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Abstract: We introduce collinear drop jet substructure observables, which are unaffected

by contributions from collinear radiation, and systematically probe soft radiation within

jets. These observables can be designed to be either sensitive or insensitive to process-

dependent soft radiation originating from outside the jet. Such collinear drop observables

can be exploited as variables to distinguish quark, gluon, and color neutral initiated jets, for

testing predictions for perturbative soft radiation in Monte Carlo simulations, for assessing

models and universality for hadronization corrections, for examining the efficiency of pileup

subtraction methods, and for any other application that leaves an imprint on soft radiation.

We discuss examples of collinear drop observables that are based both on clustering and on

jet shapes. Using the soft-collinear effective theory we derive factorization expressions for

collinear drop observables from QCD jets, and carry out a resummation of logarithmically

enhanced contributions at next-to-leading-logarithmic order. We also identify an infinite

class of collinear drop observables for which the leading double logarithms are absent.
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1 Introduction

Jets are collimated sprays of particles observed in high energy colliders. They emerge from

energetic quarks and gluons produced in a hard collision, which are then converted into

final state particles through parton splitting and hadronization. The parton shower ap-

proximation is built primarily around the logarithmic enhancement from collinear splitting

and has been very successful for understanding and modeling jets. It is at the heart of a

number of Monte Carlo event generators which are able to reproduce a significant amount

of experimental data at various energy scales [1–8], after tuning of their hadronization mod-

els. Although the agreement between these simulations and data is not always perfect, and

fails in some cases, these showers are important for experimental calibration and are usually

the default method for making comparison to new measurements. They are also important

as baselines for studying the dynamics and utility of jet substructure observables [9–15].

A program has also been developed to increase the accuracy of parton showers, through

improved treatment of kinematic regions and matching to fixed-order calculations, see for

example [16–23]. An important ingredient for testing such improvements is to define new

types of observables that are sensitive to different regions of phase space, or which test

aspects of the shower beyond the leading collinear approximation.

Another driving force for making progress in understanding hard collisions has been

systematically improvable field theoretic methods for making predictions for jet data. This

includes both methods based on Soft Collinear Effective Theory (SCET) [24–28] and coher-

ent branching [29–31], as well as state of the art fixed-order pp collision calculations with

final state jets, see for example [32–35]. For such calculations our imperfect understanding

of soft radiation, hadronization, and underlying event are now often limiting factors in var-

ious theoretical predictions. See refs. [36–44] for analytic work on predicting these types of

soft corrections for jets. Thus testing analytic field theoretic methods for predicting soft

radiation sensitive observables have also now become a priority.

The field of jet substructure was developed to systematically study and explore the

dynamics of radiation inside jets. Typically, soft radiation has been viewed as a contam-

inant to be eliminated in order to improve the reconstruction of jet observables. This is

accomplished by using jet grooming procedures [45–49] to suppress soft contributions to jet

observables by systematically removing soft and wide-angle particles within the jet. This

leads to groomed observables that are much less sensitive to the dynamics of any processes

occurring outside of the jet, such as initial and final state soft radiation from other jets,

underlying event, and pileup. This jet grooming is also motivated by obtaining improved

precision to search for new physics. Often jet substructure observables can be strongly

affected by jet grooming, since it may change their leading logarithmic structure [48, 50].

An example is the jet mass, which is strongly modified by the removal of peripheral soft

radiation. Another possible approach to truncating soft radiation is to use jet shapes with

angular weights [51–53] which suppress the contribution from wide-angle radiation. In both

cases one removes soft and wide-angle radiation contributions by effectively introducing an

energy and angular cutoff, so that it is predominantly energetic collinear radiation that

is retained.
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In this paper we introduce the “collinear drop” class of jet substructure observables

to do precisely the opposite, retaining components of the soft radiation for detailed study,

while removing collinear radiation. We show that such collinear drop observables can be

constructed from approaches mimicking both the jet grooming and jet shape approaches.

The goal here is to consider jet observables that are sensitive to physics in various soft

phase space regions. This makes collinear drop observables ideal for studying perturbative

soft dynamics, hadronization, underlying event, and pileup in proton-proton collisions. We

show that if one wishes to study only soft radiation related to the jet itself, that collinear

drop observables can easily facilitate this using the same techniques as in jet grooming.

Collinear drop observables can also be used to study the jet quenching mechanism and

medium evolution in heavy ion collisions, which are known to be sensitive to jet information

that can be probed with jet substructure [54]. Besides elucidating the soft regime of QCD,

collinear drop observables are also useful for studying the color radiation pattern of the

particle initiating a jet. This makes them useful for boosted particle tagging, an application

that we intend to explore in more detail elsewhere.

To illustrate the idea behind collinear drop observables we will consider two main

examples. As our first example we exploit the soft drop jet grooming algorithm [49] (which

generalizes the minimal mass drop algorithm [48]). We consider the difference between

two soft drop masses, mSD1 and mSD2 , defined using two different choices for the soft

drop parameters,

∆m2 = m2
SD1
−m2

SD2
. (1.1)

We choose the parameters so that the SD2 grooming is more aggressive than that of SD1,

implying that the particles remaining in the SD2 jet are a subset of those in the SD1 jet, and

that ∆m2 ≥ 0. ∆m2 probes a jet region that is free from the energetic collinear radiation

contained within the SD2 jet, thus making it a collinear drop observable. Furthermore, the

choice of parameters in SD1 controls the initial jet to which we have applied this collinear

drop procedure. If we wish to study underlying event or pileup contamination in the jet,

then we can turn off the SD1 grooming so that m2
SD1
→ m2

J , the full jet mass observable.

On the other hand, if we wish to study soft radiation associated to the dynamics of the jet

itself, then we can carry out grooming through the choice of SD1 to ensure that ∆m2 has

reduced sensitivity to soft radiation originating from outside the jet.

As our second example we consider a class of jet shapes that we refer to as “flattened

angularities”,

τω =
∑
i∈jet

zi ω(θi, θ0) , (1.2)

where zi are energy or pT fractions for each particle i in the jet, and ω(θ, θ0) is an angu-

lar weight function, with θ measured relative to the jet axis. For pp jets this would be

ω(∆R, θ0), where ∆R is the usual rapidity-azimuthal distance measure to the jet axis. We

take the definition of flattened angularities to imply that for a chosen angular parameter

θ0 > 0 the function ω(θ, θ0) either vanishes identically or is exponentially suppressed for a

finite region around the jet axis, which we denote by ω(θ ≤ θ0, θ0) ' 0. By choosing the
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angle θ0 to contain the vast majority of the collinear radiation, we obtain a collinear drop

observable. If desired, one can also define ω(θ, θ0) in a manner that suppresses wide-angle

soft radiation to obtain an analog of the jet-grooming present in our ∆m2 example. This

flattened angularity gives a collinear drop jet shape observable that does not require the

jet reclustering that occurs in soft drop.

We intend to use ∆m2 and τω to illustrate the general principles behind collinear

drop as a new class of jet substructure observables, though it should be clear that one

can construct many other examples beyond those considered here. For instance a simple

generalization would be to consider differences of other observables besides the jet mass in

eq. (1.1), like transverse momenta or angularities of particles in the groomed jets, or to use

a different choice of jet groomer.

The rest of the paper is organized as follows. In section 2 we describe general strate-

gies for constructing collinear drop observables and discuss the two examples of ∆m2 and

τω in more details. We also discuss examples of observables that are not collinear drop

observables, by virtue of only having power-law suppressed contributions from collinear

radiation rather than having a stronger veto on the contribution from these particles. In

section 3 we review the SCET factorization theorem for the soft drop jet mass cross sec-

tion, including a discussion of the effect of a jet radius in the factorization. We discuss

differences between the e+e− and pp collider cases, and develop appropriate scale choices

that implement the groomed to ungroomed transition. We also develop scale variations

that respect the jet mass transition and endpoint, and test the resulting uncertainty bands

at next-to-leading-logarithmic order (NLL). In section 4 we make perturbative predictions

for the ∆m2 collinear drop observable for QCD jets. In particular we derive a factorization

theorem for ∆m2 using SCET, and use it to provide analytic resummed partonic predic-

tions at next-to-leading-logarithmic (NLL) order. We also discuss potential groomed to

ungroomed transitions and the adjustable collinear drop spectrum’s endpoint, and develop

scale choices and scale variations that respect these constraints. In addition we explore the

general features of collinear drop distributions when we vary grooming parameters at NLL

order, and test our method for estimating perturbative uncertainties at this order. Here

the resummation of logarithms arises both from the hierarchies involving the observable,

∆m2 � Q2, as well as other hierarchies related to removing collinear and soft particles. In

section 5 we study collinear drop observables with Pythia and Vincia Monte Carlo sim-

ulations, including re-testing the parameter dependence and making explicit comparisons

with the NLL SCET results. We also demonstrate the utility of using collinear drop to

study hadronization in observables with little sensitivity to underlying event. On the flip

side we show that other collinear drop observables have enhanced sensitivity to underlying

event, and hence can be used to test models intended to describe it. In all cases further

light will be shed on these tests by confrontation with experimental data. Finally, as a

second type of collinear drop observable we briefly analyze MC simulations for a τω exam-

ple that we refer to as the annulus energy fraction. In section 6 we conclude and give an

outlook of the use of collinear drop observables in soft QCD.

– 3 –
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2 Collinear drop observables

2.1 Collinear drop definition

The goal of collinear drop is to specify observables that are sensitive to soft radiation within

jets, while eliminating contributions from energetic collinear radiation that is collimated

with the jet axis. Using light-cone coordinates we can write momenta components of any

four vector pµ as p = (n · p, n̄ · p, p⊥) where in four-component notation n = (1, n̂J) and

n̄ = (1,−n̂J) are light-like vectors involving the jet axis unit vector n̂J . Using light-

cone components, collinear radiation can be defined as particle having momenta scaling as

pn ∼ Q(λ2, 1, λ). Here Q = 2Ejet with Ejet the jet energy, so each collinear particle carries

a non-negligible fraction of the jets energy, and the small parameter λ� 1 determines how

collimated the radiation is with the jet axis. For such collinear radiation the contribution

to a collinear drop observable ∆CD should either vanish or be exponentially suppressed

∆CD[p] ' 0 for
|~p⊥|
p0
' sin(θ) < λ0 � 1 , (2.1)

where λ0 sets an angular cutoff scale for the polar angle θ measured relative to the jet-axis.1

For jet algorithm based observables the particle with momentum p could be a subjet or

contained in a subjet.

Two examples of observables satisfying eq. (2.1) have already been given in eqs. (1.1)

and (1.2), and we elaborate on these examples below in Secs. 2.2 and 2.3, respectively.

Then in section 2.4 we contrast this with examples that suppress the contribution from

collinear radiation, but which do not fully qualify as collinear drop observables.

2.2 Collinear drop from jet grooming

In jet grooming, the constituents of a jet are reconsidered in order to remove soft wide-

angle particles, many of which arise from processes like underlying event, hadronization,

and pileup that contaminate the partonic description of the jet. This grooming effectively

introduces an additional energy or angular cutoff scale that determines what radiation is

removed. These algorithms are designed to retain collinear radiation, and a smaller subset

of soft radiation, which are then used to define the groomed jet observable. A simple way

to obtain a sample of particles on which to define a collinear drop observable is to use the

complement, namely to define the observable using the subjets/particles that were removed

by the jet grooming.

As a concrete example, we use the soft drop grooming procedure [49] with two different

degrees of grooming. Given a jet reconstructed with radius R using any algorithm (such

as anti-kt [56]), we recluster the jet using the Cambridge/Aachen (C/A) algorithm [57, 58]

to obtain an angular ordered branching tree. We then traverse the tree starting from the

largest angles, making pairwise comparisons that remove the softer subjet branch until the

1Note that this condition only implicitly depends on the fact that the eliminated collinear particles have

a large energy, n̄ ·p ∼ Q, through the pre-determined jet-axis which defines ~p⊥ and θ. A choice of recoil-free

axis [55] makes sure that collinear particles align with the jet axis.

– 4 –
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soft drop condition is satisfied:

min(pTi , pTj )

pTi + pTj
> zcut

(
∆Rij
R0

)β
for pp collisions ,

min(Ei, Ej)

Ei + Ej
> zcut

(√
2

sin(θij/2)

sin(Ree0 /2)

)β
for e+e− collisions. (2.2)

For the pp case, pTi and pTj are the transverse momenta of the two branches, and ∆Rij is

the longitudinally boost invariant distance between the two branches in the plane of the

rapidity (y) and azimuth angle (φ),

∆R2
ij = 2 cosh(yi − yj)− 2 cos(φi − φj) ' (yi − yj)2 + (φi − φj)2 , (2.3)

where the last approximation is valid in the small angle limit, and is sometimes simply

adopted for the definition of ∆R2
ij . For e+e− collisions we instead use the energies Ei and

Ej , and the geometric angular distance θij between particles. The parameters R0 (or Ree0 )

set a reference angular scale in the soft drop condition, and are usually taken to be equal

to the initial jet radius R. In eq. (2.2) zcut is a dimensionless soft drop parameter which

sets an upper momentum cutoff for the removal of soft branches, and the parameter β

provides a weight factor which for β > 0 makes the cutoff stronger for branches separated

by a wider angle.

In the small angle limit the physics of the soft drop constraint is universal between the

pp and e+e− cases. Approximating cosh η ' cosh ηJ where ηJ is the jet’s pseudo-rapidity,

we have ∆R = θ cosh ηJ +O(θ2), and the ratios on the l.h.s. of eq. (2.2) are also both equal

to a common parameter zij . The soft drop condition therefore becomes

zij > z̃cut θ
β
ij (2.4)

where following ref. [59] we have defined a parameter z̃cut that differs for pp and e+e− col-

lisions. In particular, z̃cut = zcut(
√

2 sin
(
Ree0 /2)

)−β
for e+e−, and z̃cut = zcut(cosh ηJ/R0)β

for pp. An additional definition that will be useful later on is

Qcut ≡ 2β z̃cutQ . (2.5)

To setup an adjustable sample of soft particles on which to define a collinear drop

observable, we consider an initial jet that has been groomed with soft drop parameters

SD1 = (zcut 1, β1) and then we remove all particles that are kept by a stronger soft drop

grooming given by parameters SD2 = (zcut 2, β2). Intuitively this implies taking zcut 1 ≤
zcut 2 and β1 ≥ β2, such that SD2 grooms the jet more aggressively than SD1. Technically

we only require that the SD2 jet constituents are a subset of the SD1 jet constituents,

{jetSD2
} ⊂ {jetSD1

} . (2.6)

The sample used to define collinear drop observables is then taken to be the particles which

are groomed away by SD2 but not by SD1, i.e., in the complement set {jetSD1
} \ {jetSD2

}.
Figure 1 gives an illustration of this with two soft drop settings. Note that {jetSD2

} contains

– 5 –
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(zcut1, β1)

, β2)

Rg1 Rg2

(zcut2

Figure 1. Illustration of the particles kept in the collinear drop sample, displaying for simplicity a

set of angular-ordered emissions from a single branch. The soft-drop parameters SD1 = (zcut 1, β1)

determine what soft wide-angle red particles are dropped, while the soft-drop parameters SD2

enforce collinear drop by determining which green collinear particles are dropped. The collinear-

drop observable is then defined on the remaining orange particles, roughly contained between the

two groomed jet radii Rg1 and Rg2 .

the energetic collinear radiation, and removing these particles is the crucial ingredient for

collinear drop. In contrast, if so desired, the parameters of SD1 can be relaxed so that

{jetSD1
} is the full jet, which enables a better probe of underlying event and pileup. In

contrast, choosing a non-trivial SD1 enables collinear drop to primarily probe soft radiation

associated to the jet. Thus we see that this definition of a collinear drop observable can be

adjusted depending on the type of soft radiation one wants to look at.

Given this setup we can then directly define a collinear drop observable OCD using

only particles from the complement set

OCD = O
[
{jetSD1

} \ {jetSD2
}
]
, (2.7)

or alternatively by considering the difference of groomed jet observables each defined by

one of the sets of grooming parameters,

OCD = OSD1 −OSD2 . (2.8)

The results from using eqs. (2.7) and (2.8) will agree for observables O that are linear in

their contributions from constituents, which is true of many observables of interest. For

observables that are not even approximately linear, one should use only particles in the

complement set as in eq. (2.7).

As an explicit example of the above construction we consider the collinear drop jet

mass, ∆m2, which can be defined as

∆m2 = m2
SD1
−m2

SD2
. (2.9)

Here mSDi is the groomed jet mass with the soft drop condition SDi,

m2
SDi = p2

SDi , where pµSDi
=

∑
j∈jetSDi

pµj . (2.10)

Note that when there is no cause for confusion we will simply use mJ for the soft drop jet

mass, but like we do here, we will use the alternate notation mSDi if we want to specify the

– 6 –
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soft drop parameter set i from which the jet mass is derived. Defining ∆pµ = pµSD1
− pµSD2

we have

∆m2 = 2pSD2 ·∆p+ (∆p)2 = 2pSD2 ·∆p+ . . . = Qn ·∆p+ . . . , (2.11)

where the ellipses denote contributions power-suppressed by mSDi/Q � 1. Thus we see

that in the region of interest, where the jet mass is much smaller than the energy of the

jet, ∆m2 is to a very good approximation a linear observable, and eqs. (2.7) and (2.8) both

lead to the same leading description. Here ∆m2 probes the lightcone projection of the

particle momenta n ·∆p for those particles which are roughly between the two groomed jet

radii Rg1 and Rg2 , but which technically are dynamically determined on a jet-by-jet basis.

In later sections we will use Monte Carlo to explore the physics that ∆m2 can be used

to probe, and show that analytic resummed expressions can be obtained for the dσ/d∆m2

cross section using factorization in SCET.

2.3 Collinear drop from jet shapes

In our construction of collinear drop observables in section 2.2, the definition intrinsically

relied on a clustering algorithm that is inherent in the jet grooming. Another way of defining

a collinear drop observable is with a so-called jet shape, defined by directly summing over

observed final state particles in a pre-determined jet with rapidity yjet and azimuthal angle

φjet. The precise values for this jet axis depend on the algorithm used to determine the jets.2

With a single sum over particles we can define the following jet shapes

for e+e− collisions: τω =
∑
i∈jet

zi ω(θi, θ0) , where zi =
Ei
Ejet

, (2.12)

for pp collisions: τω =
∑
i∈jet

zi ω(∆Ri, θ0) , where zi =
pT i

pjet
T

,

where the function ω(θ, θ0) ≥ 0 is an angular weight factor depending on a fixed parameter

θ0. Here θi is the angular distance of particle i to the jet-axis, and ∆Ri is the angular

distance from the jet-axis in the rapidity-azimuthal plane, defined as in eq. (2.3) but with

yj → yjet and φj → φjet. The definitions in eq. (2.12) are generalizations of the classic

angularity jet shapes [51, 52]. To ensure these are collinear drop jet shapes we demand,

for some angular distance parameter θ0 within which the majority of collinear particles are

contained, that

ω(θ ≤ θ0, θ0) ' 0 . (2.13)

Here ' 0 could be an exact equality, or indicate that the contribution from this region is

exponentially suppressed relative to the dominant contributions. To ensure collinear safety

we take linear dependence on zi in eq. (2.12), and we can impose the condition that ω(θ, θ0)

is continuous as θ → θ0 from above. Since soft emissions have zi → 0 in the soft limit, τω
is always infrared safe.

2This jet axis can be chosen as a conventional jet axis like anti-kT or a soft-recoil free axis [60] such as

the Winner-Take-All axis [55].
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We can also define collinear drop observables which involve correlations between two or

more particles in the jet. For example, as a collinear drop extension of the 2-point energy

correlation function [61] we can define

e
(β)CD
2 =

∑
i,j∈jet
i<j

zi zj θ
β
ij ω(θi, θ0)ω(θj , θ0) , (2.14)

with similar extensions for higher point energy correlation functions. Here the extra mul-

tiplicative factors of ω(θi, θ0) ensure that only comparisons that do not involve collinear

particles give non-negligible contributions in the sum.

The above construction still leaves considerable freedom in specifying the function

ω(θ, θ0) whose choice is needed to fully specify the collinear drop observable. One po-

tentially desirable feature is to also induced a suppression for wide-angle soft particles

near the jet boundary, in order to mimic some of the features of jet grooming in the jet

shape variable. This can be accomplished by demanding that ω(θ, θ0) ' 0 in a region of θ

about θ = R.

For definiteness and our later analyses, we give a few examples for collinear drop

jet shape observables by specifying ω(θ, θ0). One simple example is a double-sided step

function at radii R1 and R2,

ωa(θ,R1) =

{
1 R1 < θ < R2

0 otherwise
. (2.15)

This observable is closely related to the classic observable of jet energy profile ρ(r) =

dΨ(r)/dr averaged over a jet sample [62–66]. Here we highlight the dependence on R1 > 0

in the argument of this ω since choosing R1 to contain the majority of the collinear radiation

is what makes this a collinear drop observable. The resulting jet shape is equivalent to the

momentum fraction z of particles within the ring region R1 < θ < R2,3 and we will refer to

the corresponding τωa as the “annulus energy fraction”. If we take R2 > R then there is no

suppression for particles near the jet boundary, whereas for R2 < R we remove a subset of

the wide-angle soft radiation. Here R1 and R2 play a similar role to the groomed soft drop

radii Rg2 and Rg1 of our example in section 2.2. We will consider Monte Carlo simulations

and analytic resummation results for the annulus energy fraction in the later sections.

Another example is the gaussian angularity or “gaussianity”4 τωg that is obtained using,

ωg(θ, r − 2σ) = e−(θ−r)2/2σ2
. (2.16)

Here the weight function has its dominant support around the angular region r− σ < θ <

r + σ, and we can choose the angular distance θ0 = r − 2σ > 0 to ensure that collinear

particles from small angles give only exponentially suppressed contributions. For r+2σ . R

this ωg choice also give exponentially suppressed contributions for soft particles near the

jet boundary. Yet another possibility for defining a collinear drop observable would be to

3The non-collinear drop case where R1 = 0 is the jet shape distribution considered in [67].
4We thank Christopher Lee for this suggestion.
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retain exponential suppression for collinear particles, but make the suppression for wide

angle soft particles polynomial by using

ωe(θ, r/10) = (1− θ/R)α e−r/θ . (2.17)

These examples should make clear the method for constructing other possible collinear

drop jet shapes, and that we have not attempted to provide an exhaustive list.

2.4 Examples that are not collinear drop observables

In this subsection we consider combinations of standard jet measurements which have the

property that they suppress the contribution of collinear particles. In particular, we wish

to highlight some examples that at first glance appear to be similar to collinear drop

observables, but which actually do not satisfy our definition because they still obtain non-

trivial contributions from energetic collinear particles.

One example of an observable that changes the weight of collinear and soft particles

are the conventional angularities [51, 52], which include a angular weight indexed by a

parameter α > 0. For the jet shape angularity they can be defined by

τα =
∑
i∈jet

zi

(
θi
R

)α
, τα =

∑
i∈jet

zi

(
∆Ri
R

)α
, (2.18)

for e+e− and pp collisions respectively, with the same definitions for θi and ∆Ri as in

eq. (2.12). For small τα or for jets with small R, the angularity with α = 2 is the same as

the jet mass, while α = 1 corresponds to a jet shape broadening. Note that, wide-angle

radiation near the jet boundary with θi ≈ R has the maximal angular weight, while the

contribution from collinear radiation with θi � R is angularly suppressed. A larger α will

suppress the collinear radiation and enhance the relative contribution of the wide-angle

soft radiation. However this suppression is only polynomial with the power α, and hence

it is weaker than what we require in the definition of a collinear drop observable.

Motivated by the definition of collinear drop observables in eq. (2.8), one might also

consider the difference of two angularities as a potentially related observable. Taking β > α

we let

∆τ = τα − τβ =
∑
i∈jet

zi

[(
θi
R

)α
−
(
θi
R

)β]
≥ 0 . (2.19)

Here the angular weighting factor vanishes when θi → 0 and θi → R, which seems similar

to our collinear drop observables. One can also determine that the contributions to ∆τ

peak at a finite angle,

θpeak =

(
α

β

) 1
β−α

R < R . (2.20)

However, for energetic collinear particles with zi ∼ 1 and θi � R we have

∆τ ∼
(
θi
R

)α
−
(
θi
R

)β
∼
(
θi
R

)α
, (2.21)

– 9 –



J
H
E
P
0
6
(
2
0
2
0
)
0
6
4

so the angular weight is dominated by a power-law with the exponent α. Thus ∆τ is again

not a collinear drop observable. Note that it also suppresses wide-angle soft radiation

linearly as ∼ (β − α)(1− θ/R) for θ → R.

The issue with the difference of the two angularities is simply that they do not give

the same weight to collinear particles, which therefore do not cancel out in ∆τ . When

considering classic event shapes in e+e− collisions it is known that for thrust τ = 1−T [68]

and C/6, where C is the C-parameter [69, 70], have the same resummation formula up to

next-to-leading logarithmic order [71]. The difference

∆τC = τ − C

6
, (2.22)

therefore seems like a potential candidate for a collinear drop observable. In terms of a

sum over all particles in the e+e− event we can write

τ =
1

Q

∑
j

p⊥j min(eηj , e−ηj ) ,
C

6
=

1

Q

∑
j

p⊥j
1

eηj + e−ηj
. (2.23)

Here p⊥j and ηj are the particle transverse momentum and pseudo-rapidity defined with

respect to the thrust axis. To see whether this qualifies as a collinear drop observable we

consider the limit where particles are collinear to the thrust axis, θj � 1, where p⊥j ' zjθj
and we have e−|ηj | ≈ θj/2 therefore,

∆τC =
∑
j

p⊥j

(
e−|ηj | − 1

e|ηj | + e−|ηj |

)
≈
∑
j

zjθje
−3|ηj | ≈ 1

8

∑
j

zjθ
4
j , (2.24)

while each of τ and C/6 alone behave as
∑

j zjθ
2
j in the collinear limit. Thus we see that

the observable ∆τC suppresses the collinear contribution by increasing the power of the

angular exponent by two, but since this behavior is still polynomial in θj , this ∆τC is not

a collinear drop observable.

2.5 Comparison of phase space with soft drop and collinear drop

For our analytic QCD based analysis we will focus on the collinear drop observable ∆m2

from eq. (2.9). In the following sections we will derive a factorization formula for dσ/d∆m2

using SCET, and use it to resum logarithmically enhanced terms from the hierarchies

∆m2 � Q2 ,
θi
2
'
(

∆m2

QQcut i

) 1
2+βi � R

2
, (2.25)

where i = 1, 2. Since collinear radiation has been dropped, the first condition in eq. (2.25)

ensures that only soft radiation contributes to ∆m2. The second condition with i =

1, 2 ensures that the angle of soft radiation contributing to ∆m2 is always parametrically

smaller than the jet radius R. For this reason we refer to them as collinear-soft radiation

contributions. We will also assume that the soft drop grooming is removing soft radiation,

and the collinear drop grooming is removing all collinear radiation, which requires

zcut 1 � 1 , zcut 2 � 1 . (2.26)
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Figure 2. Phase space regions in the plane of energy fraction (z) and polar angle from the jet axis

(θ), where the white regions are those that are kept. The left panel shows the result for soft drop

where the orange shaded region is eliminated. The right panel shows the result for collinear drop

where in addition the red shaded region is eliminated. In SCET the relevant degrees of freedom are

collinear (C) modes, collinear-soft (CS) modes, and global soft (GS) modes, shown by solid dots.

An illustration of the phase space of the radiation contributing to the soft-drop jet

mass and our collinear drop jet mass observable is shown in figure 2. Here z and θ are

the energy fraction and angle relative to the jet energy and jet axis, respectively. The blue

solid line indicates the scaling associated to the measurement, and the open white region

is the phase space that contributes after one or both of the soft-drop and collinear drop

conditions are applied. The solid circles in these panels correspond to modes in SCET

which we will discuss in more detail below. The panel illustrate that, depending on the

choice of parameters there can be hierarchies between the collinear drop and soft-drop

constraints, such as:

zcut 1 � zcut 2 ,
θ2

2
'
(

∆m2

QQcut 2

) 1
2+β2 �

(
∆m2

QQcut 1

) 1
2+β1 ' θ1

2
. (2.27)

The hierarchies in eq. (2.27) require additional resummation, which we also carry out using

our factorization based resummation approach. For simplicity we will restrict our results to

NLL order,5 though the factorization formula we have derived can be used for resummation

at higher orders, and makes the procedure for this systematic. Indeed, in e+e− collisions

several event shape observables have been resummed at next-to-next-to-next-to-leading

logarithmic accuracy [41, 72–74] using SCET based techniques.

3 Soft drop factorization and the groomed-ungroomed transition

Since the collinear drop observable ∆m2 is defined using soft-drop jet masses, we first

summarize in section 3.1 key ingredients of the factorization of soft-drop jet mass [75,

76], which are relevant for our factorization of ∆m2. Extensions required for small-R

5Note that since our results are presented for generic choices for β1,2 we refer to them as NLL. For the

special case of β = 0 there is not a double logarithmic series in the groomed m2
J (or in ∆m2) [48], and

hence these NLL terms are actually the leading-logs.
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resummation of jet masses were studied in refs. [77–81], and we discuss the analogous

extension for soft-drop jet mass in section 3.2. Then in section 3.3 we discuss how to

handle the mass region where the transition from soft drop being effective to ineffective

happens, developing corresponding profile scales, since to the best of our knowledge this

has not yet been done in the SCET framework.

3.1 Review of soft drop modes and factorization for e+e−

In this section we review the modes used to carry out resummation for soft drop in SCET

following the analysis of ref. [76] for hemisphere jets in e+e− with m2
J/Q

2 � zcut � 1. For

our discussion we specialize to the soft drop groomed jet-mass observable, mJ .

Modes in SCET can be characterized by the scaling of their momentum components

(p+, p−, p⊥) = (n · p, n̄ · p, p⊥), which here are defined relative to the jet axis n̂J by using

the light-like vectors n = (1, n̂J) and n̄ = (1,−n̂J). The measurement of the soft-drop jet

mass mJ determines the relevant energetic collinear modes with momenta

pc ∼
(
m2
J

Q
,Q,mJ

)
= Q(λ2, 1, λ) , (3.1)

where λ = mJ/Q � 1 is the power-counting parameter. Q = p−J ' 2EJ is the center-of-

mass energy of the e+e− collision and EJ is the jet energy. Together with the soft-drop

condition with parameters (zcut, β), the relevant collinear-soft mode [76] emerges by solving

the following system of constraints,

Qz

(
θ

2

)2

≈ p+
cs ≈

m2
J

Q
, z ≈ z̃cut θ

β , (3.2)

where z = E/EJ ' p−/p−J is the energy fraction, θ is the polar angle relative to the jet-axis,

and we have taken θ � 1. The parameter z̃cut ∝ zcut was defined in eq. (2.4) for e+e−

collisions. Therefore the collinear-soft mode has the following momentum scaling,

pcs ∼
m2
J

Qζcs

(
ζcs,

1

ζcs
, 1

)
, (3.3)

where we have made use of the shorthands

ζcs ≡
(

m2
J

QQcut

) 1
2+β

, Qcut ≡ 2β z̃cutQ . (3.4)

Note that this corresponds to a characteristic energy scale of Ecs ∼ m2
J/(2Qζ

2
cs) = Qcutζ

β
cs/2

and angle θcs ∼ 2ζcs.
6

6Taking ηJ = 0 for pp collisions we have z̃cut = zcut/R
β
0 , and eq. (3.3) becomes

pcs ∼
(
m2
J

EJ
, EJzcut

(
mJ

EJR0
√
zcut

) 2β
2+β

, mJ
√
zcut

(
mJ

EJR0
√
zcut

) β
2+β

)
,

which then agrees with ref. [76]. Note that the combination Qζcs is independent of ηJ since factors of

cosh ηJ cancel.
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The collinear and collinear-soft modes contribute to the soft-drop jet mass at leading

power, and the distribution has the following factorized form,

dσ

dm2
J

=
∑
i=q,g

Ni(ΦJ , z̃cut, β, µ) P SD
i (m2

J , Q, z̃cut, β, µ) , (3.5)

where ΦJ = {EJ , θJ} encodes the jet energy and angle (or pT and ηJ for a jet from a pp

collision). The perturbative mJ spectrum is determined by

P SD
i (m2

J , Q, z̃cut, β, µ) = Q
1

1+β

cut

∫
ds dk+ Ji(s, µ) SCi

(
k+Q

1
1+β

cut , β, µ

)
δ
(
m2
J − s−Qk+

)
,

(3.6)

which is a convolution of the inclusive jet function Ji and the collinear-soft function SCi,

which describe collinear and collinear-soft contributions to the groomed jet mass respec-

tively.7 The perturbative function P SD
i has mass dimension −2. The index i = q, g labels

the parton initiating the jet as either a quark or a gluon. The function Ni encodes the

process dependence, including for example a hard function for the hard scattering process,

global soft function SGi, and proton parton distribution functions in the case of pp col-

lisions. The hard function describes the hard scattering process producing the energetic

quark or gluon i which initiates the jet. The global soft function describes how soft radi-

ation within the jet is removed by the soft drop procedure, with the relevant global soft

mode scaling as

pgs ∼ Qz̃cut(1, 1, 1) , (3.7)

which does not depend on the measurement of the jet mass mJ . Ni also encodes information

of the radiation outside jets that affects the jet cross section. Note that the factor Ni has

multiple characteristic energy scales which depend on zcut, β and R, which themselves

could require resummation, but does not depend on the jet mass. The factorization scale

dependence in the perturbative calculations of Ni(µ) and P SD
i (µ) cancels and the physical

cross section is independent of the scale µ.

Because of the convolution form of the factorized expression, it is convenient to study it

in Laplace space. For any momentum space function f(s) we define the Laplace transform

f̃(y) and its inverse by

f̃(y) =

∫ ∞
0
ds e−ye

−γE sf(s) , f(s) = e−γE
∫ c+i∞

c−i∞

dy

2πi
eye
−γE s f̃(y) , (3.8)

where we include the factor of e−γE when defining y to simplify later equations. With this

transformation eq. (3.6) is converted to a product form,

P̃ SD
i (y,Q, z̃cut, β, µ) = J̃i(y, µ) S̃Ci

(
QQ

−1
1+β

cut y, β, µ

)
(3.9)

= J̃i

(
ln

1

yµ2
, αs(µ)

)
S̃Ci

(
ln

Q
1

1+β

cut

yQµ
2+β
1+β

, β, αs(µ)

)
,

7In order to make manifest the functional dependence for SCi derived in ref. [76], our notation for SCi
follows ref. [59].
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where the Laplace space J̃i, and S̃Ci are dimensionless functions, and in the last line we

have defined forms whose first arguments are given by the only logarithms that can appear.

They satisfy multiplicative renomalization group (RG) equations,

d

d lnµ
J̃i(y, µ) =

[
−2Γicusp(αs) ln

1

yµ2
+ γJi(αs)

]
J̃i(y, µ) , (3.10)

d

d lnµ
S̃Ci

(
QQ

−1
1+β

cut y, β, µ

)
=

2Γicusp(αs) ln
Q

1
1+β

cut

µ
2+β
1+βQy

+ γSCi(αs)

 S̃Ci(QQ −1
1+β

cut y, β, µ

)
.

Here Γicusp(αs) is the cusp anomalous dimension, which obeys Casmir scaling up to 3-loops,

Γicusp(αs) = CiΓcusp(αs), where Cq = CF = 4/3 and Cg = CA = 3, and up to two-loops

Γcusp(αs) = 4

(
αs
4π

)
+ 4

[(
67

9
− π2

3

)
CA −

20

9
TFnf

](
αs
4π

)2

, (3.11)

where TF = 1/2 and nf is the number of active quark flavors. Note that the cusp anomalous

dimension term for J̃i and S̃Ci each depend only on the dimensionless combination of their

two arguments, as expected. The product appearing in S̃Ci can also be written in terms of

the jet energy as

QQ
−1
1+β

cut = E
β

1+β

J z̃
−1
1+β

cut . (3.12)

The µ dependence of the product J̃iS̃Ci is canceled by the µ dependence of Ni, ensuring

that the cross section is µ independent. The RGE for Ni is also multiplicative,

d

d lnµ
Ni(ΦJ , z̃cut, β, µ) =

−2Γicusp(αs) ln
µ

β
1+βQ

1
1+β

cut

Q
+ γNi(αs)

Ni(ΦJ , R, z̃cut, β, µ) ,

(3.13)

where γNi(αs)+γJi(αs)+γSCi(αs) = 0, and the sum of Γicusp terms in eqs. (3.10) and (3.13)

also vanishes. The anomalous dimensions for Ni in eq. (3.13) is independent of y, and has

contributions from two scales that can be seen by writing

ln
µ

β
1+βQ

1
1+β

cut

Q
=

1

1 + β
ln

µβ

Q1+βQ−1
cut

= ln
µ

Q
− 1

1 + β
ln

µ

Qcut
. (3.14)

Here the first term in the last equality comes from the hard function in Ni and the second

term from the global soft function SGi.

With R ∼ 1 the fixed-order calculations of the jet, collinear-soft, global-soft, and hard

functions determine the corresponding momentum space scales µJ , µcs, µgs, and µh where

they have no large logarithms. These are [76]

µJ = mJ , µcs =

(
m2
J

Q

) 1+β
2+β

Q
1

2+β

cut , µgs = Qcut , µh = Q . (3.15)

– 14 –



J
H
E
P
0
6
(
2
0
2
0
)
0
6
4

Note that the scale for the collinear-soft function, µcs, is a geometric average of the ultrasoft

scale m2
J/Q that is present for jets without any grooming, and the scale Qcut. The canonical

scales also satisfy the relation

µ
2+β
1+β
cs µh = µ2

J µ
1

1+β
gs . (3.16)

Using RG equations we can evolve the jet and collinear-soft functions from their character-

istic energy scales µj and µcs to the factorization scale µ, and the RG evolution will resum

the logarithms of scale ratios. Note that when β = 0, µcs depends linearly on mJ therefore

the scale ratio µj/µcs is independent of mJ . This implies that the mJ distribution only

consists of single logarithms, as originally discussed in [48].

The resummed expression of the soft-drop jet function is obtained by evolving the jet

and soft-collinear functions from their natural scales (µj and µcs respectively) up to the

global-soft scale µgs. This gives

dσ

dm2
J

=
∑
i=q,g

Ni(ΦJ , z̃cut, β, µh, µgs) P
SD
i (m2

J , Q, z̃cut, β, µgs) , (3.17)

where the normalization factor Ni now also contains a resummation of large logarithms

between µh and µgs (which will not concern us here), and the resummation of large log-

arithms that modify the mJ spectrum are all contained in the resummed result for P SD
i .

Its resummed expression is

P SD
i (m2, Q, z̃cut, β, µgs) (3.18)

= exp

[
4CiK(µJ , µgs)−

2(2 + β)

(1 + β)
CiK(µcs, µgs)

] µ2
J Q

1
1+β

cut

µ
2+β
1+β
cs Q

2Ci ω(µcs,µgs)

× exp
[
ωJi(µJ , µgs) + ωSCi(µcs, µgs)

]
× J̃i

(
∂η, αs(µJ)

)
S̃Ci

∂η + ln

µ2
JQ

1
1+β

cut

µ
2+β
1+β
cs Q

 , β, αs(µcs)

 e−γEη

Γ(η)

× 1

m2

(
m2

µ2
J

)η ∣∣∣∣
η=2Ci ω(µcs,µJ )

.

Here ∂η = ∂/∂η enter in a polynomial fashion through fixed order terms in the functions J̃i
and S̃Ci. The functions K(µ1, µ2), ω(µ1, µ2), ωF (µ1, µ2) in the exponent are RG evolution

kernels, defined by

K(µ1, µ2) =

∫ αs(µ2)

αs(µ1)
dα

Γcusp(α)

β(α)

∫ α

αs(µ1)

dα′

β(α′)
, (3.19)

ω(µ1, µ2) =

∫ αs(µ2)

αs(µ1)
dα

Γcusp(α)

β(α)
, ωF (µ1, µ2) =

∫ αs(µ2)

αs(µ1)
dα
γF (α)

β(α)
.

If we specialize to NLL order then the boundary conditions J̃i and S̃Ci can be set to 1, the

result for Γcusp(α) is kept at 2-loops, and the result for the γF (α) terms are kept at 1-loop.

– 15 –



J
H
E
P
0
6
(
2
0
2
0
)
0
6
4

3.2 Soft-drop for pp collisions with a jet of radius R

In this section we consider the generalization of the hemisphere e+e− results from sec-

tion 3.1 to the case of pp collisions with ungroomed jets of radius R. We will include

also the case where R/2 is small, which is typically the case at the LHC and especially in

heavy ion studies. Various parts of this generalization are straightforward. In particular

for pp collisions Q = 2EJ = 2pT cosh(ηJ), where pT and ηJ are the jet’s transverse mo-

mentum and rapidity. Also we now use the pp version of the soft-drop definition where

z̃cut = zcut(cosh ηJ/R0)β from eq. (2.4). For the kinematic limit we are considering, the

jet function Ji is not modified relative to the e+e− case since these modes never see the

jet boundary. The hard function and other contributions to Ni are modified for the pp

case, and in particular the relevant hard scale is µh = pTR. For a jet of radius R, the

normalization function Ni(ΦJ , R, z̃cut, β, µ) also has explicit R dependence because of the

jet selection, so for pp we have

dσ

dm2
J

=
∑
i=q,g

Ni(ΦJ , R, z̃cut, β, µ) P SD
i (m2

J , Q, z̃cut, β, µ) , (3.20)

where ΦJ = {pT , ηJ} encodes the jet kinematics. We will discuss below the R independence

of P SD
i for pp in the soft-drop factorization region.

One important source of R dependence is the in-jet global soft modes, whose scaling for

(p+, p−, p⊥) is modified relative to eq. (3.7). To derive the modified scaling we set ∆R ' R,

and note that the polar angle θ relative to the jet axis n̂J scales as θ ∼ 2
√
p+/p− ∼

R/ cosh ηJ . The overall energy scale is fixed by saturating the soft drop condition, yielding

pgs ∼ Qz′cut

(
R2

4 cosh2 ηJ
, 1,

R

2 cosh ηJ

)
, z′cut ≡ z̃cut

(
R

cosh ηJ

)β
= zcut

(
R

R0

)β
. (3.21)

This scaling relation drops O(1) factors associated to the deviation in the shape between

a θ < R and ∆R < R jet, and also differs for a jet in an e+e− collision.8 Note that

p2
gs ∼ (pTRz

′
cut)

2 so we require z′cut � 1 to make the scale of the global soft mode distinct

from the hard(-collinear) scale ∼ pTR. Here pTR is a hard-collinear scale for R � 1, and

a hard scale for R ∼ 1. In the case of R < R0, The condition z′cut � 1 holds when one

requires that zcut � 1. However, in the case of R > R0, a sufficiently large value of β will

break this condition so that z′cut can go beyond 1/2 which is the maximum value of the

soft branch momentum fraction. In this case the jet instead has a reduced radius Rred < R

because the particles with their angle θ > Rred are all dropped.

One can consider the in-jet global-soft function which accounts for the cross section

of dropped soft radiation and includes the part of the soft contributions in Ni needed to

8For an e+e− collision with a geometric jet of radius R we instead have pgs ∼ Qz′cut(R2/4, 1, R/2) with

z′cut ≡ z̃cut
(

2 sin
R

2

)β
= zcut

(√
2 sin(R/2)

sin(Ree0 /2)

)β
, (3.22)

which is equal to z̃cutR
β in the small-R limit. Again we require z′cut � 1 for the scale of the in-jet global

soft mode to be parametrically smaller than the hard(-collinear) modes, p2gs � (QR/2)2.
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cancel the µ scale dependence in Pi. For a single gluon radiation with d = 4− 2ε we have

the bare result9

SGi(Qcut, β, R, ε) = 1 +
4g2Ci µ

2εeεγE

(2π)d(4π)ε

∫
ddq 2πδ+(k2)

(q+q−)
Θ

(gs)
SD Θalg , (3.23)

where δ+(k2) = δ(k2)Θ(k0) and

Θ
(gs)
SD = Θ

(
Qz̃cut(2q

+/q0)β/2 − 2q0
)

= Θ
(
Q

2
2+β

cut (q+)
β

2+β − q+ − q−
)
,

Θalg = Θ
(
R2 −∆R2

)
. (3.24)

For simplicity we will take ∆R2 = cosh2ηJ 4q+/q− which is strictly true in the R/2 � 1

limit, noting that this also suffices to determine the appropriate scale for the global soft

function even when R/2 ∼ 1. This gives

SGi(Qcut, β, R, ε) = 1 +
Ciαs(µ)

π

1

1 + β

(
1

2ε2
+

1

ε
ln

µ

Q′cut

+ ln2 µ

Q′cut

)
+ . . . , (3.25)

where the ellipses denote terms that are not relevant to our discussion and

Q′cut ≡ Qcut

(
R

2 cosh ηJ

)1+β

= pTRz
′
cut = pTRzcut

(
R

R0

)β
. (3.26)

This determines the appropriate result for the global soft scale to be µgs ' Q′cut. Note that

this Q′cut is independent of ηJ , and thus invariant to boosts along the beam axis. Also note

that the (1/ε) ln(µ/Q′cut) term in eq. (3.25) induces a lnR/ε term that is independent of

β. This is only apparent because we have distinguished R and R0.

The anomalous dimensions for J̃i and S̃Ci are not modified by the presence of the jet

radius R, so RG consistency implies that Ni must still satisfy eq. (3.13). The cusp term

there involves the combination

QQ
−1
1+β

cut = pT

(
pT zcutR

−β
0

) −1
1+β

= pTR
(
pTRzcut(R/R0)β

) −1
1+β

, (3.27)

which is both ηJ and R independent. Since the contribution from the global soft function in

eq. (3.25) involves Q′cut rather than Qcut, there must be an extra R dependent contribution

to the cusp contributions to µd/dµNi. This arises from contributions from outside the jet.

For exclusive jet production [82] this contribution is from the “unmeasured soft function”

Sunmeas(R,µ, . . .), which is independent of the jet grooming but may depend on parameters

for other parts of the event. With R/2� 1 it involves the term

Sunmeas(R,µ, . . .) = 1 +
Ciαs(µ)

π

1

ε
ln

(
R

2

)
+ . . . , (3.28)

where the ellipses are finite O(ε0) terms or terms associated with other parts of the event.

This cancels the (1/ε) lnR term in the product SGiS
unmeas at O(αs), an contributes the ap-

propriate term to give the R independent anomalous dimension in eq. (3.13). For inclusive

9The virtual contributions is scaleless and only contributes here by ensuring the proper interpretation

of 1/ε poles as UV.
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jet production with R/2� 1 the required contribution to Ni occurs from a hard-collinear

matching coefficient Hi→i(RpT , µ, . . .) [83], whose anomalous dimension now has the re-

quired lnR dependence to cancel that from eq. (3.26). These cancellations between the

global soft function and contributions from outside the jet are direct analogs of the cancel-

lation of factors of R in the final result in eq. (3.27).

Next let us discuss how the collinear-soft function should be generalized for pp. When

R ∼ 1 the scaling for the collinear-soft mode is identical to eq. (3.3), since eq. (2.25) im-

plies that θcs � R, and the collinear-soft function does not see the jet boundary. Thus the

required function is still SCi
(
k+Q

1
1+β

cut , β, µ
)

or S̃Ci
(
QQ

−1
1+β

cut y, β, µ
)

with the same anoma-

lous dimension in eq. (3.10). Th appropriate canonical scale for µcs is also still given by

eq. (3.15). In fact we also have these same functions for the case R� 1, but now we must

be more careful in determining the upper limit on mJ for which this analysis in terms of

collinear-soft and global-soft functions still holds. To determine the limit, consider the one

gluon emission calculation for SCi, but including a jet boundary constraint Θalg. for R� 1.

This yields the integral

2g2Ci µ
2εeεγE

(2π)d(4π)ε

∫
dq+dq−dΩd−2

(q+q−)1+ε
(2π)δ(q+ − k+) ΘSD Θalg. , (3.29)

Since the modes in SCi are collinear-soft we must take q+ � q− for the Θ functions in

eq. (3.24), so the appropriate soft-drop and jet boundary constraints are

ΘSD = Θ

(
q− −Qcut

(
q+

q−

)β/2)
, Θalg. = Θ

(
R2

4 cosh2 ηJ
− q+

q−

)
. (3.30)

For fixed q+ = k+ both of these constraints give a lower limit on q−. Thus the range of

validity is determined by having the ΘSD constraint be stronger than the Θalg. constraint.

This requires

k+ < Qcut

(
R

2 cosh ηJ

)2+β

= Q′cut

(
R

2 cosh ηJ

)
. (3.31)

Setting k+ = m2
J/Q this implies that the factorized description with a collinear-soft func-

tion is valid for

mJ < m0 ≡ pTR
√
z′cut . (3.32)

Above the mass value m0 the soft drop grooming is no longer effective, and the factorization

theorem transitions to the ungroomed jet mass result. We discuss this transition in detail

in the next subsection.

In summary, at NLL with mJ < m0 the same resummation formula for P SD
i in

eq. (3.18) applies for the pp case, except now the scale choices in eq. (3.15) become

µcs =

(
m2
J

Q

) 1+β
2+β

Q
1

2+β

cut =

(
m2
J

pTR

) 1+β
2+β

Q
′ 1
2+β

cut , µgs = Q′cut = pTRzcut

(
R

R0

)β
,

µJ = mJ , µh = pTR . (3.33)
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Figure 3. Canonical global soft scale µgs and collinear soft scale µcs, which merge into the soft

scale µs at the point mJ = m0. For mJ > m0 the grooming is no longer effective.

Once again these canonical scales obey the relation in eq. (3.16). Note that the collinear-

soft scale µcs depends on R0 but is independent of R. Also, all scales are independent of

ηJ , as is the combination Q
1

1+β

cut /Q = Q
′ 1
1+β

cut /(pTR) appearing explicitly in eq. (3.18). The

full result for pp is also affected by changes to the calculation of Ni which differs from the

e+e− case.

For completeness we note that the analogous formulas to eq. (3.33) for a jet of radius

R in an e+e− collision are

µcs =

(
m2
J

Q

) 1+β
2+β

Q
1

2+β

cut , µgs = Qcut tan1+β

(
R

2

)
,

µJ = mJ , µh = Q tan

(
R

2

)
, (3.34)

which reduce to the hemisphere case for R = π/2.

3.3 Transition between groomed and ungroomed regions and profiles

From eq. (3.32) we saw that soft-drop for a jet of radius R in pp is no longer active when

mJ ≥ m0. At m0 the collinear-soft and global soft scales are equal,

µcs(m
2
J = m2

0) =

(
m2

0

Q

) 1+β
2+β

Q
1

2+β

cut =

(
pTR

2

2 cosh ηJ
z′cut

) 1+β
2+β (

pT (2 cosh ηJ)1+βz′cutR
−β
) 1

2+β

= pTRz
′
cut = µgs . (3.35)

Therefore the corresponding collinear-soft function (SCi) and global-soft function (inside

Ni) should be merged into a single soft function. For R/2 ∼ 1 the new relevant mode is

(ultra)soft, while for R/2 � 1 it is a different collinear-soft mode. In general the scaling
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for this mode is

pµs ∼
4m2

J cosh2 ηJ
QR2

(
R2

4 cosh2 ηJ
, 1,

R

2 cosh ηJ

)
. (3.36)

The canonical scale for this soft function is the standard (ultra)soft scale p2
s ' µ2

s where

µs = m2
J/(pTR). The description is continuous at mJ = m0 since the value of µs is equal

to the scale of the collinear-soft and global-soft functions at m0,

µs(m
2
0) = µcs(m

2
0) = µgs . (3.37)

The behavior of these scales and their merging is plotted in figure 3.

Thus we see that the soft drop factorization theorem must be smoothly transitioned

to the ungroomed factorization theorem at mJ = m0 = pTR
√
z′cut. In our NLL resummed

predictions this can be trivially accomplished by making the appropriate transition for the

µcs and µgs scales. For the canonical scale choice we simply replace in eqs. (3.17) and (3.18)

the scales as

µcs → µcs(m
2
J) =


(
m2
J

Q

) 1+β
2+β

Q
1

2+β

cut mJ < m0

m2
J

pTR
mJ ≥ m0

,

µgs → µgs(m
2
J) =


pTRz

′
cut mJ < m0

m2
J

pTR
mJ & m0

, (3.38)

At our NLL precision the endpoint of the (effectively ungroomed) jet mass spectrum is at

mJ = mmax ≡ pTR, above which the cross section vanishes. Our resummed distribution

vanishes at this value due to the relation

µs(m
2
max) = µJ(m2

max) = µh . (3.39)

Note that for z′cut & 1/2, the transition does not happen and is superseded by the truncation

at the reduced jet radius mJ . pTRred

√
1/2. In the next section we will provide theoretical

predictions of soft-drop jet mass distributions.

We will estimate the theoretical uncertainty by varying the scales µh, µJ(m2
J), µgs(m

2
J)

and µcs(m
2
J) in the resummation formula. This is done by using the method of profile

functions in the SCET framework [41, 84]. These scale variations are devised so that

they always maintain the joining conditions in eqs. (3.37) and (3.39), and maintain the

hierarchies between scales so that µh > µgs > µcs and µJ > µcs. In particular we determine

the uncertainties at NLL by considering the following four variations

1. Overall variation of all scales simultaneously up/down by a factor of two, so µi → e0µi
with e0 = 1/2 or 2.
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Figure 4. Soft-Drop jet mass distributions from Pythia simulations of pp → dijets at 13 TeV.

The distributions are given at both parton level (dotted) and hadron level with MPI effects (solid).

The jet mass distribution without grooming is also shown for comparison (black curves). For the

soft drop curves the left panel fixes zcut = 0.1 and varys β = 0, 1, 2, while the right panel fixes

β = 1 and varies zcut = 0.01, 0.05, 0.1.

2. Variation of the µgs and µcs scales by a multiplicative factor of es = 3/2 or 2/3 in the

region mJ ≤ m0, while simultaneously multiplying µs(m
2
J) for the region mJ ≥ m0

by a power [m2
J/(pTR)2]ln es/ ln zcut to maintain eqs. (3.37) and (3.39).

3. Variation of µJ by a multiplicative trumpet factor of
[
1 + eJ

(
1 − mJ

pTR

)2]
with eJ =

±1/3.

4. Variation of µcs by a multiplicative trumpet factor of
[
1 + ecs

(
1− mJ

m0

)2
Θ(m0−mJ)

]
with ecs = ±1/3.

We then compute the total uncertainty as simply the outer envelope of these variations.

3.4 Monte Carlo and partonic SCET results for mJ

Having discussed soft drop groomed jet mass calculations, in this section we briefly discuss

some features of the corresponding jet mass distributions [48, 49, 80, 85, 86]. This will be

useful for the purpose of drawing contrasts between the behavior of soft drop and collinear

dropped jet mass for different choices of the grooming parameters. Furthermore it will set

a baseline of our discussion when we compare our theoretical NLL predictions to results

from Monte Carlo simulations, which in this case can be compared also with data. We will

also discuss the groomed to ungroomed region transition, which will have a direct analog

in the collinear drop distributions. In all cases the jets are reconstructed using the anti-kt
algorithm with R0 = R = 0.8 in dijet events from 13 TeV proton-proton collisions, and we

impose the jet pT cut of 600 GeV < pT < 700 GeV to select high pT jets.

Figure 4 shows the Pythia simulation of soft-drop jet mass distributions with various

soft-drop parameters. The left panel shows results with zcut = 0.1 fixed, varying β = 0, 1, 2,

which were also the values used in the ATLAS measurement [87]. Soft drop groomed jet

mass measurements have also been made by CMS [88]. The right panel shows various values

of zcut with a fixed β, and both panels also include the ungroomed jet mass distribution
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for comparison. The dotted lines are purely partonic Pythia results, while the solid

lines include hadronization and multi-parton interactions (MPI). The curves are plotted

using ρ = log10(m2
J/p

2
T ) to better highlight the various regions of the distribution, and

are normalized d log σ/dρ = (1/σ)(dσ/dρ). Here σ is chosen so the area is normalized to

1 in the plotted region. In general, stronger grooming pushes the distribution to smaller

mJ and flattens the peak in the displayed distributions. From the left panel of figure 4

we see that the groomed to ungroomed region transition occurs at log10(R2zcut) ≈ −1.2

for zcut = 0.1, independent of the β as expected, while in the right panel one can observe

that the transition value changes as we vary zcut. For mJ > pTR
√
zcut soft drop becomes

ineffective, and the groomed distributions transition to the ungroomed distribution in this

region. For mJ < pTR
√
zcut, soft drop removes wide-angle soft radiation and deforms the

Sudakov peak by increasing the distribution in the smaller log10(m2
J/p

2
T ) region. Generally

hadronization and MPI increase the value of the jet mass and soft drop suppresses these

effects. As one decreases the value of β or increases zcut, soft drop removes more particles

and results in a wider distribution further toward small jet mass region. One can also

see that the region where hadronization and MPI effects are significant is further pushed

toward the left with more aggressive grooming. With a very small zcut ' 0.01 the grooming

transition can even pass the Sudakov peak so that few particles are removed by soft drop

and the distribution is only distorted in the very small jet mass region.

Figure 5 shows results for the NLL partonic soft drop jet mass distribution with

zcut = 0.1. For the top left panel we take β = 1 and display the uncertainty band ob-

tained following the method described in section 3.3, while normalizing all variations to

the central curve over the range shown. Since this panel includes the uncertainty in the nor-

malization, the displayed variations are rather large at NLL. However, for a comparison to

experimental data the cross sections are often normalized, making a comparison with only

shape uncertainties more relevant. This is achieved for the NLL prediction in the top-right

panel of figure 5 by normalizing results within the range of −3.7 < log10(m2
J/p

2
T ) < −1.7

as in the ATLAS measurement. In particular, each of the scale variations used to estimate

the perturbative are normalized in this fashion, prior to taking their envelope. This plot

also shows for comparison partonic and hadronic distributions for Pythia and Vincia

simulations as well as ATLAS data from ref. [87]. The lower panels show analogous results

for β = 0 and β = 2 respectively.

For β = 0 all the NLL, Pythia, and Vincia curves somewhat undershoot the data

in the region where log10(m2
J/p

2
T ) ' −1.2, but the NLL results are within our estimate

for the perturbative uncertainties. In this region higher order fixed order perturbative

corrections (included in the more detailed analyses in refs. [80, 85, 86]) are important. For

small log10(m2
J/p

2
T ) . −3.4 one enters the region where nonperturbative hadronization

corrections become O(1), as can be seen by the difference between partonic and hadronic

simulation results. These differences are also visible at small mJ in the β = 1, 2 panels. For

β = 1, 2 one can also see some difference between the Pythia, Vincia, and NLL SCET

results at larger mJ values. In both cases the central SCET partonic NLL curve being closer

to that of Pythia. We caution that no hadronization corrections have been included here

in the SCET results, though such corrections have recently been rigorously characterized
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Figure 5. Comparisons of soft drop jet mass distributions with zcut = 0.1 and β = 0, 1, 2 in

proton-proton collisions at 13 TeV. The solid blue curves represent the partonic NLL SCET results

with uncertainty band estimated by scale variation. The top-left panel includes normalization uncer-

tainty, whereas the remaining panels do not. Results are also shown for partonic and hadronic+MPI

simulations from Pythia and Vincia, and compared to ATLAS data [87].

in ref. [89]. In general we see that examining the NLL partonic SCET results enable us

to see the bulk features of the soft drop jet mass spectrum, while not yet capturing the

finer details entailed by inclusion of hadronization corrections and fixed order matching

corrections. The goal of our presentation of NLL results for collinear drop will be at a

similar level, leaving more detailed analyses that reduce the theoretical uncertainties and

include hadronization corrections to future work.

4 Analytic predictions for collinear drop ∆m2

In this section we carry out perturbative calculations for the collinear drop observable ∆m2,

given by the difference of jet masses in eq. (2.9) with soft-drop parameters (zcut 1, β1) and

collinear drop parameters (zcut 2, β2). This allows us to carry out an all order resummation

of large logarithms induced by the allowed soft radiation, and determine transition regions

for this observable.

4.1 Collinear drop from soft drop grooming at O(αs)

To familiarize ourselves with ∆m2 consider the calculation of its distribution at O(αs).

We consider only the region where ∆m � pR
√
zcut i � pR and p is the initial

parton momentum.
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⊥
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Figure 6. Single emission phase space regions that are kept and eliminated by collinear drop for

the measurement of ∆m2. The values of zcut 1 and zcut 2 are exaggerated for visibility.

For this calculation we take R0 = R and ηJ = 0 so that p = pT , and use the Altarelli-

Parisi splitting function Pi→j,k(z), where the indices i, j, k label the parton types in the

1→ 2 splitting. This gives

dσ
(αs)
i

d∆m2
=
∑
j,k

∫
dz
dk⊥
k⊥
Pi→j,k(z) δ(∆m2 −∆m2(z, k⊥)) ΘCD Θalg. , (4.1)

where ∆m2(z, k⊥) = k2
⊥/[z(1 − z)], and the constraint imposed by the jet algorithm is

given by Θalg. = Θ(R − θ) = Θ
(
pR
√
z(1− z) − ∆m

)
. Here θ = k⊥/[pz(1 − z)] =

∆m/
[
p
√
z(1− z)

]
, and the equalities involving ∆m use the relation imposed by the δ-

function. The constraint ΘCD is the collinear drop condition which restricts the phase

space to a soft region,

ΘCD = Θ

(
min(z, 1− z)− zcut 1

(
θ

R

)β1)
Θ

(
zcut 2

(
θ

R

)β2
−min(z, 1− z)

)
. (4.2)

These constraints leave two strips in the phase space as shown in figure 6. Since zcut 1 <

zcut 2 � 1, the allowed regions for z either satisfy z � 1 or (1− z)� 1, implying that one

of the two final state particles must be soft.

If z � 1 then the integration region is

(
∆m2

(pR)2

) β1
2+β1

(
zcut 1

) 2
2+β1 < z <

(
∆m2

(pR)2

) β2
2+β2

(
zcut 2

) 2
2+β2 . (4.3)

And for (1− z)� 1 there is the mirror image region obtained from z → 1− z. Performing
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the integrals the singular term at O(αs) involves a logarithm,

∆m2 dσ
(αs)

d∆m2
=
αs(µ)Ci

π
ln

z 2
2+β2
cut 2

z
2

2+β1
cut 1

(
∆m2

(pTR)2

) β2
2+β2

− β1
2+β1

+O

( ∆m2

(pTR)2

) βi
2+βi

z
2

2+βi
cut i

 .
(4.4)

The displayed term is the first term in the leading logarithmic series, while the terms not

displayed are power suppressed in the limit we are considering as indicated. We will use

SCET to resum these logarithmically enhanced terms to all orders in αs, including terms

up to the next-to-leading-logarithms. This includes at least all terms ∆m2dσ/d∆m2 ∼∑∞
k=1[αksL

2k−1+αksL
2k−2] (with L a generic large logarithm). Technically the resummation

includes more terms since the counting and resummation are done by including the first

two series of logarithms in the exponential in Fourier space.

If we take β1 = 0 and/or β2 = 0 then the associated leading logarithmic singular-

ity that depends on ∆m2 is removed, which is consistent with the behavior expected for

the minimal-mass-drop limit of soft drop (β1 = 0). Interestingly, there is also no double-

logarithmic singularity at O(αs) in ∆m2 for β1 = β2. We will demonstrate in section 4.3

that this absence of double logarithms persists to all orders in αs for the leading logarith-

mic series.

4.2 Factorization for collinear drop using soft drop grooming

Having summarized the major ingredients for soft drop jet mass calculations in SCET, we

can now derive a factorization formula to perform resummation of large logarithms to all

orders in αs for ∆m2. We carry out our analysis in the form relevant for pp collisions and

a jet of radius R. Our factorization analysis makes use of the SCET+ [90–93] extension of

SCET, which in our case includes two collinear-soft modes.

Since our collinear drop measurement also has a soft drop component, the dynamics

of the jet being measured continue to factorize from the rest of the event, so analogous to

eq. (3.20) we have

dσ

d∆m2
=
∑
j=q,g

NCD
j (ΦJ , R, z̃cut i, βi, µ) PCD

j (∆m2, Q, z̃cut i, βi, µ) . (4.5)

Here PCD
j determines the ∆m2 spectrum, while NCD

j is a normalization factor, and we

include a collinear drop superscript (CD) to indicate that both of these factors differ from

the soft drop case. The functions NCD
j and PCD

j each depend on both {zcut 1, β1} and

{zcut 2, β2}, the former due to the contributions from two global soft modes, and the latter

due to contributions from two collinear-soft modes. In addition we still have Q = 2EJ ,

and define

z̃cut i ≡ zcut i (cosh ηJ/R0)βi . (4.6)

The measurement of ∆m2 as well as the collinear drop condition impose the following

constraints on the kinematics of the emissions,

zθ2 ≈ ∆m2

E2
J

, z̃cut 1 θ
β1 . z . z̃cut 2 θ

β2 . (4.7)
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Figure 7. Regions kept by Collinear Drop in the plane of energy fraction (z) and polar angle from

the jet axis (θ). Results are shown for four different values of {zcut 1, β1} and {zcut 2, β2}, along

with the corresponding modes needed for the SCET calculation. In the top two panels we have two

collinear-soft (CS) modes and two global soft (GS) modes, while in the lower panels one or both of

these pairs are combined into a single mode.

These constraints are plotted in figure 7 for several different choices of the zcut i and βi
parameters, taking R = R0. In these plots the intersection of the blue ∆m2 measurement

line and the orange and red regions removed by collinear drop define collinear soft modes

CSi, whereas the intersection of the collinear drop constraints with the θ ' R line defines

global soft modes GSi. In all cases the collinear drop constraint involving {zcut 2, β2}
removes the collinear region of phase space, including contributions from the collinear

modes denoted by C.

The soft drop mass measurement can be expressed as the insertion of a measurement

function δ̂ that incorporates the jet reclustering and the collinear drop constraints. For a

single emission ΘSD1 imposes the constraint that we are below the orange boundary, and

ΘSD2 = 1 − ΘSD2 ensures we are above the red boundary. Therefore ΘCD = ΘSD1ΘSD2 =

ΘSD1−ΘSD2 selects the white unshaded regions in figure 7, so the measurement function is

δ̂ = δ
(

∆m2 −
[
ΘSD1 −ΘSD2

]
Qn · p̂

)
. (4.8)

For these Θ functions we can make approximations appropriate for collinear-soft radiation.

The global soft modes do not contribute to the ∆m2, and these modes capture contributions
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from the shaded regions to the event normalization. For a single emission these regions are

determined by

Θ
(gs)
CD =

[
Θ

(gs)
SD1
−Θ

(gs)
SD2

]
, (4.9)

where Θ
(gs)
SDi = 1−Θ

(gs)
SDi

impose the constraints with approximations appropriate for global-

soft radiation.

A key difference between the various panels in figure 7 is whether the two restrictions

present for collinear drop (labeled soft dropped and anti-soft dropped) are themselves

hierarchically separated or not. In the upper two panels the choice of parameters makes

the constraints hierarchically separated, so we have distinct collinear-soft and global-soft

modes on the soft drop and anti-soft drop boundaries. In the lower two panels one or

both of the collinear-soft and global-soft modes merge into a single mode because the

constraints are no longer fully hierarchical. In general this distinction will affect the form

and results derived from the factorization theorem, however we will see that at NLL order

the description is continuous across these cases.

We will begin by discussing the factorization structure of PCD
i in the hierarchical case

in the next section, followed by sections discussing various aspects of this result. The

generalization to non-hierarchical cases is left to section 4.2.2, and turns out to be very

simple at NLL order.

4.2.1 Collinear drop ∆m2 with hierarchical constraints

Since the soft drop and anti-soft drop constraints are hierarchically separated, we can

factorize the collinear drop constraint such that each boundary condition is individually

satisfied by the modes that live on that boundary.

Generalizing our soft drop discussion, in the hierarchical case we have two sets of

global-soft modes, whose scaling is

pgs1 ∼ (Qz′cut 1)

(
R2

4 cosh2 ηJ
, 1,

R

2 cosh ηJ

)
, pgs2 ∼ (Qz′cut 2)

(
R2

4 cosh2 ηJ
, 1,

R

2 cosh ηJ

)
,

(4.10)

where

z′cut i ≡ z̃cut i

(
R

cosh ηJ

)βi
= zcut i

(
R

R0

)βi
. (4.11)

We assume z′cut 1 ≤ z′cut 2 so the GS2 modes are always more energetic, Egs2 ≥ Egs1. For

later convenience we also define

Qcut i ≡ 2βi z̃cut iQ . (4.12)

The corresponding scales where there are no large logarithms for the two global soft modes

are p2
gs1 ' µ2

gs1 and p2
gs2 ' µ2

gs2, where

µgs1 = Q′cut1 ≡ pTRzcut 1

(
R

R0

)β1
, µgs2 = Q′cut2 ≡ pTRzcut 2

(
R

R0

)β2
, (4.13)
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and we have Q′cuti = QcutiR
1+βi/(2 cosh ηJ)1+βi . Note that we will always have µgs1 ≤ µgs2.

Up to one loop the bare global functions for the hierarchical case have the following integral

expressions,

SGj
(
Qcut 1, β1, R, ε

)
= 1 +

4g2Cj µ
2εeεγE

(2π)d(4π)ε

∫
ddq 2πδ+(q2)

(q+q−)

(
Θ

(gs)
SD1
− 1

)
Θalg , (4.14)

S̄Gj
(
Qcut 2, β2, R, ε

)
= 1 +

4g2Cj µ
2εeεγE

(2π)d(4π)ε

∫
ddq 2πδ+(q2)

(q+q−)

(
−Θ

(gs)
SD2

)
Θalg ,

where Θalg is given in eq. (3.24) and

Θ
(gs)
SDi = Θ

(
Q

2
2+βi
cut i (q+)

βi
2+βi − q+ − q−

)
. (4.15)

To derive the form of the constraints in eq. (4.14) we use eq. (4.9) and apply the power

counting. For SG1 we set Θ
(gs)
SD2
→ 1 since the energy is always much smaller than the upper

bound this constraint imposes. For SG2 we set Θ
(gs)
SD1
→ 0 since its parametrically larger

energy never satisfies this constraint. Performing the calculations gives

SGj
(
Qcut 1, β1, R, ε

)
= 1 +

αs(µ)Cj
π(1 + β1)

[
1

2ε2
+

1

ε
ln

µ

Q′cut1

+ ln2 µ

Q′cut1

+ . . .

]
,

S̄Gj
(
Qcut 2, β2, R, ε

)
= 1− αs(µ)Cj

π(1 + β2)

[
1

2ε2
+

1

ε
ln

µ

Q′cut2

+ ln2 µ

Q′cut2

+ . . .

]
, (4.16)

where the ellipses are terms that can be neglected at NLL order. This enables us to

determine the anomalous dimensions for the renormalized global soft functions

µ
d

dµ
lnSGj

(
Qcut 1, β1, R, µ

)
=

2Cj
1 + β1

Γcusp[αs] ln
µ

Q′cut1

+ γSGj [αs] , (4.17)

µ
d

dµ
ln S̄Gj

(
Qcut 2, β2, R, µ

)
= − 2Cj

1 + β2
Γcusp[αs] ln

µ

Q′cut2

+ γS̄Gj [αs] ,

where Γcusp is given by eq. (3.11) and both γSGj [αs] and γS̄Gj [αs] vanish at one-loop. Note

that it is perfectly consistent to keep the R dependence in these anomalous dimensions.

From the point of view of RG consistency this R dependence cancels out in the prod-

uct SGjS̄Gj .

We also now have two sets of collinear-soft modes, as shown in the upper two panels

of figure 7. They have the following momentum scaling,

pcs1 ∼
∆m2

Qζcs1

(
ζcs1,

1

ζcs1
, 1

)
, pcs2 ∼

∆m2

Qζcs2

(
ζcs2,

1

ζcs2
, 1

)
, (4.18)

where

ζcsi ≡
(

∆m2

QQcut i

) 1
2+βi

. (4.19)
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More explicitly, combining definitions we have

pcs1 ∼

∆m2

2EJ
, EJzcut 1

(
∆m2

E2
JR

2
0zcut 1

) β1
2+β1

,
√

∆m2zcut 1

(
∆m2

E2
JR

2
0zcut 1

) β1
2(2+β1)

 , (4.20)

with an analogous result for pcs2. The characteristic energy and angular scales are

Ecsi =
∆m2

Qζ2
csi

= EJzcut i

(
∆m

EJR0
√
zcut i

) 2βi
2+βi

,

θcsi
2

= ζcsi = R0

(
∆m

EJR0
√
zcut i

) 2
2+βi

. (4.21)

Note that to have a non-trivial contribution to ∆m2 requires a non-trivial phase space for

collinear-soft modes, which is ensured by the equivalent conditions:

Ecs2 > Ecs1 , θcs2 < θcs1 . (4.22)

Thus we see that the SD2 collinear-soft mode lives at smaller angles. The corresponding

canonical scales for the two collinear-soft scales are

µcs1 =

(
∆m2

Q

) 1+β1
2+β1

Q
1

2+β1
cut 1 , µcs2 =

(
∆m2

Q

) 1+β2
2+β2

Q
1

2+β2
cut 2 . (4.23)

Here we always have µcs1 < µcs2. These results can also be written as

µcsi =

(
∆m2

pTR

) 1+βi
2+βi

Q
′ 1
2+βi

cut i =
√

∆m2zcut i

(
∆m2

(pTR)2zcut i

) βi
2(2+βi)

, (4.24)

where the last equality is only true when taking R = R0. The first equality shows that the

canonical scale choice for µcsi is independent of ηJ .

The modes SD1 and SD2 contribute to the ∆m2 measurement. For individual soft

drop jet masses m2
SD1

and m2
SD2

there are contributions from both collinear modes (pc)

and collinear-soft modes (pcsi), m
2
SD1

= (pc + pcs1)2 = p2
c + Qn · pcs1 + . . ., and m2

SD2
=

(pc+pcs2)2 = p2
c+Qn·pcs2+. . ., where the ellipses denote terms that are power suppressed.

When we take the difference to obtain ∆m2 the dependence on p2
c cancels. Thus the leading

power collinear drop measurement is given by ∆m2 = Q (n · pcs1 − n · pcs2). Therefore

the collinear drop jet mass observable measures a concrete projection of soft radiation

within the jet. To define the momenta pcsi we must include the collinear drop phase space

constraints as in eq. (4.8), and implement the power counting for the hierarchical case.

The SD1 modes give a collinear-soft function SCi which is identical to that for soft

drop, since these modes have smaller energy and larger angle, and hence have ΘSD2 = 0 in

eq. (4.8). The SD2 modes give a dropped collinear-soft function DCi whose measurement

constraint sets ΘSD1 = 1, which effectively gives the opposite phase space constraint to SCi.

– 29 –



J
H
E
P
0
6
(
2
0
2
0
)
0
6
4

Up to one loop the bare functions therefore have the following integral expressions,

SCj

(
k+Q

1
1+β1
cut 1 , β1, ε

)
= δ

(
k+Q

1
1+β1
cut 1

)
+

4g2Cj µ
2εeεγE

(2π)d(4π)ε
Q
−1

1+β1
cut 1 (4.25)

×
∫
ddq 2πδ+(q2)

(q+q−)

[
δ(q+−k+)− δ(q+)

]
ΘSD1 ,

DCj

(
k+Q

1
1+β2
cut 2 , β2, ε

)
= δ

(
k+Q

1
1+β2
cut 2

)
+

4g2Cj µ
2εeεγE

(2π)d(4π)ε
Q
−1

1+β2
cut 2

×
∫
ddq 2πδ+(q2)

(q+q−)

[
δ(q+−k+)− δ(q+)

](
1−ΘSD2

)
,

where

ΘSDi = Θ

(
q− −Qcut i

(
q+

q−

)βi/2)
. (4.26)

The complement constraint 1 − ΘSD2 is effectively equivalent to −ΘSD2 because of the

scaleless integral for the 1 term, therefore the calculation is the same as the one for soft

drop jet mass with an additional minus sign. We find

SCj

(
k+Q

1
1+β1
cut 1 , β1, ε

)
= δ

(
k+Q

1
1+β1
cut 1

)
+
αsCj
π

{
δ

(
k+Q

1
1+β1
cut 1

)
2 + β1

1 + β1

(
− 1

2ε2
+
π2

24

)

+
1

ε
µ
−2−β1
1+β1 L0

(
k+Q

1
1+β1
cut 1

µ
2+β1
1+β1

)
− 2(1 + β1)

2 + β1
µ
−2−β1
1+β1 L1

(
k+Q

1
1+β1
cut 1

µ
2+β1
1+β1

)}
,

DCj

(
k+Q

1
1+β2
cut 2 , β2, ε

)
= δ

(
k+Q

1
1+β2
cut 2

)
− αsCj

π

{
δ

(
k+Q

1
1+β2
cut 2

)
2 + β2

1 + β2

(
− 1

2ε2
+
π2

24

)

+
1

ε
µ
−2−β2
1+β2 L0

(
k+Q

1
1+β2
cut 2

µ
2+β2
1+β2

)
− 2(1 + β2)

2 + β2
µ
−2−β2
1+β2 L1

(
k+Q

1
1+β2
cut 2

µ
2+β2
1+β2

)}
.

(4.27)

Renormalized SCj and DCj functions are obtained in the MS scheme by removing all 1/ε2

and 1/ε terms here by suitable convolutions with counterterms.

Note that SCj is the same collinear-soft function as in the soft drop case. In ref. [76] an

all orders argument was given for the dependence of SCj on only the combination k+Q
1

1+β

cut .

This argument is based on the structure of the soft drop constraint, comparisons made

in CA clustering, and boost invariance of the Wilson lines in the operator defining SCj .

This same argument applies equally well for the dependence of DCj on the combination

given in its first argument. Furthermore, just as in soft drop, this implies that there are

no non-global logarithms in the ∆m2 spectrum for this hierarchical case.
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Using the Laplace transform of eq. (4.27), we find that the functions S̃Ci and D̃Ci

satisfy the following multiplicative RG equations,

d

d lnµ
ln S̃Ci

(
QQ

−1
1+β1
cut 1 y, β1, µ

)
= 2Γicusp(αs) ln

Q
1

1+β1
cut 1

µ
2+β1
1+β1Qy

+ γSCi(αs) ,

d

d lnµ
ln D̃Ci

(
QQ

−1
1+β2
cut 2 y, β2, µ

)
= −2Γicusp(αs) ln

Q
1

1+β2
cut 2

µ
2+β2
1+β2Qy

+ γDCi(αs) , (4.28)

where γSCi(αs) and γDCi(αs) are zero at one-loop.

Putting the contributions to the ∆m2 measurement together leads to the following

factorized result for PCD
j ,

PCD
j (∆m2, Q, z̃cut i, βi, µ) (4.29)

= Q
1

1+β1
cut1 Q

1
1+β2
cut2

∫
dk+

1 dk
+
2 δ
(
∆m2−Qk+

1 −Qk+
2

)
× SCj

(
k+

1 Q
1

1+β1
cut1 , β1, µ

)
DCj

(
k+

2 Q
1

1+β2
cut2 , β2, µ

)
=

∫
dq1dq2 δ

(
∆m2 − q1QQ

−1
1+β1
cut1 − q2QQ

−1
1+β2
cut2

)
SCj

(
q1, β1, µ

)
DCj

(
q2, β2, µ

)
,

which is a convolution of the collinear-soft function and the dropped collinear-soft func-

tion. The minus sign for the O(αs) terms in DCj in eq. (4.27) can be interpreted as the

subtraction of the soft drop distribution contributed from the CS2 collinear-soft mode. In

the convolution of collinear-soft functions the CS2 mode subtracts the collinear drop phase

space region from the CS1 result, thus implementing the full collinear drop constraint.

Again, it is convenient to study the factorized expression in Laplace space using eq. (3.8).

In this case the convolution becomes a product

P̃CD
j (y,Q, z̃cut i, βi, µ) = S̃Ci

(
QQ

−1
1+β1
cut1 y, β1, µ

)
D̃Ci

(
QQ

−1
1+β2
cut2 y, β2, µ

)
(4.30)

= S̃Ci

ln
Q

1
1+β1
cut1

yQµ
2+β1
1+β1

, β1, αs(µ)

 D̃Ci

ln
Q

1
1+β2
cut2

yQµ
2+β2
1+β2

, β2, αs(µ)

 ,

where P̃CD
j , S̃Ci, and D̃Ci are all dimensionless, and in the last line we have defined modified

functions that have a logarithms as their first argument.

From eq. (4.28) the y dependence of the RGE cancels out for the product P̃CD
j =

S̃CiD̃Ci, thus properly enabling its µ dependence to be canceled by that of NCD
j , ensuring

that the cross section is µ independent. Thus the RGE for NCD
j is also multiplicative

d

d lnµ
lnNCD

j

(
ΦJ , R, z̃cut i, βi, µ

)
= −2Γjcusp(αs) ln

Q
1

1+β1
cut 1 Q

− 1
1+β2

cut 2

µ
1

1+β1
− 1

1+β2

+ γN
CD
j (αs) . (4.31)
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Here γN
CD
j (αs) = γSCj (αs) + γDCj (αs), and also vanishes at O(αs). At NLL order we

observe that the anomalous dimension for NCD
j is fully consistent with the µ dependent

contributions from the two global soft functions, times a µ independent factor HCD
j ,

NCD
j

(
ΦJ , R, z̃cut i, βi, µ

)
= HCD

j

(
ΦJ , R) SGj

(
Qcut 1, β1, µ

)
S̄Gj

(
Qcut 2, β2, µ

)
. (4.32)

In particular, adding the terms in the anomalous dimensions in eq. (4.17) gives

2

1 + β1
ln

µ

Q′cut1

− 2

1 + β2
ln

µ

Q′cut2

= −2 ln
Q

1
1+β1
cut 1 Q

− 1
1+β2

cut 2

µ
1

1+β1
− 1

1+β2

, (4.33)

thus reproducing eq. (4.31). Beyond NLL, the µ independence of HCD
j in eq. (4.32) will

imply that γN
CD
j (αs) = γSGj (αs) + γS̄Gj (αs) beyond O(αs).

Note how the lnR contributions in the individual anomalous dimensions cancel when

the are summed in eq. (4.33). For collinear drop additional contributions to Ni from

outside of the jet are not needed to satisfy the RG consistency, unlike the case for soft

drop. This occurs because the collinear drop constraint effectively makes the jet behave

like an “unmeasured jet” (a jet of radius R that is tagged by the jet algorithm, without

making further measurements). For example, taking radius R dijets in an e+e− collision

with a cut Λ on energy in the veto region outside the jets, we have

HCD,e+e−

j=q

(
ΦJ , R) = Hqq̄(Q,µ)Junmeas

q (QR,µ)Junmeas
q (QR,µ)Sunmeas

q,dijet (R,Λ, µ) , (4.34)

where Hqq̄ is the standard dijet quark hard function, Junmeas
q is the unmeasured jet function,

and Sunmeas
q,dijet is an unmeasured soft function for the two quark induced dijets. The subscript

j = q indicates that we carry out the collinear drop jet mass measurement on one of the

quark jets. This combination is µ independent on its own, as can be seen from the per-

turbative results in ref. [82]. Since we are not interested in summing logarithms of R here,

for our purposes the required HCD
j for pp collisions can simply be calculated in fixed order

perturbation theory and integrated against the initial state parton distribution functions.

For the collinear drop jet mass factorization theorem with resummation we write

dσ

d∆m2
=
∑
j=q,g

NCD
j (ΦJ , R, z̃cut i, βi, µgs1, µgs2, µ) PCD

j (∆m2, Q, z̃cut i, βi, µcs1, µcs2, µ) .

(4.35)

This notation indicates that in NCD
j we have resummation from µgs1 to µ for SGj and

from µgs2 to µ for S̄Gj . And that for PCD
j we have resummation from µcs1 to µ for SDj

and from µcs2 to µ for CDj . The choice of µ is arbitrary and cancels exactly between the

two resummed functions. Solving the anomalous dimension equations in eq. (4.28) the
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resummed result for PCD
j is

PCD
j (∆m2, Q, z̃cut i, βi, µcs1, µcs2, µ) (4.36)

= exp

[
−2(2 + β1)

1 + β1
CjK(µcs1, µ) +

2(2 + β2)

(1 + β2)
CjK(µcs2, µ)

]

×

Q 1
1+β1
cut1

Q
1

1+β2
cut2

µ
2+β2
1+β2
cs2

µ
2+β1
1+β1
cs1


2Cj ω(µcs1,µ)

× exp
[
ωSCj (µcs1, µ) + ωDCj (µcs2, µ)

]
D̃Cj

(
∂η, β2, αs(µcs2)

)
× S̃Cj

∂η + ln
Q

1
1+β1
cut1

Q
1

1+β2
cut2

µ
2+β2
1+β2
cs2

µ
2+β1
1+β1
cs1

, β1, αs(µcs1)

 e−γEη

Γ(η)

× 1

∆m2

∆m2Q
1

1+β2
cut2

µ
2+β2
1+β2
cs2 Q


η ∣∣∣∣

η=2Cj ω(µcs1,µcs2)

.

There are no non-global logarithms in the collinear-soft functions SCj and DCj , so the same

holds for PCD
j . Note that the dependence on the jet rapidity ηJ cancels in the combinations

Q
1

1+β1
cut1 Q

−1
1+β2
cut2 and Q

−1
1+β2
cut2 /Q which appear in eq. (4.36). Solving the anomalous dimension

equations in eq. (4.17) the resummed result for NCD
j is

NCD
j (ΦJ , R, z̃cut i, βi, µgs1, µgs2, µ)

=HCD
j (ΦJ , R)SGj(Qcut1, β1, µgs1)S̄Gj(Qcut2, β2, µgs2)

× exp

[
2Cj

1 + β1
K(µgs1, µ)− 2Cj

1 + β2
K(µgs2, µ)

]
× exp

[
ωSGj (µgs1, µ) + ωS̄Gj (µgs2, µ)

]
×
(
µgs1
Q′cut1

) 2Cj
1+β1

ω(µgs1,µ)( µgs2
Q′cut2

)−2Cj
1+β2

ω(µgs2,µ)

. (4.37)

From the resummed expressions we can see that the canonical scale choices in eqs. (4.13)

and (4.23) remove all the logarithms that are not contained in the K, ω, or ωF evolution

kernels. Thus these solutions sum the desired large logarithms. To truncate these solutions

to NLL order we can set the boundary condition functions D̃Cj , S̃Cj , SGj and S̄Gj to 1.

4.2.2 Relaxing hierarchical constraints on {zcut i, βi}

In our analysis so far we have primarily assumed that the two boundaries that define

the collinear drop region are hierarchically separated. However for realistic choices of the

{zcut i, βi} parameters this is often not the case. Two examples are shown in figure 7 in

the lower two panels. In the lower left panel we have the situation where there is a single

common collinear-soft mode, and a single common global-soft mode, where both of their
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phase space is constrained by the two boundaries. In the lower right panel we have the

situation where there is a single common global-soft mode, but we still have two collinear-

soft modes that have a hierarchical scaling for their momenta. (The opposite case is also

possible, but not shown.)

For the moment we will assume that the collinear-soft modes are well separated from

the global-soft modes. There are then two possible ways that the hierarchical situation can

be modified. First we may have a single global-soft function when

z′cut 1 ∼ z′cut 2 � 1 , (4.38)

which for R0 = R is the same as zcut 1 ∼ zcut 2. In this case there is a single global soft

mode with scaling pgs ∼ pgs1 ∼ pgs2 with pgsi from eq. (4.10). The O(αs) calculation of the

global-soft function for this case follows that in eq. (4.14), but with a single phase space

constraint given by Θ
(gs)
SD1
− Θ

(gs)
SD2

for a single emission. This breaks into two independent

pieces, so the result follows immediately from the hierarchical case

S12
Gj

(
Qcut1, Qcut2, β1, β2, µ

)
= SGj

(
Qcut1, β1, µ

)
S̄Gj

(
Qcut2, β2, µ

)
+O(α2

s) . (4.39)

The corresponding canonical scale choice is µgs ∼ µgs1 ∼ µgs2, and its anomalous dimen-

sion is

µ
d

dµ
lnS12

Gj

(
Qcut1, Qcut2, β1, β2, R, µ

)
(4.40)

=
2Cj

1 + β1
Γcusp(αs) ln

µ

Q′cut1

− 2Cj
1 + β2

Γcusp(αs) ln
µ

Q′cut2

+ γS12
Gj

(αs)

= −2CjΓcusp(αs) ln
Q

1
1+β1
cut 1 µ

1
1+β2

µ
1

1+β1Q
1

1+β2
cut 2

+ γS12
Gj

(αs) .

Second we could have a single collinear-soft function because

ζcs1 ∼ ζcs2 . (4.41)

For this situation we have a single collinear-soft mode with momentum scaling as pcs ∼
pcs1 ∼ pcs2, with pcsi from eq. (4.18). The O(αs) calculation of the corresponding collinear-

soft function follows that in eq. (4.25), but with a single phase space constraint given by

ΘSD1 −ΘSD2 for a single emission. Since this breaks into two independent pieces the result

again follows immediately from the hierarchical case

S12
Cj

(
k+Q

1
1+β1
cut1 , k

+Q
1

1+β2
cut2 , β1, β2, µ

)
(4.42)

=

∫
dk+

1 dk
+
2 δ
(
k+ − k+

1 − k+
2

)
SCj

(
k+

1 Q
1

1+β1
cut1 , β1, µ

)
DCj

(
k+

2 Q
1

1+β2
cut2 , β2, µ

)
.
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In this case the corresponding canonical scale choice is µcs ∼ µcs1 ∼ µcs2 and the Laplace

space anomalous dimension is

µ
d

dµ
ln S̃12

Cj

(
QQ

1
1+β1
cut1 y,QQ

1
1+β2
cut2 y, β1, β2, µ

)
(4.43)

= 2CjΓcusp(αs) ln
Q

1
1+β1
cut 1

µ
2+β1
1+β1Qy

− 2CjΓcusp(αs) ln
Q

1
1+β2
cut 2

µ
2+β2
1+β2Qy

+ γS12
Cj

(αs)

= 2CjΓcusp(αs) ln
Q

1
1+β1
cut 1 µ

1
1+β2

µ
1

1+β1Q
1

1+β2
cut 2

+ γS12
Cj

(αs) .

The three possible cases with a relaxed hierarchy correspond to S12
GjS̃

12
Cj , S

12
GjS̃CjD̃Cj ,

or SGjS̄GjS̃
12
Cj , and in all cases the RGE consistency relations are satisfied. For example,

for S12
GjS̃

12
Cj this follows because the anomalous dimensions in eqs. (4.40) and (4.43) are

equal and opposite, with γS12
Cj

(αs) = −γS12
Gj

(αs).

The simple structure of the phase space constraints at one-loop order has direct impli-

cations for obtaining the resummed result for the non-hierarchical cases, where we have one

or both of eqs. (4.38) and (4.41). The NLL result in all non-hierarchical cases are simply

obtained by evaluating eqs. (4.36) and (4.37) at this order with the same scale choices as

used in the fully hierarchical case from section 4.2.1. This suffices since the transition to

the non-hierarchical cases is fully continuous at this order. However, we do caution that in

these non-hierarchical cases that non-global logarithms can appear in S12
Gj or S12

Cj at O(α2
s).

It is also interesting to consider the transition between the collinear drop resummed

expression, and that for soft drop, by turning off the colliner drop constraint, which could

be achieved by taking zcut 2 = 1 and β2 = 0. It is straightforward to see that this reproduces

the LL resummed expression for the soft drop jet mass spectrum with a correspondence

between anomalous dimensions that has DCj → Jj and S̄Gj → Hj . However beyond LL

this correspondence becomes more complicated since the non-cusp anomalous dimensions

of Jj and Hj are not obtained by a simple limit from DCj and S̄Gj .

4.2.3 Collinear drop ∆m2 with β1 = β2

The special case where we take β1 = β2 is interesting because the result does not contain

a leading double logarithmic series. This is analogous to the behavior of soft drop in

the β = 0 limit where it reduces to the modified mass drop tagger (mMDT) grooming,

and there is no double logarithmic series. For mMDT the grooming removes the soft mJ

dependent logarithm from the series, replacing it by a logarithm of zcut. In the collinear

drop case the radiation is always soft, and the leading double logarithmic series is absent

for any value of β1 = β2 = β. This gives an entire family of observables without a double

logarithmic series.

To demonstrate the cancellation of the double logarithms, take β1 = β2 = β in

eq. (4.36), which gives

PCD
j (∆m2, Q, z̃cut i, βi = β, µcs1, µcs2, µ) (4.44)

= exp

[
−2(2 + β)

1 + β
CjK(µcs1, µcs2)

][
zcut1

zcut2

µ2+β
cs2

µ2+β
cs1

] 2Cj
1+β

ω(µcs1,µ)
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× exp
[
ωSCi(µcs1, µ) + ωDCi(µcs2, µ)

]
D̃Ci

(
∂η, β, αs(µcs2)

)
× S̃Ci

(
∂η +

1

1 + β
ln
zcut1

zcut2

µ2+β
cs2

µ2+β
cs1

, β, αs(µcs1)

)
e−γEη

Γ(η)

× 1

∆m2

∆m2Q
1

1+β

cut2

µ
2+β
1+β

cs2 Q

η ∣∣∣∣
η=2Cj ω(µcs1,µcs2)

.

Furthermore for βi = β, the canonical values in eq. (4.23) give a ∆m2 independent ratio

of scales

µcs2
µcs1

=

(
zcut 2

zcut 2

) 1
1+β

. (4.45)

Since at LL only this ratio appears inside K(µcs1, µcs2) and ω(µcs1, µcs2) in eq. (4.44), and

other ωF appear only beyond LL, we see that the LL terms involving double logarithms of

∆m2 are not present.

4.3 Transitions with increasing ∆m2 for collinear drop

The above factorization and resummation expressions work for ∆m2 � (pTR)2z′cut 1. In

contrast, in the region where

∆m2 ≥ (pTR)2z′cut 1 ≡ ∆m2
cut 1 , (4.46)

soft drop SD1 is now ineffective and we need to match to the effective theory where SD1

is turned off. When zcut 1 is small, such transition can happen at small values of ∆m2

because the SD1 constraint can be easily failed by a majority of the jet configurations.

This transition is the same as that we discussed for soft drop in section 3.3. Thus we have

µcs1(∆m2
cut 1) = µgs1 . (4.47)

However unlike the case there, for ∆m2 the SD2 collinear drop constraint is still always at

work in the ∆m2 ≥ ∆m2
cut 1 region. In this region the SD1 collinear-soft mode and GS1

global-soft mode are replaced by a single c-soft mode with

pµs ∼
∆m2

QR′ 2
(
R′ 2, 1, R′

)
(4.48)

where R′ ≡ R/(2 cosh ηJ). Here the characteristic scales are equal to a single soft scale

µs(∆m
2) as

µcs1(∆m2) = µgs1(∆m2) = µs(∆m
2) =

∆m2

pTR
, for ∆m2 ≥ ∆m2

cut 1 . (4.49)

In this region ∆m2 measures the difference between the SD2 groomed and ungroomed jet

masses. At NLL order our factorization theorem which combines eqs. (4.36) and (4.37) still

properly describes the logarithms in this region, simply by implementing the choice of scales
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Figure 8. Plots of the canonical scales for collinear drop, including the merging of µgs1 and µcs1

at the transition where the SD1 grooming becomes ineffective at (∆m2
cut 1)1/2 from eq. (4.46). The

upper endpoint of the spectrum occurs at (∆m2
cut 2)1/2, where all the curves meet at the far right,

and depends on the collinear drop parameter zcut 2 via eq. (4.50).

in eq. (4.47). Beyond NLL there will be modifications from the fixed order corrections of

the c-soft function for the modes in eq. (4.47), which will in general differ from the product

of fixed order corrections from the SCi and SGi functions. Note that once the soft drop

grooming is not longer active, that there will be non-global logarithms in the spectrum

(through the soft function), like in the ungroomed case.

Finally we note that there is an upper bound on the ∆m2 spectrum

∆m2 < (pTR)2 z′cut 2 ≡ ∆m2
cut 2 , (4.50)

beyond which the cross section is zero. This bound occurs because as ∆m2 increases the

phase space that passes the collinear drop constraint decreases. The available phase space

for radiation vanishes when we reach the bound in eq. (4.50). At NLL order the vanishing

of our cross section at ∆m2 = ∆m2
cut 2 occurs because all the scales become equal at

this point,

µs(∆m
2
cut 2) = µcs2(∆m2

cut 2) = µgs2 . (4.51)

4.4 Profile function for ∆m2

We summarize again the canonical scale choices of µcs1, µcs2, µgs1 and µgs2 in the resummed

SCET prediction for ∆m2,

µcs1(∆m2) =


(

∆m2

Q

) 1+β1
2+β1

Q
1

2+β1
cut 1 ∆m2 < ∆m2

cut 1

∆m2

pTR
∆m2 ≥ ∆m2

cut 1

,
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µgs1(∆m2) =


pTRz

′
cut 1 ∆m2 < ∆m2

cut 1

∆m2

pTR
∆m2 ≥ ∆m2

cut 1

,

µcs2(∆m2) =

(
∆m2

Q

) 1+β2
2+β2

Q
1

2+β2
cut 2 ,

µgs2(∆m2) = pTRz
′
cut 2 . (4.52)

The grooming transition happens at ∆m2 = ∆m2
cut 1 in eq. (4.46), at which point we merge

µcs1 and µgs1 continuously so that they become equal to the single ultrasoft scale µs =

∆m2/(pTR). Also, as ∆m2 increases the scales µcs2, µgs2 and µs merge at ∆m2 = ∆m2
cut 2

in eq. (4.50), which is the endpoint of the spectrum. In the special case of zcut 1 = zcut 2, the

region ∆m2
cut 1 < ∆m2 < ∆m2

cut 2 disappears, so the grooming transition does not happen.

In all perturbative regions the canonical scales for this collinear-drop jet mass observable

obey the relation

µ
2+β1
1+β1
cs1 µ

−1
1+β1
gs1 = µ

2+β2
1+β2
cs2 µ

−1
1+β2
gs2 . (4.53)

The collinear-soft scales µcs1 and µcs2 are monotonic functions of ∆m2. In the

∆m2 → 0 limit these two scales can get close to the Landau pole singularity where the

strong coupling constant diverges, and the perturbative expressions for the anomalous di-

mensions break down. In this region there are O(1) nonperturbative corrections to the ∆m2

spectrum. Since µcs1 < µcs2 it will always be µcs1 that gets near to the non-perturbative

region first. These non-perturbative transitions occur for µcs1 and µcs2 at the values

∆m2 ∼ (pTR)ΛQCD

(
ΛQCD

Q′cut 1

) 1
1+β1

, ∆m2 ∼ (pTR)ΛQCD

(
ΛQCD

Q′cut 2

) 1
1+β2

, (4.54)

respectively, which correspond with µcs1 ∼ ΛQCD and µcs2 ∼ ΛQCD. These relations have

the same form as for the non-perturbative region for the soft-drop jet mass [76]. Therefore

the running has to be terminated at a low scale µcsi ∼ 1 GeV, and we do so by modifying

the two collinear-soft scales as µcsi → f(µcsi), using the following profile function,

f(µ) =


µ µ > 2µ0

µ0

(
1 +

µ2

4µ2
0

)
µ < 2µ0

. (4.55)

We take as a default µ0 = 1 GeV, which ensures that the collinear-soft scales never go below

µ0 = 1 GeV. Furthermore when ∆m2 → 0 we have µcs1 = µcs2 = µ0, which from eq. (4.36)

with η → 0 can be seen to force the differential cross section to vanish. Since the collinear

drop spectrum is dominated by smaller values of ∆m2 than we have for soft drop jet mass

or ungroomed jet mass, more of its spectrum is sensitive to non-perturbative effects. The

choice of µ0 can modify the partonic cross section in the region where nonperturbative

corrections are important, as we discuss in the next section, and hence gives a method for

testing the extent of this region.
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We will estimate the theoretical uncertainty by varying the scales µgs2(∆m2),

µcs2(∆m2), µgs1(∆m2) and µcs1(∆m2) in the resummation formula, again using profile

functions [41, 84]. These scale variations are devised so that they always maintain the

conditions in eqs. (4.47) and (4.51), and the hierarchies between scales so that µgs2 ≥ µgs1
and µcs2 ≥ µcs1. In addition, for cases where zcut 1 = zcut 2 so that µgs1 = µgs2, then we

retain this equality during the scale variations. For simplicity we quote the variations here

taking R0 = R. For situations with zcut 1 < zcut 2 we consider the following four variations:

1. Overall variation of all scales simultaneously up/down by a factor e0, so µi → e0µi
with e0 = 1/

√
2 or

√
2.

2. Variation of the µgs1 and µcs1 scales by a multiplicative factor of esa = 10/9 or

9/10 in the region ∆m2 ≤ ∆m2
cut 1, while simultaneously multiplying µs(∆m

2) for

the region ∆m2 ≥ ∆m2
cut 1 by the factor

[
∆m2/(p2

TR
2zcut 2)

]ln esa/ ln(zcut 1/zcut 2)
to

maintain eqs. (4.47) and (4.51).

3. Variation of the µgs2 and µcs2 scales by a multiplicative factor of esb = 10/9 or 9/10,

while simultaneously multiplying µs(∆m
2) for the region ∆m2 ≥ ∆m2

cut 1 by the

factor
[
∆m2/(p2

TR
2zcut 1)

]− ln esb/ ln(zcut 1/zcut 2)
to maintain eqs. (4.47) and (4.51).

4. Variation of µcs1 and µcs2 simultaneously by trumpet factors µcs1 → µcs1
[
1 + ecs

(
1−

∆m
∆mcut 1

)2
Θ(∆mcut 1 −∆m)

]
and µcs2 → µcs2

[
1 + ecs

(
1− ∆m

∆mcut 2

)2]
with ecs = ±1/4.

For cases where zcut 1 = zcut 2 we replace the second and third variations by

2′. Variation of the µgs1 = µgs2 and µcs1 scales by a common multiplicative fac-

tor of esa = 10/9 or 9/10, while simultaneously multiplying µcs2 by the factor[
∆m2/(p2

TR
2)
]ln esa/ ln(zcut 1)

to maintain eqs. (4.47) and (4.51).

3′. Variation of the µgs1 = µgs2 and µcs2 scales by a common multiplicative fac-

tor of esb = 10/9 or 9/10, while simultaneously multiplying µcs1 by the factor[
∆m2/(p2

TR
2)
]ln esb/ ln(zcut 1)

to maintain eqs. (4.47) and (4.51).

We then compute the total uncertainty for collinear drop cross sections at NLL as simply

the outer envelope of these four variations. Note that the size of the variation parameters

ei for collinear drop are smaller than in soft drop because the scales tend to be smaller and

closer together, and hence smaller variations are required to maintain µcs2 ≥ µcs1.

4.5 Partonic SCET results for ∆m2

We now study the partonic SCET predictions for the ∆m2 jet mass to gain intuition about

these distributions and their dependence on the collinear drop parameters.

Figure 9 shows a comparison between ungroomed (black dotted), soft drop groomed

(blue dot-dashed), and collinear drop (green dashed and red solid) jet mass distributions

predicted by the SCET formulae. The soft drop and collinear drop curves are at NLL accu-

racy, while the ungroomed curve is shown for illustration and only includes so-called NLL

global logarithms, while neglecting non-global terms. Note that although the horizontal
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Figure 9. Comparison of collinear drop, soft drop, and ungroomed jet mass spectra calculated

using SCET. The soft drop parameters are zcut 1 = 0.05 and β1 = 1 in all cases, while the collinear

drop parameters are varied as indicated. The left and right panels show the same spectra but

plotted with different axes choices in order to contrast the linear versus logarithmic distributions.

axis has been labeled with ∆m2, the ungroomed and soft-drop cases have ∆m2 = m2
J . The

soft-drop parameters are chosen to be (zcut 1, β1) = (0.05, 1) and the two collinear-drop ob-

servables are constructed by varying the value of zcut with a fixed β: (zcut 2, β2) = (0.10, 1)

(green), or varying β with a fixed zcut: (zcut 2, β2) = (0.05, 0) (red). The left panel shows

the distributions linearly with
√

∆m2 while the right panel shows the same distributions,

but plotted with the variable log10(∆m2/p2
T ). From the left panel of figure 9 we observe

that collinear drop distribution significantly softens the jet mass distribution, and makes it

narrower, as expected for the removal of energetic collinear radiation. The same softening

of the spectrum is even more clearly visible in the right panel, where the peaks of the two

collinear drop distributions are significantly to the left of both the ungroomed and soft

drop distributions.

A noticeable feature of the collinear drop distributions, seen most clearly in the right

panel of figure 9, is that their upper boundary occurs earlier than that of the non-collinear

drop spectra. We recall that at the order we are working it occurs at ∆m2 = p2
TR

2zcut 2,

which corresponds to
√

∆m2 ≈ 125 GeV and log10(∆m2/p2
T ) ≈ −1.5 for zcut 2 = 0.05, and√

∆m2 ≈ 177 GeV and log10(∆m2/p2
T ) ≈ −1.2 for zcut 2 = 0.10, taking pT ≈ 650 GeV and

R = 0.8. The green collinear drop curve with zcut 2 = 0.1 also exhibits the same transition

as the blue soft drop curve for the groomed to ungroomed transition point, which is at

∆m2 = p2
TR

2zcut 1 corresponding to
√

∆m2 ≈ 125 GeV and log10(∆m2/p2
T ) ≈ −1.5. In

contrast the red collinear drop curve with zcut 1 = zcut 2 has no such transition. Note that

the red and green collinear drop distributions have quite distinct shapes.

In figure 10 we contrast 8 different collinear drop observables, which probe different

parts of the soft phase space. The left panel has a fixed value of zcut 1 = zcut 2 = 0.1

and varies β1 and β2 within the values 0, 1, 2 for the blue dot-dashed, green dashed, and

red solid curves as indicated. These sets of parameters are the ones used in the ATLAS

soft drop jet mass measurements. (The CMS [88] soft drop jet mass uses β = 0.) This

makes it straightforward to carry out new measurements for these observables based on
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Figure 10. Comparison of collinear drop distributions calculated using SCET. The left panel shows

examples from varying the angular parameters βi while holding zcut 1 = zcut 2 fixed, whereas the

right panel gives examples with varied zcut i with fixed β1 = β2.

the same ATLAS data set. Since zcut 1 = zcut 2 these results are groomed throughout the

full spectrum. The choice of βi values mostly effects the shape and location of the peak.

We also show with the black curve a comparison of a collinear-drop observable that does

not include the soft drop grooming, and hence retains the soft wide-angle radiation. It

peaks further to the right, though still to the left of the curves without collinear drop from

figure 9.

In the right panel of figure 10 we show a different type of collinear drop observables,

holding β1 = β2 fixed, taking zcut 1 = 0.05 and varying zcut 2 = 0.1, 0.2. Recall that

although this is simply a special case of the generic NLL formula, that for β1 = β2 only the

LL ∆m2 dependent logarithms are summed at the order we are working. For fixed β1 = β2,

varying zcut 2 does not lead to large differences, so we choose to use β1 = β2 = 0, 1, 2 for

the red solid, green dashed, and blue dot-dashed curves respectively. The most notable

feature in the comparison of these collinear drop distributions is the slope in the central

region, which varies in each case. We show with the black curve a different collinear-drop

observable that again does not have soft drop grooming. This curve has double logarithmic

∆m2 dependence, and a different shape. Note again that both the grooming transition and

the upper bound are determined by the values of zcut 1 and zcut 2, respectively, which are

clear features one can exploit.

Another interesting feature to examine is the sensitivity to hadronization corrections.

From the purely partonic SCET calculation we can get an idea about this sensitivity by

varying the parameter µ0 in eq. (4.55), which is the scale where we choose to freeze the

running of the strong coupling constant to ensure that it does not enter the nonperturbative

region for the evaluation of perturbative anomalous dimensions. In figure 11 we take an

example collinear drop distribution, and vary µ0 from its default of 1 GeV (green dashed

curve) up to 1.5 GeV (blue solid curve). In the left panel we show the differential distribu-

tions, using the same normalization from the µ0 = 1 GeV result for both curves so as to

not obscure differences in the spectrum. We clearly see that the change to µ0 only modifies

the results below some value of ∆m2, and the region where these curves differ provides a
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Figure 11. Comparison of Collinear Drop distributions calculated using SCET with (zcut 1, β1) =

(0.1, 2) and (zcut 2, β2) = (0.1, 1) and different cutoff scale µ0 of the running of strong coupling

constant. The left panel shows the differential distributions while the right panel shows the cumu-

lant ones.

rough indicator for the region where we can expect larger corrections from hadronization.

In the right panel of figure 11 we show the analogous results for the cumulative collinear

drop cross section

Σ(∆m2
c/p

2
T ) =

∫ ∆m2
c

0
d(∆m2)

1

σ

dσ

d∆m2
. (4.56)

To obtain NLL SCET results for Σ we integrate eq. (4.36) which replaces

(∆m2)−1+η/Γ(η) → (∆m2
c)
−η/Γ(1 + η), and we use ∆m2

c in place of ∆m2 for all the

scales µi. From figure 11 we see that the results asymptotes to 1 at large ∆m2
c as expected.

Again we see that for large enough ∆m2
c that the curves with two different values for µ0

agree, but start to deviate at smaller ∆m2
c in the region where nonperturbative corrections

are more relevant. Figure 11 also exhibits an important feature of the collinear drop cross

section, namely that Σ goes to a non-trivial constant as ∆m2
c → 0. This differs from the

ungroomed or soft drop groomed observables where this constant would be ≈ 0. The reason

for this behavior is that due to the collinear drop constraint, we are always removing per-

turbative radiation, even as ∆m2 → 0. Hence, rather than being dominated by a Sudakov

suppression for the radiation, we instead find an interesting constant that corresponds to

the fraction of radiation that is retained by collinear drop in this limit. Although not

shown in the figure, we find that this constant exhibits strong dependence to the choice

of collinear drop parameters, and hence is an interesting event fraction observable in its

own right. We will leave further dedicated study of these collinear drop event fractions to

future work. We will return to the study of hadronization corrections in section 5, where

we use Monte Carlo simulations to examine these effects for collinear drop.

So far our collinear drop results have been based on central values obtained with

canonical profile scales. In figure 12 we include uncertainty bands from varying the scales

µi following the prescription outlined in section 4.4, with the overall uncertainty determined

by the envelope of individual variations. In the left panel the central curve is normalized

over the range shown, while the individual variations are not further normalized, implying
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Figure 12. An example of collinear drop distributions showing uncertainty bands at NLL order.

The left panel includes the normalization uncertainty, while the right panel only includes shape

uncertainty.

that this result includes an estimate for the (relative) normalization uncertainty. In the

right panel the individual profile variations are themselves normalized, so the band only

estimates shape uncertainty, and hence is not as large. This pattern echos what we observed

already for soft drop in section 3.4. Examining figure 12, and its analog for a wide range

of other collinear drop parameters, we conclude that the uncertainty results obtained by

our proposed scale variations are a reasonable estimate for the uncertainties at NLL order.

5 Monte Carlo analysis and comparison to analytic predictions

In the previous section we derived analytic factorization based predictions for the partonic

collinear drop jet mass observable ∆m2, and examined the resulting partonic SCET distri-

butions at NLL order. In this section we carry out further analysis of these collinear drop

spectra using Monte Carlo simulations. In particular we compare simulation results be-

tween Pythia and Vincia, and our SCET based factorization results. We also examine the

impact on collinear drop observables of final state hadronization and of the multi-parton

interaction model for underlying event effects. When observables have different quark

and gluon compositions for a jet sample this can also significantly affect jet substructure

distributions, and it is interesting to see how accurate these channels are or whether their

discription can be improved. Therefore we also perform separate comparisons for these two

components. For both the simulations and factorization based results, the identity of a jet

as being quark or gluon induced is determined at the stage of the initial hard scattering.

Since this work focuses on analytic predictions at the parton level, comparing our

results with simulations generated using different parton showers will provide useful infor-

mation about the impact of parton shower accuracy on jet substructure observables. For

the Monte Carlo analysis, we use Pythia 8.223 and Vincia 2.0.01 to generate jet samples

from dijet events. Here jets are reconstructed using the anti-kt jet algorithm with radius

R = 0.8. We study the leading two jets in inclusive jet events in 13 TeV proton-proton

collisions, and we impose the following kinematic selection: 600 GeV < pT < 700 GeV and
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Figure 13. Pythia collinear drop results for various parameter choices. The top left panel

compares collinear drop to the soft drop and ungroomed partonic jet mass spectra analogous to

the NLL SCET results in the right panel of figure 9, while the remaining two figures show partonic

results for 8 choices of collinear drop parameters analogous to the SCET results in figure 10.

|y| < 2.0. The main difference between the MC simulations is that Pythia uses a dipole

shower where we can talk about the radiator for individual branches, whereas Vincia uses

a antennae shower with radiation produced by color correlated pairs. Both of these MCs

use a string fragmentation model to implement hadronization.

As was mentioned previously, ATLAS recently measured soft-drop jet mass with pa-

rameters zcut = 0.1 and β = 0, 1, 2 (and CMS with β = 0). Since the same data can be

readily used to construct the collinear drop observables ∆m2, we will include this parameter

choice in our collinear drop analysis.

5.1 Monte Carlo partonic results for ∆m2

We begin in figure 13 by reproducing with Pythia at the parton level some results that

were obtained using factorization in figures 9 and 10 of section 4.5. The top left panel

of figure 13 compares distributions for ungroomed (black dotted), soft-drop (blue dot-

dashed) and collinear-drop (green dashed and red solid) jet mass, to be compared with

partonic SCET results in the right panel of figure 9. As already discussed earlier, the soft

drop curves are quite close. The collinear drop curves also exhibit the same hierarchies in

different regions and the same endpoints, but the precise shape does show some differences,
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Figure 14. Collinear Drop distributions with (zcut 1, β1) = (0.1, 1) and (zcut 2, β2) = (0.1, 0) from

Pythia and Vincia simulations as well as SCET calculations with theoretical uncertainty estima-

tion (blue bands). The top two panels show the distributions for quark-initiated jets (left panel)

and gluon-initiated jets (right panel), and the bottom right panel gives the dijet distributions. The

bottom left panel gives a decomposition of the Collinear Drop distribution from Pythia simulations

into quark and gluon components.

in particular for the green curves. More collinear drop results are shown in the right most

panel and bottom panel of figure 13, which can be directly compared to the two panels in

figure 10. Again the pattern of curves is similar, but there are noticeable differences in the

precise shape, particularly for the bottom panel of figure 13. This motivates carrying out

a more detailed comparison, including the NLL uncertainties, to which we now turn.

5.2 Comparison to partonic SCET results for ∆m2

We now consider a more detailed comparison between the partonic NLL SCET predictions

with Monte Carlo simulations generated with both Pythia and Vincia at the parton level,

pointing out places where they differences in their predictions for collinear drop observables.

Such comparisons can point the way to methods for improving both parton shower and

analytic predictions. All curves are normalized over the displayed range, unless otherwise

indicated.

In figure 14 we consider the collinear-drop observable ∆m2 with fixed zcut 1 = zcut 2 =

0.1, with β1 = 1 and β2 = 0. The partonic results from SCET at NLL accuracy are shown

by the solid blue lines, Pythia by dotted red lines, and Vincia by dashed green lines. The
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Figure 15. More Collinear Drop distributions with (zcut 1, β1) = (0.1, 2) and (zcut 2, β2) = (0.1, 0)

(left panel) and (zcut 1, β1) = (0.1, 2) and (zcut 2, β2) = (0.1, 1) (right panel) from Pythia and

Vincia simulations as well as SCET calculations.

blue band corresponds to theoretical uncertainty estimated by scale variation following the

method described in section 4.4, and studied in section 4.5. The top left panel of figure 14

shows the results for quark-initiated jets while the right panel corresponds to gluon-initiated

jets. For quark initiated jets the Vincia results are significantly more peaked than for

Pythia, but both simulations agree with the SCET results within the uncertainty band.

For gluon initiated jets the SCET results are closer to those of Vincia, while Pythia

is broader and peaks at larger ∆m2 values. In the log10(∆m2/p2
T ) ∼ −1.5 region, the

analytic and simulation results for gluons differ. In general this region is the most sensitive

to fixed order corrections and corrections from beyond leading power in the collinear drop

expansions. In the lower left panel of figure 14 we show the breakdown of quark and gluon

contributions for dijets in Pythia. Here only the total quark+gluon curve is normalized,

while the individual quark and gluon curves add to this total. As expected the quarks

dominate for smaller ∆m2, whereas the gluon contributions are broader and peak at larger

values. In the lower right panel of figure 14 we consider the collinear observable for pp→
dijets, again comparing the partonic collinear drop predictions. Clear differences are still

evident in this figure between Pythia and Vincia, particularly in the peak region. This

motivates both the corresponding experimental measurement, as well as carrying out more

precise SCET calculations beyond NLL, to shed light on these differences.

In figure 15 we extend the comparison of dijet predictions to two other collinear drop

observables in the same class, still fixing zcut 1 = zcut 2 = 0.1, but using other values of

β1 and/or β2. The results for β1 = 2, β2 = 0 in the the left panel are similar to those

of figure 14, with somewhat smaller differences between the predictions. On the other

hand, the results for β1 = 1, β2 = 2 in the the right panel of figure 15 exhibit even clearer

differences between Pythia and Vincia. In this case the SCET NLL results appear to

clearly favor the Vincia result. For the analysis of a different class of collinear drop

observables, where we have zcut 1 < zcut 2 and β1 = β2, please see appendix.

In general we conclude that there are noticeable and interesting differences between

Pythia and Vincia simulation predictions for collinear drop observables. The NLL SCET
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Figure 16. Collinear Drop distributions with (zcut 1, β1) = (0.1, 1) and (zcut 2, β2) = (0.1, 0) (left

panel) and (zcut 1, β1) = (0.05, 1) and (zcut 2, β2) = (0.2, 1) (right panel) from Pythia simulations.

Results at parton and hadron (with and without multi-parton interactions) levels are provided.

Figure 17. Collinear Drop with (zcut 1, β1) turned off and (zcut 2, β2) = (0.1, 1) as well as ungroomed

jet mass distributions from Pythia simulations. Results at parton and hadron (with and without

multi-parton interactions) levels are provided.

calculations performed here show somewhat of a preference for the Vincia results, though

higher order calculations should be carried out with reduced uncertainties to more clearly

pin this down. Such studies should be carried out independently for quarks and gluons,

with the combinations giving dijets then compared to experimental data. Also prominent

is the advantage to studying the zcut 1 = zcut 2 class of collinear drop observables, where

soft wide angle radiation is always more suppressed due to the lack of a groomed to un-

groomed transition region. On the other hand if the goal is to study this radiation, then the

prominent peaks in this region provided by the β1 = β2 class of collinear drop observables,

provide a means to do so.

5.3 Hadronization and Multi-Parton Interaction (MPI) for ∆m2

In this section we carry out a study of the sensitivity of collinear-drop observables to

hadronization and underlying events modeled by Multi-Parton Interaction (MPI) effects

as implemented in MC simulations.
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Figure 16 shows the log10(m2/p2
T ) distributions with two sets of collinear-drop pa-

rameters: zcut 1 = zcut 2 = 0.1 and β1 = 1, β2 = 0 (left panel), as well as β1 = β2 = 1

and zcut 1 = 0.05, zcut 2 = 0.2 (right panel). The curves include parton level (dotted

green), hadron level without MPI effects (dashed red) and hadron level with MPI effects

(solid blue). For both of these results we see by comparing the red and green curves that

there are, as expected, significant hadronization corrections. For the left panel these pre-

dominantly occur for log10(m2/p2
T ) < −2.8, whereas in the right panel the hadronization

corrections cause the distribution to become more peaked in both the groomed to un-

groomed transition region, and for small masses. In both cases the comparison of green

and blue curves shows that the MPI effects are suppressed. For this choice of collinear

drop observables the soft drop cut has protected us from MPI effects, while still providing

interesting observables for studying hadronization.

Collinear drop observables can also be designed to have more sensitivity to MPI. To

demonstrate this we consider in figure 17 (left panel) the collinear drop observable that

takes zcut 2 = 0.1, β2 = 1, but does not include soft drop grooming with zcut 1, β1. Here

there is a significant difference between the (dashed red) hadron level MC curve, and the

(solid blue) curve including both hadronization and MPI. Due to the collinear drop this

observable is sensitive to soft MPI radiation, and is now not protected from large effects

due to the absence of soft drop grooming. Indeed, the effect of MPI is even larger for this

observable than for ungroomed jets, which are shown in the right panel. This makes it

an interesting observable for testing the accuracy of the modeling of MPI effects in MC,

through comparison with experimental data.

Every jet sample is a mixture of quark-initiated jets and gluon-initiated jets, and it

is worth noting that hadronization effects can also differ for jets with different partonic

origins. It should also be possible to apply the formalism for studying nonperturbative

corrections to soft drop observables developed in ref. [89] to the collinear drop observables

proposed here. We leave further studies of hadronization and MPI effects to future work.

5.4 Annulus energy fraction

Having discussed in detail the example of collinear drop observable ∆m2, in this section

we study one other example of a collinear drop observable with MC simultations, namely

the annulus energy fraction x = τθa defined with eqs. (2.12) and (2.15).

The left panel of figure 18 shows the x distributions with hadronization and MPI effects

for different ring regions: 0.1 < r < 0.2 (dotted red), 0.3 < r < 0.8 (dot-dashed orange),

0.3 < r < 0.4 (dashed green) and 0.7 < r < 0.8 (solid blue). We can see that a significant

fraction of the jet energy is contained within a ring away from the core of the jet. The

0.1 < r < 0.2 region is even capable of capturing energetic, collinear splittings and develops

a peak at large values of log10 x (and is not itself a collinear drop observable). As one moves

away from the jet axis, the fraction of jet energy decreases quickly. Less than 10% of the

jet energy is contained in the 0.7 < r < 0.8 region. The right panel of figure 18 shows the

hadronization and MPI effects to the annulus energy fraction. We provide the distributions

for 0.7 < r < 0.8 (blue), 0.3 < r < 0.4 (green) and 0.1 < r < 0.8 (red). Unlike many other

jet substructure distributions where hadronization and MPI effects tend to increase the
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Figure 18. Annulus Energy Fraction distributions of various ring regions. The left panel shows

the results with hadronization and MPI effects, while the right panel shows the partonic results as

well as the hadronic results with multi-parton interactions.

values of the observables, these effects can give a qualitatively different trend and cause a

depletion of the annulus energy fraction in certain ring regions so that the peak position

moves to smaller values. Analytic calculations using SCET for such observables will be

discussed in future work.

6 Conclusions and outlook

Systematic improvements of the understanding of collider events and searches for new

physics require an efficient probe of the Standard Model phase space, especially in regions

with more complicated soft dynamics or hadronic activity. In this paper we introduce a

new class of jet substructure observables called collinear drop, which allows us to optimize

the sensitivity to soft regions of QCD phase space from higher energy perturbative scales

down to the confinement scale. We used techniques of jet grooming and jet shapes to

give concrete examples of constructing collinear drop observables. In particular, we used

multiple soft-drop jet grooming algorithms to select controlled internal jet regions by re-

moving energetic, collinear particles as well as soft, wide angle particles. We work out

the analytic description of collinear drop observables using the soft-collinear effective the-

ory, and we provide theoretical predictions at next-to-leading logarithmic (NLL) accuracy.

We also developed scale variation methods to estimate perturbative uncertainties for these

observables that are compatible with transition regions.

We provide comparisons of soft-drop jet mass distributions between our theoretical

predictions to Pythia simulations, which agree well at parton level, and were also con-

trasted with ATLAS data. We then compare analytic results of partonic collinear drop

distributions to different Monte Carlo simulations generated by Pythia and Vincia. We

observe interesting differences between Pythia and Vincia with collinear drop observables,

indicating that they are useful experimental observables for testing and improving MC

simulations. While in general the NLL SCET results are closer to the Vincia results, the

reduced theoretical uncertainties expected at one higher order (next-to-next-to leading log-

arithmic accuracy) will be needed in order to utilize SCET to truly distinguish features
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of different parton shower event generators. We also demonstrated that collinear drop

observables can be utilized to study hadronization in jets in a manner independent from

underlying event contamination, and with different settings, can be also used as a sen-

sitive probe of underlying event effects themselves. Thus predictions for collinear drop

observables provide key probes of soft phase space that are useful both for systematic im-

provements of Monte Carlo event generators and for rigorous study of underlying event

and non-perturbative hadronization, paving the road toward higher precision QCD results

for hadron-hadron, electron-ion, and heavy-ion collisions.

There are many other potential applications of collinear drop observables, especially for

probing the color coherence of soft particles which can allow us to distinguish quark, gluon

and color neutral particle initiated jets. For hadronically decaying boosted electroweak

bosons, standard tagging methods exploit the two-prong structure inherent from the boson

masses and kinematics [61, 94, 95], local color flow information due to color connection [96–

98], or by visualizing jets in the Lund jet plane [14, 99]. On the other hand, collinear

drop observables can be used to perform color-singlet jet isolation [54, 100, 101] which

has been seen to improve the W/Z and top tagging efficiency. Recently, an observable

O2 that is efficient for quark gluon discrimination was studied in ref. [102], which also

suppresses collinear radiation. The analytic calculation of collinear drop observables for

hadronic electroweak boson jets, and their prospects for improving tagging methods, will

be discussed in a separate paper.
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A More comparison between Monte Carlo and partonic SCET results

for ∆m2

We now turn to the analysis of a different class of collinear drop observables, where we

have zcut 1 < zcut 2 and β1 = β2. In figure 19 we take β1 = β2 = 1, with zcut 1 = 0.05

and zcut 2 = 0.2. Again we compare partonic results, and the blue curves are NLL SCET,

dotted red are Pythia, and dashed green are Vincia. In addition we show black dot-

dashed curves which correspond to Pythia results with initial state radiation (ISR) turned

off. The top left panel of figure 19 shows quark initiated jets, while the right panel shows

the result for gluon initiated jets. Interestingly, there are again quite significant differences

between the Pythia and Vincia curves, which in this case are evident for quark jets in

the region log10(∆m2/p2
T ) < −3 where nonperturbative corrections are expected to become

more significant. The lower panels figure 19 again show the breakdown of quark and gluon
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Figure 19. Collinear Drop distributions with (zcut 1, β1) = (0.05, 1) and (zcut 2, β2) = (0.2, 1)

from Pythia and Vincia simulations as well as SCET calculations with theoretical uncertainty

estimation (blue bands). Results from Pythia simulations with initial state radiation turned off

are also provided. The top two panels show the distributions for quark-initiated jets (left panel)

and gluon-initiated jets (right panel), and the bottom right panel gives the dijet distributions. The

bottom left panel gives a decomposition of the Collinear Drop distribution from Pythia simulations

into quark and gluon components.

contributions (left panel) and the predictions for dijets (right panel). In general the SCET

results at NLL exhibit a less peaky structure than the MC simulations, and are in general

closer to the Vincia results.

For gluon jets near log10(∆m2/p2
T ) ' −1.5 in figure 19 there is a clear difference

between the simulation and SCET results, since there is a significant peak in both MC

simulation results that does not appear in our NLL theory curve. This corresponds to the

value where the groomed to ungroomed transition occurs, where it is known that fixed

order corrections become more important. Since soft drop grooming is no longer being

effective in this region, there can also now be significant corrections from wide angle soft

radiation that are not included in our NLL calculations here. To test the importance of

such radiation, we have included Pythia results with ISR radiation turned off (black dot-

dashed curves). In this case the peak structure near the groomed to ungroomed transition

is removed and the spectrum from Pythia simulations with ISR off agrees better with

our partonic NLL results. It would therefore be interesting to increase the perturbative
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Figure 20. More Collinear Drop distributions with (zcut 1, β1) = (0.05, 2) and (zcut 2, β2) = (0.1, 2)

(left panel) and (zcut 1, β1) = (0.05, 0) and (zcut 2, β2) = (0.2, 0) (right panel) from Pythia and

Vincia simulations as well as SCET calculations. Results from Pythia simulations with initial

state radiation turned off are also provided.

precision of the SCET calculation in this transition region, by including both ISR effects

and higher order matching corrections. We leave this for future work.

In figure 20 we compare dijet results for two different collinear drop observables which

also have β1 = β2 and zcut 1 < zcut 2. The left panel which is more peaked takes β1 =

β2 = 2, while the right panel which is wider and flatter uses β1 = β2 = 0. Again we

see significant differences between the Pythia and Vincia results in both cases, and

the presence of significant wide angle soft radiation contributions near the groomed to

ungroomed transition point. Away from that point the SCET results agree more closely

with Vincia for the left panel, and do not clearly favor either MC in the right panel.
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