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1 Introduction

Calabi-Yau manifolds have been studied intensively by physicists and mathematicians over

the last several decades, since the first realization that these geometric spaces can be used

to construct supersymmetric compactifications of string theory [1]. Despite much work,

the question of whether the number of distinct topological types of Calabi-Yau threefolds is

finite or infinite [2] is still unresolved. The special class of Calabi-Yau manifolds that have

an elliptic or genus one fibration, on the other hand, is better understood mathematically

and it has been proven that there are a finite number of distinct Calabi-Yau threefolds of

this type, up to birational equivalence [3]. In recent years, elliptic Calabi-Yau manifolds

have been studied in great detail by physicists due to their role in the nonperturbative

formulation of string theory known as F-theory [4–6]. Using a combination of methods and

insights from mathematics and physics, and building on Grassi’s results for minimal models

of the bases that support elliptic fibrations [7], we have a good global understanding of

the connected space of elliptic Calabi-Yau threefolds, the bounds on their Hodge numbers,

and a systematic approach to constructing such threefolds that can be used to essentially

enumerate all elliptic Calabi-Yau threefolds at large h2,1, though there are technical issues

that make a complete enumeration at smaller values of h2,1 currently out of reach (see

e.g. [8–13]).

There is a growing body of evidence that most known Calabi-Yau threefolds are in

fact elliptic or genus one fibered (at least up to birational equivalence). Some of the

largest known sets of Calabi-Yau threefolds are the 7,890 complete intersection Calabi-

Yau (CICY) threefolds [14], more generalized complete intersection Calabi-Yaus [15], and

the Calabi-Yau threefolds constructed as hypersurfaces in toric varieties associated with
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the 473.8 million reflexive 4D polytopes [16]. It was shown in [17, 18] that 99.3% of the

CICY threefolds have an “obvious” genus one or elliptic fibration, and that many of these

threefolds admit many such fibrations; similar results hold for discrete quotients of the

CICY threefolds [19]. It was shown in [20] that many polytopes in the Kreuzer-Skarke (KS)

database [21] have a structure compatible with a K3 fibration. A systematic construction of

elliptic CY threefolds at large Hodge numbers over toric base surfaces [22] showed that all

Hodge number pairs in the KS database with h1,1 ≥ 240 or h2,1 ≥ 240 are associated with

such elliptic Calabi-Yau threefolds. A systematic direct study of the fibration structure

of the polytopes in the KS database was initiated in [23]; in that paper we found that all

polytopes associated with Calabi-Yau threefolds having h1,1 ≥ 150 or h2,1 ≥ 150 have a

reflexive 2D subpolytope, indicating a structure compatible with the presence of an elliptic

or genus one fibration for the associated CY threefolds. In that paper we also found

empirically that at small h1,1, the fraction of 4D polytopes lacking such a reflexive 2D

subpolytope drops roughly as 2−h
1,1

, and we gave some analytic arguments for why these

results may naturally be expected.

In this paper we complete the program begun in [23], and we report on the results of a

complete analysis of all 473.8 million reflexive 4D polytopes for reflexive 2D subpolytopes.

The upshot of the analysis is that the Calabi-Yau threefolds that correspond to the toric

hypersurface construction seem to be dominated by those that are elliptic or genus one

fibered in some phase, so that in fact most known Calabi-Yau threefolds are birationally

equivalent to one with an elliptic or genus one fibration. Section 2 contains a description

of the methodology used and a brief discussion of how the existence of a reflexive 2D

subpolytope is related to the existence of an elliptic or genus one fibration of the associated

Calabi-Yau threefolds. Section 3 describes the results of the subpolytope analysis, and

section 4 contains a summary of the results and discussion.

2 Reflexive subpolytopes and fibrations

The basic question we consider here is which reflexive 4D polytopes have 2D subpolytopes

that pass through the origin and hence act as fibers. From the work of Batyrev [24],

we know that a hypersurface in a toric variety associated with a reflexive 4D polytope

generically gives a smooth Calabi-Yau threefold; thus, a reflexive 2D subpolytope ∇2 of

a reflexive 4D polytope ∇ suggests the presence of a genus one or elliptic fibration for a

corresponding Calabi-Yau threefold [25].

The problem of identifying 2D subpolytopes from the combinatorial data of a 4D

polytope is described and discussed in some detail in [23, 26, 27]. We use here the notation

and conventions of [22, 23], to which the reader is referred for further background and

references.

2.1 Methodology

The algorithm that we have used to identify the existence of a 2D reflexive subpolytope

is a streamlined version of the algorithms discussed in [23, 26, 27]. The basic idea is to
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determine whether any pair of rays in ∇∩Z4 generate a 2D sublattice of Z4 that intersects

∇ in a set of points that form a 2D polytope containing the origin as an interior point.

We use as starting data the set of lattice points L = ∇∩Z4 ⊂ ∇ and the set of vertices

V of the dual polytope ∆ = ∇∗ = {w : 〈w, p〉 ≥ −1, ∀p ∈ ∇}. For each lattice point p ∈ L,

we compute

s(p) = maxv∈V 〈p, v〉 . (2.1)

We then make a list of all the points in L with s(p) ∈ {1, 2, 3}

Si = {p ∈ L : s(p) = i} . (2.2)

The purpose of this set of lists is to reduce the number of computations needed to check

for the presence of the 2D subpolytope; the data in S1, S2, S3 is all that is needed to check

whether such a subpolytope exists. This reduces the computational cost of the analysis

substantially when the number of points in L is large.

There are 16 distinct 2D reflexive polytopes, discussed in the physics context in [27–

30]. For each of these reflexive polytopes, it is straightforward to check whether one of the

following conditions holds:

I. ∃x, y ∈ S1 : x 6= ±y and −x,−y ∈ S1

II. ∃x, y ∈ S2 : x 6= y and (−(x+ y) ∈ S1 or −(x+ y) ∈ S2)

III. ∃x, y ∈ S3 : x 6= y and −(x+ y)/2 ∈ S1.

In particular, with the standard ordering of the 16 fiber polytopes (used in e.g. [27] and [23]),

condition I holds for fibers 2, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16; of the fibers where condition I

fails, condition II holds for fibers 1, 3, 6, 10; and condition III holds for the sole remaining

case, fiber 4. By simply checking these conditions for the Si for each polytope, we can

ascertain whether or not there is a reflexive 2D subpolytope ∇2 of ∇. The fact that it is

necessary for one of these conditions to hold for there to exist a reflexive 2D subpolytope

follows from the explicit enumeration of cases given above. The fact that it is sufficient for

these conditions to hold follows from the fact that each of the three conditions guarantees

the presence of a set of lattice points in L that form a convex 2D polytope containing the

origin in the interior; in particular, if we define a basis so that x, y are the vectors (1, 0)

and (0, 1) then in addition to x, y condition I implies that (−1, 0) and (0,−1) are in L and

condition II implies that (−1,−1) is in L, while condition III implies that there is a basis

where x = (1, 1), y = (1,−1) and (−1, 0) are in L. Since the origin is the only point in the

interior of ∇, it must also be the only lattice point in the interior of L, so the convex hull

of the set of points in L must form a 2D reflexive subpolytope.

Note that once the existence of a 2D subpolytope∇2 is determined, it is straightforward

to identify the full set of lattice points from ∇ that are in ∇2 as those that lie in the plane

spanned by the pair of points x, y that satisfy one of the above 3 conditions. The specific

fiber type of ∇2 is then uniquely determined by the numbers of points ni = |∇2 ∩ Si| for

i = 1, . . . , 5. For a determination of fiber types it is therefore helpful to initially determine

the sets (2.2) for i = 1, . . . , 5, and then we only need to compute which of these lattice
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Fiber number (n1, . . . , n5)

1 (0, 3, 0, 0, 0)

2 (4, 0, 0, 0, 0)

3 (2, 2, 0, 0, 0)

4 (2, 0, 2, 0, 0)

5 (4, 1, 0, 0, 0)

6 (2, 2, 1, 0, 0)

7 (6, 0, 0, 0, 0)

8 (4, 1, 1, 0, 0)

9 (4, 2, 0, 0, 0)

10 (2, 2, 1, 0, 1)

11 (4, 2, 1, 0, 0)

12 (6, 1, 0, 0, 0)

13 (4, 2, 2, 0, 0)

14 (6, 2, 0, 0, 0)

15 (8, 0, 0, 0, 0)

16 (6, 3, 0, 0, 0)

Table 1. Distinguishing values of ni = |∇2 ∩ Si| for the 16 fibers.

points lie in the plane spanned by x, y. The values of ni associated with each of the 16 fiber

types are listed in table 1. This information is also contained in appendix A of [31]; the

numbers associated with the lattice points in each reflexive 2D polytope there are ni + 1

in this notation. While it is thus straightforward in any given case to determine the fiber

type, we have not collected this information in the full database study carried out here,

and in most of this paper we focus simply on the binary question for each 4D reflexive

polytope of whether there is a 2D reflexive subpolytope fiber. A more detailed analysis of

the fiber types at large and small Hodge numbers was carried out in [23].

2.2 Implementation

To carry out the calculation over all 473.8 million reflexive 4D polytopes, we first organized

the information in the KS database [21] in files indexed by the Hodge numbers of the

associated Calabi-Yau threefolds. We then used the palp software package to compute the

set of lattice points L ⊂ ∇ and dual vertices V ⊂ ∆ for each polytope. The core algorithm

described in the previous subsection to identify 2D reflexive subpolytopes was implemented

in the language Julia, which combines ease of programming with efficiency through just-

in-time compiling. Checking all 473.8 million cases took roughly 4 days on a single core of

a Linux laptop. The Julia code is available at [32].

2.3 Fibrations of polytopes versus toric varieties

While identifying a reflexive 2D subpolytope of the 4D polytope ∇ suggests the presence of

an elliptic or genus one fibration for the associated toric varieties, there are some subtleties

in making this connection precise.1 While some analyses of fibration structures have focused

1Thanks to Antonella Grassi for emphasizing the importance of these issues.

– 4 –



J
H
E
P
0
3
(
2
0
2
0
)
1
7
2

on the structure of the polytope alone — sometimes in the language of “tops” [28, 33] —

as mentioned in [25] and discussed in more detail in [26] not every triangulation of a 4D

polytope ∇ with a 2D reflexive subpolytope ∇2 leads to a toric morphism that maps the

subpolytope ∇2 to the origin of the toric fan for the natural corresponding 2D base. A

condition stated in [25] is that the base B of such a fibration should be identified by

constructing the 2D toric variety from the set of primitive rays in the image of ∇ under

the projection that takes ∇2 → 0. Indeed, in many cases, such as the “standard stacking”

polytopes corresponding to many generic and (Tate) tuned Weierstrass models over a

given base, one can use the structure of the polytopes and tops to determine the base

and additional tuned Kodaira singularity types to directly construct a Weierstrass model

for an elliptic fibration over the given base, thus identifying a Calabi-Yau threefold that

is elliptically fibered and has the requisite Hodge numbers associated with the polytope,

circumventing the explicit construction of fans compatible with a toric morphism from ∇
to ∇2 [22]. Particularly for more complicated fibrations with general fibers and twists,

however, there is no systematic methodology for implementing such a direct construction;

and in any case, it is desirable to know in general which triangulations of ∇ are compatible

with the fibration structure, and whether in fact such triangulations always exist.

Some of these questions regarding triangulations will be addressed in detail else-

where [34, 35]; here we simply summarize a few key points. First, for a given polytope, in

addition to triangulations compatible with a toric morphism to the base associated with the

full set of rays in the image of the projection, there can also be triangulations compatible

only with a toric morphism to a base with smaller h1,1, which are associated with non-flat el-

liptic fibrations.2 An example is given by the “standard stacking” polytope associated with

the generic elliptic fibration over the base F1 with the fiber P2,3,1. The vertices of this poly-

tope are (0, 0; 1, 0), (0, 0; 0, 1), (u
(B)
i ;−2,−3), where u

(B)
i = (0, 1), (1, 0), (0,−1), (−1,−1)

are the vertices of the polytope associated with the base F1. The resulting polytope ∇
has triangulations associated with two different Calabi-Yau geometries related by a flop.

The part of these triangulations associated with the 2D face B ∼= F1 of ∇ is shown in

figure 1. The first triangulation leads to a toric morphism associated with an elliptic fi-

bration over F1. The second triangulation, on the other hand, corresponds to a non-flat

toric morphism giving a non-flat elliptic fibration in which the divisor associated with v3 is

contracted to a point in the toric base P2. For bases with larger 2D polytopes, associated

with Calabi-Yau threefolds with larger h1,1, we expect many more non-flat elliptic and

genus one fibrations of this type to arise from triangulations of this kind. In other cases,

triangulations are associated with toric morphisms to a singular base, where some rays are

not included in the base. Furthermore, there can be cases where a triangulation is such

that there is no toric morphism to any base associated with the projection of ∇2 to the

origin, and there are cases where there is no triangulation at all satisfying the usual (fine,

regular, star) conditions that is compatible with such a toric morphism. Nonetheless, we

can demonstrate that whenever there is a reflexive subpolytope ∇2 ⊂ ∇ there is always a

2Non-flat elliptic fibrations were encountered and described in this toric context in [26, 27]; non-flat

fibrations were and analyzed in more general physics and F-theory contexts in [17, 22, 36–44].
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Figure 1. Two triangulations of the 2D face corresponding to the base resulting from distinct

Calabi-Yau phase triangulations of the 4D polytope associated with the generic elliptic fibration

over the Hirzebruch surface F1; the first triangulation gives a toric variety with a toric morphism

to the base F1, while the second triangulation gives a variety with a non-flat toric morphism to P2.

triangulation of ∇ giving a toric variety with a fan Σ compatible with a toric morphism

π : Σ → ΣBs , where Bs is the (generally singular) toric base defined by taking only the

primitive rays associated with the projection of certain vertices of the polytope ∇ under

the map π : ∇2 → 0 (in many cases in practice the base can be taken to be a refinement B′

of Bs). This triangulation can be constructed by starting with a triangulation of the 4D

polytope defined by ∇2 and a set of points associated with (necessarily primitive) vertices

ui of ∇ that project to the vertices of π(∇), using the natural orderings of rays in ∇2

and π(∇). The resulting toric variety is generally highly singular, and the fan can then

be refined by including the remaining lattice points of ∇ in an arbitrary refinement of the

original singular triangulation; this final triangulation respects the toric morphism to Bs

(or a refinement B′ thereof), and gives a genus one or elliptic fibration of the resulting toric

variety. The fan constructed in this way, however, generally does not give a triangulation

of the full polytope ∇ that satisfies the star condition (though it is a star triangulation of a

non-convex polytope contained within ∇), so that the resulting Calabi-Yau phase does not

directly fit into the Batyrev framework and requires the more general structure of “vex”

polytopes for toric varieties that are not weak Fano developed in [45]. The need to include

ambient toric varieties where the anticanonical class has a base locus is related to the pres-

ence of “non-Higgsable clusters” [46], associated with rigid subvarieties of the Calabi-Yau

hypersurface that are present everywhere in the moduli space of that phase. The presence

of a triangulation of this type guarantees a Calabi-Yau phase with an elliptic or genus one

fibration, although particularly in higher dimensions there can be singularities without a

Calabi-Yau resolution [47, 48]. The issue of regularity, corresponding to positivity in the

Kähler cone, must also be addressed. We leave a more detailed explication of these issues to

future work; the upshot of this discursion is that the presence of a reflexive 2D subpolytope

∇2 ⊂ ∇ is generally associated with at least one triangulation giving an elliptic or genus

one fibration of a corresponding toric variety.

We should also emphasize that while the presence of a reflexive 2D subpolytope seems

in general to be sufficient for a genus one or elliptic fiber of an associated Calabi-Yau

threefold, this condition is not necessary. In studying subpolytopes of ∇, we are only

finding the “obvious” fibers that are encoded in a natural way in the toric structure. There

can also be fibrations that are not represented torically, which could be analyzed by a more

complete treatment of the structure of the Calabi-Yau threefold using the full set of triple

intersection numbers and Kähler cone information, as was done for CICY threefolds in [18].
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3 Results

3.1 Fiber analysis of all reflexive 4D polytopes

Extending the work initiated in [23], we have checked all 473.8 million reflexive 4D polytopes

in the Kreuzer-Skarke database [21] for the presence of at least one reflexive 2D subpolytope

passing through the origin. We find that all but 29,223 (i.e. 99.994%) of the 4D reflexive

polytopes have such a fiber.

The 1,395 distinct Hodge numbers of the 29,223 cases without reflexive 2D subpoly-

topes are shown in red in figure 2. The largest h1,1 for a Calabi-Yau threefold associated

with a non-fibered 4D polytope comes from the case with Hodge numbers (140, 62), as pre-

viously identified in [23]. The next-largest values of h1,1 come from polytopes associated

with Calabi-Yau threefolds having Hodge numbers

(114, 60), (113, 61)× 2, (112, 62), (111, 63)× 2, (108, 62)× 2, (99, 63)× 2, . . . (3.1)

It is very interesting that the polytopes corresponding with large h1,1 that do not have

2D reflexive subpolytopes have Hodge numbers h2,1 in the narrow range 60—63; the first

exception as h1,1 decreases has the Hodge numbers (95, 55), and for all h1,1 > 61 the non-

fibered cases have h2,1 in the range 48—65. It would be interesting to understand better

whether this family of polytopes has some common structure associated with the lack of

an elliptic or genus one fibration for the corresponding toric varieties. Indeed, there are

similarities between some of these cases: in particular, for example, the polytope giving

Hodge numbers (114, 60) has only a slight difference in one vertex from one of the polytopes

giving Hodge numbers (113, 61); we leave a more detailed analysis of common structure in

these polytopes for further work, however.

The distribution of polytopes without a 2D reflexive subpolytope is graphed in figure 3,

and compared to the total number of polytopes. While the total number of reflexive 4D

polytopes at a given value of h1,1 peaks at h1,1 = 27 (with 16.7 million reflexive 4D

polytopes at this value of h1,1), the number without a reflexive 2D subpolytope peaks at

h1,1 = 13 (with 1,767 cases).

We have made available the results of our analysis at [32], where the list of 29,223 4D

reflexive polytopes without a 2D reflexive subpolytope can be found in the format of [21].

3.2 Asymptotics at small h1,1

In [23], a heuristic argument was given for why the fraction of Calabi-Yau threefolds with-

out an elliptic or genus one fiber may decrease exponentially, and it was noted that at

small values of h1,1 the empirically computed value of this fraction from the KS database

decreases roughly as 2−h
1,1

. The heuristic argument is based on the assumption that the

triple intersection numbers of the Calabi-Yau are essentially random and that the Kähler

cone is a generalized quadrant defined by conditions xi ≥ 0 on the coefficients of the Kähler

class in a natural basis of effective divisors. With the full set of data, we see that while this

is not a bad approximation at small h1,1, the tail of the distribution is considerably fatter;

indeed, as pointed out in [23], the distribution must drop off less rapidly than 2−h
1,1

for the
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Figure 2. The Hodge numbers of the Calabi-Yau threefolds associated with 4D reflexive polytopes

lacking a 2D reflexive subpolytope (red), plotted over the Hodge numbers of the full set of toric

hypersurface Calabi-Yau threefolds (gray).
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Figure 3. The distribution of 4D reflexive polytopes without a 2D reflexive subpolytope fiber (red)

compared to the total number of 4D reflexive polytopes (blue) as a function of Hodge number h1,1,

and the fraction without fibers (gray). Note that the vertical axis is normalized differently for each

of the three curves.
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Figure 4. Illustration of the “fat tail” in the number of 4D reflexive polytopes without 2D reflexive

toric fibers (red), compared to exponentially suppressed prediction (gray) based on heuristic analysis

of elliptic fibrations for Calabi-Yau threefolds from [23].

large h1,1 examples such as (140, 62) to lack fibers. The tail of the observed distribution

is compared to the prediction based on the asymptotic estimate c · 2−h1,1
fit to the small

values of h1,1 in figure 4.

It is an interesting question for further work to determine why the observed distribution

drops off less quickly than the exponential estimate. One possibility is that the toric

structure is simply missing the elliptic/genus one fibration structure in many of the cases

with larger values of h1,1. While the presence of a reflexive 2D subpolytope is an indicator

for an elliptic or genus one fibration for at least one phase of the associated Calabi-Yau

threefold, such a subpolytope is not a necessary condition for a fibration. A fibration

of an associated Calabi-Yau threefold may occur in a way that is simply not captured

by the toric geometry of the ambient space into which the Calabi-Yau is embedded as a

hypersurface. A similar situation was encountered in the analysis of the CICY Calabi-

Yau threefolds in [18]; while many of the CICYs have “obvious” fibrations that can be

seen in the structure of the defining matrices, there are also non-obvious fibrations that

can be identified by a more careful analysis of the triple intersection numbers and Kähler

cone of the Calabi-Yau. One might similarly expect that many non-toric fibrations may

be present for the cases for which we have not identified a reflexive 2D subpolytope; this

would be interesting to investigate further. Another possibility is that there is an error

coming from the assumption that the Kähler cone can be approximated as a generalized

quadrant. Indeed, a recent analysis [49] suggests that at large h1,1 the Kähler cone becomes

progressively more narrow. This may lead to a situation that makes it easier to avoid having

an elliptic or genus one fibration as h1,1 increases than the naive argument leading to the

exponential decrease would suggest. Nonetheless, even though the tail of the distribution

is a bit fatter than the naive exponential argument suggested, the drop-off is still relatively

quick and the total number of reflexive 4D polytopes without a reflexive 2D subpolytope

is really quite small.
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3.3 Mirror symmetry

One interesting application of this analysis may be to mirror symmetry. It was pointed out

in [31] that in many cases where a polytope and its dual both admit a reflexive 2D subpoly-

tope the mirror symmetry between the associated Calabi-Yau threefolds essentially factor-

izes between the fiber and the base. Since we have found fibers for most reflexive 4D poly-

topes, it suggests that this factorization may be relevant for most Calabi-Yau threefolds.

One interesting class of cases for further study are those where one side of a mirror pair

is elliptic or genus one fibered and the other is not. For example, the mirror quintic with

Hodge numbers (101, 1) has a fibration, while the quintic (like all Calabi-Yau threefolds

with h1,1 = 1) cannot have an elliptic or genus one fiber. One might hope to connect

non-fibered threefolds like the quintic with the large connected set of elliptic Calabi-Yau

threefolds through a transition, which may be related to how the mirror quintic is connected

to other elliptic Calabi-Yau threefolds.

It is also interesting to consider cases where neither the polytope nor its mirror admit

a manifest toric fibration. A systematic check shows that there are only 24 such polytopes

∇ in the KS database that do not have a 2D reflexive subpolytope either for ∇ or its dual

∆. These 24 polytopes have the Hodge numbers

(43, 59), (44, 44), (63, 67), (64, 66), (65, 65) . (3.2)

It would be interesting to understand better whether there is some common structure

underlying these polytopes and their associated Calabi-Yau threefolds, and whether they

completely lack elliptic/genus one fibers or such fibers are simply not visible torically.

4 Discussion

We have carried out a systematic analysis of the full database of 473.8 million reflexive 4D

polytopes and found that fewer than 30,000 of these lack a 2D reflexive subpolytope. It

seems that the 99.994% of polytopes with a 2D reflexive fiber correspond to Calabi-Yau

threefolds that are birationally equivalent to a Calabi-Yau threefold phase that has a genus

one or elliptic fibration, though some technical aspects of the triangulations associated with

the fibered phase of some polytopes remain to be resolved. This gives strong evidence sup-

porting the hypothesis that most Calabi-Yau threefolds are elliptic or genus one fibered, up

to birational equivalence; this in turn, if true, would indicate that the number of birational

equivalence classes of Calabi-Yau threefolds is finite.

The apparent predominance of elliptic and genus one fibrations among Calabi-Yau

threefolds has a number of interesting implications for physics. In particular, this has

implications for the role of F-theory in understanding the global set of string compactifi-

cations. For 6D supergravity theories, F-theory seems to give a good global description of

the space of possible string compactifications, and essentially all known string compacti-

fications to N = 1 6D supergravity theories have a dual description in F-theory. This is

not true in 4D, however; for example, heterotic compactification on a Calabi-Yau threefold

only has a known F-theory dual description when the Calabi-Yau threefold is elliptic or

– 10 –
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genus one fibered (see e.g. [50]). If, however, indeed most Calabi-Yau threefolds have such

a fibration, then most heterotic compactifications have an F-theory dual description. Thus,

the results of this paper contribute evidence to the hypothesis that F-theory gives a very

general representative sample of N = 1 4D string theory vacua.

The analysis here of toric hypersurface Calabi-Yau threefolds and the analysis in [17,

18] of CICY threefolds give similar results for the overwhelming dominance of elliptic and

genus one fibered Calabi-Yau threefolds for these large families. It would be interesting

to extend this kind of analysis to other known Calabi-Yau threefolds that do not fit in

these two families. A variety of other constructions can give other Calabi-Yau threefolds,

particularly at small Hodge numbers (see [51] for a review), and it would be interesting

to analyze the fibration structure of these other constructions. It would also be a good

check on these results to consider the fibration structure of more general complete intersec-

tions in toric varieties; the fibers that may arise in such constructions were systematically

analyzed in [52].

The analysis of this paper may be helpful in various systematic studies of Calabi-

Yau threefolds and their properties that are relevant for physics, since there are many

questions that are easier to answer for elliptic and genus one fibered Calabi-Yau threefolds

than for general Calabi-Yau threefolds (see e.g. [53]). It would also be interesting to

understand better the relatively small class of 4D reflexive polytopes without a reflexive

2D subpolytope; these correspond to Calabi-Yau threefolds without an (obvious) elliptic

or genus one fiber, which seem in light of this analysis to form a rather special subset of

the set of known Calabi-Yau threefolds.

One can ask similar questions about elliptic and genus one fibration structure for

Calabi-Yau fourfolds. In [54] it was shown that the fraction of CICY Calabi-Yau fourfolds

that has an obvious elliptic or genus one fibration (99.95%) is even larger than the fraction

of CICY Calabi-Yau threefolds with this property (99.3%). There is no complete analysis of

reflexive 5D polytopes, though there are some partial results in this direction [55] and some

analysis of the fibration structure of these polytopes was carried out in [26]. In fact, direct

construction of toric threefold bases that support elliptic and genus one toric hypersurface

Calabi-Yau fourfolds shows that the number of such bases alone is extraordinarily large,

on the order of 103000 [48, 56, 57]. Thus, the number of elliptic Calabi-Yau fourfolds that

can be directly constructed in this way overwhelmingly exceeds any other class of known

constructions for Calabi-Yau fourfolds. It is thus the case that the vast majority of known

constructions of Calabi-Yau fourfolds are automatically elliptic or genus one fibered.
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[39] M. Cvetič, A. Grassi, D. Klevers and H. Piragua, Chiral four-dimensional F-theory

compactifications with SU(5) and multiple U(1)-factors, JHEP 04 (2014) 010

[arXiv:1306.3987] [INSPIRE].

[40] M. Dierigl, P.-K. Oehlmann and F. Ruehle, Global tensor-matter transitions in F-theory,

Fortsch. Phys. 66 (2018) 1800037 [arXiv:1804.07386] [INSPIRE].

– 13 –

https://doi.org/10.1007/s00220-013-1802-2
https://arxiv.org/abs/1207.4792
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.4792
http://hep.itp.tuwien.ac.at/~kreuzer/CY.html
https://doi.org/10.1007/JHEP02(2019)087
https://arxiv.org/abs/1805.05907
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.05907
https://doi.org/10.1007/JHEP03(2019)014
https://arxiv.org/abs/1809.05160
https://inspirehep.net/search?p=find+EPRINT+arXiv:1809.05160
https://doi.org/10.1016/S0393-0440(97)00059-4
https://doi.org/10.1016/S0393-0440(97)00059-4
https://arxiv.org/abs/hep-th/9701175
https://inspirehep.net/search?p=find+EPRINT+hep-th/9701175
https://arxiv.org/abs/hep-th/0502138
https://inspirehep.net/search?p=find+EPRINT+hep-th/0502138
https://doi.org/10.1007/JHEP01(2013)016
https://arxiv.org/abs/1110.4883
https://inspirehep.net/search?p=find+EPRINT+arXiv:1110.4883
https://doi.org/10.4310/ATMP.2003.v7.n2.a1
https://arxiv.org/abs/hep-th/0303218
https://inspirehep.net/search?p=find+EPRINT+hep-th/0303218
https://doi.org/10.1007/JHEP12(2013)069
https://arxiv.org/abs/1306.0577
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.0577
https://doi.org/10.1007/JHEP01(2015)142
https://doi.org/10.1007/JHEP01(2015)142
https://arxiv.org/abs/1408.4808
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.4808
https://doi.org/10.1007/JHEP04(2019)083
https://doi.org/10.1007/JHEP04(2019)083
https://arxiv.org/abs/1811.04947
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.04947
http://ctp.lns.mit.edu/wati/data.html
https://doi.org/10.1016/S0550-3213(96)00410-5
https://doi.org/10.1016/S0550-3213(96)00410-5
https://arxiv.org/abs/hep-th/9603170
https://inspirehep.net/search?p=find+EPRINT+hep-th/9603170
https://doi.org/10.1088/1126-6708/2002/06/014
https://arxiv.org/abs/hep-th/0009228
https://inspirehep.net/search?p=find+EPRINT+hep-th/0009228
https://doi.org/10.1007/JHEP04(2013)061
https://arxiv.org/abs/1212.2949
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.2949
https://doi.org/10.1103/PhysRevD.88.046005
https://arxiv.org/abs/1303.5054
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.5054
https://doi.org/10.1007/JHEP04(2014)010
https://arxiv.org/abs/1306.3987
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.3987
https://doi.org/10.1002/prop.201800037
https://arxiv.org/abs/1804.07386
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.07386


J
H
E
P
0
3
(
2
0
2
0
)
1
7
2
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