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Abstract The cross-sections of ψ(2S) meson production
in proton-proton collisions at

√
s = 13 TeV are measured

with a data sample collected by the LHCb detector corre-
sponding to an integrated luminosity of 275 pb−1. The pro-
duction cross-sections for prompt ψ(2S) mesons and those
for ψ(2S) mesons from b-hadron decays (ψ(2S)-from-b)
are determined as functions of the transverse momentum,
pT, and the rapidity, y, of the ψ(2S) meson in the kinematic
range 2 < pT < 20 GeV/c and 2.0 < y < 4.5. The pro-
duction cross-sections integrated over this kinematic region
are

σ(prompt ψ(2S), 13 TeV)

= 1.430 ± 0.005 (stat) ± 0.099 (syst)µb,

σ (ψ(2S)-from-b, 13 TeV)

= 0.426 ± 0.002 (stat) ± 0.030 (syst)µb.

A new measurement of ψ(2S) production cross-sections in
pp collisions at

√
s = 7 TeV is also performed using data

collected in 2011, corresponding to an integrated luminosity
of 614 pb−1. The integrated production cross-sections in the
kinematic range 3.5 < pT < 14 GeV/c and 2.0 < y < 4.5
are

σ(prompt ψ(2S), 7 TeV)

= 0.471 ± 0.001 (stat) ± 0.025 (syst)µb,

σ (ψ(2S)-from-b, 7 TeV)

= 0.126 ± 0.001 (stat) ± 0.008 (syst)µb.

All results show reasonable agreement with theoretical cal-
culations.

1 Introduction

The study of hadronic production of heavy quarkonia can pro-
vide important information about quantum chromodynamics

� e-mail: prli@lzu.edu.cn, miroslav.saur@cern.ch

(QCD). The production of heavy quark pairs, QQ, can be cal-
culated with perturbative QCD, while the hadronisation of
QQ pairs into heavy quarkonia is nonperturbative and must
be determined using input from experimental results. Heavy-
quarkonium production therefore probes both perturbative
and nonperturbative aspects of QCD by providing stringent
tests of theoretical models. Knowledge of hadronic produc-
tion of heavy quarkonium has been significantly improved in
the past forty years [1,2], but the mechanism behind it is still
not fully understood. Colour-singlet model calculations [3–
9] require that the intermediate QQ state is colourless and
has the same J PC quantum numbers as those of the outgo-
ing quarkonium state. In the nonrelativistic QCD (NRQCD)
approach [10–12], intermediate QQ states with all possible
colour-spin-parity quantum numbers have nonzero probabil-
ity to be transformed into the desired quarkonium. The tran-
sition probability of a QQ pair into the quarkonium state is
described by a long-distance matrix element (LDME), which
is assumed to be universal and can be determined from exper-
imental data.

In high-energy proton-proton (pp) collisions, charmo-
nium states can be produced directly from hard collisions
of partons inside the protons, through the feed-down from
excited states, or via weak decays of b hadrons. The first
two contributions, which cannot be distinguished experi-
mentally, are referred to as prompt production; while the
third component can be separated from prompt production
by exploiting the lifetime of b-hadrons. For prompt J/ψ pro-
duction the feed-down contribution is large, mostly from
radiative decays of χcJ (J = 0, 1, 2) mesons. This com-
plicates the comparison between theoretical calculations and
experimental results. On the contrary, the feed-down con-
tribution to ψ(2S) mesons is negligible [13], thus theoret-
ical calculations can be directly compared with measure-
ments.

The studies of heavy quarkonium production are cru-
cial to separate the contributions of single parton scatter-
ing (SPS) [14] and double parton scattering (DPS) [15] to
multiple-quarkonium production. Multiple-quarkonium pro-
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duction through the SPS process shares the same LDMEs
as the single quarkonium production, thus providing a new
method to test the theoretical calculations. The DPS pro-
cess can reveal the transverse profile of partons inside the
proton. Further theoretical and experimental works pro-
vide deeper insights on how to interpret the production
mechanism of multiple quarkonia. In particular, additional
data help in improving the precision of LDME determina-
tion.

The differential cross-sections of inclusive ψ(2S) meson
production in pp collisions at centre-of-mass energies of√
s = 1.8 and 1.96 TeV were measured by the CDF exper-

iment at the Fermilab Tevatron Collider [16,17], and in
pp collisions at

√
s = 7 TeV [18–23], 8 TeV [23], and

13 TeV [24] with LHC data. This paper presents measure-
ments of ψ(2S) production cross-sections in pp collisions
using a data sample collected by LHCb in 2015 (2011) cor-
responding to an integrated luminosity of 275 ± 11 pb−1 at√
s = 13 TeV (614 ± 11 pb−1 at

√
s = 7 TeV). The ψ(2S)

mesons from prompt production are abbreviated as “prompt
ψ(2S)”, while those from b-hadron decays are abbreviated
as “ψ(2S)-from-b”. The ψ(2S) mesons are reconstructed
through their decay mode ψ(2S) → μ+μ−. The double-
differential production cross-sections of prompt ψ(2S) and
ψ(2S)-from-b as functions of transverse momentum pT and
rapidity y and their integrated production cross-sections are
measured, assuming zero polarisation of the ψ(2S) meson.
The kinematic region of the measurement at 13 TeV (7 TeV)
is 2 < pT < 20 GeV/c (3.5 < pT < 14 GeV/c) and
2.0 < y < 4.5. Compared to the previous LHCb mea-
surement at 7 TeV using 2010 data [19], the new analy-
sis at 7 TeV has several advantages: the 2011 data sam-
ple is much larger than that in the previous measurement
corresponding to an integrated luminosity of 36 pb−1, the
previous measurement did not provide the ψ(2S) produc-
tion cross-section as a function of the rapidity y because
of the limited sample size, and the same final state and
offline selection criteria as those in the 13 TeV measure-
ment are used in the new 7 TeV measurement. This guar-
antees that the maximum number of systematic uncertain-
ties cancel in the cross-section ratio between 13 TeV and
7 TeV, which is measured in the present analysis. This
represents a more stringent test of the theoretical models,
since many of the experimental and theoretical uncertain-
ties cancel. Finally, the ψ(2S) meson differential production
cross-sections are compared with those of the J/ψ meson at√
s = 13 TeV [25].

2 Detector and simulation

The LHCb detector [26,27] is a single-arm forward spec-
trometer covering the pseudorapidity range 2 < η < 5,

designed for the study of particles containing b or c quarks.
The detector includes a high-precision tracking system con-
sisting of a silicon-strip vertex detector surrounding the pp
interaction region [28], a large-area silicon-strip detector
located upstream of a dipole magnet with a bending power
of about 4 Tm, and three stations of silicon-strip detectors
and straw drift tubes [29,30] placed downstream of the mag-
net. The tracking system provides a measurement of the
momentum, p, of charged particles with a relative uncer-
tainty that varies from 0.5% at low momentum to 1.0% at
200 GeV/c. The minimum distance of a track to a primary
vertex (PV), the impact parameter (IP), is measured with a
resolution of (15+29/pT)µm, where pT is in GeV/c. Differ-
ent types of charged hadrons are distinguished using informa-
tion from two ring-imaging Cherenkov detectors [31]. Pho-
tons, electrons and hadrons are identified by a calorimeter
system consisting of scintillating-pad (SPD) and preshower
detectors, an electromagnetic calorimeter and a hadronic
calorimeter. Muons are identified by a system composed of
alternating layers of iron and multiwire proportional cham-
bers [32]. The online event selection is performed by a trig-
ger [33], which consists of a hardware stage, based on infor-
mation from the calorimeter and muon systems, followed
by a software stage, which applies a full event reconstruc-
tion.

Simulated samples are used to evaluate the ψ(2S) detec-
tion efficiency. In the simulation, pp collisions are gener-
ated using Pythia 8 [34,35] with a specific LHCb con-
figuration [36]. Decays of unstable particles are described
by EvtGen [37], in which final-state radiation is generated
using Photos [38]. Both the leading-order colour-singlet
and colour-octet contributions are included in the generated
prompt charmonium states [36,39]. These states are gen-
erated with zero polarisation. The interaction of the gener-
ated particles with the detector, and its response, are imple-
mented using the Geant4 toolkit [40,41] as described in
Ref. [42].

3 Selection of ψ(2S) candidates

The decay channel ψ(2S) → μ+μ− is used in the mea-
surements of the ψ(2S) production cross-sections at both
13 TeV and 7 TeV. The same strategy is used for both anal-
yses, except for different trigger requirements. The hard-
ware trigger selects events that contain two tracks consis-
tent with muon hypotheses, and the product of the trans-
verse momenta of the two muons is required to be greater
than (1.3 GeV/c)2. At the software trigger stage the two
muons are required to be oppositely charged, to have
good track quality, to form a good-quality vertex, and to
each have a momentum larger than 6 GeV/c. The invari-
ant mass of the ψ(2S) candidates is required to be within
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the range 3566 < mμ+μ− < 3806 MeV/c2. The trans-
verse momentum of each muon is required to be larger
than 0.3 GeV/c (0.5 GeV/c) and that of the ψ(2S) can-
didate is required to be larger than 2 GeV/c (3.5 GeV/c)
for the 13 TeV (7 TeV) data trigger. Due to the differ-
ent triggers, the ψ(2S) candidates are selected in differ-
ent pT ranges. For the 13 TeV data taking, an alignment
and calibration of the detector is performed in near real-
time [43] and updated constants are made available for the
trigger.

To suppress the background associated to random com-
bination of tracks (combinatorial) more stringent criteria are
applied offline on the ψ(2S) vertex fit quality, the muon kine-
matics and particle identification requirements. Each muon
must have pT > 1.2 GeV/c and 2.0 < η < 4.9. At least one
PV should be reconstructed in the event from at least four
tracks in the vertex detector.

For events with more than one PV, the ψ(2S) candi-
date is associated to the PV for which the difference in
the χ2 of the PV fit with and without the ψ(2S) candi-
date is the smallest. This is equivalent to select the ver-
tex with respect to which the signal candidate has the
smallest impact parameter, compared to resolution. Using
the above procedure, the fraction of candidates associated
to the wrong PV is 0.3%, which is negligible. To select
ψ(2S) candidates, additional requirements on the pseudo
decay time, tz , |tz| < 10 ps, and its uncertainty, σtz , σtz <

0.3 ps, are applied. The pseudo decay time tz is defined
as

tz =
(
zψ(2S) − zPV

) × Mψ(2S)

pz
, (1)

where zψ(2S) (zPV) is the z coordinate of the reconstructed
ψ(2S) decay vertex (the PV), pz is the z-component of the
measured ψ(2S) momentum, and Mψ(2S) is the world aver-
age ψ(2S) mass [13]. The z-axis is the direction of the
proton beam pointing downstream into the LHCb accep-
tance [26]. The pseudo decay time defined above provides
a good approximation of the b-hadron decay time [44] and
is used to separate prompt ψ(2S) and ψ(2S)-from-b candi-
dates.

4 Cross-section determination

The double-differential production cross-section for prompt
ψ(2S) or ψ(2S)-from-b in a given (pT, y) bin is defined as

d2σ

dy dpT
= N (pT, y)

εtot(pT, y) × Lint × B × �y × �pT
, (2)

where N (pT, y) is the signal yield, εtot(pT, y) is the total
detection efficiency of the ψ(2S) → μ+μ− decay evalu-
ated independently for prompt ψ(2S) or ψ(2S)-from-b in
the given (pT, y) bin, Lint is the integrated luminosity, B is
the branching fraction of the decay ψ(2S) → μ+μ−, and
�pT = 1 GeV/c and �y = 0.5 are the bin widths. The inte-
grated luminosity is determined using the beam-gas imaging
and, for the 7 TeV data, also the van der Meer scan meth-
ods [45]. Assuming lepton universality in electromagnetic
decays, B(ψ(2S) → e+e−) = (7.89 ± 0.17) × 10−3 [46] is
used in Eq. 2, taking advantage of the much smaller uncer-
tainty compared to the ψ(2S) → μ+μ− decay. The differ-
ence of the two branching fractions introduced by the mass
difference between electrons and muons is negligible.

The yields of prompt ψ(2S) andψ(2S)-from-b candidates
in each (pT, y) bin are determined from a two-dimensional
extended unbinned maximum-likelihood fit to the distribu-
tions of the invariant mass, mμ+μ− , and tz of the ψ(2S) can-
didates. The correlation between mμ+μ− and tz is found to
be negligible. The invariant-mass distribution of the signal
candidates in each bin is described by the sum of two Crys-
tal Ball (CB) functions [47] with a common mean value and
different widths. The parameters of the power-law tails, the
relative fractions and the difference between the widths of
the two CB functions are fixed to values obtained from simu-
lation, leaving the mean value and the width of one of the CB
functions as free parameters. The invariant-mass distribution
of the combinatorial background is described by an expo-
nential function with the slope parameter free to vary in the
fit. The tz distribution of prompt ψ(2S) mesons is described
by a Dirac δ function at tz = 0, and that of ψ(2S)-from-
b by an exponential function, both convolved with the sum
of two Gaussian functions. A ψ(2S) candidate can also be
associated to a wrong PV, resulting in a long tail compo-
nent in the tz distribution. This shape is modelled from data
by calculating tz between the ψ(2S) candidate from a given
event and the closest PV in the next event of the sample. The
background tz distribution is parametrised with an empirical
function based on the observed shape of the tz distribution in
the ψ(2S) mass sidebands (3566 < mμ+μ− < 3620 MeV/c2

and 3750 < mμ+μ− < 3806 MeV/c2). It is parametrised as
the combination of a Dirac δ function and the sum of five
exponential functions, three for positive tz and two for nega-
tive tz . This sum is convolved with the sum of two Gaussian
functions. All parameters of the background tz distribution
are fixed to values determined from the ψ(2S) mass side-
bands independently in each (pT, y) bin. Figure 1 shows as
an example the mμ+μ− and tz distributions in the kinematic
bin corresponding to 5 < pT < 6 GeV/c and 2.5 < y < 3.0
for the 13 TeV data sample. The one-dimensional projec-
tions of the fit result are also presented. The total signal
yields of prompt ψ(2S) and ψ(2S)-from-b in the kine-
matic range for the 13 TeV sample are (440.7 ± 1.2) × 103
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Fig. 1 Distributions of (left) the invariant mass mμ+μ− and (right)
pseudo decay time tz of selected ψ(2S) candidates in the kinematic bin
of 5 < pT < 6 GeV/c and 2.5 < y < 3.0 in the 13 TeV data sample.
Projections of the two-dimensional fit result are also shown. The solid
(red) line is the total fit function, the shaded (green) area corresponds to

the background component. The prompt ψ(2S) contribution is shown
in cross-hatched (blue) area, ψ(2S)-from-b in a solid (black) line and
the tail contribution due to the association of ψ(2S) with the wrong PV
is shown in filled (magenta) area. The tail contribution is invisible in
the invariant-mass plot

and (140.0 ± 0.5) × 103, and for the 7 TeV sample are
(433.9 ± 0.9) × 103 and (115.1 ± 0.4) × 103, respectively.

The total efficiency, εtot, in each kinematic bin is deter-
mined as the product of the geometrical acceptance of the
detector and the efficiencies of particle reconstruction, event
selection, muon identification and trigger requirements. The
detector acceptance, selection and trigger efficiencies are cal-
culated using simulated samples in each (pT, y) bin, inde-
pendently for prompt ψ(2S) and ψ(2S)-from-b. The trig-
ger efficiencies are also validated using data, as explained in
Sect. 5. The track reconstruction and the muon-identification
efficiencies are evaluated using simulated samples and cali-
brated with data. The efficiencies of prompt ψ(2S) and those
of ψ(2S)-from-b are very similar.

5 Systematic uncertainties

A variety of sources of systematic uncertainty are studied
as described below and are summarised in Table 1. For the
uncertainties that vary in kinematic bins, the largest uncer-
tainties always appear in the bins with small sample sizes.

The uncertainty related to the modelling of the signal
mass shape is studied by replacing the baseline model with a
kernel-density estimated distribution [48] obtained from the
simulated sample in each kinematic bin. In order to account
for the resolution difference between data and simulation, a
Gaussian function is used to smear the shape of the distribu-
tion in simulation. The relative difference of the signal yield
in each kinematic bin, 0.0–4.1% (0.0–8.5%) for the 13 TeV
(7 TeV) sample, is taken as the systematic uncertainty due to
signal mass shape.

Due to the presence of final-state radiation in the
ψ(2S) → μ+μ− decay, a fraction of ψ(2S) candidates fall
outside the mass window used to determine the signal yields.

The efficiency of the selection of the mass window is esti-
mated using simulated samples, and the imperfect modelling
of the radiation is studied by comparisons of the radiative tails
between simulation and data, from which an uncertainty of
1.0% is assigned to the cross-sections in all kinematic bins.

The track detection efficiencies are determined from a sim-
ulated sample in each (pT, y) bin of the ψ(2S) meson, and
are corrected by using J/ψ → μ+μ− decays reconstructed
in a control data sample and in simulation. These efficien-
cies are calculated as functions of p and η with a tag-and-
probe approach [49]. The uncertainties due to the finite size
of the control samples are propagated to the results using a
large number of pseudoexperiments. In each pseudoexperi-
ment, a new efficiency-correction ratio in each (pT, y) bin
is generated according to a Gaussian distribution where the
original ratio and its uncertainty are used as the Gaussian
mean and standard deviation, respectively. The contribution
to the systematic uncertainty in each kinematic bin of ψ(2S)

mesons varies from 0.1% (0.7%) to 2.4% (3.0%) for the
13 TeV (7 TeV) data sample. The distribution of the number
of SPD hits in simulation is weighted to match that in data to
correct the effect of the detector occupancy. As a crosscheck
the number of tracks is used as an alternative weighting vari-
able. The tracking efficiencies are found to be different when
different variables are used. Therefore, an additional system-
atic uncertainty of 0.8% (0.4%) per muon track is assigned
for the 13 TeV (7 TeV) sample.

The muon identification efficiency is determined from
simulation and calibrated with a data sample of
J/ψ → μ+μ− decays. The statistical uncertainty due to the
finite size of the calibration sample is propagated to the final
results using pseudoexperiments. The resulting uncertainties
vary from 0.1% (0.7%) to 1.1% (8.9%) in different (pT, y)
bins for the 13 TeV (7 TeV) sample. The uncertainty related
to the kinematic binning scheme of the calibration samples
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Table 1 Systematic
uncertainties on the ψ(2S)

cross-section measurements.
The uncertainty from the tz fit
only affects the ψ(2S)-from-b
result. Uncertainties labelled
with “∗” are correlated between
kinematic bins

Source 13 TeV (%) 7 TeV (%)

Signal mass shape∗ 0.0–4.1 0.0–8.5

Radiative tail∗ 1.0 1.0

Tracking∗ (0.1–2.4)⊕ (2 × 0.8) (0.7–3.0)⊕ (2 × 0.4)

Muon ID∗ (0.1–1.1)⊕ (0.1 − 4.6) (0.7–8.9)⊕ (0.4–5.4)

Trigger∗ 0.1–9.3 0.0–4.4

Kinematic spectrum 0.0–2.0 0.0–4.9

Luminosity∗ 3.9 1.7

B(ψ(2S) → e+e−)∗ 2.2 2.2

Simulated sample size (prompt ψ(2S)) 0.7–11.5 1.3–13.1

Simulated sample size (ψ(2S)-from-b) 0.8–5.7 1.2–9.5

tz fit∗ (ψ(2S)-from-b only) 0.1–8.4 0.1–9.2

is studied by changing the size and the boundaries of the p
and η bins, and number of SPD hits. This leads to systematic
uncertainties of 0.1–4.6% (0.4–5.4%) for the 13 TeV (7 TeV)
sample.

The trigger efficiency is determined from simulated sam-
ples. To estimate the systematic uncertainty, a tag-and-probe
method is used to estimate the trigger efficiencies in each
(pT, y) bin of a ψ(2S) data sample that is independent of
the detection of ψ(2S) signals [33]. The same procedure is
applied to the simulated ψ(2S) samples, and the relative dif-
ference of efficiencies between data and simulation in each
kinematic bin, 0.1–9.3% (0.0–4.4%) for the 13 TeV (7 TeV)
sample, is taken as a systematic uncertainty.

The pT and y distributions of ψ(2S) mesons in simulation
and in data could be different within each kinematic bin due
to the finite bin size, causing differences in efficiencies. The
possible discrepancy is studied by weighting the kinematic
distribution in simulation to match that in data. All efficien-
cies are recalculated, and the relative differences of the total
efficiencies between the new and the nominal results, which
are found to be in the range 0.0–2.0% (0.0–4.9%) for the
13 TeV (7 TeV) sample, are taken as systematic uncertainties.

The integrated luminosity is determined using the beam-
gas imaging method for the 13 TeV data sample, and by a
combination of the beam-gas imaging and van der Meer
scan methods [45] for the 7 TeV data sample. The uncer-
tainty associated with the luminosity determination is 3.9%
(1.7%) for the 13 TeV (7 TeV) sample. The uncertainty of
the branching fraction of the ψ(2S) → e+e− decay, 2.2%,
is taken as a systematic uncertainty [46]. The limited size
of the simulated sample in each bin leads to uncertainties
of 0.7–11.5% (1.3–13.1%) for prompt ψ(2S) and 0.8–5.7%
(1.2–9.5%) forψ(2S)-from-b for the 13 TeV (7 TeV) sample,
and are smaller than or comparable with the data statistical
uncertainty in each bin.

There are sources of systematic uncertainties that are
related to the tz variable, the effects of which are notable

for ψ(2S)-from-b and are negligible for prompt ψ(2S). The
modelling of the tz resolution is modified by adding a third
Gaussian to the nominal resolution model. The variation
in the ψ(2S)-from-b fraction Fb is found to be negligible.
An alternative method is adopted to estimate the system-
atic uncertainty due to the modelling of the background tz
distribution. In this method, the background distribution is
obtained with the sPlot technique [50] using the invariant
mass as the discriminating variable. The tz distribution is then
parametrised for the two-dimensional fits to obtain the frac-
tion Fb. The relative difference of Fb in each kinematic bin
between the two methods is taken as a systematic uncertainty.
The total systematic uncertainty on the ψ(2S)-from-b cross-
section related to the tz fit model is 0.1–8.4% (0.1–9.2%)
for the 13 TeV (7 TeV) sample.

6 Results

6.1 Production cross-sections

The double-differential production cross-sections for prompt
ψ(2S) and ψ(2S)-from-b are measured as functions of pT

and y assuming no polarisation of ψ(2S) mesons. The results
are shown in Figs. 2 and 3, respectively. The corresponding
values are listed in Tables 2, 3, 4, and 5 in Appendix A.

By integrating the double-differential results over y in the
range 2.0 < y < 4.5, the differential production cross-
sections of prompt ψ(2S) and ψ(2S)-from-b as functions
of pT are shown in Fig. 4. The results of prompt ψ(2S) pro-
duction are compared with the theoretical calculations based
on NRQCD [52], and those of ψ(2S)-from-b are compared
with the fixed-order-plus-next-leading-logarithm (FONLL)
calculations [53]. The differential cross-section as function
of y at 13 TeV (7 TeV) is obtained by integrating the double-
differential results over pT in the range 2 < pT < 20 GeV/c
(3.5 < pT < 14 GeV/c). The results are presented in Fig. 5.
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Fig. 2 Double-differential
production cross-sections of
prompt ψ(2S) as functions of
pT in bins of y at (left) 13 TeV
and (right) 7 TeV. The statistical
and systematic uncertainties are
added in quadrature. The ψ(2S)

meson is assumed to be
produced unpolarised
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Fig. 3 Double-differential
production cross-sections of
ψ(2S)-from-b as functions of
pT in bins of y at (left) 13 TeV
and (right) 7 TeV. The statistical
and systematic uncertainties are
added in quadrature. The ψ(2S)

meson is assumed to be
produced unpolarised
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The theoretical calculations based on FONLL are shown for
ψ(2S)-from-b. The NRQCD calculations are omitted since
they are not reliable in the low pT region [52]. The values
of the differential cross-sections are shown in Tables 6, 7,
8, and 9 in Appendix A. In the NRQCD calculations, only
the dominant uncertainties associated with the LDMEs are
considered [52]. The FONLL calculations include the uncer-
tainty due to b-quark mass and the scales of renormalisation
and factorisation. The NRQCD calculations show reason-
able agreement with experimental data for pT > 7 GeV/c.
The FONLL calculations agree well with the measurements.
The production cross-sections of prompt ψ(2S) and ψ(2S)-
from-b integrated in the kinematic range 2.0 < y < 4.5 and
2 < pT < 20 GeV/c at 13 TeV, are measured to be:

σ(prompt ψ(2S), 13 TeV)

= 1.430 ± 0.005 (stat) ± 0.099 (syst)µb,

σ (ψ(2S)-from-b, 13 TeV)

= 0.426 ± 0.002 (stat) ± 0.030 (syst)µb.

The production cross-sections of prompt ψ(2S) and
ψ(2S)-from-b integrated in the kinematic range 2.0 < y <

4.5 and 3.5 < pT < 14 GeV/c at 7 TeV, are measured to be:

σ(prompt ψ(2S), 7 TeV)

= 0.471 ± 0.001 (stat) ± 0.025 (syst)µb,

σ (ψ(2S)-from-b, 7 TeV)

= 0.126 ± 0.001 (stat) ± 0.008 (syst)µb.

As mentioned above, these results are obtained under the
assumption of zero polarisation of ψ(2S) mesons. Possi-
ble polarisation of ψ(2S) meson would affect the detec-
tion efficiency. This effect is studied for extreme cases
of fully transverse and fully longitudinal polarisation cor-
responding to the parameter α be equal to +1 or −1,
respectively, within the helicity frame [55,56] approach.
Also the polarisation case of α = −0.2, corresponding
to a conservative limit of the ψ(2S) polarisation mea-
sured at 7 TeV [54], is considered. Resulting scaling fac-
tors for prompt ψ(2S) production cross-sections are listed
in Appendix B in Tables 16, 17 and 18 for 13 TeV results,
and in Tables 19, 20 and 21 for 7 TeV results, respec-
tively.

6.2 Fraction of ψ(2S)-from-b mesons

The fraction of ψ(2S)-from-b is Fb ≡ Nb/(Nb + Np),
where Np is the efficiency-corrected signal yield of prompt
ψ(2S) and Nb is that of ψ(2S)-from-b. The fractions Fb
as functions of pT and y are shown in Fig. 6. The corre-
sponding values are presented in Table 10 in Appendix A.
Only statistical uncertainties are shown owing to the cancel-
lation of most systematic contributions, except for that due
to the tz fit, which is negligible. For each y bin, the fraction
increases with increasing pT of the ψ(2S) mesons. For each
pT bin, the fraction decreases with increasing y of the ψ(2S)

mesons.
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Fig. 4 Differential production
cross-sections as functions of
pT in the range 2.0 < y < 4.5
for the (top) 13 TeV and
(bottom) 7 TeV samples. The
left-hand figures are for prompt
ψ(2S) and the results are
compared with the NRQCD
calculations [52]; the right-hand
figures are for ψ(2S)-from-b
and the results are compared
with the FONLL
calculations [53]
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Fig. 5 Differential production
cross-sections as functions of y
in the range
2 < pT < 20 GeV/c for the
13 TeV sample (top) and in the
range 3.5 < pT < 14 GeV/c for
the 7 TeV sample (bottom). The
left figures are for prompt
ψ(2S), the right figures are for
ψ(2S)-from-b compared with
the FONLL calculations [53]
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6.3 Comparison with J/ψ results at 13 TeV

The production cross-sections of ψ(2S) mesons at 13 TeV
are compared with those of J/ψ mesons measured by LHCb
at

√
s = 13 TeV in the range 0 < pT < 14 GeV/c and

2.0 < y < 4.5 [25], where the J/ψ meson is also assumed
to be produced with zero polarisation. The ratio, Rψ(2S)/J/ψ ,

of the differential production cross-sections in the common
range between prompt ψ(2S) and prompt J/ψ mesons is
shown in Fig. 7 as a function of pT (y) integrated over
2.0 < y < 4.5 (2 < pT < 14 GeV/c). The NRQCD calcula-
tion of Rψ(2S)/J/ψ for prompt productions [52] is also shown.
The ratio of production cross-sections between ψ(2S)-from-
b and J/ψ -from-b is shown in Fig. 8 as a function of pT (y)
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Fig. 6 Fractions of
ψ(2S)-from-b in bins of pT and
y for the (left) 13 TeV and
(right) 7 TeV samples. The error
bars represent the statistical
uncertainties
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Fig. 7 Ratios of differential
cross-sections between prompt
ψ(2S) and prompt J/ψ mesons
at 13 TeV as functions of (left)
pT and (right) y. The NRQCD
predicted ratio [52] is shown in
the left panel for comparison
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Fig. 8 Ratios of differential
cross-sections between
ψ(2S)-from-b and J/ψ mesons
from b-hadron decays at 13 TeV
as functions of (left) pT and
(right) y. The FONLL
calculations [57] are shown for
comparison
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integrated over 2.0 < y < 4.5 (2 < pT < 14 GeV/c).
The FONLL calculations [57] are compared to the measured
values. To calculate these ratios from the measured cross-
sections of ψ(2S) and J/ψ mesons, the systematic uncer-
tainties due to the luminosity, the tracking correction, and
the fit model are considered to be fully correlated. All other
uncertainties are assumed to be uncorrelated. The numer-
ical results of the measured ratios are listed in Tables 12
and 13 in Appendix A. The FONLL prediction agrees well
with the experimental data for the production cross-section
ratio between ψ(2S)-from-b and J/ψ mesons from b-hadron
decays, while the NRQCD predictions show reasonable
agreement with the measurements for prompt ψ(2S) and
prompt J/ψ .

6.4 Comparison between 13 TeV and 7 TeV

The production cross-sections of ψ(2S) mesons in pp col-
lisions at 13 TeV and 7 TeV are compared by means of their
ratio, R13/7. Figures 9 and 10 show the ratios as functions
of pT integrated over 2.0 < y < 4.5 and as functions of
y integrated over 3.5 < pT < 14 GeV/c for prompt ψ(2S)

and ψ(2S)-from-b. The NRQCD (FONLL) calculations of
R13/7 for prompt ψ(2S) (ψ(2S)-from-b) are also shown
in the left (right) panel for comparison. Both FONLL and
NRQCD predictions on R13/7 agree well with the corre-
sponding experimental data. The measured ratios are also
presented in Tables 14 and 15 in Appendix A.

For both the theoretical calculations and the experimental
measurements, some of the uncertainties in the ratio can-
cel, which allows for a more precise comparison to theory.
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Fig. 9 Ratio of differential
production cross-sections
between the 13 TeV and 7 TeV
measurements as a function of
(left) pT integrated over y and
(right) y integrated over pT for
prompt ψ(2S) production.
Theoretical calculations of
NRQCD [52] are compared to
the data on the left side
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Fig. 10 Ratio of differential
production cross-sections
between the 13 TeV and the
7 TeV measurements as a
function of (left) pT integrated
over y and (right) y integrated
over pT for ψ(2S)-from-b.
Theoretical FONLL
calculations [57] are compared
to the data
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In the calculation of these ratios from the measured ψ(2S)

production cross-sections at 13 TeV and 7 TeV the system-
atic uncertainty related to the branching fraction is cancelled.
The uncertainties due to the luminosity, the fit model and the
tracking correction are partially correlated. Other uncertain-
ties are assumed to be uncorrelated.

6.5 Measurement of the inclusive b → ψ(2S)X branching
fraction

The reported results of the cross-sectionσ(ψ(2S)-from-b, 13
TeV), in combination with the previous results about J/ψ

production [25], can be used to determine the inclusive
branching fraction B(b → ψ(2S)X). To achieve this, both
results must be extrapolated to the full phase space, as they are
measured only for a limited range of phase space. The extrap-
olation factors α4π (ψ(2S)) and α4π (J/ψ ) are determined
with LHCb-tuned versions of Pythia 8 [34] for the ψ(2S)

and of Pythia 6 [35] for the J/ψ . The factors α4π (ψ(2S))

and α4π (J/ψ ) are found to be 7.29 and 5.20, respectively. In
the ratio of the two factors,

ξ ≡ α4π (ψ(2S))

α4π (J/ψ )
= 1.402,

most of the theoretical uncertainties are expected to cancel.
Alternatively, the correction factor ξ can be obtained using
FONLL calculations which uses different parton distribution
functions. The values of ξ obtained from the two methods
differ by 2.89 %.

With the definition of the ratio ξ , the B(b → ψ(2S)X)

branching fraction can be obtained from the ratio

B(b → ψ(2S)X)

B(b → J/ψ X)
= ξ

σ (ψ(2S)-from-b, 13 TeV)

σ (J/ψ -from-b, 13 TeV)
. (3)

By inserting the value
σ(J/ψ -from-b, 13 TeV) = 2.25±0.01(stat)±0.14(syst)µb
[25] and the value of ξ , the ratio of the branching fractions
is

B(b → ψ(2S)X)

B(b → J/ψ X)

= 0.265 ± 0.002(stat) ± 0.015(syst) ± 0.006(B),

where possible correlations between uncertainties
originating from ψ(2S)-from-b and J/ψ -from-b, respec-
tively, are taken into account. The last uncertainty is from
the uncertainty of the branching fractions B(ψ(2S) →
e+e−) and B(J/ψ → μ+μ−). Using the known value
B(b → J/ψ X) = (1.16 ± 0.10) × 10−2 [13], one obtains

B(b → ψ(2S)X)

= (3.08 ± 0.02(stat) ± 0.18(syst) ± 0.27(B)) × 10−3.

This result is in agreement with the world-average value [13].
The B(b → J/ψ X) uncertainty dominates the total uncer-
tainty from the branching fractions.
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7 Conclusions

The production cross-sections of ψ(2S) mesons in proton-
proton collisions at a centre-of-mass energy of 13 TeV are
reported with a data sample corresponding to an integrated
luminosity of 275 ± 11 pb−1, collected by the LHCb detec-
tor in 2015. The double-differential cross-sections, as func-
tions of pT and y of the ψ(2S) meson in the range of
2 < pT < 20 GeV/c and 2.0 < y < 4.5, are deter-
mined for prompt ψ(2S) mesons and ψ(2S) mesons from
b-hadron decays. A new measurement of the branching frac-
tion B(b → ψ(2S)X) is presented, which is in agreement
with the world average [13]. The measured prompt ψ(2S)

production cross-section as a function of transverse momen-
tum is in good agreement in the high pT region with theoret-
ical calculations in the NRQCD framework. Theoretical pre-
dictions based on the FONLL calculations describe well the
measured cross-sections for ψ(2S) mesons from b-hadron
decays.

A new measurement of ψ(2S) production cross-sections
at 7 TeV is performed using the 2011 data sample correspond-
ing to an integrated luminosity of 614 ± 11 pb−1. The new
result provides a significantly reduced uncertainty compared
to the previous independent LHCb result [19].

The cross section ratios between 13 TeV and 7 TeV show
reasonable agreement with theoretical calculations.
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Table 2 Double-differential production cross-sections (in nb/(GeV/c))
of prompt ψ(2S) mesons at 13 TeV in bins of (pT, y). The first uncer-
tainties are statistical, the second are the uncorrelated systematic uncer-

tainties between bins, and the last are the correlated systematic uncer-
tainties between bins. Adjacent bins with large statistical uncertainties
have been merged

pT (GeV/c) 2.0 < y < 2.5 2.5 < y < 3.0 3.0 < y < 3.5 3.5 < y < 4.0 4.0 < y < 4.5
2–3 232.86± 5.80± 5.39± 18.24 228.46± 3.53± 1.65± 17.70 198.36± 2.86± 1.34± 15.33 167.07± 2.19± 1.30± 12.93 133.13± 1.99± 1.62± 10.42
3–4 192.93± 3.96± 4.02± 9.74 166.62± 2.36± 1.27± 8.22 147.39± 1.90± 1.07± 7.25 120.42± 1.49± 0.96± 6.00 85.03± 1.42± 1.09± 4.37
4–5 124.73± 2.38± 2.70± 9.15 108.56± 1.41± 0.88± 7.92 94.79± 1.09± 0.74± 6.90 76.73± 0.93± 0.68± 5.59 57.41± 1.00± 0.82± 4.28
5–6 77.27± 1.46± 1.78± 4.89 66.05± 0.82± 0.59± 4.16 58.12± 0.65± 0.52± 3.65 47.25± 0.44± 0.48± 2.98 34.35± 0.66± 0.58± 2.29
6–7 45.13± 0.91± 1.11± 4.73 41.43± 0.53± 0.43± 4.34 35.20± 0.43± 0.37± 3.69 28.70± 0.39± 0.36± 3.01 19.22± 0.47± 0.38± 2.08
7–8 28.87± 0.62± 0.77± 1.95 25.38± 0.35± 0.32± 1.70 21.00± 0.30± 0.27± 1.41 15.97± 0.27± 0.25± 1.07 12.23± 0.32± 0.31± 0.91
8–9 17.52± 0.42± 0.49± 1.19 15.39± 0.25± 0.24± 1.04 12.75± 0.22± 0.20± 0.86 9.86± 0.20± 0.19± 0.67 6.08± 0.21± 0.18± 0.47
9–10 10.94± 0.29± 0.34± 0.56 9.63± 0.18± 0.18± 0.48 7.46± 0.16± 0.14± 0.38 5.90± 0.15± 0.15± 0.30 3.81± 0.16± 0.14± 0.26
10–11 7.66± 0.23± 0.28± 0.50 5.98± 0.14± 0.13± 0.39 4.84± 0.13± 0.11± 0.31 3.83± 0.12± 0.11± 0.25 2.47± 0.11± 0.11± 0.19
11–12 4.25± 0.16± 0.17± 0.23 3.86± 0.11± 0.10± 0.21 3.16± 0.10± 0.09± 0.17 2.37± 0.09± 0.08± 0.13 1.67± 0.10± 0.09± 0.13
12–13 3.09± 0.13± 0.16± 0.27 2.44± 0.13± 0.07± 0.21 2.02± 0.08± 0.07± 0.18 1.39± 0.07± 0.06± 0.12 0.74± 0.06± 0.05± 0.07
13–14 1.63± 0.09± 0.08± 0.12 1.57± 0.07± 0.06± 0.12 1.26± 0.06± 0.05± 0.09 0.91± 0.05± 0.04± 0.07 0.58± 0.06± 0.04± 0.05
14–15 1.42± 0.08± 0.08± 0.07 1.26± 0.06± 0.05± 0.06 0.81± 0.05± 0.04± 0.04 0.59± 0.04± 0.04± 0.03 0.26± 0.03± 0.02± 0.0215–16 1.18± 0.08± 0.09± 0.06 0.86± 0.05± 0.04± 0.04 0.58± 0.04± 0.03± 0.03 0.41± 0.03± 0.02± 0.0216–17 0.81± 0.06± 0.07± 0.04 0.59± 0.04± 0.03± 0.03 0.39± 0.03± 0.03± 0.02

0.15± 0.01± 0.02± 0.0117–18 0.54± 0.05± 0.06± 0.03 0.42± 0.03± 0.03± 0.02
0.21± 0.01± 0.01± 0.01 0.15± 0.01± 0.01± 0.0118–19 0.29± 0.02± 0.02± 0.01 0.28± 0.02± 0.02± 0.0219–20

Table 3 Double-differential production cross-sections (in
nb/(GeV/c)) of ψ(2S)-from-b mesons at 13 TeV in bins of (pT,y).

The first uncertainties are statistical, the second are the uncorrelated

systematic uncertainties between bins, and the last are the correlated
systematic uncertainties between bins. Adjacent bins with large statis-
tical uncertainties have been merged

pT (GeV/c) 2.0 < y < 2.5 2.5 < y < 3.0 3.0 < y < 3.5 3.5 < y < 4.0 4.0 < y < 4.5
2–3 69.99± 1.94± 1.65± 5.51 61.15± 1.14± 0.48± 4.78 51.47± 0.97± 0.40± 3.99 37.86± 0.87± 0.35± 2.95 24.04± 0.94± 0.36± 1.89
3–4 56.37± 1.45± 1.17± 3.05 47.89± 0.83± 0.36± 2.45 39.58± 0.70± 0.31± 2.45 29.92± 0.64± 0.27± 1.57 19.49± 0.70± 0.29± 1.01
4–5 37.99± 1.00± 0.78± 2.80 34.38± 0.58± 0.25± 2.51 28.42± 0.48± 0.21± 2.08 21.25± 0.45± 0.19± 1.55 12.89± 0.50± 0.20± 0.97
5–6 27.93± 0.72± 0.60± 1.77 23.18± 0.40± 0.18± 1.46 19.18± 0.34± 0.15± 1.24 14.62± 0.24± 0.14± 0.94 7.94± 0.35± 0.14± 0.56
6–7 16.99± 0.49± 0.37± 1.78 15.74± 0.29± 0.13± 1.65 12.33± 0.24± 0.11± 1.29 8.91± 0.22± 0.10± 0.94 4.83± 0.25± 0.09± 0.52
7–8 12.29± 0.37± 0.28± 0.83 10.14± 0.21± 0.09± 0.68 7.77± 0.18± 0.08± 0.53 5.75± 0.17± 0.07± 0.39 3.41± 0.18± 0.08± 0.26
8–9 9.05± 0.29± 0.20± 0.62 6.84± 0.16± 0.07± 0.46 5.24± 0.14± 0.06± 0.36 3.56± 0.13± 0.05± 0.24 2.09± 0.13± 0.05± 0.16
9–10 6.12± 0.22± 0.13± 0.32 4.85± 0.13± 0.06± 0.24 3.60± 0.11± 0.05± 0.19 2.53± 0.10± 0.04± 0.13 1.50± 0.10± 0.05± 0.10
10–11 4.17± 0.16± 0.11± 0.27 3.38± 0.11± 0.05± 0.22 2.52± 0.09± 0.04± 0.16 1.63± 0.08± 0.03± 0.11 0.87± 0.06± 0.03± 0.07
11–12 2.90± 0.13± 0.07± 0.16 2.38± 0.09± 0.04± 0.13 1.66± 0.08± 0.03± 0.11 1.07± 0.06± 0.03± 0.06 0.65± 0.06± 0.03± 0.06
12–13 2.09± 0.11± 0.06± 0.19 1.68± 0.07± 0.03± 0.15 1.22± 0.06± 0.03± 0.11 0.78± 0.05± 0.02± 0.07 0.41± 0.05± 0.02± 0.04
13–14 1.39± 0.08± 0.04± 0.11 1.24± 0.06± 0.03± 0.09 0.76± 0.05± 0.02± 0.06 0.61± 0.04± 0.02± 0.05 0.29± 0.04± 0.02± 0.03
14–15 1.18± 0.07± 0.04± 0.06 0.82± 0.05± 0.02± 0.04 0.71± 0.05± 0.02± 0.04 0.42± 0.04± 0.02± 0.02 0.16± 0.02± 0.01± 0.0215–16 0.84± 0.06± 0.03± 0.04 0.70± 0.05± 0.02± 0.04 0.42± 0.03± 0.01± 0.03 0.24± 0.02± 0.01± 0.0216–17 0.62± 0.05± 0.02± 0.03 0.54± 0.04± 0.02± 0.03 0.34± 0.03± 0.01± 0.02

0.07± 0.01± 0.00± 0.0117–18 0.63± 0.05± 0.03± 0.04 0.41± 0.03± 0.02± 0.02
0.21± 0.01± 0.01± 0.01 0.09± 0.01± 0.00± 0.0118–19 0.32± 0.03± 0.01± 0.02 0.28± 0.02± 0.01± 0.0219–20
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Table 6 Differential production
cross-sections dσ/dpT (in
nb/(GeV/c)) of prompt ψ(2S)

and ψ(2S)-from-b mesons at
13 TeV. The first uncertainties
are statistical and the second
(third) are uncorrelated
(correlated) systematic
uncertainties amongst bins

pT (GeV/c) Prompt ψ(2S) ψ(2S)-from-b

2–3 479.94 ± 3.97 ± 3.08 ± 37.31 122.26 ± 1.38 ± 0.91 ± 9.56

3–4 356.19 ± 2.69 ± 2.29 ± 17.79 96.62 ± 1.02 ± 0.66 ± 5.27

4–5 231.12 ± 1.64 ± 1.56 ± 16.92 67.47 ± 0.71 ± 0.45 ± 4.95

5–6 141.52 ± 0.98 ± 1.04 ± 8.99 46.43 ± 0.49 ± 0.34 ± 2.98

6–7 84.84 ± 0.65 ± 0.68 ± 8.92 29.40 ± 0.35 ± 0.21 ± 3.10

7–8 51.72 ± 0.44 ± 0.48 ± 3.52 19.68 ± 0.26 ± 0.16 ± 1.34

8–9 30.80 ± 0.30 ± 0.32 ± 2.11 13.38 ± 0.20 ± 0.12 ± 0.92

9–10 18.87 ± 0.22 ± 0.23 ± 0.99 9.29 ± 0.16 ± 0.08 ± 0.49

10–11 12.39 ± 0.17 ± 0.18 ± 0.82 6.29 ± 0.12 ± 0.07 ± 0.42

11–12 7.65 ± 0.13 ± 0.13 ± 0.44 4.33 ± 0.10 ± 0.05 ± 0.26

12–13 4.84 ± 0.11 ± 0.10 ± 0.43 3.09 ± 0.08 ± 0.04 ± 0.28

13–14 2.98 ± 0.07 ± 0.06 ± 0.23 2.14 ± 0.06 ± 0.03 ± 0.17

14–20 1.13 ± 0.02 ± 0.02 ± 0.06 0.90 ± 0.02 ± 0.01 ± 0.05

Table 7 Differential production cross-sections dσ/dy (in nb) of prompt ψ(2S) and ψ(2S)-from-b mesons at 13 TeV per rapidity unit. The first
uncertainties are statistical and the second (third) are uncorrelated (correlated) systematic uncertainties amongst bins

y Prompt ψ(2S) ψ(2S)-from-b

2.0–2.5 751.4 ± 7.7 ± 7.6 ± 51.8 251.2 ± 2.8 ± 2.3 ± 17.6

2.5–3.0 679.1 ± 4.6 ± 2.4 ± 46.7 215.9 ± 1.6 ± 0.7 ± 15.0

3.0–3.5 588.7 ± 3.7 ± 2.0 ± 40.4 175.8 ± 1.4 ± 0.6 ± 12.7

3.5–4.0 482.3 ± 2.9 ± 1.9 ± 33.2 129.6 ± 1.2 ± 0.5 ± 9.1

4.0–4.5 357.8 ± 2.8 ± 2.3 ± 25.6 79.0 ± 1.4 ± 0.5 ± 5.7

Table 8 Differential
cross-sections dσ/dpT (in
nb/(GeV/c)) of prompt ψ(2S)

and ψ(2S)-from-b mesons at
7 TeV, integrated over y
between 2.0 and 4.5. The first
uncertainties are statistical and
the second (third) are
uncorrelated (correlated)
systematic uncertainties
amongst bins

pT (GeV/c) Prompt ψ(2S) ψ(2S)-from-b

3.5–4 218.52 ± 1.61 ± 3.38 ± 11.61 49.61 ± 0.70 ± 0.91 ± 3.34

4–5 151.91 ± 0.78 ± 2.39 ± 7.05 36.83 ± 0.35 ± 0.60 ± 1.97

5–6 88.13 ± 0.47 ± 1.51 ± 4.94 23.52 ± 0.24 ± 0.50 ± 1.55

6–7 50.77 ± 0.30 ± 0.99 ± 2.92 14.83 ± 0.16 ± 0.24 ± 0.95

7–8 30.10 ± 0.21 ± 0.73 ± 1.45 9.62 ± 0.12 ± 0.18 ± 0.52

8–9 15.59 ± 0.12 ± 0.65 ± 0.74 6.08 ± 0.09 ± 0.11 ± 0.32

9–10 10.52 ± 0.10 ± 0.38 ± 0.47 3.99 ± 0.07 ± 0.11 ± 0.24

10–11 6.20 ± 0.08 ± 0.25 ± 0.30 2.75 ± 0.05 ± 0.07 ± 0.16

11–12 4.10 ± 0.06 ± 0.27 ± 0.24 1.81 ± 0.04 ± 0.04 ± 0.12

12–13 2.65 ± 0.06 ± 0.46 ± 0.15 1.20 ± 0.03 ± 0.03 ± 0.08

13–14 1.37 ± 0.03 ± 0.12 ± 0.11 0.86 ± 0.03 ± 0.04 ± 0.07

Table 9 Differential cross-sections dσ/dy (in nb) of prompt ψ(2S) and ψ(2S)-from-b mesons at 7 TeV, integrated over pT between 3.5 and
14 GeV/c. The first uncertainties are statistical and the second (third) are uncorrelated (correlated) systematic uncertainties amongst bins

y Prompt ψ(2S) ψ(2S)-from-b

2.0–2.5 230.5 ± 2.0 ± 6.3 ± 15.7 74.5 ± 0.9 ± 1.8 ± 5.8

2.5–3.0 235.4 ± 1.1 ± 2.3 ± 13.1 67.4 ± 0.5 ± 0.4 ± 4.4

3.0–3.5 203.9 ± 0.8 ± 1.6 ± 8.5 52.8 ± 0.4 ± 0.3 ± 2.5

3.5–4.0 164.6 ± 0.7 ± 1.7 ± 6.8 37.3 ± 0.3 ± 0.3 ± 1.6

4.0–4.5 106.9 ± 0.7 ± 1.6 ± 4.2 20.6 ± 0.3 ± 0.3 ± 1.0
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Table 10 Fractions of
ψ(2S)-from-b (in %) at 13 TeV
in bins of (pT, y) of ψ(2S)

mesons. The uncertainties are
statistical only. The systematic
uncertainties are negligible.
Adjacent bins with large
statistical uncertainty have been
merged

pT (GeV/c) 2.0 < y < 2.5 2.5 < y < 3.0 3.0 < y < 3.5 3.5 < y < 4.0 4.0 < y < 4.5
2–3 23.0± 0.6 20.8± 0.4 20.4± 0.4 18.1± 0.4 14.8± 0.5
3–4 22.4± 0.6 22.2± 0.4 21.0± 0.4 19.5± 0.4 18.4± 0.6
4–5 23.0± 0.6 23.9± 0.4 22.8± 0.4 21.4± 0.4 18.8± 0.7
5–6 25.9± 0.6 25.5± 0.4 24.4± 0.4 22.8± 0.5 18.5± 0.7
6–7 27.1± 0.7 27.1± 0.5 25.6± 0.5 23.3± 0.5 20.2± 1.0
7–8 29.8± 0.8 28.7± 0.5 26.4± 0.6 25.8± 0.7 22.1± 1.0
8–9 32.8± 0.9 30.6± 0.6 28.8± 0.7 26.6± 0.8 25.3± 1.4
9–10 34.2± 1.0 32.8± 0.8 32.4± 0.9 29.7± 1.0 28.7± 1.7
10–11 35.5± 1.2 35.4± 0.9 33.7± 1.1 29.7± 1.2 26.9± 1.8
11–12 38.5± 1.5 37.6± 1.1 34.8± 1.4 30.6± 1.6 28.1± 2.4
12–13 40.7± 1.7 38.7± 1.4 36.4± 1.5 34.3± 2.0 31.7± 3.4
13–14 42.1± 2.1 41.8± 1.6 35.9± 1.9 37.6± 1.0 31.2± 3.9
14–15 44.2± 2.1 39.4± 1.8 44.7± 2.2 36.4± 2.8 39.2± 1.715–16 43.4± 2.5 42.5± 2.1 41.5± 1.0 36.8± 2.616–17 43.6± 2.8 45.9± 2.5 44.8± 1.3

29.0± 3.917–18 51.7± 3.1 47.1± 3.0
47.2± 2.5 34.7± 3.618–19 49.7± 3.2 49.1± 2.519–20

Table 11 Fractions of ψ(2S)-from-b (in %) at 7 TeV in bins of (pT, y) of ψ(2S) mesons. The uncertainties are statistical only. The systematic
uncertainties are negligible

pT (GeV/c) 2.0 < y < 2.5 2.5 < y < 3.0 3.0 < y < 3.5 3.5 < y < 4.0 4.0 < y < 4.5

3.5–4 21.11 ± 0.79 17.91 ± 0.37 17.26 ± 0.33 16.52 ± 0.34 13.93 ± 0.50

4–5 21.73 ± 0.53 20.21 ± 0.28 18.42 ± 0.25 16.95 ± 0.27 15.47 ± 0.40

5–6 22.15 ± 0.55 22.40 ± 0.31 20.08 ± 0.29 17.89 ± 0.32 16.49 ± 0.50

6–7 24.12 ± 0.61 24.49 ± 0.37 21.45 ± 0.35 20.21 ± 0.41 16.18 ± 0.65

7–8 27.34 ± 0.68 25.04 ± 0.44 23.81 ± 0.44 21.64 ± 0.52 18.48 ± 0.83

8–9 28.44 ± 0.80 27.26 ± 0.54 26.81 ± 0.57 23.68 ± 0.70 19.12 ± 1.10

9–10 30.46 ± 0.08 29.40 ± 0.68 21.50 ± 0.69 24.95 ± 0.88 17.28 ± 1.38

10–11 32.97 ± 1.08 31.67 ± 0.83 28.14 ± 0.87 27.30 ± 1.17 24.10 ± 1.77

11–12 34.86 ± 1.33 33.31 ± 1.02 30.98 ± 1.16 28.55 ± 1.44 27.33 ± 2.10

12–13 35.56 ± 1.62 37.85 ± 1.31 33.30 ± 1.44 28.50 ± 1.78 20.81 ± 3.01

13–14 38.79 ± 1.93 36.68 ± 1.51 34.21 ± 1.80 30.97 ± 2.50 36.20 ± 6.19
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Table 12 Ratios of production cross-sections at 13 TeV between ψ(2S)

mesons and J/ψ mesons in bins of pT for prompt production and for
those from b-hadron decays integrated in the rapidity range 2.0 < y <

4.5. The statistical and systematic uncertainties are added in quadrature

pT (GeV/c) Prompt From b-hadron decays

2–3 0.14 ± 0.01 0.24 ± 0.02

3–4 0.16 ± 0.01 0.26 ± 0.01

4–5 0.18 ± 0.01 0.28 ± 0.02

5–6 0.20 ± 0.01 0.32 ± 0.02

6–7 0.23 ± 0.02 0.31 ± 0.03

7–8 0.26 ± 0.02 0.34 ± 0.02

8–9 0.27 ± 0.02 0.37 ± 0.02

9–10 0.28 ± 0.01 0.36 ± 0.02

10–11 0.31 ± 0.02 0.37 ± 0.02

11–12 0.31 ± 0.02 0.36 ± 0.02

12–13 0.32 ± 0.03 0.38 ± 0.04

13–14 0.29 ± 0.03 0.36 ± 0.03

Table 13 Ratios of production cross-sections between ψ(2S) mesons
and J/ψ mesons at 13 TeV in bins of y for prompt production and for
those from b-hadron decays integrated in the transverse momentum
range 2 < pT < 14 GeV/c. The statistical and systematic uncertainties
are added in quadrature

y Prompt From b-hadron decays

2.0–2.5 0.18 ± 0.01 0.29 ± 0.01

2.5–3.0 0.17 ± 0.01 0.29 ± 0.01

3.0–3.5 0.16 ± 0.01 0.28 ± 0.01

3.5–4.0 0.16 ± 0.01 0.26 ± 0.01

4.0–4.5 0.15 ± 0.01 0.24 ± 0.02

Table 14 Ratios of production cross-sections between 13 TeV and
7 TeV in bins of pT for prompt ψ(2S) and ψ(2S)-from-b mesons inte-
grated in the rapidity range 2.0 < y < 4.5. The statistical and system-
atic uncertainties are added in quadrature

pT (GeV/c) Prompt ψ(2S) ψ(2S)-from-b

3.5–4 1.63 ± 0.09 1.95 ± 0.13

4–5 1.52 ± 0.12 1.83 ± 0.15

5–6 1.61 ± 0.11 1.97 ± 0.15

6–7 1.67 ± 0.19 1.98 ± 0.23

7–8 1.72 ± 0.12 2.05 ± 0.14

8–9 1.97 ± 0.13 2.20 ± 0.15

9–10 1.79 ± 0.08 2.33 ± 0.14

10–11 2.00 ± 0.13 2.28 ± 0.17

11–12 1.87 ± 0.12 2.39 ± 0.15

12–13 1.83 ± 0.20 2.57 ± 0.24

13–14 2.18 ± 0.25 2.49 ± 0.27

Table 15 Ratios of cross-sections between measurements at 13 TeV
and 7 TeV in different bins of y for prompt ψ(2S) and ψ(2S)-from-b
mesons integrated in the transverse momentum range 3.5 < pT <

14 GeV/c. The statistical and systematic uncertainties are added in
quadrature

y Prompt ψ(2S) ψ(2S)-from-b

2.0–2.5 1.81 ± 0.14 2.00 ± 0.17

2.5–3.0 1.54 ± 0.11 1.89 ± 0.14

3.0–3.5 1.54 ± 0.10 1.94 ± 0.13

3.5–4.0 1.54 ± 0.10 2.03 ± 0.13

4.0–4.5 1.69 ± 0.10 2.17 ± 0.14

B Scaling factors for alternative polarisation scenarios

See Tables 16, 17, 18, 19, 20 and 21.

123



185 Page 16 of 23 Eur. Phys. J. C (2020) 80 :185

Table 16 Multiplicative scaling
factors needed to obtain the
prompt ψ(2S) differential
cross-sections from unpolarised
cross-section measurements at
13 TeV as reported in Table 2
under the assumption of fully
transverse polarisation
(α = +1)

pT (GeV/c) 2.0 < y < 2.5 2.5 < y < 3.0 3.0 < y < 3.5 3.5 < y < 4.0 4.0 < y < 4.5
2–3 1.084 1.081 0.997 0.984 0.993
3–4 1.202 1.047 0.964 0.950 0.948
4–5 1.164 1.034 0.961 0.937 0.921
5–6 1.138 1.016 0.959 0.940 0.922
6–7 1.100 1.012 0.970 0.939 0.923
7–8 1.110 0.996 0.965 0.937 0.915
8–9 1.120 0.993 0.962 0.943 0.937
9–10 1.037 0.985 0.962 0.940 0.941
10–11 1.070 0.941 0.941 0.960 0.910
11–12 1.022 0.952 0.958 0.926 0.925
12–13 1.096 0.940 0.932 0.944 0.897
13–14 1.007 0.964 0.949 0.932 0.924
14–15 1.060 0.944 0.939 0.924 0.90915–16 0.932 0.940 0.910 0.93116–17 1.051 0.932 0.930

0.85017–18 1.080 0.946
0.924 0.91118–19 0.969 0.93419–20

Table 17 Multiplicative scaling
factors needed to obtain the
prompt ψ(2S) differential
cross-sections from unpolarised
cross-section measurements at
13 TeV as reported in Table 2
under the assumption of fully
longitudinal polarisation
(α = −1)

pT (GeV/c) 2.0 < y < 2.5 2.5 < y < 3.0 3.0 < y < 3.5 3.5 < y < 4.0 4.0 < y < 4.5
2–3 0.846 0.870 0.987 1.016 1.008
3–4 0.754 0.909 1.039 1.079 1.092
4–5 0.777 0.934 1.053 1.092 1.123
5–6 0.806 0.950 1.051 1.091 1.132
6–7 0.829 0.958 1.040 1.069 1.129
7–8 0.843 0.977 1.041 1.079 1.102
8–9 0.865 0.992 1.054 1.073 1.120
9–10 0.908 1.004 1.061 1.066 1.129
10–11 0.882 1.024 1.068 1.098 1.096
11–12 0.944 1.035 1.077 1.069 1.114
12–13 0.941 1.050 1.079 1.076 1.126
13–14 0.992 1.069 1.067 1.100 1.115
14–15 0.966 1.076 1.085 1.114 1.14315–16 0.964 1.082 1.142 1.10216–17 1.011 1.099 1.102

1.01317–18 0.992 1.074
1.114 1.14018–19 1.037 1.09419–20

Table 18 Multiplicative scaling
factors needed to obtain the
prompt ψ(2S) differential
cross-sections from unpolarised
cross-section measurements at
13 TeV as reported in Table 2
under the assumption of 20 %
longitudinal polarisation
(α = −0.2), corresponding to a
conservative limit of the ψ(2S)

polarisation measured at
7 TeV [54]

pT (GeV/c) 2.0 < y < 2.5 2.5 < y < 3.0 3.0 < y < 3.5 3.5 < y < 4.0 4.0 < y < 4.5
2–3 0.975 0.976 0.997 1.001 0.998
3–4 0.955 0.983 1.005 1.013 1.012
4–5 0.955 0.990 1.010 1.012 1.012
5–6 0.963 0.988 1.007 1.014 1.018
6–7 0.960 0.990 1.008 1.004 1.020
7–8 0.976 0.991 1.006 1.007 1.004
8–9 0.993 0.998 1.010 1.008 1.025
9–10 0.973 0.998 1.013 1.003 1.033
10–11 0.981 0.984 1.004 1.030 0.999
11–12 0.986 0.996 1.019 0.996 1.016
12–13 1.023 0.995 1.004 1.010 1.005
13–14 1.005 1.021 1.008 1.014 1.016
14–15 1.024 1.010 1.011 1.016 1.01915–16 0.948 1.011 1.020 1.01416–17 1.049 1.013 1.013

0.92917–18 1.086 1.009
1.015 1.01918–19 1.004 1.01319–20
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Table 19 Multiplicative scaling
factors needed to obtain the
prompt ψ(2S) differential
cross-sections from unpolarised
cross-section measurements at
7 TeV as reported in Table 4
under the assumption of fully
transverse polarisation
(α = +1)

pT (GeV/c) 2.0 < y < 2.5 2.5 < y < 3.0 3.0 < y < 3.5 3.5 < y < 4.0 4.0 < y < 4.5

3.5–4 1.087 1.288 1.164 1.111 1.079

4–5 1.435 1.260 1.157 1.103 1.067

5–6 1.397 1.231 1.156 1.102 1.066

6–7 1.362 1.220 1.144 1.102 1.071

7–8 1.305 1.186 1.142 1.097 1.072

8–9 1.287 1.184 1.114 1.088 1.074

9–10 1.250 1.150 1.124 1.086 1.071

10–11 1.350 1.218 1.188 1.162 1.106

11–12 1.347 1.209 1.091 1.143 1.085

12–13 1.246 1.222 1.127 1.139 1.103

13–14 1.253 1.162 1.181 1.115 1.057

Table 20 Multiplicative scaling
factors needed to obtain the
prompt ψ(2S) differential
cross-sections from unpolarised
cross-section measurements at
7 TeV as reported in Table 4
under the assumption of fully
longitudinal polarisation
(α = −1)

pT (GeV/c) 2.0 < y < 2.5 2.5 < y < 3.0 3.0 < y < 3.5 3.5 < y < 4.0 4.0 < y < 4.5

3.5–4 0.858 0.673 0.784 0.847 0.893

4–5 0.583 0.697 0.792 0.854 0.908

5–6 0.596 0.716 0.788 0.851 0.906

6–7 0.616 0.726 0.802 0.851 0.893

7–8 0.627 0.734 0.780 0.837 0.874

8–9 0.647 0.734 0.814 0.850 0.877

9–10 0.676 0.769 0.808 0.846 0.873

10–11 0.743 0.821 0.833 0.868 0.896

11–12 0.745 0.845 0.940 0.879 0.882

12–13 0.769 0.820 0.874 0.861 0.908

13–14 0.802 0.872 0.834 0.922 0.947

Table 21 Multiplicative scaling
factors needed to obtain the
prompt ψ(2S) differential
cross-sections from unpolarised
cross-section measurements at
7 TeV as reported in Table 4
under the assumption of 20 %
longitudinal polarisation
(α = −0.2), corresponding to a
conservative limit of the ψ(2S)

polarisation measured at
7 TeV [54]

pT (GeV/c) 2.0 < y < 2.5 2.5 < y < 3.0 3.0 < y < 3.5 3.5 < y < 4.0 4.0 < y < 4.5

3.5–4 0.980 0.944 0.967 0.979 0.986

4–5 0.922 0.949 0.969 0.980 0.989

5–6 0.923 0.951 0.967 0.979 0.988

6–7 0.928 0.953 0.969 0.978 0.986

7–8 0.917 0.945 0.957 0.969 0.978

8–9 0.928 0.944 0.963 0.972 0.980

9–10 0.930 0.953 0.963 0.969 0.977

10–11 1.013 1.014 1.007 1.017 1.008

11–12 1.016 1.023 1.020 1.013 0.988

12–13 0.991 1.013 1.003 1.001 1.010

13–14 1.011 1.018 1.003 1.022 1.005
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