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Abstract: A search for narrow and broad resonances with masses greater than 1.8 TeV

decaying to a pair of jets is presented. The search uses proton-proton collision data at√
s = 13 TeV collected at the LHC, corresponding to an integrated luminosity of 137 fb−1.

The background arising from standard model processes is predicted with the fit method

used in previous publications and with a new method. The dijet invariant mass spectrum is

well described by both data-driven methods, and no significant evidence for the production

of new particles is observed. Model independent upper limits are reported on the production

cross sections of narrow resonances, and broad resonances with widths up to 55% of the

resonance mass. Limits are presented on the masses of narrow resonances from various

models: string resonances, scalar diquarks, axigluons, colorons, excited quarks, color-octet

scalars, W′ and Z′ bosons, Randall-Sundrum gravitons, and dark matter mediators. The

limits on narrow resonances are improved by 200 to 800 GeV relative to those reported in

previous CMS dijet resonance searches. The limits on dark matter mediators are presented

as a function of the resonance mass and width, and on the associated coupling strength

as a function of the mediator mass. These limits exclude at 95% confidence level a dark

matter mediator with a mass of 1.8 TeV and width 1% of its mass or higher, up to one

with a mass of 4.8 TeV and a width 45% of its mass or higher.
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1 Introduction

New particles that decay to pairs of jets and appear as dijet resonances arise in a variety

of models. String resonances [1, 2] originate from the Regge excitations of quarks and

gluons. Scalar diquarks [3] are predicted by a grand unified theory based on the E6 gauge

symmetry group. Mass-degenerate excited quarks (q∗) [4, 5] appear in quark compositeness

models. Axigluons and colorons, axial-vector and vector particles, are expected in the

chiral color [6, 7] and the flavor-universal coloron [7, 8] models, respectively. Color-octet

scalars [9] appear in dynamical electroweak (EW) symmetry breaking models, such as

technicolor. New gauge bosons (W ′ and Z′) can exist with standard model (SM) like or

leptophobic couplings [10]. Randall-Sundrum (RS) gravitons are predicted in the RS model

of extra dimensions [11]. Dark matter (DM) mediators arise from an interaction between

quarks and DM [12–15]. The natural width, Γ, of a new particle increases with its coupling

strength to other states, and may vary from narrow to broad, as defined in comparison to

the experimental resolution.

This paper describes a model-independent search for a narrow or broad s-channel dijet

resonance with a mass above 1.8 TeV, in proton-proton (pp) collisions at
√
s = 13 TeV. This

search uses data corresponding to an integrated luminosity of 137 fb−1 collected in 2016–

2018 with the CMS detector at the LHC. Similar searches have been published previously by

the ATLAS and CMS Collaborations at
√
s = 13 TeV [16–21], 8 TeV [22–25], and 7 TeV [26–

32] using strategies reviewed in ref. [33]. Results of the search are interpreted using as
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benchmarks the models described above. As no excess above the SM was observed, we

set limits on the production cross sections of new particles decaying to the parton pairs

qq (or qq), qg, and gg. We then use these limits to constrain the benchmark models,

with the same choices of parameters as those that were used in the most recent CMS

search [17], which used data corresponding to an integrated luminosity of 36 fb−1. In the

color-octet scalar model, the squared anomalous coupling k2s = 1/2 [34] is used. For the RS

graviton model, the value of the dimensionless coupling k/MPl is chosen to be 0.1, where

k is the curvature scale in the 5-dimensional anti de Sitter space and MPl is the reduced

Planck scale defined as MPl/
√

8π. For the DM mediator, we follow the recommendations

of ref. [15] on model choice and coupling values. We use a simplified model [14] of a spin-1

mediator decaying only to quark-antiquark (qq) and DM particle pairs, with an unknown

mass mDM, and with a universal quark coupling gq = 0.25 and a DM coupling gDM = 1.0.

Similar to past searches, and for dijet mass (mjj) greater than 1.5 TeV, the main back-

ground from quantum chromodynamics (QCD) multijet production is predicted by fitting

the mjj distribution with an empirical functional form. For mjj > 2.4 TeV, a new data-

driven method is introduced, which predicts the background from a control region where

the pseudorapidity separation of the two jets, |∆η|, is large. This new “ratio method”

yields smaller systematic uncertainties when performed in the same dijet mass range as

the “fit method”, and the sensitivity for broad resonance searches is improved by up to a

factor of two depending on the resonance width and mass. In addition, the total integrated

luminosity for this search is roughly a factor of four larger than that used by the previous

CMS search [17], so the sensitivity of both narrow and broad resonance searches has also

increased by up to an additional factor of two.

2 The CMS detector

A detailed description of the CMS detector and its coordinate system, including definitions

of the azimuthal angle φ and pseudorapidity η, is given in ref. [35]. The central feature

of the CMS apparatus is a superconducting solenoid of 6 m internal diameter providing an

axial magnetic field of 3.8 T. Within the solenoid volume are located the silicon pixel and

strip tracker (|η| < 2.4), and the barrel and endcap calorimeters (|η| < 3.0), where these

latter detectors consist of a lead tungstate crystal electromagnetic calorimeter and a brass

and scintillator hadron calorimeter. An iron and quartz-fiber hadron calorimeter is located

in the forward region (3.0 < |η| < 5.0), outside the solenoid volume. The muon detection

system covers |η| < 2.4 with up to four layers of gas-ionization chambers installed outside

the solenoid and embedded in the layers of the steel flux-return yoke.

3 Jet reconstruction and event selection

A particle-flow (PF) event algorithm aims to reconstruct and identify each individual par-

ticle in an event, with an optimized combination of information from the various elements

of the CMS detector [36]. Particles are classified as muons, electrons, photons, charged

hadrons, or neutral hadrons. To reconstruct jets, the anti-kT algorithm [37, 38] is used

– 2 –



J
H
E
P
0
5
(
2
0
2
0
)
0
3
3

with a distance parameter of 0.4, as implemented in the FastJet package [39]. At least

one reconstructed vertex is required. Charged PF candidates not originating from the pri-

mary vertex are removed prior to the jet finding. The candidate vertex with the largest

value of summed physics-object p2T, where pT is the transverse momentum, is taken to be

the primary pp interaction vertex. The physics objects are the jets, clustered using the

jet finding algorithm mentioned above, with the tracks assigned to candidate vertices as

inputs, and the associated missing transverse momentum, taken as the negative vector sum

of the pT of those jets. For jets, an event-by-event correction based on jet area [40, 41] is

applied to the jet energy to remove the estimated contribution from additional collisions

in the same or adjacent bunch crossings (pileup).

Events are selected using a two-tier trigger system [42]. Events satisfying loose jet

requirements at the first-level (L1) trigger are examined by the high-level trigger (HLT)

system. Single-jet triggers that require a jet in the event to exceed a predefined pT threshold

are used. Triggers that require HT to exceed a threshold, where HT is the scalar sum of jet

pT for all jets in the event with pT > 30 GeV and |η| < 3.0, are also used. The HLT requires:

HT > 1050 GeV or at least one jet reconstructed with an increased distance parameter of

0.8 and pT > 550 GeV.

The jet momenta and energies are corrected using calibration factors obtained from

simulation, test beam results, and pp collision data at
√
s = 13 TeV. The methods de-

scribed in ref. [41] are used and all in-situ calibrations are obtained from the current data.

Jets are required to have pT > 30 GeV and |η| < 2.5. The two jets with the largest pT are

defined as the leading jets. Jet identification criteria are applied to remove spurious jets

associated with the calorimeter noise as well as those associated with muon and electron

candidates that are either misreconstructed or isolated [43]. For all jets, we require that

the neutral hadron and photon energies are less than 90% of the total jet energy. For

jets within the fiducial tracker coverage, we additionally require the jet to have nonzero

charged-hadron energy, and electron and muon energies to be less than 90% and 80% of

the total jet energy respectively. An event is rejected if either of the two leading jets fails

these jet identification criteria.

Each of the two leading jets is formed into a “wide jet” using an algorithm introduced

for previous CMS dijet searches in ref. [23]. This wide-jet algorithm, designed for dijet

resonance event reconstruction, reduces the sensitivity of the analysis to gluon radiation

(g) from the final-state partons. The two leading jets are used as seeds and the four-vectors

of all other jets, if within a distance defined as
√

(∆η)2 + (∆φ)2 < 1.1, are added to the

nearest leading jet to obtain two wide jets, which then form the dijet system. The dijet

mass is then found as the invariant mass of the system of these two wide jets. The wide-

jet algorithm thereby collects hard-gluon radiation found near the leading two final-state

partons, in order to improve the dijet mass resolution.

The background from t-channel dijet events has the same angular distribution as

Rutherford scattering, approximately proportional to 1/[1 − tanh(|∆η|/2)]2, which peaks

at large values of |∆η|, the pseudorapidity separation of the two jets. The signal region

(SR) is defined by requiring |∆η| < 1.1, which maximizes the search sensitivity for isotropic
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decays of dijet resonances in the presence of QCD dijet background. For the ratio method

of estimating the background, two control regions (CRs) are defined from events within

1.1 < |∆η| < 2.6. The primary control region, CRhigh, which contains events that satisfy

1.5 < |∆η| < 2.6, is used to predict the main QCD background in the SR. The secondary

control region, CRmiddle, which contains events that satisfy 1.1 < |∆η| < 1.5, is used to

constrain theoretical and experimental systematic uncertainties. The CRhigh is defined

such that it has four to five times more background events than the SR, and at the same

time fewer signal events by a factor of two. The SR is used to search for the presence of

resonances and to estimate the QCD background for the fit method.

Events with mjj > 1.5 TeV are selected offline, for which the |∆η| between the two jets

is in the interval |∆η| < 2.6, where the dijet mass and |∆η| are reconstructed using wide

jets. For this selection the combined L1 trigger and HLT was found to be fully efficient, as

measured using a sample acquired with an independent trigger requiring at least one muon

with pT > 50 GeV at the HLT. The |∆η| < 1.1 requirement makes the trigger efficiency

increase sharply and plateau at a value of 100% for relatively low values of dijet mass. This

is because the jet pT threshold of the trigger at a fixed dijet mass is more easily satisfied at

low |∆η|, as seen by the approximate relation mjj ≈ 2pT cosh(|∆η|/2). Hence, the trigger

efficiency reaches 100% in the SR at a lower value of dijet mass (1.5 TeV) than in both CRs

(2.4 TeV). Therefore the fit method is used for mjj > 1.5 TeV and the ratio method, which

requires data from the CRs with 100% trigger efficiency, is used for mjj > 2.4 TeV.

4 Data and simulation comparison

As the dominant background for this analysis is expected to be the QCD production of

two or more jets, the selected dijet data are compared with QCD predictions. The pre-

dictions come from 270 million simulated events produced by the pythia 8.205 [44] pro-

gram with the CUETP8M1 tune [45, 46] using the parton distribution function (PDF) set

NNPDF2.3LO [47], including a Geant4-based [48] simulation of the CMS detector. The

data-over-simulation ratio of event yields is 0.94. This search uses the signal shapes of nar-

row and broad resonances presented in ref. [17], which are also from a pythia simulation.

The dijet |∆η| separation between the two wide jets is shown in figure 1. The data

distribution shows that dijet production is dominated by t-channel parton exchange, as

predicted by QCD, with a production rate that increases with increasing |∆η|. By contrast,

most s-channel signals from dijet resonances decrease with increasing |∆η|, as the signal

shown does. Figure 1 shows the division of the |∆η| distribution into the signal and control

regions.

Figure 2 shows, for both data and the QCD background, the dijet mass spectra in the

signal and control regions, which fall steeply and smoothly as a function of dijet mass. The

observed dijet mass distributions are compared to the QCD background prediction from

pythia, which simulates processes at leading order (LO).

We inspect the characteristics of the 23 events with mjj > 7 TeV, to determine if they

have the two-jet topology typical of the QCD background and to check for the presence

of detector and reconstruction pathologies, and we find the one unusual event, shown in
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Figure 1. The pseudorapidity separation between the two wide jets for the signal and control

regions. Data (black points) are compared to QCD predictions from the pythia MC with detector

simulation (red histogram) normalized to data. A signal from an RS graviton decaying into a qq

pair is also shown (blue histogram) normalized to data.

figure 3. This event is the one with the second highest dijet mass, 8 TeV, and is unusual

because it is composed of four jets, in two pairs, which are combined into the two wide

jets. It is also unusual because the wide jet mass, equal to the pair mass of the jets, has the

same value 1.8 TeV for each of the two wide jets. The leading wide jet has a pT of 3.5 TeV,

and the other wide jet has a pT of 3.4 TeV. The wide jets are back-to-back in azimuthal

angle (∆φ = 3.1) and nearby in pseudorapidity (|∆η| = 0.4). Each one of the two wide jets

is composed of two jets with cone size 0.4, with pT, η, and φ values as shown in figure 3.

The possibility that this event originates from a resonance decaying to a pair of dijet

resonances has been recently explored in a phenomenology paper [49].
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Figure 2. The dijet mass spectra of the data and pythia simulation in the signal region at low |∆η|
(black points and red histogram), control region at middle |∆η| (triangles and blue histogram), and

control region at high |∆η| (squares and magenta histogram). The simulation is normalized to data.

5 Background prediction methods

In the fit method, utilized here and in previous dijet resonance searches [17, 19–32, 50], the

main background in the SR coming from QCD is parametrized with an empirical function

of the form
dσ

dmjj
=
P0(1− x)P1

xP2+P3 ln (x)
, (5.1)

where x = mjj/
√
s, and P0, P1, P2, and P3 are four free parameters. The search for

resonances proceeds with fitting the dijet mass distribution in the SR using this background

parametrization and the signal template obtained from simulation, a procedure denoted

as a signal plus background fit. In this fit, P0, P1, P2, and P3 are treated as freely
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Figure 3. Three-dimensional display of the event with the second-highest dijet invariant mass of

8 TeV. The display shows the energy deposited in the electromagnetic (red) and hadronic (blue)

calorimeters and the reconstructed tracks of charged particles (green). The grouping of four ob-

served jets into two wide jets (purple) is discussed in the text.

floating nuisance parameters. In order to examine the compatibility of the data with the

background-only description, and the quality of the background prediction, a fit under

only the background hypothesis, denoted as a background-only fit, is also performed. The

chi-square per the number of degrees of freedom of the background-only fit is χ2/NDF =

36.63/38, as shown in figure 5.

The ratio method is a data-driven prediction of the QCD background in the SR,

obtained by multiplying the data in CRhigh by a mass-dependent transfer factor determined

from the simulated angular distribution of QCD dijet production. The transfer factor is

the ratio, R, between the simulated dijet mass distribution of background events in the SR

and CRhigh. The method makes use of the following definitions:

N(i)PredictionSR = R(mjj/
√
s)N(i)Data

CRhigh
,

R(mjj/
√
s) = C(mjj/

√
s)N(i)Sim.

SR /N(i)Sim.
CRhigh

,

where N(i) is the number of events in a given bin, i, of dijet mass and C(mjj/
√
s) is a

correction to the simulated transfer factor. This correction is required because, as seen in

the upper right panel of figure 4, differences are present between data and the simulation

using pythia. These are due to both theoretical and experimental effects. The theoretical

effects arise because the pythia simulation uses a QCD calculation at LO, and higher order

QCD corrections have some effect, and so do missing EW corrections. Figure 4 shows, with

a smaller sample of events, that a better agreement is obtained when these corrections are

included, by generating events at next-to-leading order (NLO) in QCD with powheg
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v2.0 [51–53] and incorporating an estimate of EW effects [54]. Experimental effects include

differences between data and simulation at higher jet pseudorapidities outside the barrel

calorimeter region (|η| >1.3). The higher-order QCD and EW effects, and the differences

between data and simulation at higher jet pseudorapidity values, produce a similar effect

on the shape of the transfer factor, affecting mainly the high dijet mass region. We correct

the simulated transfer factor to include these effects in a data-driven way, using the second

control region, CRmiddle, which is a |∆η| sideband to the SR. This second control region

contains dijet events with values of jet pseudorapidity very similar to those in the SR, and

has a very small signal contamination. As such, the dijet mass distribution of this control

region is very similar to that of the SR, and the differences between data and simulation in

this control region are caused by similar theoretical and experimental effects as observed

in the SR. Hence, this second CR allows the definition of an auxiliary transfer factor, Raux,

shown in eq. (5.2).

Raux(i) = N(i)CRmiddle
/N(i)CRhigh

. (5.2)

We then estimate the correction, C, to the main transfer factor, R, by performing a

fit to the data-over-simulation ratio of Raux (eq. (5.3)):

RData
aux /R

Sim.
aux , (5.3)

with the correction parametrized using a two-parameter empirical function, shown in

eq. (5.4).

C(mjj/
√
s) = p0 + p1(mjj/

√
s)3. (5.4)

The data to simulation ratios of the two transfer factors, Raux and R, along with their

background-only fits, performed separately in order to examine their compatibility, are

shown in the lower panels of figure 4 and agree to within their uncertainty at 95% confidence

level (CL). Specifically, the values of the parameters and their statistical uncertainties from

the background-only fits of the data to simulation ratios of Raux are p0 = 0.977 ± 0.004

and p1 = 2.07 ± 0.33, and of R are p0 = 0.972 ± 0.004 and p1 = 2.52 ± 0.28, and are

entirely compatible. This agreement is expected given that the events in CRmiddle and

SR have, by construction, very similar jet η and mjj distributions. Parameters p0 and p1
are treated as free nuisance parameters in the final signal plus background simultaneous

fit of the SR, CRmiddle and CRhigh, taking the signal contamination in the control regions

into account as described in the next paragraph. The simultaneous background-only fit

yields p0 = 0.973 ± 0.003 and p1 = 2.38 ± 0.23, consistent with the separate background-

only fits shown in figure 4 (lower panels), and with smaller uncertainty. The systematic

uncertainty in the background, for both methods, is automatically evaluated via profiling.

This effectively refits for the optimal values of the background parameters, allowing them

to float freely, for each value of the resonance cross section.

The signal contamination in the CRs depends on the angular distribution of the model.

For the models considered in this search, the signal contamination is small compared to the

background. This is because we search for dijet resonances produced in the s-channel anni-

hilation of two partons, while the QCD background is predominantly a t-channel process.

We assume the signal has the same angular distribution as a vector resonance decaying
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to qq pairs. The signal contamination is taken into account in the simultaneous fit. The

change in extracted signal is negligible if the angular distribution of any of our other bench-

mark models is chosen instead. Our benchmark models include scalars coupled to qq or

gg pairs, fermions coupled to qg pairs, vectors coupled to qq pairs, and tensors coupled to

qq or gg pairs.

Detailed signal injection tests are performed to investigate the potential bias in each

background prediction method, and the bias is found to be negligible when either the

fit method or the ratio method is employed. The signal injection tests are performed as

follows: pseudo-data distributions are generated, varying the parameters of the background

prediction and injecting a signal with a cross section equal to i) zero, ii) the 95% CL

observed limit, and iii) two times the 95% CL observed limit. These distributions are

created for several resonance masses and widths, spanning the entire range for which results

are reported. Then, the same fitting procedure followed in the analysis of the actual data

is repeated for each pseudo-data distribution, and the fitted signal cross section, along

with its 68% CL standard deviation, is obtained. We examine the distribution of the bias

in units of standard deviations, namely the difference between the injected signal cross

section and the fitted signal cross section, divided by the standard deviation of the fit. For

all resonance masses, widths, and signal strengths considered, the mean bias is less than

one half a standard deviation, and in the vast majority of the cases it is well below this

criterion. In addition, pseudo-data distributions are generated using different empirical

functional forms than the ones used in the actual data fits, and the entire procedure is

repeated, again yielding negligible biases.

The ratio method is an independent approach compared to the fit method, yielding

consistent results. The ratio method provides a background estimate that is derived pri-

marily from control regions, while the fit method uses only the signal region. The ratio

method also provides a background estimate that is more accurate than the fit method.

This is because the ratio method fits the data with only two parameters, while the fit

method requires four, and because the estimate from the ratio method is additionally con-

strained by the control region CRmiddle. The advantages of this method, as opposed to

the fit method, are the following: i) it provides a background estimate independent of the

signal region, which results in an independent and less biased value of the observed signal

significance, ii) as the resonance width increases the ratio method has smaller background

uncertainty compared to the fit method, and hence higher sensitivity. Therefore, we esti-

mate the background using the ratio method instead of the fit method for mjj > 2.4 TeV.

Figure 5 shows the dijet mass spectrum, defined as the observed number of events in

each bin divided by the integrated luminosity and the bin width. The bin widths depend

on the dijet mass and are chosen to correspond to dijet mass resolution. The bin edges

were chosen to be the same as those used by previous dijet resonances searches performed

by the CMS Collaboration, as introduced in ref. [31]. Figure 5 also shows the background

prediction from the fit method, compared to all data, and the background prediction from

the ratio method, compared to data with mjj > 2.4 TeV. The χ2/NDF of the background-

only fit, masking the signal region, with the ratio method is 42.04/32 as shown in figure 5.

The dijet mass spectrum is well modeled by both background prediction methods, which

also agree with one another.
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Figure 4. The ratio Raux, the auxiliary transfer factor, calculated for data, pythia, and powheg

with electroweak corrections (left, upper panel). The double ratio of the same quantities in the upper

left panel to Raux from pythia, along with the fit of the double ratio for data with the correction

function (left, lower panel). The ratio R, the transfer factor, calculated for data, pythia, powheg

with electroweak corrections, and corrected pythia (right, upper panel). The double ratio of the

same quantities in the upper right panel to R from pythia, along with the fit of the double ratio for

data with a correction function, and corrected pythia using CRmiddle (right, lower panel). The fits

in the two lower panels agree with each other within their uncertainty at 95% CL (shaded bands).

6 Limits on the resonance cross section, mass, and coupling

We use the dijet mass spectrum from wide jets, the background parameterizations, and

the dijet resonance shapes shown previously to set limits on the production cross sections

of new particles decaying to the parton pairs qq (or qq), qg, and gg. A separate limit is

determined for each final state (qq, qg, and gg) because of the dependence of the dijet

resonance shape on the types of the two final-state partons.

The dominant sources of systematic uncertainty are the jet energy scale and resolution,

the integrated luminosity, and the values of the parameters within the functional form

modeling the background shape in the dijet mass distribution. The uncertainty in the jet

energy scale is within 2% for all values of the dijet mass and is determined from
√
s = 13 TeV

data using the methods described in ref. [41]. This uncertainty is propagated to the limits

by shifting the dijet mass shape for the signal by ±2%. The uncertainty in the jet energy

resolution translates into an uncertainty of 10% in the resolution of the dijet mass [41],

and is propagated to the limits by observing the effect of increasing and decreasing by

10% the reconstructed width of the dijet mass shape for the signal. The uncertainty in

the integrated luminosity is 2.5% in 2016 [55] and 2018 [56], and 2.3% in 2017 [57], and

is propagated to the normalization of the signal. Changes in the values of the parameters
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Figure 5. Dijet mass spectrum in the signal region (points) compared to a fitted parameterization

of the background (solid line) and the one obtained from the control region (green squares). The

lower panel shows the difference between the data and the fitted parametrization (red, solid), and

the data and the prediction obtained from the control region (green, hatched), divided by the

statistical uncertainty in the data, which for the ratio method includes the statistical uncertainty

in the data in the control region. Examples of predicted signals from narrow gluon-gluon, quark-

gluon, and quark-quark resonances are shown (dashed coloured lines) with cross sections equal to

the observed upper limits at 95% CL.
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describing the background introduce a change in the signal yield, which is accounted for

as a systematic uncertainty, as discussed in the next paragraph.

The modified frequentist criterion [58, 59] is used to set upper limits on signal cross

sections, following the prescription described in refs. [60, 61] using the asymptotic approx-

imation of the test statistic. We use a multi-bin counting experiment likelihood, which is

a product of Poisson distributions corresponding to different bins. We evaluate the likeli-

hood independently at each value of resonance pole mass from 1.8 to 8.7 TeV in 100-GeV

steps. The fit method is used to estimate the background for resonance masses from 1.8

to 2.9 TeV, and the ratio method is used for resonance masses from 3.0 to 8.7 TeV. The

minimum values of resonance mass for the two methods, 1.8 and 3.0 TeV, are chosen to

maintain reasonable acceptances for the minimum mjj requirements, 1.5 and 2.4 TeV, re-

spectively. The sources of systematic uncertainty are implemented as nuisance parameters

in the likelihood model, with Gaussian constraints for the jet energy scale and resolution,

and log-normal constraints for the integrated luminosity. The background systematic un-

certainty, as we described previously, is automatically evaluated via profiling and decreases

as the resonance mass increases.

6.1 Narrow resonances

Figures 6 and 7 show the model-independent observed upper limits at 95% confidence level

on the product of the cross section (σ), the branching fraction (B), and the acceptance (A)

for narrow resonances, with the kinematic requirements |∆η| < 1.1 for the dijet system

and |η| < 2.5 for each jet. The narrow resonance shapes are the ones presented and

discussed in detail in a previous publication [17]. The acceptance of the minimum dijet mass

requirement in each search, which fully accounts for the overall experimental acceptance,

has been evaluated separately for qq, qg, and gg resonances. We include these acceptances

in the determination of the limits. Figure 6 also shows the expected limits on σBA and their

bands of uncertainty. Figure 7 shows the different limits for qq, qg, and gg resonances,

which originate from differences in their line shapes. For the RS graviton, which decays

to both qq and gg, we obtain cross section upper limits from the average, weighted by

branching fraction, of the limits on quark-quark and gluon-gluon resonances.

Using the statistical methodology discussed earlier, the local significance for qq, qg,

and gg resonance signals was measured from 1.8 to 8.7 TeV in steps of 100 GeV. The

significance values obtained for qq resonances are shown in figure 8 for both the ratio and

the fit methods, and the significances for q g and g g resonances are the same within 0.2

standard deviations. The ratio method usually gives a larger signal significance than the

fit method, because it provides a more accurate data-driven background estimate.

All upper limits presented can be compared to the parton-level predictions of σ B A,

without detector simulation, to determine mass limits on new particles. The model pre-

dictions shown in figure 6 are calculated in the narrow-width approximation [33] using the

CTEQ6L1 [62] parton distribution function at LO. An NLO correction factor of K = 1 +

8παS/9 ≈ 1.3 is applied to the LO predictions for the W ′ model and K = 1+(4αS/6π)(1+

4π2/3) ≈ 1.2 for the Z′ and the DM mediator models [63], where αS is the strong coupling

constant evaluated at a scale equal to the resonance mass. Similarly, for the axigluon and
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Figure 6. The observed 95% CL upper limits on the product of the cross section, branching fraction,

and acceptance for dijet resonances decaying to quark-quark (upper left), quark-gluon (upper right),

gluon-gluon (lower left), and for RS gravitons (lower right). The corresponding expected limits

(dashed lines) and their variations at the one and two standard deviation levels (shaded bands) are

also shown. Limits are compared to predicted cross sections for string resonances [1, 2], excited

quarks [4, 5], axigluons [6], colorons [8], scalar diquarks [3], color-octet scalars [9], new gauge

bosons W′ and Z′ with SM-like couplings [10], DM mediators for mDM = 1 GeV [14, 15], and RS

gravitons [11]. The vertical dashed line indicates the boundary between the regions where the fit

method and the ratio method are used to estimate the background.
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Figure 7. The observed 95% CL upper limits on the product of the cross section, branching fraction,

and acceptance for quark-quark, quark-gluon, and gluon-gluon type dijet resonances. Limits are

compared to predicted cross sections for string resonances [1, 2], excited quarks [4, 5], axigluons [6],

colorons [8], scalar diquarks [3], color-octet scalars [9], new gauge bosons W ′ and Z′ with SM-like

couplings [10], DM mediators for mDM = 1 GeV [14, 15], and RS gravitons [11]. The vertical dashed

line indicates the boundary between the regions where the fit method and the ratio method are

used to estimate the background.
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Model Final state Observed (expected) mass limit [TeV]

String qg 7.9 (8.1)

Scalar diquark qq 7.5 (7.9)

Axigluon/coloron qq 6.6 (6.4)

Excited quark qg 6.3 (6.2)

Color-octet scalar (k2s = 1/2) gg 3.7 (3.9)

W′ SM-like qq 3.6 (3.9)

Z′ SM-like qq 2.9 (3.4)

RS graviton (k/MPl = 0.1) qq, gg 2.6 (2.6)

DM mediator (mDM = 1 GeV) qq 2.8 (3.2)

Table 1. Observed and expected mass limits at 95% CL from this analysis. The listed models are

excluded between 1.8 TeV and the indicated mass limit by this analysis. The SM-like Z ′ resonance

is also excluded within the mass interval between 3.1 and 3.3 TeV.

coloron models a correction factor is applied which varies between K = 1.1 at a resonance

mass of 0.6 TeV and K = 1.3 at 8.1 TeV [7]. The branching fraction includes the direct

decays of the resonance into the five light quarks and gluons only, excluding top quarks

from the decay, although top quarks are included in the calculation of the resonance width.

The acceptance is evaluated at the parton level for the resonance decay to two partons. In

the case of isotropic decays, the acceptance is A ≈ 0.5 and is independent of the resonance

mass. For a given model, new particles are excluded at 95% CL in mass regions where the

theoretical prediction lies at or above the observed upper limit for the appropriate final

state of figure 6. Table 1 shows the mass limits on all benchmark models which are extended

by 200 to 800 GeV relative to those reported in previous CMS dijet resonance searches [17].
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values of intrinsic width, estimated from the MadGraph5 and pythia event generators followed

by the simulation of the CMS detector response.

6.2 Broad resonances

We extend the search to cover broad resonances. We use spin-1 resonances decaying to

quark-quark pairs with a width up to 55% of the resonance mass, M , as well as spin-2

resonances that decay to quark or gluon pairs with a width up to 30% of the resonance

mass. This allows us to be sensitive to more models and larger couplings. The spin-1

resonance results are also used to produce limits on the universal quark coupling of a

leptophobic vector mediator of interactions between quarks and DM particles, and limits

for a leptophobic Z′ that couples to quarks but does not couple to DM particles [12–15]. In

order to be sensitive to the largest possible coupling values for these particles, the maximum

value of examined widths for spin-1 resonances is increased to 55% of the resonance mass.

The additional wider signals are produced in the same way as the narrower ones, using the

MadGraph5 amc@nlo v. 2.3.2 [64] generator at LO, and the pythia 8.205 [44] program,

followed by a Geant4-based [48] simulation of the CMS detector. For resonance widths up

to 30% of their mass, the dijet mass distributions are the ones presented and discussed in

detail in ref. [17]. The dijet mass distributions of both wide and narrow spin-1 resonances

are shown in figure 9, and exhibit the same behavior as the ones discussed in [17].

The cross section limits in this case are presented as a function of resonance mass and

width. In figure 10 we show the observed 95% CL upper limits for various resonance widths,

for spin-2 resonances modeled by an RS graviton signal in the quark-quark and gluon-gluon

channels, and for spin-1 resonances in the quark-quark channel. The limits weaken as the

resonance intrinsic width increases, following the characteristics of the resonance shapes.

The spin-1 resonances are significantly broader than the spin-2 resonances. For this reason,

their limits are weaker than those of the spin-2 resonances. In figure 10 the cross section
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Figure 10. The observed 95% CL upper limits on the product of the cross section, branching

fraction, and acceptance for spin-2 resonances produced and decaying in the quark-quark (upper

left) and gluon-gluon (upper right) channels, as well as for spin-1 resonances decaying in the quark-

quark channel (lower), shown for various values of intrinsic width as a function of resonance mass.

The vertical dashed line indicates the boundary between the regions where the fit method and the

ratio method are used to estimate the background.

limits at very high mass for spin-1 resonances with Γ/M = 5% increase as the resonance

mass increases, while they decrease for Γ/M = 1%. This is because, for resonances with

widths larger than 1%, the tail to low dijet mass increases significantly as the resonance

mass increases, as shown in figure 9.

The limits are presented up to a maximum resonance mass of 8.7 TeV for most models.

We do not present limits for the case of spin-1 resonances in the quark-quark channel with

masses larger than 6 TeV and Γ/M > 0.1. These resonances are not part of the search

because they have an exceedingly broad and high tail at low dijet mass, as described in

ref. [17], which dominates the limit and produces unstable search results. The spin-1 cross
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section limits in figure 10 have been used to derive constraints on the coupling to quarks

of mediators of new interactions. We consider two models of a leptophobic mediator which

couples to all generations of quarks with the same universal strength. The quark coupling

is denoted g′q in the first model, in which the mediator does not couple to DM particles,

and denoted gq in the second model, in which the mediator couples to DM particles. For

each mediator mass value, the predictions for the cross section of mediator production as a

function of the quark coupling are converted to predictions as a function of width. They are

then compared to the spin-1 cross section limits from figure 10 to find the excluded values of

quark coupling, as a function of mass for a spin-1 resonance. Figure 11 (right) shows upper

limits on the coupling g′q as a function of mass for our first model, also known as a leptopho-

bic Z′ resonance [65] that couples only to quarks. In this model the resonance has a width

ΓMed =
3(g′q)2MMed

2π
, (6.1)

where MMed is the resonance mass and g′q is the universal quark coupling, related to the

coupling, gB, of ref. [65] by g′q = gB/6. Figure 11 (left) shows upper limits on the coupling

gq as a function of mass for our second model, also known as a DM Mediator model, which

has a leptophobic spin-1 mediator that couples both to quarks and DM particles [15],

and for Dirac DM with a mass mDM = 1 GeV and a coupling gDM = 1.0. The cross

section of mediator production for mDM = 1 GeV and gDM = 1 is calculated with Mad-

Graph5 amc@nlo [64] for mediator masses within the range 1.6 < MMed < 5.1 TeV in

0.1 TeV steps and for quark couplings within the range 0.1 < gq < 1.0 in 0.1 steps. For

these choices, the relationship between the total mediator width, for decays to both quark

and DM particles, and gq given in refs. [14, 15] simplifies to

ΓMed ≈
(18g2q + 1)MMed

12π
. (6.2)

The increased sensitivity of the ratio method to wide resonances significantly improves

and extends previous limits on DM mediators at large values of Γ/M . For example, for

Γ/M = 0.45, this search excludes DM mediators with mass less than 4.8 TeV, while the

observed limit from the earlier searches was 4.0 TeV [17].

7 Summary

A search for resonances decaying into a pair of jets has been performed using proton-proton

collision data at
√
s = 13 TeV corresponding to an integrated luminosity of 137 fb−1. The

dijet mass spectra are observed to be smoothly falling distributions of events with typically

two-jet topology, although one unusual event with a four-jet topology was found at high

mass. The background is predicted using two methods. The fit method uses an empirical

functional form to fit the background in the signal region, defined by requiring the pseudo-

rapidity separation of two jets in dijet |∆η| <1.1, while the ratio method uses two control

regions at higher values of |∆η| to predict the background in the signal region. The ratio
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Figure 11. The 95% CL upper limits on the universal quark coupling gq as a function of resonance

mass for a vector mediator of interactions between quarks and DM particles (left), and between

quarks only (right). The dashed horizontal lines on the right plot show the coupling strength for

which the cross section for dijet production in this leptophobic Z ′ model is the same as for a DM

mediator for gq = 0.25. The right vertical axis shows the natural width of the mediator divided

by its mass. The expected limits (dashed lines) and their variation at the one and two standard

deviation levels (shaded bands) are also shown.

method is a new background prediction method, which is independent of and complemen-

tary to the fit method. No evidence for resonant particle production is observed. Generic

upper limits are presented on the product of the cross section, the branching fraction,

and the acceptance for narrow and broad quark-quark, quark-gluon, and gluon-gluon reso-

nances. The limits are applied to various models of new resonances and yield the following

95% confidence level lower limits on the resonance masses: 7.9 TeV for string resonances,

7.5 TeV for scalar diquarks, 6.6 TeV for axigluons and colorons, 6.3 TeV for excited quarks,

3.7 TeV for color-octet scalars, 3.6 TeV for W ′ bosons with SM-like couplings, 2.9 TeV and

between 3.1 and 3.3 TeV for Z′ bosons with SM-like couplings, 2.6 TeV for Randall-Sundrum

gravitons, and 2.8 TeV for dark matter (DM) mediators. With this search, limits on narrow

resonances are improved by 200 to 800 GeV relative to those reported in previous CMS dijet

resonance searches. Limits are also presented for spin-2 resonances with intrinsic widths

as large as 30% of the resonance mass, and spin-1 resonances with intrinsic widths as large

as 55% of the resonance mass. These limits are used to improve and extend the exclusions

of a DM mediator to larger values of the resonance mass and coupling to quarks. In the

search for broad resonances, the ratio method provides significantly enhanced sensitivity

compared to the fit method, resulting in the exclusion at 95% confidence level of a DM me-

diator with mass less than 4.8 TeV for a width equal to 45% of the mass, which corresponds

to a coupling to quarks gq = 0.9.
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F. Cavallaria, M. Cipriania,b, D. Del Rea,b, E. Di Marcoa, M. Diemoza, E. Longoa,b,

P. Meridiania, G. Organtinia,b, F. Pandolfia, R. Paramattia,b, C. Quarantaa,b,

S. Rahatloua,b, C. Rovellia, F. Santanastasioa,b, L. Soffia,b
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14: Also at Université de Haute Alsace, Mulhouse, France

15: Also at Tbilisi State University, Tbilisi, Georgia

16: Also at Erzincan Binali Yildirim University, Erzincan, Turkey

17: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland

– 42 –



J
H
E
P
0
5
(
2
0
2
0
)
0
3
3

18: Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

19: Also at University of Hamburg, Hamburg, Germany

20: Also at Brandenburg University of Technology, Cottbus, Germany

21: Also at Institute of Physics, University of Debrecen, Debrecen, Hungary, Debrecen, Hungary

22: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
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