating the function at the values indicated by

Heuristic (Q2) perform better than the linear policy. We return to this example again
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|| "Ex.1|Ex.2|Ex.3|Ex.4|

ofL) || 56.46 39.06
o(Q2A) || 50.18 46.43 | 31.97
«(Q2B) || 46.59 4143 | 31.62

Table 4.6: Evaluate (Q3) at values for u;, v;

in the context of the internal due-date model.

Evaluate Q3

=& Linear
e QOA

— e Q28

Q3
FS
o

Figure 4-5: Q3 example evaluated under policies Q2A4,Q2B, L
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4.4 Internal Due-Dates

In the case of an internal due-date accounting scheme our primary interest is not
in the inter-machiue effects of a production policy, as in the first model. Ratker,
we recognize that there may be difficulties in implementing such a policy, especially
for larger systems. In response, we consider a version of the problem in which the
machines are de-coupled to function independently. They are linked by th~ feasibility
of the due-date window assignment made by the manager, but the operator of each

machine is ignorant of the ronstraints facing - ther machines in the line.

We de-couple the system via the individual machine due-dates so that the problem
decomposes into m 1-machine probiems, each of which we can analyze in a 1-machine
framework. In particular, we do this by setting feasible internal leadtimes at each
machine for each input stream. Here feasibility means that a realization of demand
stream D¥ spends at least one period at each machine and completes processing at all
of the machines within the k period leadtime. We require that a given demand stream
finish processing at the particular machine within the assigned internal leadtime.
After completing processing at machine i, work waits until its internal due-date (i.e, is

held within an intermediate “finished goods inventory”) and then proceeds to machine

1+ 1.

This section begins with some of the preliminary features of the internal due-date

model. We then propose techniques for evaluation of the model.

4.4.1 Modelling the Internal Due-Date Model

We begin our discussion of this model with some additional notation that we use
in describing the internal due-date model. We then offer some assumptions and

preliminary results. Then we proceed to present the model in more detail.
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Notation

o d;(D¥) is a decision variable that is the length of the internal due-date leadtime
assignment at machine ¢ for demand stream D¥. For example, suppose that
m = 2, and for the demand stream D, the assignment is given by {d;(D¢) =
4,dy(Df) = 2}. By this, we require that the demand stream D¢ must complete
processing at machine 1 by the beginning of period ¢ + 4, a. which time it
becomes an input to the queue at machine 2. Between the time that work
completes processing at machine 1 and becomes input to machine 2 it is held
in the “finished goods inventory” of machine 1. Similarly, D¢ is processed at
machine 2 sometime within the interval [t + 4,¢ + 5]. It is ready for delivery
to the customer at the beginning of period ¢ + 6. In general, D¥ must have
completed processing at machine ¢ at the beginuing of period t + Y°i_, d;(DF)

for each 1.

° Q{,(k) J=1,...,N, ¢t =1,...,m denotes the queue length of unfinished work
at machine ¢ in period t of demand stream Df with j days remaining in its
internal due-date slack. The additional subscript k distinguishes it from the
familiar WJ. Previously, we were able to aggregate all of the demand streams
and order the queue by the remaining slack for the system. Here we need to make
the distinction for individual demand streams because we may assign different
internal leadtimes to the different machines. Q;;(k) is the vecter representation
of unprocessed or remaining demand at machine ¢, ordered by due date at the

beginning of the ¢—th period with elements Q,(k).

® P,’,(k) ¢t = 1,..., N is the control variable denoting the quantity of Q;?,(k) that
is produced during period ¢. Py(k) is the production vector in period ¢ with
elements Pj(k). The quantity processed at machine i in period ¢ of demand
class k is given by E}Ll P,’,(k) For ease of notation, the total production at
machine ¢ during period ¢ of demand stream k is given by p;(k) = ePy(k),

where e is the N-vector of 1’s. The total overall production at machine i during
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period t is TN, pi(k).

® 2; is a scalar quantity denoting finished goods inventory at machine ¢ from
demand stream k at the beginning of period ¢ that has not yet been “delivered”
to machine 7 + 1. Note that this is a quantity that we keep note of at machine
¢, whereas in the system due-date model, the inventory level comprises all work
that is held downstream from machine ¢, either in queue at another machine or

in the finished goods inventory after machine m.

® Sii(k) is the arrival of work to machine ¢ in period ¢ of elements from the

demand stream Df. S is the accumulation of all of these inputs, given by

Sit = Ty Sue(k).

Production Policy and Optimization Program

Because we maintain a queue for each demand stream at each machine, we also
include the additional demand stream identifier within the production policy. The

production policy at each station is of the form:

pi(k) = a;Qie(k)

The crucial preblem for this scheme is how to determine the d;(D}) values. This issue

does not affect the production policy.

As in the system model the objective function is:
min Z(u.-Var[pu] + 9y FE [z.-g])
i=1
The constraints here are slightly different than in the system model, since the leadtime

at a machine is fixed and assigned; in the system model we had to keep track of

the slack for the system and set the a values of each machine to maintain system
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feasibility. The constraints follow directly once the {d;(D¥)} values are given:

and
0<al<1j = {d(Df)}
: = 1,....,m
k= 1,...,N

Suppose that the leadtime for Df at machine i is given by d;(D¥). The o} = 1
constraint is familiar from the 1-machine case. The range on the 0 < a;’ < 1 constraint
is given for values of j up to di(D¥). For j > di(D¥), we can set of = 0 since
these terms will never be used. Note that as in the 1-machine system, the values of
the parameters are independent of the individual demand streams, and are only a
function of the due-date slack remaining for the machine. This follows because we

are modelling each unit as a 1-machine system in isolation.

As we will detail in a later section, once the d;(D¥) values have been set, the
problem essentially reduces to m 1-machine problems. However, we need to set these
values for each of the N incoming demand streams. Since the streams are independent,
we will develop the model for one demand stream, with the understanding that the
full model is the aggregation of these terms. The optimization program for demand

stream DY is denoted T;:

min i(u;Var[p,-g] + v; E{zit]) (Zw)

=1
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and

Osa{ 51.7={dt(Df)}’ i=1,...,m

As the reader may be anticipating, we will be changing the form of the program
to be explicitly in terms of the variables d;(Df). We make the transformation in a

later section.

Dynamics of Input and Output Processes

In the system model we took some care in formalizing the dynamics of the arrival
process, workload, production, and inventory levels. In this model, except for the
arrival process, the representation of the other quantities is identical to that expressed
in the 1-machine model. We summarize the dynamics of these quantities without

further justification. The reader can refer to the 1-machine model for further details.

To characterize the arrival process at machine ¢ in period t, Sj;:

Sivrr41(k) = Df—)::_, a(Dh) t=1,....,m—1 (4.17)
where
S14(k) = D§

This follows because having set the values for d;( D), each realization of D¥ moves

from machine ¢ to machine ¢ + 1 at the intervals indicated by the internal leadtimes
given by d;(DF).

We can use this characterization of the arrival process and representations from
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the 1-machine system to characterize the workload, production and inventory levels

in a given period.
For the workload level,

Qira(k) = CAQis(k) + Siesa
= Y [C AL Sk

k=0

where C is the familiar update matrix, A; = I — A;.

Pierr(k) = O!:.-I‘Q.',H-l(k)
= ag‘ E[C/ii]kS.',g_k

k=0

The dynamics of the inventory level at machine i vary as follows

Ziap1(k) = z(k) + pig(k) — f)i,t-l—-l(k)

o N-1 .
= Z;,(QT § (CA) Dey1-i-j(k) — Dea-(k))

where f),-,H.l(k) is the quantity of work from demand class k due for completion at

machine i at the beginning of period ¢ + 1.

Special Cases
Again, we approach the problem by first considering a restricted version of the full

problem and then use the analysis of this in the evaluation of the full model. In the

internal due-date model we consider two cases:
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(R1) v;=0Vi, u; #0 %

(R2) The general case with non-zero u;,v;

(R1) corresponds to an objective function that is the weighted sum of the production
variances of the m machines in the line. The objective function given by (R2) appends

a term to (R1) that is a weighted sum of inventory levels of the m machines.

Previous Results from the 1-Machine Case

Since each of the machines then operates as if it were a 1-machine system, we remind
the reader of some of the results from the 1-machine model that we will be using in
our analysis. From the 1-machine N-demand stream case, we can characterize the

variation in production and the mean inventory when using a linear production rule.

N
Varp) =) aio?

=1

where a; =(1 —;)ai1 +a?

a = 1
and
N .
E[Zg] = 2 vaJ
J=2
where
bj = bj1(1 —a;) + (j — 1oy
and
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For the 1-machine case we also identified the smoothing problem as an interesting,
non-trivial special case of the full problem. Suppose now that we have only one input
demand stream, D¥. We summarize the 1-machine results for the case in which there

are only smoothing costs, and the case in which there are costs for both variance in
production and for finished goods inventory.

Case 1: 1-machine, Minimize Var[p,)

The solution to the smoothing problem,
min Var[p,]
s.t.
0<a;<lj=1,...,k
a =1
For this program, the solution is given by

1 1
%= = Varp,] = -Ea,f

Case 2: 1-machine, Minimize Var(p;] + E[z]

min Var{p] + Elz]

s.t.

0<a;<1

ay = 1
To solve this, we proposed a “sequential” heuristic
e Input: a?,ﬁi
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o Initialize: oy = 1,a;, = 1,0, =0
o Given fixed [a1, a3,...,qa]

2a;0%,, + (b; — i)D"
2(ai + 1)0?,

}

aj,, = max{0,
e Successive terms of the recursion are generated by:

2 2
a1 = ai(l — o)’ +aiy,y

biyi = (1 —aiq) Hiaip

We refer the reader to Chapter 2 for further details on the development of these
results.

We use these results extensively in the models that we will be discussing. We

append subscripts to these terms to indicate the machine in which we are interested.

4.4.2 Analysis of Internal Due-Date Problems: R1 — R2

The analysis of the internal due-date problem is not as interesting as that for the
system model. We will be directly applying the results of the 1-machine problem,
and the problem becomes a due-date assignment problem. The assignment problem
is an integer program which has a form that is known to be NP-complete. Thus, we
can only make definitive statements about the optimal solution by enumerating all of
the feasible solutions. However, it is of interest since we can use it to see how much

we lose in de-coupling the system.
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(R1) Internal Due-Dates: v; =0 Vi, u; #0 3

In this section, we are looking to solve:
min Y _(u;Var[p:]) (R1)
i=1

s.t.

Strictly, we should include a subscript on (R1l) to indicate that a single demand
stream is being considered; we assume that this is understood so that we can reduce

the notation in the development that follows.

Suppose we are given a set of internal leadtimes of the form: d(D¥) = {d,,d,,...,d,}.

Using the result for the one machine case, we have that the solution to (R1) is:
;=0
23
Equivalently, we can consider the program Zi(Var([p]); here the decision variables

are the d; values.

min 3 07 Z(Varip)

=1 d‘

d; > 1,integer
As we have noted the problem is one of setting the due-date leadtimes rather than
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that of setting the work level parameters. Problems of this form have been considered
in the literature. The problem can be interpreted as a discrete, convez knapsack prob-
lem. Zipkin [80] and Bitran and Hax [81] have considered variants of this particular
form. Bitran and Hax present a recursive procedure to solve the integer relaxation of

Iy(Var[p,]), which is a lower bound for our problem.

From the lower bound we can construct a “good” feasible solution to Zy(Var[p,])

by re-arranging the fractional portions. Suppose that a solution to the relaxation is
given by d = {d\,d,,.. .dn}. Let

di=z+ f;
where z; = |d;] is the integer portion of d;
fi = di— [t_l.- | is the fractional portion of d;
We know
Y fiezt

=1

because d is feasible for Z}***(Var[p,]) Also, 7, f; < m regardless of the problem

instance. This is straighforward because we are only adding up at most m fractional

components to yield this 3%, f; quantity

In this way, z; periods have been assigned to the ith machine, and "7, f; periods
are remaining to be assigned. Any distribution of these 3™, f; periods is feasible for
Ii(Var[p]). An easy assignment is d = {dy,d,...,d,} to (R1):

d = z:1=12,...,m—-1
dm = zm+zfi

i=1

To find a local optimal solution, we do an interchange of the current assignment
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that evaluates the net marginal benefit of a reduction in the leadtime of machine i

from d; to d; — 1 and the increase of the leadtime of some machine / from d; to d; + 1.

First, we introduce the variables A} and A to capture the impact on (R1) of

increasing/decreasing, respectively, the due-date leadtime assignment.

A} represents the marginal change in the variation cost of the change d; — d; + 1

A represents the marginal change in the variation cost of d; — d; — 1.

To do this, for each 2, calculate:

11 1

O L -
AL = ul - T YT
SIS S TSNS S
Ar = wlgy - = gE D

In an interchange operation we start with a feasible solution d = {Jl, da, ..., Jm} and
then, selecting two machines 7, [/, reassign the length of the internal due-date between

the two to maintain feasibility:
di—d;—1

d—d+1

To get a locally optimal solution we can then do a “greedy” interchange. For this,
ATy = nia!.x(A;" - A7) (4.18)

where the current leadtime for machine [ is increased by one unit and that for machine

i is decreased by one unit. In this way we can construct a local optimum.

Example

If the number of machines in this system is small, then enumeration of the solutions
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1= 49 Uz = 1
5.00
3.00
2.33
1.83
1.50

Total 13.66

1f

QO ~Ij O} OV v

Table 4.7: T;(Var|[p,]) via enumeration

may be very easy to do. We return to the example for which there are four machines
and five demand streams, Df, D7, D¢, D7, D}. We enumerate the values of Z;,(Var[p;])
in Table (4.7), for each stream k when there are two non-zero parameters (u;,u3) =
(4,1). The solution is the same when we reverse the paramters so that (u;,us) = (1,4)

because the machines operate independently.

4.4.3 (R2) Internal Due-Dates: v;, u; not all 0

For objective function

min i u;Var[pi] + viE[z;) Ii(Var([pi], E[zx])

i=1

The introduction of the inventory costs means that we cannot use the very concise
representation that we used in evaluating (R1). We have the general representation
of the smoothing and inventory costs given above. As before this type of objective
function requires an explicit assessment of the relative importance of the smoothing
versus holding costs over all of the machines. As in the case of problem (R1), we
propose that in order to make the representation and analysis tractable, that if we
are given a feasible vector of internal due-date leadtime assignments, that we solve
the problem for each machine in the way that we did for the 1-machine case. In this

way, the real decision variable is the length of the due-date window; in a sense this is
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like being able to control the due-date of an “input stream” to a machine i, although

limited by the actual exogenous due-date request.
Intuitively, the tradeoffs we expect to see:

u; >> v; — Longer window important

v; >> u; — Longer window not as important

The reasoning here is that when the variance is significant, then a longer window
permits more smoothing. When the variance is not as important, then the tendency

is to delay production in any case, and so the longer window yields little benefit.

Example (R2) : u; =0,v; =0, { =2,4

In this example we would like to solve

u1Var([py] + v1 E[215] + uaVar[ps:] + v3E[z3] (4.19)

where there are five input demand streams, D{, D}, D¢, DI, D}. However, even for
the 1-machine case we do not have an easily obtainable solution, and so we cannot
solve Equation (4.19) very readily. As an alternative, we examine several special cases
of this problem to get some insight that may be useful in a more general context. We

proceed as follows:

¢ We assume several different sets of values for the parameters, i.e, values for

{(ulvvl)) (“31 03)}

o For each set of {(u;,v1),(u3,v3)} we apply the 1-machine sequential search
heuristic for each of the machines {1,3} to come up with values for the param-

eters at each station i, a;

¢ We enumerate the feasible due-date assignments and the corresponding value
of the function (4.19)
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|| "EX.ITIE x.2lEx.3lEx.4|
[C,v) T 04 T&ED) T4 [ (1D |
" (u3,va) ﬂ (14) | (4,1 [ (1,1) (4,4) i

Table 4.8: Matrix of (u;,v;) values: Four examples

We consider four examples, given by varying the parameters {(u;,v1), (us,vs)}.

We summarize these in Table (4.8)
Without loss of generality, we can assume that
u; =0=d;y(Df) =1, Vk

in any optimal solution. This follows because the only reason we are interested in
having a due-date window of length >> 2 is to achieve smoothing benefits. With u; = 0

there is no cost to variation in production at machine :.

Next, given values for the parameters (u;, v;) for machine : we apply the sequential
heuristic of the 1-machine model. The input of the pair (u;,v;) results in a vector «

for the machine, denoted by:

(uiyv5) = a

Using the examples that we have presented in Table (4.8) we find the correspond-

ing a to be:

(1,4) - a = {1,0,0,...}

(4,1) — a = {1,0.44,0.21,0.06,0,0, ...}

(4,4) = a = {1,0.25,0,0,...}
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Machine (ui,v5)
“ i " (1,4) | (4D [(44) [ (LD

1] 1.00 [ 4.00 | 4.00 | 1.00
I 2 | 1.00 | 247 | 3.50 | 0.88
3 | 1.00 [ 221 | 3.50 | 0.88
H —_4]1.00 [ 219 [ 350 | 0.88

Table 4.9: u;Var[p;] + v; E[z;] using sequential heuristic

[% T d:.(DF) T d2(DF) T ds(DF) | do(D5) || Ex1 | Ex2 | Ex3 | Ex4 |

4 1 1 1 1 1.00 | 8.00 | 5.00 | 5.00
5 2 1 1 1 1.00 [ 6.47 | 4.50 | 4.50
6 2 1 2 1 1.00 | 4.94 | 4.38 | 4.38
7 3 1 2 1 1.00 | 4.68 | 4.38 | 4.38
8 3 1 3 1 1.00 | 4.42 | 4.38 | 4.38

Table 4.10: I,(Var[p), E[z;]) via enumeration of d;(D¥) values
(1,1) - a = {1,0.25,0,0,...}
We use these values of a to determine the value of u;Var[p;] + v;E[z:] given in
Table (4.9). We use the values of a that resulted from the sequential heuristic.
To return to the initial example in which we have a serial line with 4 machines,

and five input streams, D, D}, D?, D!, D8, we enumerate the solutions:

o For a set of due-date assignments, {d;(D¥)}, we use the sequential heuristic to

set the values for alpha

e Enumerate through the values of the due-date assignments

In Table (4.10) we present the best due-date assignment for each incoming demand
stream according to the sequential heuristic via enumeration. The value of dy( D¥) =

1,dy(D¥) = 1 in all of these cases, as we had assumed above.
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In using Table (4.10) we choose the minimum values from the enumeration to
correspond to the due-date assignment. In this case we can then evaluate the objec-
tive function (4.19), using the values given in Table (4.10), and add across demand

streams.

A few things to note: The optimal solutions to Examples 3 and 4 were the same.
This is because they had identical, reversed costs. This solution is independent of the
machine at which it is taking place. We discuss some of the other fzatures of these

solutions when we compare the system and internal due-date model.

4.5 Discussion of System and Internal Due-Date

Scenarios

We began this chapter by discussing why one might be interested in approaching the
multi-machine version of the rigid due-date problem in two different ways. Now, we
compare the analyses of the two models. Apriori, we expect that when the objective
function is specified in terms of the system performance the system model should
perform better. When we have only smoothing costs this is true. However, when
there are inventory costs the two models are not directly comparable. Specifically,
in the internal due-date model, we do not incur work-in-process costs at a machine
when work is produced immediately before its due-date; in the system model, there

is still an inventory cost that is being incurred with respect to the preceding machine.
In Table (4.11) we summarize the values of the objective function
u;,Var([py] + usVar[ps) (4.20)

where for the internal due-date, these are given by the enumeration solution of (R1),

and the solution for the system model corresponds to the (Q2) solution. We see in
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| (w1,u5) || (Q2) | (R1) |
(4,1) [ 10.79 | 13.66
(1,4) || 847 |13.66 |

Table 4.11: Compare (Q2) vs. (R1)

" "Ex.lIEx.ZIEx.3|Ex.4|

29.04 | 46.44 | 39.06
1812822 | 46.43 | 31.97
| «(Q2B) || 46.59 | 26.46 | 41.43 | 31.62
a(R3) || 5.00 22.64 | 22.64

Table 4.12: Compare all policies at valaes for u;, v;

Table (4.11) that the system model substantially outperforms the internal model. In
the second example with (u;,u3) = (1,4) (Q2) is especially good because the internal

model cannot incorporate smoothing that may have occurred upstream.

In Table (4.12) we summarize the values of the objective function

u1Var([py] + v Efz14] + usVar[pay] + v3E[za] (4.21)

where for the internal due-date, these are given as a function of the due-date assign-
ment. For the policies (L) and the policy generated via (Q2) we evaluate the terms
according to the functions z7(i),y?(i). As we indicated above, to make the appro-
priate comparison of the terms in Table (4.12) we need to add back in the costs of
intermediate inventory holding. The example that comes closest to being a reason-
able comparison is Example 2, where the inventory costs are small. In this case, even
without adding back anything to account for the inventory cost terms, the system

solutions outperform the internal model.

Additionally, in explicitly comparing the two models, it may be appropriate to
extend the objective function being considered. Specifically, there may be other types

of “maintenance costs” that may apply for each model. For example, in the system
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model, there may be costs of gathering, maintaining and distributing large quantities
of data. In the internal due-date model, we do not have any costs that represent

either costs of decoupling or of integration.

4.6 Extension to a Job-Shop Model

Up until now we have only considered systems that are flow lines: At each station there
is exactly one type of input stream, characterized by a certain mean and variance,
and there is exactly one type of output stream, generated by application of a fixed
linear control to the inputs. Our study of this type of system has proven to be very
useful and we have been able to determine the optimal policy for minimizing certain
measures which are a function of the variance of output at the individual production

sites.

Will a similar type of analysis be possible when there are multiple types of inputs
and outputs such as in a job shop? In what manner should we maintain information
about routings and due dates of the different jobs? What type of objective function
is most appropriate? Qur previous analysis takes into account that there is one “end”
station in the line. The information about this is used for setting the parameters to

be feasible, and for setting the initialization terms of the recursion.

The type of policy that we will propose in this note is motivated by the observation
that each station ¢ can be thought of as a station in several serial lines, with inclusion
in a particular line when a demand type has station ¢ on its routing. As a result, it
is not sufficient to maintain a single workload vector- all due dates are not “equal”,
since it is equally important to know the actual routing of a demand type. Suppose
that at station i there are J; classes of jobs that have station ¢ as a part of the routing.

Ji can, for example, correspond to the actual set of routings that include station .
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On what basis should the classes be distinguished? The complication of multiple
routings in the system suggests that explicit consideration of each routing entering
station ¢ should define each class. As one would expect, the notation here gets pretty

messy, but conceptually it is no more difficult.

There is a lot of scope here for looking at more complicated systems, using our

analysis of the serial line as a building block.
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Chapter 5

Conclusions

5.1 Overview

In this thesis we have developed several models for production planning for a make-
to-order system which must satisfy exogenously-given rigid due-dates. The costs of
primary interest at an individual machine in the system were those of variation in
the production level, and the quantity of inventory being held. We then considered

objective function given in terms of these costs.

The first model we proposed was the basic model from which we began to gain
intuition about these make-to-order, due-date constrained systems. In a very high-
level sense, we could view a large system as a “1-machine” unit and use this to get
an aggregate characterization of the system. Another case for which the 1-machine
case may be of interest is when we have a system with one basic operation, which we

might simplify to the 1-machine case.
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As one extension of this model, we considered the planning problem facing a a
producer who operates simultaneously in several markets. In particular, the producer
differs in its response to each class of customers. For the customers that are considered
less important, the producer may exceed the due-date request given by the customer.
We offer some interpretations and models about a 1-machine production system with

non-rigid due-dates.

As another extension to the one-machine problem with rigid due-dates we con-
sidered a multi-machine version of the problem. We offer two interpretations of this

models, one corresponding to a system view and the other to the machine perspective.

5.2 Contributions and Observations

We began this thesis with the motivating problem faced by the printing facility at
International Paper. How can our models be of interest to the issues at IP? The
management there had begun making some elementary ventures into the type of
aggregate models that we have been discussing. The models in this thesis should be
useful in terms of formalizing the planning concept, rather then scheduling work on

a more haphazard fashion, allocating work on an “as need” reactive basis.

We feel that these models may be very useful in the context of production planning.
As always, we need to be careful in how the model is constructed, with respect to
parameters, etc. However, the models we have developed are not highly problem

specific and may find a wide range of application.

Our primary contribution to this area has been in developing models to analyze
the planning problem for a make-to-order system. The make-to-order system with
due-dates had not been considered before. In today’s manufacturing environment,

however this type of scenario is developing. In partiéula.r, in a JIT environment,
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there is an increasing emphasis on lowering inventory levels, which lessens the need for
traditional make-to-stock models. Make-to-order systems may be more representative
of the type of production systems that are evolving. There have been few modeis of

such systems.

5.3 Directions for Future Research

We see that there may be several interesting extensions to the models we have pre-

sented. We briefly indicate these:

Due-date quotation: How can we use our models so that when a customer enters
the system that the producer can either accept the request, or counter with a

different deadline, where there is incentive for the customer to do so.

We need to work more with actual production systems and see how this can be
incorporated into the real planning schemes. Also, how does this work with

other aspects of manufacturing?

Computational work: Now we have a reasonable framework for studying systems
that must accomodate rigid due-date requests. For specific problem instances

we can test many different heuristics.
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Chapter 6

Anhotated Bibliography

This bibliography is grouped into three sections. The scenario we described is a
dynamic, make-to-order production system with stochastic demand inputs and due-
date restrictions. We are interested in developing production loading policies to satisfy
the due-date constraints while maintaining smooth production levels. These problems
in this context has not been addresses in the literature. However, there is a large
body of research considering similar problems in a different context. For the sake of

continuity, we have separated the literature review from the main body of the thesis.

In the bibliography that follows we give representative sources for the particular
variation of the problem at hand. More extensive bibliographies are available in the

individual references.

6.1 Production Smoothing
1. Cruickshanks, Allan B., Robert D. Drescher, and Stephen C. Graves, 1984,

161



“A Study of Production Smoothing in a Job Shop Environment,” Management
Science, 30, 368-380.

2. Graves, Stephen C., 1986, ‘A Tactical Planning Model for a Job Shop,” Opera-
tions Research, 34, 522-533.

&

Hax, Arnoldo C., 1978, “Aggregate Production Planning,” in Handbook of Oper-
ations Research, J, Moders and S. Elmaghraby (Eds.), Van Nostrand Reinhold,
New York.

4. Holt, Charles C., Franco Modigliani, and Herbert Simor, “A Linear Decision
Rule for Production and Employment Scheduling,” Manaegement Science, 2,
1-30.

5. Kleindorfer, Paul R., and K. Glover, 1973, ‘Linear Convex Stochastic Opti-
mal Control with Applications in Production Planning,” IEEE Transactions on
Automatic Control, AC-18, 56-59.

6. Kleindorfer, Paul R., et al, 1975, “Discrete Optimal Control of Production
Plans,” Marnagement Science, 22, 261-273. °

7. Modigliani, Franco and Franz E. Hohn, 1955, “Production Planning Over Time,”
Econometrica, 23, 46-66.

8. Silver, Edward A., 1967, “A Tutorial on Production Smoothing and Work Force
Balancing,” Operations Research, 16, 195-207.

9. Sobel, Matthew J., 1969, “Production Smoothing with Stochastic Demand I:
Finite Horizon Case,” Management Science, 16, 195-207.

10. Sobel, Matthew J., 1969, “Production Smoothing with Stochastic Demand II:
Infinite Horizon Case,” Management Science, 17, 724-735.

Silver[67] gives the definitive tutorial on the production smoothing problem in a

general make-to-stock environment. He identifies the primary costs of interest:
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¢ Basic production costs
o Costs of changes in production rate
o Inventory costs

e Shortage costs.

The cost of changes in the production rate is typically represented as a convex func-
tion. The other three cost are given by linear functions. Note that the basic pro-
duction cost for an individual item is incurred regardless of the other three types of
costs, for a fixed type of production process. For medium-range planning, then, it
assumes a minor role. Additionally, the inventory and shortage costs when combined
result in a convex function. Thus, as a simplification, the costs are often given as a

general convex cost function.

In this paper, Silver goes on to examine the problem of production smoothing.
The problem arises in an environment of stochastic demand. There are traditionally

three ways in which to react to fluctuations in demand:

o change the size of the labor force
e work overtime or idle

o let inventories increase or decrease

The references to production smoothing date back to Holt, Modigliani and Simon
[1955] in their classic model of production planning. They were the first to propose
the linear decision rule, arising from the quadratic cost function. Sobel [1969, 1971]
considers a more general form of the problem: Costs related to inventory and changes
in production are convex, and the costs and demands may have non-stationary distri-
butions. He considers the problem in both the finite and infinite horizon. Kleindorfer
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and Glover[1973] apply the methodology of stochastic optimal control to production
smoothing. Kleindorfer et al{1975] present the application of discrete optimal control

theory to deterministic production planning. Hax[1978] gives an updated overview.

In all of these latter papers due-date requirements are not explicitly considered,
because of backlogging assumptions. Only in Cruickshanks et al[1984] is the make-

to-order scenario considered.

6.2 Due-Dates

1. Bertrand, J. W. M., 1983, “The Effect of Workload Dependent Due-Dates on
Job Shop Performance,” Management Science, 29, 799-816.

2. Conway, R. W., W. L. Maxwell and L. W. Miller, 1967, Theory of Scheduling,
Addison-Wesley, Reading, MA

3. Eilon §., and I. G. Chowdhury, 1976, “Due-Dates in Job Shop Scheduling,”
International Journal of Production Research, 14, 223-2317.

4. Rinooy Kan, A. H. G., 1976, Machine Scheduling Problems: Classification,
Complezity and Computation, Nijhoff, The Hague, Netherlands.

5. Seidmann, A. and M. L. Smith, 1981, “Due-Date Assignment for Production
Systems,” Management Science, 27, 571-581.

6. Wein, Lawrence M., to appear 1991, “Due-Date Setting and Priority Sequencing
in a Multiclass M/G/1 Queue,” Management Science.

The research here falls into two very different categories. The first is the classical

combinatorial analysis. The typical problem here is deterministic, with objectives of
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minimizing a function of the lateness of the jobs to be processed (where lateness can

be positive or negative). Rinooy Kan[1976] gives a good overview of this area.

In the second area of research known as due-date quoting, the due-date or de-
livery date to a customer is generated by the producer, based on given anticipated
production plans. This is almost a converse of the problem in which we are inter-
ested. Conway, Maxwell and Miller[1967] discuss this briefly. A lot of simulation
work has been done in this area, e.g., Eilon and Chowdhury[1976]; they find that
measures of system performance improve when the due-date quotes take into account
work in the system, Bertrand[1983] gives an analytical procedure to come to a simi-
lar conclusion. Seidmann and Smith{1981] formulate a cost function quantifying the
tradeoffs between operational conerns (meeting due-dates) and strategic (desire to

quote attractive leadtimes). From this they derive a constant due-date assignment.

We are not primarily interested in due-date quotation, although some of this
methodelgy may have bearing in our study of flexible due-dates. In some very re-
cent work, Wein[1991] has begun simultaneously considering due-date quotations and

scheduling policies, and this is interesting because of the dual problems considered.

6.3 Other

1. Ahuja, Ravindra., Thomas L. Magnanti, and James B. Orlin, 1992, Network
Flows: Theory, Algorithms, and Applications, (text in preparation) Prentice-
Hall, New York.

2. Bertsekas, Dimitri P., 1987, Dynamic Programming: Deterministic and Stochas-

tic Models, Academic Press, New York.

3. Bitran, Gabriel, and Arnoldo Hax, 1981, “Disaggregation an-' Resource Alloca-
tion Using Convex Knapsack Problems,” Management Science, 27, 431-441.
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. Kleinrock, Leonard, 1975, Queueing Systems Vol I and II: Theory and Applica-
tions, John Wiley and Sons, New York.

. Loeve, Michel, 1977, Probability Theory I, Springer-Verlag, New York.

. Luenberger, David, G., 1984, Linear and Non-linear Programming, Addison-

Wesley, Reading, MA.
. Ross, Sheldon, 1983, Stochastic Processes, John Wiley and Sons, New York.

. Stalk, George, 1988, “Time- The Next Source of Competitive Advantage,” Har-
vard Business Review, July-August, 41-51.

. Zipkin, Paul, 1980, “Simple Ranking Methods for Allocation of One Resource,”
Management Science, 26, 34-43.
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Blinded by the Light

— Bruce Springsteen

Mad man drummers bummers and Indians in the summer
with a Teenage diplomat

In the dumps withe the mumps as the adolescent humps
his way into his hat

With a boulder on my shoulder feeling kind of older:

I tripped the merry-go-round

With an unpleasing sneezing and wheezing

the calliope crashed to the ground

Some all hot half shot was headed for the hot spot

Snapping his fingers, clapping his hands

And some fleshpot mascot was tied into a lovers knot

with a whatnot in her hand

And now young Scott with a sling shot finally found a tender spot
and throws his lover in the sand

And some bloodshot forget-me-not whispers Daddys within earshot
Saved the buckshot turn up the band

And she was blinded by the light

Cut loose like a deuce

Another runner in the night

Blinded by the light

She got down, but she never got tight
Oh, shell make it alright

Some brimstone baritone anticyclone rolling stone
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preacher from the east

He says dethrone the dictaphone hit it in its funny bone

thats where they expect it least

And some new mown chaperone was standing in the corner all alone
watching the young girls dance

And some fresh sown moonstone was messing with his frozen zone

to remind him of the dealing of romance

And she was blinded by the light
Cut loose like a deuce

Another runner in the night
Blinded by the light

He got down, but he never got tight
Hes gonna make it tonight

Some silicone sister with her manager mister

told me I got what it takes

She said I turn you on sonny to something strong

if you play the song with the funky break

And gocart Mozart was checking out the weather chart
to see if it was safe to go outside

And little early pearly came by in her curly whirly
and asked me if I needed a ride

And some hazard from Harvard was skunked on beer

playing backyard bombadier

Yes, and Scotland Yard was trying hard they sent some dude with a calling
card

he said do what you like but dent do it here
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While I jumped up turned around spit in the air fell on the ground
asked him which was the way back home
He said take a right at the light keep going straight until night

and then boy youre on your own

And now in Zanzibar a shooting star was riding in a sidecar

humming a lunar tune

Yes, and the avatar blow the bar but first remove the cookie jar

were going to teach these guys to laugh too soon

And some kidnapped handicap was complaining that he caught the clap
from some mousetrap he bought last night

Well I snapped his skullcap and between his ears I saw a gap

but figured he would be alright

And she was blinded by the light

Cut loose like a deuce

Another runner in the night

Blinded by the light

She got down, but she never got tight
Oh, shell make it alright

Mama always told me not to ook into the sights of the sun

Oh, but mama, thats where the fun is
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