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Abstract

This work investigates the use of distributed strain actuators for active
aeroelastic control of plate-like flexible lifting surfaces. Simple models are
used to reveal the fundamental mechanisms and parameters governing active
aeroelastic control of lifting surfaces. A typical section analysis is employed
to provide an understanding of the fundamental mechanisms and limitations
involved in performing aeroelastic control. The effects of both articulated
aercdynamic control surfaces and induced strain actuators are included in
the model. The ability of these actuators to effect aeroelastic control is
studied for each actuator individually as well as in various combinations. A
deformable section analysis is used to determine the optimal size and
placement of strain actuators incorporated into load bearing structural
elements for the purpose of effecting control, and to establish guidelines for
designing active lifting surfaces. Simplified models are also used to develop
the scaling laws for strain actuated lifting surfaces. In addition to identifying
fundamental parameters, detailed modeling techniques are developed for the
dynamic aeroelastic analysis and control law design of actuzal plate-like lifting
surfaces with integrated strain actuators. A dynamic modeling capability for
active lifting surfaces is developed using the Rayleigh-Ritz assumed mode
method and kernel function unsteady aerodynamics approximated by rational
functions. The analytic model is utilized to design multiple-input, multiple-
output controllers for active lifting surface test articles. High-authority,
large-bandwidth compensators are designed using LQG optimal control
theory. The control schemes are assessed analytically to determine their
closed loop effectiveness and verified experimentally by bench-top
disturbance rejection experiments and wind tunnel gust alleviation,
command following and flutter suppression tests. In addition, a stability
robustness test is developed to estimate, a priori, the control authority which
can be applied to the test articles without destabilizing high frequency modes.
The experiments demonstrate that distributed strain actuation can be
effectively employed for aeroelastic control, with considerable disturbance
attenuation achieved in both the quasi-steady response and over large
bandwidths spanning many flexible modes. The results show the ability of
strain actuators to effectively control flexible plate-like lifting surfaces.
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Chapter 1. Introduction

Current and future performance criteria for space vehicles, submarines
and aircraft demand lightweight flexible structures such as solar arrays,
antennas, mirrors, skins and lifting surfaces. Structural integrity and
mission requirements of these plate-like and shell-like components of
aerospace and hydrodynamic vehicles also call for low vibration and load
levels, as well as precision pointing, alignment and shape control. One way of
achieving these conflicting specifications of light-weight and high dynamic
performance for plate- and shell-like structures is through the use of
integrated strain actuators and high-authority, large-bandwidth active
control systems. High-authority, large-bandwidth active control can be
achieved by designing multiple-input, multiple-output (MIMO) control laws
for active composite structures with distributed strain actuators. Active
structures are those structures controlled by actuators which are integrated
into the load bearing elements and have structural functionality [Wada,
Fanson and Crawley, 1989]. Active structures with integrated strain
actuators provide a natural and logical mechanism for effecting distributed
multiple actuator control and for implementing modern mcdel-based control
methodologies such as the Linear Quadratic Gaussian (LQG) [Kwakernaak
and Sivan, 1972], 2(, [Doyle, et. al., 1989] and Optimal Projection [Hyland and
Bernstein, 1984] techniques.

This thesis concentrates on one particular application of actively
controlled plate-like flexible structures: that of dynamic aeroelastic lifting
surface control through the use of strain actuation. Active lifting surface
control is desirable for enhancing aircraft performance, decreasing loads and
improving ride quality. Traditionally, aeroelastic control of flexible lifting
surfaces has been effected through the use of articulated aerodynamic control
surfaces such as ailerons or flaperons. A great deal of research has been
performed over the past few decades concerning the development and
implementation of various feedback control scheraes which utilize such
articulated actuator systems. Researchers have examined the fundamentals
of traditional aeroservoelasticity using typical section models, simplified
aerodyramics and classical control methods [Horikawa and Dowell, 1978,
Ohta, et. al., 1989 and Heeg, 1991]. More representative models and modern
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control techniques have been applied to examine problems such as flutter
suppression [Newsom, 1979, Mahesh, et. al., 1981, Newsom, Pototzky and
Abel, 1985 and Liebst, Garrard and Adams, 1986] and gust alleviation
[Karpel, 1982]. And recently, the active flexible wing (AFW) has been used to
demonstrate the ability of conventional control surfaces and modern control
techniques to suppress flutter while performing various maneuvers in wind
tunnel experiments [Waszak and Srinathkumar, 1991, Christhilf and Adams,
1992 and Mukhopadhyay, 1992]. In addition, topics such as modeci order
reduction [Mukhopadhyay, Newsom and Abel, 1982 and Tiffany and Karpel,
1989] multiple control surface actuation [Noll, Perry and Tiffany, 1989 and
Perry, Mukhopadhyay and Hoadley, 1990] and aeroservoelastic tailoring
integration [Gilbert, Schmidt and Weisshaar, 1984 and Zeiler and Weisshaar,
1988] have been studied.

In contrast to the above work which employs the usual articulated
control surface actuators, this research concentrates on an alternative and
fundamentally different method of dynamic aeroelastic control. The
technique involves the use of induced strain actuators, which are regulated to
apply equivalent forces and moments on the lifting surface, in order to deform
the wing and effect dynamic aeroelastic control. Induced strain actuators,
such as piezoceramics and electrostrictives, directly deform the structure
through electromechanical coupling terms which appear in the actuator
constitutive relations. Active lifting surfaces with distributed strain
actuators have advantages over conventional articulated control surface
wings which are subject to loss of effectiveness at high dynamic pressures and
limited servo motor bandwidths [Lazarus, Crawley and Bohlmann, 1991].
Strain actuation is advantageous because it can directly control both the
shape of and strain in the lifting surface. Thus, two mechanisms by which
aeroelastic control can be effected are available. Both the control of
aerodynamic forces created by altering the airfoil shape and direct control of
the strain in the lifting surface may be used to improve aircraft performance.
Specifically, a strain actuated active lifting surface can be used for gust and
load alleviation (i.e., disturbance rejection), flutter and vibration suppression
(i.e., plant regulation), and maneuver enhancement (i.e., command following).
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Active control research certainly has not been limited to the
application of dynamic lifting surface control. In fact, active control has been
considered for many aerospace applications, as illustrated by recent research
activity. The control of truss and truss-like structures using modern methods
such as LQG [Gehling, 1991], 7L [Voth and Stoughton, 1991, Fanson, et. al.,
1991 and Carrier et. al., 1991], Fixed Architecture Optimal Projection
[Peterson, 1991] and Maximum Entropy / Optimal Projection (MEOP)
[Philips, Hyland and Collins, 1990] have been investigated for various
spacecraft applications. The application of modern control techniques to
active plate- and shell-like structures has aiso been examined, but not as
extensively. Studies have been limited to shape control of precision reflectors
[Chiarappa and Claysmith, 1981], static aeroelastic applications with simple
feedback schemes [Lazarus, Crawley and Bohlmann, 1991, Weisshaar and
Ehlers, 1991 and Waszak and Srinathkumar, 1991}, the reduction of radiated
structure-borne noise using adaptive feed-forward techniques [Zhou and
Cudney, 1991 and Akishita, et. al., 1991] and the control of non-active
inertially actuated plates by independent modal space LQG control
[Rubenstien. et. al., 1991].

Current research in active controls for solving a variety of aerospace
problems coupled with the potential for meeting stringent aircraft
performance requirements has motivated a thorough investigation of the
strain actuated active lifting surface. Consequently, this thesis investigates,
develops and demonstrates the basic technology necessary for active
aeroelastic control using integrated strain actuators. Assessing the use of
strain actuation for dynamic aeroelastic control requires extensive
application of interdisciplinary analysis methods. Thus, this work draws on
research from many fields inclnding advanced material systems, structural
dynamics, aerodynamic modeling and modern control theory. Further, a
combination of simple medels and detailed analysis techniques, as well as
open and closed loop tests are required to accurately assess the ability of
active lifting surfaces to effect aeroelastic control. The elaborate analytical
and experimental program followed in this study is outlined below.

The first step necessary for developing an understanding of strain
actuated aeroelastic control is to examine simple models to find the
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fundamental parameters and physical mechanism involved in controlling
lifting surfaces with strain actuation. In Chapter 2, a typical section analysis
is used to reveal the parameters fundamental to effecting aeroelastic control
using either conventional articulated surfaces or strain actuators, and to find
the relative merits of each method of control. In Chapter 3, a deformable
section analysis is used to show the optimal relations relevant to incorporate
strain actvators into load bearing structures ior the purpose of effecting
control, and to establish guidelines for designing active lifting surfaces. Also
in this chapter, the scaling laws for strain actuated lifting surfaces are
developed. The scaling laws are needed to apply the results of scale model
tests to that of actual lifting surfaces and to understand the concerns which
need be addressed in order to construct effective and realistic full sized active
lifting surfaces.

The work in Chapters 2 and 3 reveals the viability of using strain
actuation for aeroelastic control. The next step is therefore to demonstrate
that an active lifting surface can actually exert aeroelastic control. Chapter 4
describes the scale model active lifting surfaces, and associated hardware,
used in the bench-top and wind tunnel demonstration experiments. For the
purpose of designing effective compensators, the dynamic characteristics of
strain actuated composite lift.ag surface test articles are first modeled
analytically and then veritied experimentally. The dynamic, aerodynamic,
and finally aeroelastic modeling is described in Chapter 5. Next, the analytic
model is used to derive high-authority, large-bandwidth MIMO compensators
based on a quadratic cost function and LQG optimal control theory.
Compensators are also designed using frequency domain Loop Transfer
Recovery (LTR) techniques. The compensator design procedure is discussed
in Chapter 6. The control schemes are then assessed analytically to
determine their effectiveness based on the closed loop quadratic cost index
and verified experimentally by bench-top closed loop testing and wind tunnel
gust alleviation, command following and flutter suppression tests.

The bench-top experiments, found in Chapter 7, served to verify
portions of the analytical model, check the hardware functionality and
acquire control law design experience before closed loop wind tunnel testing.
The bench-top experiments also demonstrate the ability of strain actuation to
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effect high-authority control over large bandwidths spanning many flexible
modes. The wind tunnel experiment, described in Chapter 8, show the ability
of the strain actuated lifting surfaces to achieve aeroelastic control objectives
such as gust disturbance attenuation, input command following and flutter
suppression. Gust alleviation is needed to eliminate unwanted vibrations
which cause performance degradation, poor ride quality and dynamically
amplified loads. Command following in bandwidths from quasi-steady up to
and through the fundamental vibration frequency is desirable for enhancing
aircraft performance specifications such as pull-up and roll rates. And,
flutter suppression is important for increasing the flight envelope of high
performance aircraft.

The bench-top and wind tunnel experimental results are reported in
the form of closed loop state versus control cost curves in order to
demonstrate the significant disturbance attenuation obtainable by applying
modern control techniques to active plate-like structures. Reporting the
closed loop results in this manner not only shows the performance achieved,
but also displays the control authority used in relation to the maximum
possible, and aids in determining the cause of performance limitations. In
addition, practical tools needed for estimating, a priori, closed loop
performance limits from open loop experiments and analytic models (i.e.,
stability robustness) are developed and correlated with the actual limits
found during closed loop testing. The results of the closed loop performance
and stability robustness tests are discussed in the conclusions, as are the
implications of these results and those of the typical and deformable sections
for controlling actual lifting surfaces with integrated strain actuators.
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Chapter 2. Typical Section Analysis

The objective of this analysis is to explore the fundamental
mechanisms governing the control of dynamic aeroelastic systems, and to
develop a method for consistently comparing various control schemes in order
to assess the advantages and limitations of each. For this purpose a two
degree-of-freedom typical section is employed. Such an analysis offers
fundamental insights into the aercelastic control problem which are often
obscured by the numerical calculations required for the analysis of large
order systems or the design of multivariable control laws. Included in the
typical section model are forces and moments produced by both induced
strain actuators and conventional articulated control surfaces. The actuator
or combination of actuators selected has a direct bearing on the effectiveness
of the control system. Equally important is the choice of sensors and output
variables measured and fed back to the controller. In order to choose the best
combination of actuators and sensors for a particular lifting surface, it is
essential to understand the fundamental mechanisms involved in aeroelastic
control and the advantages and inherent limitations of different controllers.

In this chapter, the governing equations for the typical section with
induced strain and conventional actuators are derived. The plant dynamics
are examined, as are the feedback schemes associated with the various
possible state outputs (plunge and pitch) and various possible control inputs
(bending due to strain actuation, torsion due to strain actuation, and the
aerodynamic forces resulting from leading and trailing edge flap rotation) for
several types of control laws. Control schemes are developed for single-input,
single-output (SISO) and full state feedback multiple-input, multiple-output
(MIMO) systems using both classical and modern state space techniques.
These control laws are compared and a closed loop state versus control cost
analysis is performed for various input combinations using solutions to the
Linear Quadratic Regulator (LQR) problem. The analysis reveals the
fundamental benefits and limitations of employing various control schemes
for aeroelastic control. The resuits obtained can be applied to a wide variety
of aeroservoelastic problems, such as flutter, vibration suppression, gust
alleviation and low frequency servo shape conrtrol for maneuverability. Note
that this work closely follows that of Lazarus, Crawley and Lin [1991].
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2.1 Typical Section G ing Equati

For many years, low order models called typical sections have been
used to explain the fundamental mechanics of aeroelasticity [Bisplinghoff,
Ashley and Halfman, 1955]. These sections capture the essential physical
features and have properties representative of actual lifting surfaces. The
geometry of the typical section employed in this analysis is shown in Fig. 2.1.
The section is given plunge A and pitch o degrees of freedom, and a leading
and trailing edge flap. The structural restraints in bending and torsion
appear at the elastic axis, and the disturbance to the section is a time
variation in the inflow angle «,,.

X

Figure 2.1. Typical section geometry with leading and trailing edge flaps.
The forces and moments applied at the elastic axis due to control
surface and strain actuation are indicated in the figure.

The aerodynamics are found by adapting the incompressible wing-
aileron-tab lifting surface results obtained by Theodorsen and Garrick
[Theodorsen and Garrick, 1942] to a leading edge flap-wing-trailing edge flap
lifting surface via a coordinate transformation. Only the steady state
aerodynamic terms are retained to simplify the initial examination of the
problem. In practice, this would limit direct applicability of the results to low
reduced frequencies. The aerodynamic forces and moments created by
deflecting the leading edge £ or trailing edge f flap are modeled as forces and
moments acting at the elastic axis, so that the high frequency dynamics
associated with the flaps can be neglected. The typical section also includes
forces and moments acting at the elastic axis which result from commands to
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the strain actuators. These are the equivalent forces and moments acting on
the typical section which develop as a result of induced strain actuation. The
equivalent forces and moments can be found (see Appendix 2.A) by applying
Bernoulli-Euler beam and Kirchhoff plate theory as done in Crawley and de
Luis [1987] or Crawley and Lazarus [1991].

Writing the equations in terms of non-dimensional mass M, stiffness
K, forcing f and disturbance d matrices yields

Up
) -
M{Hp }+K{h}=f +da,(p)
2
ap o
u or
§ (2.1.1)
1z —2 _ Hn
RZ R2|[mp?] |22 gc,, |[W]_[1 O -4Cy, -3Ci,]|ua| [-FCL,
X 2(*| Ra a| 7|0 1 GCy, GCm, |Jus["|dCu, |
= 1 |lop 0 1-7Cy B ¢ 178 a
RS @ Ug
where
2
g = U"’z Normalized Dynamic Pressure
T (04
p = El- Normalized Laplace Variable
a
u, = —I?l Normalized Strain Actuated Plunge Force
a
Uy = Kﬁ Normalized Strain Actuated Pitch Torque
a
ug = Trailing Edge Flap Deflection
ug = Leading Edge Flap Deflection

and the remaining nor-dimensional variables are those usually employed in a
typical section analysis such as lift C;, and moment C)y ceefficient, frequency
@, and mass p ratio, radius of gyration Ry, and static imbalance x4
[Bisplinghoff, Ashley and Halfman, 1955]. Note that the equivalent force u;,
and moment u, produced by the induced strain actuators are normalized by
the section torsional stiffness K.

The characteristic equation for this two degree-of-freedom system is
found by setting the right hand side of Eq. 2.1.1 equal to zero
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2
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a (2.1.2)
Eq. 2.1.2 shows that the roots of the system (i.e., transfer function poles) are
dependent con the section geometry, structural properties, and air speed, but
are independent of the actuation method. Note that there is no structural or

air damping modeled in the system.

The transfer functions from the four control inputs (bending strain
actuation u;, torsion strain actuation u,, trailing edge flap defection uyg, and
leading edge flap deflection u g) to the two output variables (plunge h and
pitch ) are given by

Up
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where each element n;{p) of this two by four matrix relation represents the

transfer function from one of the inputs to one of the outputs. The zeros of
each individual SISO transfer functions are found by setting each numerator
n;{(p) to zero. The zero locations are dependent on the section geometry and

structural properties, as were the system poles. For the case of plunge A
measurement, the individual SISO transfer function zeros move rapidly with
air speed. For the case of pitch a measurement, the zeros are not dependent
on air speed Uy,

Alternatively, the governing equations (Eq. 2.1.1) can be written in a
state space representation

x=Ax+Bu+La,(p)
y=Cx (2.1.4)

0x2y  Liax2y | o [Oc2xa)
A_[-M‘IK 0(2x2) B=l M _[bh ba by bé]

where
h Uy
_ | Oc2xa) o _|¥a
L_[M‘ld SR 11 Bt PP
a Ug

In this form, the input/output relation from the actuators to the
measurements is

y=C®Bu where & =(pl- A)_1 (2.1.5)

Note that the characteristic equation (Eq. 2.1.2) is found by taking the
determinant of ®-!, and that Eqs. 2.1.3 and 2.1.5 are identical when the
output matrix C is chosen such that the measurements y are & and «.

2.2 Typical Section P y

As seen from Eqs. 2.1.2 and 2.1.3, the location of the system poles and
transfer function zeros are highly dependent on the geometrical and
structural properties of the typical section. Therefore it is necessary to choose
some nominal parameters in order to proceed with the analysis and control
system design. The section properties chosen were those at the three quarter
span of the aluminum induced strain actuated test article described in
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Chapter 4. The test article had a full span aspect ratio of 3.9 and a thickness
to chord ratio of 0.51 percent. The resulting typical section is altered to
include ten percent leading and trailing edge flaps; and the elastic axis is
moved forward of the midchord by ten percent of the chord so that flutter
occurs before static divergence. The resulting typical section has a frequency
ratio @, of one-fifth and a mass ratio u of twenty, not atypical of built up
wings. Other relevant section properties are listed in Table 2.1.

Parameter Symbol Value
Section Geometry a -0.2
Xy 0.2
R2 0.25
i 20
y 0.2
Wing Parameters Etl; 0.51%
L
— 3.92
b
Steady G, 2n
Aerodynamic Cm, 1.885
Coefficients CL 5 2.487
Cm, -0.334
C : -0.087
Cum, ~0.146
State Cost N, (1/0.406)*
2
Matrix Naa (170.282)
Control Cost Ry, (1/0.0429)*
Matrix 3 (1/0.0215)2
Rgp (1/0.0873)>
Reg (1/0.0436)?

Table 2.1. Nominal geometrical and material properties of the typical section
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Knowledge of the system pole and zero locations is important for
determining the manner in which a system can be controlled and is essential
in designing SISO feedback control laws. In aeroelastic systems, all of the
pole and some of the zero locations are a function of air speed U, which
indicates that a control law appropriate at one flight condition may not
necessarily be appropriate at others. In particular, the rate of zero movement
and the propensity for the pole/zero pattern along the imaginary axis to
change (i.e., pole/zero flipping) is a particular indicator of the potential non-
robustness of the closed loop control scheme [Rosenthal, 1984 and Fleming
and Crawley, 1991]. It is therefore interesting to observe the relative and
absolute movement of the system poles and the SISO transfer function zeros
as a function of air speed. Such a plot of the purely oscillatory poles and zeros
associated with plunge measurement feedback is shown in Fig. 2.2. Notice
the two poles coalesce at the flutter point (U,=1.90).

For the case of plunge A measurement, all four of the individual SISO
transfer function zeros change with air speed. The SISO transfer function
zeros associated with the bending strain actuator u, are at the torsional
natural frequency w, when the air speed is zero. These zeros decrease
quadratically to zero at, the divergence speed (U,=2.88). Likewise, the zeros
associated with the trailing edge flap actuator u p decrease quadratically with
air speed to zero at the reversal speed (U,=2.40). The air speed at which the
frequency component of the individual SISO transfer function zeros goes to
zero is especially significant to the aeroelastic control problem, since it is at
this air speed that one of the zeros becomes non-minimum phase (i.e., moves
into the right half of the Laplace-plane). The presence of a non-minimum
phase zero indicates a fundamental limitation on the amount of control which
can be applied to the system [Freudenberg and Looze, 1985]. The zeros
associated with the torsion strain actuator u, and leading edge flap actuator
ug also move with air speed. The zeros in both of these SISO transfer
functions increase with air speed as shown in Fig. 2.2. Note that all of the
zero frequencies intersect with the torsion pole frequency at the same air
speed. This indicates that a pole/zero cancellatior. has occurred due to a loss
of observability of the torsional mode. At this air speed, the aeroelastic
system is such that the torsional mode can not be observed by measuring the
displacement of the plunge variable %.
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Bending Strain Control / Plunge Output
Torsion Strain Control / Plunge Cutput
Trailing Edge Flap Control / Plunge Output
Leading Edge Flap Control / Plunge Output

Figure 2.2. Pole and individual SISO transfer function zero frequencies
versus air speed U,. Coalescence of the system poles and the
movement of the individual SISO transfer function zeros for pilunge
measurement output are plotted.

The individual SISO transfer function zeros associated with pitch «
measurement, which are independent of the air speed, are not shown in
Fig. 2.2. Examining Eq. 2.1.3, it can be seen that the two zeros associated
with the bending strain actuator u;, are always at the origin, and that the two
zeros associated with the torsion strain actuator u, are always on the
imaginary axis at @,. In both cases this places the zeros below the lower
(plunge) pole of the system for all non-zero airspeeds. The zeros associated
with the leading edge flap u; and trailing edge flap ug actuators depend on @,
and the aerodynamic influence coefficients, and may be imaginary or real. In
the event they are real, once again one would be a non-minimum phase zero

indicating a limitation on achievable control.
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Due to the significant mevement of the system poles and zeros as a
function of air speed, it is necessary to choose specific dynamic pressures to
analyze the system and design feedback control schemes. Two air speeds are
chosen and are indicated on the pole locus plot in Fig. 2.3. The first speed is
at about ten percent below the flutter velocity ( Uq,=1.90) and is designated as
design point 1 (U,=1.71) The second is chosen at about five percent above
the flutter velocity and is designated as design point 2 (U,=2.00). Both
design points are below reversal and divergence. These speeds are chosen so
that the control law designs are dominated by fundamental aeroelastic
control issues, and are not complicated by factors such as ailercn reversal or
static instabilities.

X — Zero air speed poles, Ua= 0.00
O - Design point 1, Ua= 1.71
A —Flutter speed, Ua=1.90

-1

&

[0 ~ Design point 2, Ua= 2.00
\ — Reversal speed, Ua= 2.40
© - Divergence speed, Ua= 2.88

Figure 2.3. Location of the open loop poles as the non-dimensional air speed
U, increases from zero and goes through design point 1, flutter,
design point 2, reversal and divergence.

The combination of four actuator control inputs and two measurement
output variables allows for eight SISO feedback control options to be
considered. The transfer functions for the eight options are defined by
Eq. 2.1.3, and the location of the poles and zeros are illustrated graphically in
Fig. 2.4 for the below flutter design point (U,=1.71). At this air speed, all the
poles lie on the imaginary axis indicating that each system is neutrally
stable. Thus, the control objective is to add damping to the modes of the
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system [Miller, Jacques and de Luis, 1990]. Note that in each system there is
a zero "missing" from between the two poles (i.e., between the two system
poles there is no zero). This missing zero dictates that simple gain feedback,
either displacement u=-fz or rate u=-pfz, will not stabilize the system (i.e.,
add damping) for any value (or sign) of the gain f.
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Figure 2.4. Pole and zero locations for the individual SISO input/output
combinations at design point 1 (U =1.71),
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For the cases of pitch feedback to bending strain actuation o/u, pitch
feedback to torsion strain actuation o/u,, and pitch feedback to leading edge
flap actuation o/ug the pitch mede can be stiffened (the frequency of this pole
increases), but no damping is added to the closed loop system (i.e., the poles
do not move into the left half of the Laplace plane). In all other cases, the
closed loop system is destabilized (i.e., a system pole moves into the right half
of the Laplace-plane) by displacement or rate feedback. Note also that the
pitch measurement to the trailing edge flap actuator o/ug transfer function, a
common conventionally used SISO loop, has a non-minimum phase zero at
this air speed.

Since simple feedback does not produce stable closed loop systems,
other control schemes must be employed. The first option is to place a sensor
at some desirable point on the section so that a stabilizing combination of the
plunge and pitch output variables are fed back to the actuator. The sensor
placement relation can be expressed as the vertical displacement

y=h+x,

or ¢c=[1 x;, 0 0] instatespace form (2.3.1)

If the sensor can be placed in a position x,, which places a SISO transfer
function zero between the open loop poies, the system can be stabilized using
rate feedback of the output variable y. Fig. 2.5 illustrates the poles and zeros
of the loop transfer function (y/u or ¢®b in state space form) and the resulting
SISO root locus for such a stable closed loop system. Egs. 2.1.3 and 2.3.1 can
be combined to give equations for the four SISO transfer functions between
any of the four control inputs and the output measurement y. Setting the
numerator of each transfer function to zero gives an expression for each SISO
transfer function zero. The sensor position x, can then be found, which yields
the desired SISO transfer function zeros for each method of actuation. The
sensor positions as a function of the desired zero locations for the four
actuation schemes are
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By choosing x, such that the zero is between the poles (as in Fig. 2.5) a stable
closed loop system results, in principle, for rate feedback. However, sensor
placement will not work for all configurations or choices of actuators in
practice. This is because the sensor location needed for stable feedback is
sometimes found to be physically off of the typical section. For example,
using the nominal typical section (Table 2.1) and design point 1 (below
flutter) values, it is possible to find a stable sensor location for each method of
actuation (although this causes a near pole-zero cancellation in the trailing
edge flap actuation case y/ug). However, all of the stabilizing sensor locations
are found to be physically well off of the section at design point 2. Also, notice
in Eq. 2.3.2 that if the desired zero locations are not complex conjugate pairs,
the sensor position calculated will not be a real number.

The problems associated with sensor placement can be avoided by
measuring both the plunge and pitch variables independently, and feeding
back some linear combination of these outputs which stabilizes the system.
One method of implementing such a stable control scheme is the use of full
state feedback schemes such as the Linear Quadratic Regulator (ILQR), which
is discussed in the next section. Another SISO method of finding a stable
feedback system from a single measurement to any actuator is to use a
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stabilizing dynamic compensator. This can be done by classical compensation
design (e.g., using the methods of Bode or Nyquist) or optimal techniques
(eg., solving the Linear Quadratic Gaussian problem).

Imaginary

1

Real
|

‘-1

Figure 2.5. Desired loop transfer function pole and zerv locations, and
typical stable SISO root locus.

2.4 ¥ull State Feedback Control

The problems associated with non-physical sensor placement solutions
can be eliminated by independently measuring the state variables and
feeding back combinations of them which yield stable closed loop systems.
Using full state feedback is particularly advantageous because centrol laws
may be developed which utilize various combinations of both the
displacement and rate variables, and are not limited to combinations
corresponding to locations physically on the airfoil.

The solution to the Linear Quadratic Regulator (LQR) problem is
utilized in an attempt to provide stable well-regulated closed loop plants.
Well-regulated closed loop plants have the desirable properties of relatively
high damping and good disturbance rejection, which satisfies the control
objective of the systems under consideration (i.e., add damping). The optimal

33



gains F for full state feedback can be found by solving the LQR problem,
which entails minimizing the scalar cost functional J

J= T(xTQx + puTRu)it
0

where Q=NTN and z=Nx (2.4.1)

In Eq. 2.4.1, Q is the penalty on the states and pR is the penalty on the
control inputs which combines a scale factor p and an actuator weighting
matrix R. The state cost penalty z is an evenly weighted combination of the
plunge and pitch output variables normalized by their maximum values. The
maximum values (Table 2.1) are determined from the deflection associated
with a quadratic bending or linear twist distribution in a beam-like wing, and
a maximum strain of one percent. Similarly, each control input is normalized
by its maximum value. For the strain actuators, the maximum control input
is computed using a maximum actuation strain of A=600ue, which is
considered a conservative value [Pan, Zhang, Bhalla and Cross, 1989]. The
maximum deflection for the trailing edge flap is taken to be five degrees, and
the maximum leading edge flap deflection is determined by equating its
maximum hinge moment with that of the trailing edge flap, and found to be
about two and a half degrees. For systems with more than one actuator
input, all of the normalized control inputs are weighted evenly.

Since one goal of this investigation is to compare induced strain and
conventional control surface actuation, each actuator was normalized by a
reasonable estimate of the maximum control input available. The estimates
are based on engineering judgment, laboratory experience and a desire to
obtain a truly fair comparison of these fundamentally different actuating
mechanisms. Because of the differences between the actuating mechanisms,
it is interesting to compare the relative control authority of the actuators.
Such a comparison can be found by examining the quasi-steady plunge and
twist deformation produced by the maximum control input of each actuator.
By letting the Laplace variable p equal zero and substituting the maximum
control inputs into Eq. 2.1.1, the quasi-steady plunge and pitch displacements
produced by each actuator input can be determined. This exercise shows that
the strain and flap actuators cause roughly the same plunge displacement.
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However, the strain actuators are capable of achieving twist deformations
nearly seven times greater than those caused by the flap actuators. Note that
this does not mean the analysis is biased toward strain actuation, since
obtaining five degrees of high frequency trailing edge flap deflection would be
a difficult engineering design problem. The implication is only that the strain
actuators are capable of achieving higher quasi-steady twist deformations
than the flaps for the configuration examined. For typical sections with other
configurations, the relative quasi-steady control authority of the actuators
will most likely be different.

The LQR solution yields the feedback gains F and the control inputs
are given by u=-Fx. The gains represent the optimal combination of the
states to be fed back to each actuator. The LQR solution was found to yield a
loop transfer function, given by F®B, which always had the stable
alternating pole-zero pattern shown in Fig. 2.5 (although the zeros may not
be on the imaginary axis). This result was found for any air speed or state
control cost pR, ana state costs N which penalized some combination of the
displacement states. However, the root locus drawn in the figure no longer
applies for these multiple-output and perhaps multiple-input, multiple-
output (MIMO) control schemes.

An interesting result is found in the case of "expensive" control, which
implies a large control penalty (p goes to infinity) and therefore small gains.
An asymptotic analysis shows that the feedback gains are given by

- (w‘H b)H H

1 (
f=7;)'§l: UiH Ui —Iw—l}]-l—)]— w; (242)

where v; and w; are the right and left eigenvectors of the system matrix A,
and the superscript H indicates the complex conjugate transpose.

For single control input systems, (w;) b is a scalar so the entire
quantity except for the last term w;# is a scalar. Therefore, the feedback
gains are determined only by a weighted sum of the left eigenvectors of the
open loop system. The weights are given by the contribution of the modes
(observability) to the state cost chosen. In the "expensive" control case the
LQR solution produces gains which are non-zero only on the rate state
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variables. This result is true for any undamped single input system. The
gains on the rate variables represent the optimal combination of states to use
for rate feedback and thus the LQR solution is equivalent to a sophisticated
rate feedback sensor placement algorithm (although the sensor does not have
to be placed physically on the wing). In this low gain case the LQR solution
attempts only to add damping to the system. The results show once again
that damping is best added to an initially undamped structure by feeding
back a stabilizing combination of the rate states. As the control becomes less
expensive (p decreases), some displacement feedback will also be added.

Although LQR controllers can be employed to provide stable well-
regulated closed loop systems, the performance of these compensators have
limitations. This is especially true for the single control input case. Such
restrictions become most apparent in the limiting case of "cheap" control.
"Cheap" control is associated with a small control penalty and high feedback
gains. As the control weight p goes to zero, the closed loop poles go to the
stable finite MIMO zeros of the full Hamiltonian system if they exist, or
otherwise to infinity along stable Butterworth patterns. The MIMO zeros of
the full Hamiltonian system are found from the zeros of

H(p) = [N®(-p)B]' [N&(p)B] (2.4.3)

These zeros are referred to as transmission zeros for square (number of
measurements equals number of actuators) systems since they are the zeros
of the MIMO loop transfer function F®B, and "compromise" zeros for non-

square systems [Emami-Naeini and Rock, 1984]. "Compromise" zeros do not
appear in the MIMO loop transfer function.

For any system, the presence of "compromise" zeros implies that the
closed loop poles associated with certain modes will not move along stable
Butterworth patterns, causing a fundamental limit on the performance of the
control system. This limitation is clearly illustrated in Figs. 2.6 and 2.7,
which show the movement of the LQR closed loop pole locations of the
nominal system at design point 1 (below flutter). The closed loop poles are
plotted for control weights which decrease from a large value toward zero
(from p=10+4 to p=10-4). As the control weight decreases, the control gain
increases, causing the poles to move away from their open loop locations.
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Figure 2.8. Locus of the full state feedback LQR closed loop poles as p goes
toward zero ("cheap" control) for the four actuators acting
individually. Both plunge and pitch displacements are penalized in
the state cost.

The pole locations are plotted in Fig. 2.6 for the cases of the four
actuators acting individually. Fig. 2.7 shows the closed loop pole locations for
the cases of the actuators acting in pairs (2 inputs) and sll controls acting
together. When only one of the four available actuators is used, a
“compromise” zero is found and only one pole is able to move along a stable
Butterworth pattern. Such a zero indicates that a finite amount of state cost
will persist, even when a large control effort is used. This point will be
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further illustrated by the state versus control cost curves found in the
following section. Notice that for the single input cases the induced strain
bending u, and trailing edge flap u p actuators are able to move only the
plunge pole along a stable Butterworth pattern. This indicates that these two
actuators primarily influence the plunge mode. The induced strain torsion
and leading edge flap ug actuators are able to move only the pitch pole along a
stable Butterworth pattern, indicating that these two actuators primarily
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Figure 2.7. Locus of the full state feedback LQR closed loop poles as p goes
to zero (‘cheap" control) for multiple actuator input configurations.
Both plunge and pitch displacement penalized in the state cost.
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influence the pitch mode. Also notice that the bending actuator is more
effective than the trailing edge flap actuator (i.c , the poles are moved farther
into the left half of the Laplace-plane), and the torsion strain actuator is
significantly more effective than the leading edge flap actuator. In contrast
with the single actuator case, no transmission or "compromise" zeros are
found when combinations of two or more actuators are used (Fig. 2.7). In
these cases, both poles move along stable Butterworth patterns, although for
a fixed p some combinations are clearly more effective than others.

2.5 State V Control Cost Analvsi

In order to qualitatively examine the effectiveness of the four actuators
(bending strain actuation, torsion strain actuation, trailing edge flap
deflection, and leading edge flap deflection) acting individually and in various
combpinations, several state versus control cost analyses are performed. The
nominal section properties are taken to be those found in Table 2.1, and the
section is analyzed at design points 1 (below flutter) and 2 (above flutter).
The feedback gains are found by solving the LQR problem with a quadratic
state and control cost consisting of the normalized displacement variables
and control inputs, respectively. The displacement variables and control
inputs are normalized by their maximum values as described above. The
state cost equally penalizes the two normalized displacement states. The
control inputs are also equally penalized for those designs consisting of more
than one control input. In order to determine a finite cost, a broadband

disturbance source is introduced in the form of a one degree broadband
variation of the free stream air flow.

The results for design point 1 are shown in Figs. 2.8 and 2.9 in the
form of state cost versus control cost curves. Each curve represents a
different actuator configuration. In Fig. 2.8, curves are present for each
actuator acting individually and zll four acting together, the condition which
creates the minimum state versus control cost. In Fig. 2.9, the cost associated
with combinations of any two actuators acting together are plotted, as well as
the curve for three actuators (bending strain, torsion strain, and trailing edge
flap) and of all four actuators acting together. The curves are derived by
fixing all of the parameters of the problem except the control cost weighting p,
which is varied from p=10+4 to p=10-4. On these curves low control cost
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values indicate "expensive" control weighting (high p), low gains, and

—therefore high state costs associated with large responses. High control cost
values indicate "cheap" contro! weighting (low p), high gains, and lower state
costs associated with smaller responses. The lower the state cost for any
given control cost, the greater the effectiveness of the actuator or combination
of actuators.
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Figure 2.8. State versus control cost at design point 1 (below flutter) for
systems with the four actuators acting individually and all actuators
acting together. Gains were found by solving the LQR problem with
both plunge and pitch displacement penalized in the state cost.

As can be seen in Fig. 2.8 for single control inputs, the torsion strain
actuator u, is most effective in the low gain "expensive" control case while
bending strain actuator u;, is most effective for high gain "cheap" control. The
cost curves show that the induced strain bending and torsion actuators are
more effective than the conventional control surfaces throughout the entire
range of control gains. It is also evident from the figure that the leading
edge control surface is significantly less effective than the other actuators.
Each curve associated with a single control input is observed to flatten out or
asymptote to some finite state cost value. It is at this peint that each
actuator reaches its fundamental limit in terms of ability to exert control on
the system. Note that the actuators have not saturated, but have imparted
sufficient control to move one of the closed loop poles asymptotically near an
open loop stable "compromise” zero of the Hamiltonian system, as shown in
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Fig. 2.6. Since this closed loop pole will move no further despite larger
control effort, the state versus control cost curve flattens. This is evidence of
the fact that the presence of fewer independent actuators than important
states in the system leads to "compromise" zeros, and places a fundamental
limitation on the degree of control which can be exerted.

The curves associated with control schemes which utilize more than
one actuator are shown in Fig. 2.9 and are, in general, much more effective
than the single actuator systems. This is especially true for the "cheap"
control high gain cases, where the improvement is observed to be over two
orders of magnitude for some configurations. No fundamental perfermance
limits are encountered in these multiple-input control systems for which the
number of actuators (two or more) at least equals the number important
states (those penalized) in the system. The state costs associated with the
muitiple actuator systems are shown to decrease in Fig. 2.9 as the control
effort is increased throughout the entire range of control gains. As the gains
increase, the system closed loop poles move outward along the stable
Butterworth patterns, typified by the pairs shown in Fig. 2.7. The rate at
which these poles move in the complex plane is directly related to the
effectiveness of the multiple actuator system in question.

1 — - - Leading Edge Flap and Trailing Edge Flap Controls
j - ---- Torsion and Leading Edge Flap Controls

] —— - Bending and Leading Edge Flap Controls

: — — - Bending and Trailing Edge Flap Controls

- - Torsion and Trailing Edge Flap Controls

] —o Bending and Torsion Strain Controls

] —*— Bending, Torsion, and Trailing Edge Flap Controls
1 —¢— All Four Controls

0.01 0.1 1 10 100 1000
Control Cost

Figure 2.9. State versus control cost at design point 1 (below flutter) for
systems with a variety of multiple input actuator combinations.
Gains were found by solving the LQR problem with both plunge and
pitch displacement penalized in the state cost.
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Fig. 2.9 shows that the combination of the bending and torsion strain
actuators, and the combination of the trailing edge flap and torsion strain
actuators provide the best performance. These actuator combinations,
bending and torsion strain or trailing edge flap and torsion strain, are found
to be effective because they combine an actuator which effectively controls
plunge (bending strain or trailing edge flap) with one which effectively
controls torsion. In contrast, the bending strain and trailing edge flap
actuator combination is much less effective since both actuators tend to
control only the bending force on the wing and have little influence on the
torsional moment. Fig. 2.9 also shows that the combination of "conventional”
aerodynamic surfaces, leading edge flap and trailing edge flap, are the least
effective actuator pair. In fact, all of the curves associated with the leading
edge flap exhibit poor performance. The pairs which include the leading edge
flap do not provide much more control performance than that giver. by the
other actuators acting alone. The curves show that only after reaching the
single actuator asymptote does the presence of the leading edge flap allow for
more control to be effected. Finally, it is observed that the performance
obtained using three actuators and all four actuators is only marginally
better than that obtained using either the bending and torsion strain actuator
combination or the trailing edge flap and torsion strain actuator combination.
This is because there are only two states penalized and these two
combinations of actuators can effectively control both states. Therefore, little
additional benefit is obtained when more actuators are used than states
important to the problem.

Fig. 2.10 shows similar results for individual actuators and several
combinations of actuators at design point 2 (above flutter). The strain
actuators once again are more effective than the conventional control
surfaces. The bending and torsion strain actuators are the most effective,
while the leading edge actuator provides only very small amounts of control
and is not plotted in the figure. As with design point 1 (below flutter),
actuator combinations are more effective than single actuator control
schemes, with the combination of bending and torsion strain actuation or
torsion strain and trailing edge flap actuation being most effective. Also
notice the vertical low gain asymptotes in Fig. 2.10. Unlike the systems in
Figs. 2.8 and 2.9 (below flutter) which have finite state cost for infinitesimal
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geins, the systems of Fig. 2.10 (above flutter) are initially unstable, and the
low gain asymptotes shown in the figure are associated with the minimum
amount of control required to stabilize each system.
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Figure 2.10. State versus control cost at design point 2 (above fiutter) for
systems with actuators acting individually and in multiple input
combinations. Geains were found by solving the LLQR problem with
both plunge and pitch displacement penalized in the state cost.

2.6 Lessons Learned from the Typical Section

A typical section model which includes the applied forces and moments
produced by induced strain actuation as well as conventional aerodynamic
control surfaces, was developed in this chapter. The typical section wac
analyzed to provide the tools necessary for understanding the fundamental
mechanisms and limitations involved in aeroelastic cortrol, and ior
comparing alternative control methods. Classical control techriques were
employed to analyze various single-input, single-output (SISO) control
schemes. It was found that both the poles and zeros of the individual SISO
loop transfer functions moved rapidly with air speed, and that the zcros were
often in undesirable locations for effecting SISO control, including being non-
minimum phase. It was also found that simple gain feedback of the
displacement or rate state variables would not stabilize the systems
conisidered, and that it was necessary to use some combination of the rate
states in order to achieve a stable output feedback loop.
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Stable feedback loops were found using sensor placement techniques
and the solution to the Linear Quadratic Regulator (LQR) problem. For the
limiting case of low gain "expensive" control, the LQR solution was found to
yield a solution similar to that of sensor placement (i.e., a stabilizing
combination of the rate states), but was not restricted to gain ratios which
corresponded to physical sensor locations. A state versus control cost
analysis was performed using the solution to the Linear Quadratic Regulator
problem for a variety of actuator and sensor combinations. It was found that
when fewer actuators are used than important states (determined by the
state cost penalty), fundamental control limitations are identified by the
finite multiple-input, multiple-output (MIMO) transmission or "compromise”
zeros. The closed loop poles gc to these zeros, rather than along stable
Butterworth patterns in the case of high gain "cheap" control, limiting the
control authority which can be applied to the system. It was found that such
limitations can be avoided by utilizing at least as many control actuators as
important states in the system.

The state versus control cost comparisons demonstrated that strain
actuation is an effective means of controlling aeroelastic systems and a viable
alternative to conventional articulated control surfaces. Either bending or
torsion strain actuation is as effective alone as trailing edge flap actuation,
and much more effective than leading edge flap actuation. Thus, only by
incorporating strain actuation can an effective second actuator be added to
the system, and true high gain performance be achieved.

e [ 4 'y

The equivalent strain actuator forces acting on the typical section are
found by equating the deflections w of a uniform cantilever beam-like wing
due to a point force and a strain actuator induced bending moment. The
three-quarter span deflection due to a point force at the three-quarter span is

w —(9J L F
F=l =7 7o
64 J{EI), (2.A.1)
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where F is the equivalent force to be found. The three-qusrter span
deflection due to a strain actuator induced uniform bending moment is found
by the pin force method [Crawley and de Luis, 1987] to be

9\ L? 1 2/c _Egt,
wyy = (32)(EI)( ) Hebn  y=te (2.A.2)

a‘a

where A is the free strain of the strain actuator and y is the relative
substructure/actuator stiffness ratio. In Eqs. 2.A.1and 2.A.2,E, I, t and b are
the elastic modulus, area moment of inertia, thickness and semi-chord,
respectively. The subscript 's' denotes the beam substructure and the
subscript 'a’ refers to the attached actuators. In both expressions, w is the
deflection of the elastic axis at the three-quarter span. Equating the
deflections (wr and wyy) for the beam-like wing, and solving for the equivalent
force F yields

= _‘._{\f’_i_ 2
F _(L & W)E,ta (260 (2.A.3)

The torsional stiffness, by which the equivalent forces are normalized,
is found from the three-quarter span rotation 6 of the beam-like wing

subjected to a tip torque 1
3 1 1
=2 — |lz=| — 2.A4
° [(4 L)(GI )]T [Ka JT ( )

The normalized equivalent force uj is then found from Egs. 2.1.1, 2.A.3
and 2.A.4 by assuming a rectangular wing cross-section and that the torsional
stiffness of the strain actuator is negligible compared to that of the beam
substructure

u, =0 _f1+v 2” A =0.3656 22 |A (2.A.5)
Ky 2\6+y s

where Possion's ratio v and the relative stiffness ratio y are taken as 0.3 and
10.0, respectively, in this study.

Calculating the equivalent moment u. is not as straight forward as
finding the equivalent force u; because the problem is inherently two-
dimensional. Creating an equivalent moment requires that either the strain
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actuator possesses a free shear strain term (not present in piezoceramics) or
the substructure exhibits bending/twist or extension/twist coupling (requiring
a more complete [Crawley and Lazarus, 1991] analysis). However, an
effective shear strain term can be creaied in a piezoceramic by properly
constraining the actuator in the longitudinal and transverse directions.
Imposing such constraints on a strain actuator produces an equivalent
moment in the same manner (physically) as actuating an unconstrained
piezoceramic bonded to a substructure with bending/twist coupling. Thus,
the strain actuators are assumed to be fully constrained in the transverse
direction, unconstrained in the longitudinal direction and mounted at 45
degrees, yielding an equivalent immoment u4 equal to one half the equivalent
force uj, based on the maximum in-plane shear strain given by Mohr's circle.
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Chapter 3. Optimal Actuator Placement and Scaling Laws

The typical section analysis showed the advantages of using strain
actuators and the benefits provided by multiple actuator inputs. By taking
advantage of multiple-input strain actuation, true high-authority control can
be effected. However, the typical section results were obtained only for
specific equivalent strain actuator forces acting on the section, and no
mention was made of how the size and position of the stain actuators were
selected. Thus, there exist a need to develop and define the parameters
important to selecting and incorporating strain actuators in active structures.
The purpose of this chapter is therefore to develop models useful for
determining the size and placement of strain actuators in lifting surfaces,
and to develop the scaling laws needed to generalize the results obtained to
representative active wings.

3.1 Optimal Strain Actuator Pl I

In the following study several assumptions are made in order to gain
insight into the problem of obtaining maximum control authority from
induced strain actuated structures, while minimizing the weight added. The
assumptions used greatly simplify the mathematics, yielding a model that
retains the fundamental physics involved in deforming a lifting surface. The
analytic work provides the governing equations for strain actuated wings and
design guidelines for typical active lifting surfaces. Specifically, a simplified
model is used to obtain closed form solutions for optimal actuator placement
and size, and optimal and suboptimal induced camber and twist, and the
minimum additional weight for a given control requirement. The relations
developed can be used to design actual active lifting surfaces. Although many
effects which are important for detailed modelling, such as those produced by
the plate boundary conditions at the root, are omitted; the objectives of this
first order analysis are well served by the models developed.

Fig. 3.1 shows a cantilevered plate-like aeroelastic lifting surface, and
a representative segment of the wing. The section is free to bend along the
chord (induced camber actuation) as well as twist along the span (induced
twist actuation) as shown in the figure. The section is assumed to have
uniform geometric and material properties which are representative of the
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entire lifting surface, as does a typical section. Fach section is assumed to
have an elastic axis which coincides geometrically with both the mid-plane
and the mid-chord, and is symmetric about these planes.

The governing equations for these deformable section are found by
applying Bernoulli-Euler beam or Kirchhoff plate theory, and in:luding the
effects of the strain actuation as done in Crawley and Lazarus [1991]. These
relations are used to find the induced chordwise bending (camber) or
spanwise twist (angle of attack) induced in the deformable section by the
strain actuators. The optimal actuator placement and size relations are
found by matching the structural ctiffness of the wing skin and the actuator
layer. The deformations induced in sections with optimally placed actuators
are also found.

TR % TR
SRR ¥ S
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Deformable Section (A-A)

Induced Camber
Actuation

Induced Twist
Actuation

Figure 3.1. Strain actuated plate-like lifting surface, and an induced camber
and induced twist actuated deformable section.
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In the analysis which follows, the governing relations for both camber
and twist control are developed. In addition, a procedure is outlined for the
design of a nominal strain actuated airfoil, which can be used for comparison
with a conventional control surface actuated wing in terms of control
authority and weight penalty associated with the actuator system.

Structural Optimization For Camber Control

For the purpose of analyzing camber control the deformable section is
assumed to act like a beam bending along the chord when actuated by
induced strain actuator layers distributed symmetrically about the neutral
axis and acting in opposition. In this configuration the chordwise bending of
the section is governed by the following moment curvature relation

2
(%) %=(m,,)y (3.1.1)
y

where L; is the length of the deformable section along the span, and m 4 is the

equivalent actuation moment per unit length developed by the induced strain
actuators which causes the structure to deform. This equivalent moment is
equal to the integral though the wing thickness of the product of the
actuation strain A, Young's Modulus E, and offset from the neutral axis 2z

(m, ), =|,EA, zdz (3.1.2)

The wing stiffness and equivalent actuation moment developed are
determined by the internal geometry of the lifting surface. F ig. 3.2 shows the
box wing geometry analyzed in this study. The section is assumed to be made
of two wing sgkinsg, a layer of distributed strain actuators, and a hollow core.
The wing skins are of identical thickness. One lies above, and one lies below
the neutral axis. Each skin is equidistant from the neutral axis and includes
a layer of distributed induced strain actuators. The wing skin and actuator
thickness (¢, plus ¢,) is assumed to be much less than its distance from the
neutral axis to the center of the skin (Z,,5) or actuator (Z,,,). The hollow core
between the wing skins is assumed to be composed only of a perfect (and
weightless) shear web.
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Applying the above assumptions, the chordwise bending stiffness, or
mechanical impedance, of the lifting surface is found to come from only the
wing skins and the induced strain actuator layers

(-E—bl-) = 2[Et, 23 + Eit,Z2, ]
y

for t,,t, << Zs,Zna (3.1.3)

Substituting the equivalent moment (Eq. 3.1.2) and the mechanical
impedance (Eq. 3.1.3) into the moment curvature relation (Eq. 3.1.1) yields an
expression for the induced curvature

Et.Z, A

K, = (3.1.4)
Y Et.Z +EtZE,

where the induced strain actuators, located an equal distance from the
neutral axis, are operated in opposition to induce curvature in the structure
along the chordwise dimension. Inducing such a curvature is equivalent to
changing the camber of the lifting surface. Rearranging Eq. 3.1.4, the
induced camber is found to depend on the distance of the wing skin Z,,, and
the actuator layer Z,,, above the neutral axis, and the wing skin and the
actuator layer stiffness

Z, A E.t,

o = Zmh (3.1.5)
¥z vzl

where yis the relative stiffness of the wing skin to the induced strain
actuator. Upon close examination of the induced camber equation (Eq. 3.1.5),
it can be seen that the amount of camber obtainable through induced strain
actuation is maximized by correctly matching the bending stiffness, or
mechanical impedance, of the wing skin and that of the distributed actuator
layer. If the actuator layer is placed at a distance above the neutral axis that
i8 less than that which yields maximum effectiveness, it is force limited. On
the other hand, an actuator which lies a greater distance from the neutral
axis than the distance which gives maximum effectiveness is stroke limited.
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Figure 3.2. Box wing internal geometry of a lifting surface with induced
strain actuators.

The optimal actuator layer height, which is found by differentiating the
expression for the induced camber (Eq. 3.1.5) by the distance the actuator
layer lies above the neutral axis Z,,,, is

Z oz = AV Zos (3.1.6)

Eq. 3.1.6 shows that the optimal position for the distributed actuator layer is
only dependent on y, the relative stiffness rf the wing skin and the actuator
layer. This expression, which relates the optimal actuator layer height to the
geometrical and material properties of the wing, can be used in two ways.
First, the optimal actuator size can be found for a given actuator layer. In
some cases the actuator placement will be fixed by other constraints, and the
actuator thickness can be chosen to achieve an optimal configuration.
Alternatively, it may be desirable to locate the optimal location of a given
actvator. Since the actuator layer must be physically connected to the airfoil,
the height of this layer above the neutral axis Z,,, must be roughly equal to
or less than the height of the wing skin Z,,,. Thus for practical optimal
designs tc be achieved, the relative stiffness ratio y must be less than or
equal to unity. However the relative stiffness ratio is typically greater than
unity for actuators bonded to structural members such as wing skins. This
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indicates that it may not be possible to achieve optimal designs, and that Zma
should be made as large as physically possible by bonding the actuator layer
to the interior or exterior wing skin surface, or embedding it in the skin. It
also indicates that the actuator stiffness E, should be chosen as large as
possible. The high relative stiffness ratio of representative wings typically
causes suboptimal actuation in a force limited mode even when Z,,, and E,
are large.

Sections with actuators placed according to Eq. 3.1.6 are considered
optimal since it is in this configuration that the maximum camber is obtained
through induced strain actuation for a given airfoil section and actuator. A
non-dimensional expression for the optimal induced camber is found by
substituting the optimal actuator placement expression (Eq. 3.1.6) into the
camber equation (Eq. 3.1.5) and integrating over the chord

(-49) =l\/-7- [-—-C—]A (3.1.7)
€ Jopt 2\VW |2Z,

where 2Z,,,/c is approximately equal the the wing thickness ratio. The
optimal induced camber is a function of just three non-dimensional
quantities. These quantities are the inverse square root of the relative
stiffness ratio y, the inverse of the airfoil thickness ratio, and the actuation
strain A produced by the induced strain actuators. Eq. 3.1.7 shows that more

camber is induced if the airfoil is thin, the relative stiffness ratio is kept
small (Zma and E, large), and if the actuation strain is large.

Structural Optimization for Twist Control

In addition to camber control, induced twist actuation can be used for
aeroelastic contrnl. By inducing twist curvature in the lifting surface, the
local airfoil angle of attack may be regulated to effect control. A deformable
section analysis can be empluyed, in a manner similar to the camber control
case ‘o determine the equations governing the transfe: of actuation strain to
twist ciirvature. In this analysis the deformable section is assumed to act
like a plate twisting along the spanwise dimension.
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The deformable plate section is assumed to bend, twist and extend
along the spanwise dimension, as well as exhibit chordwise bending. The
moment curvature relation for such a section is [LLazarus and Crawley, 1989]

A Blfe _ N,
5 ol L
Ny =J,QAdz M, =[ QAdz (3.1.8)

where A, B, and D are the plate extension, coupling and hending stiffnesses,

N, and M, are the actuation force and moment per unit length, and Q is the

reduced stiffness of the plate section. Note that the extension, coupling and
bending stiffnesses are composed of terms from both the wing skins and
actuator layers, which lie symmetrically about the neutral axis; while the
actuation forces and moments depend only on the strain actuator layer
properties. Eq. 3.1.8 can be simplified by neglecting the extension ¢, and
bending x,, along the chordwise dimension. Further, the twisting force
(N ),y and moment (M )., created by the strain actuators can be set to zero

since common induced strain actuvators produce no shear strain. These
assumptions allow for the twist curvature, which will be analyzed for induced
twist actuaticn through bending/twist coupling and induced twist actuation
through extension/twist coupling, to be solved for explicitly. In each case the
internal geometry will be assumed to be that of the box wing (Fig. 3.2).

Twist Actuation Through Bending/ Twist Coupling

When the distributed actuators are commanded to act in opposition, so
that a spanwise bending moment (M ), is imposed on the deformable section,
a twist curvature is induced through the section bending/twist coupling (D).
This twist curvature can be found by setting the coupling stiffness B to zero
and applying the aforementioned assumptions to Eq. 3.1.8

o =—— D
¥ |DuDss - Dis|

2EL), taZmg As (3.1.9)

where (E}), is the engineering constant associated with the elastic modulus of
the actuator layer in the longitudinal (spanwise) direction.
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Maximum twist curvature, induced angle of attack, and the optimal
actuator layer placement is found by differentiating Eq. 3.1.9 with respect to
the actuator layer height and setting the result equal to zero. This yields a
quadratic expression in Z,,,. A rough approximation for the optimal height of
the actuator layer is obtained using a binomial expansion

(1-vB)
Zma = |V 1+ (EL),(Grr), Zms
(EL),(Grr),

where vp = Dis
VD1:Dgs (3.1.10)

In Eq. 3.1.10 E;, and G 1 are the engineering constants associated with the
elastic and shear modulus of the wing skin and actuator layer. The relation
above shows that the optimal actuator height is proportional to the distance
the skin lies above the neutral axis and the square root of the relative
stiffness ratio, as was found for camber control. In addition, the optimal
position for twist control is dependent on the bending/twist coupling
parameter yp, and the engineering constants of the wing skin and actuator
layer. The bending/twist coupling parameter is a non-dimensional measure
of the amount of coupling inherent in the wing skin, and has a value between
one and negative one [Weisshaar and Foist, 1985]. This parameter, along
with the ratio of engineering constants, causes the optimal height for this
case to be lower then that of the induced camber case.

A measure of the maximun lift obtained through induced twist can be
found by substituting the optimal height equation (Eq. 3.1.10) into the twist
curvature relation (Eq.3.1.9) and integrating over the section. This gives an
expression which shows the dependence of the induced twist, from the inner
to the outer spanwise edge of the section, on the geometric and material
properties of the lifting surface.

. (‘{:}“) o (Fl)(G ) (22‘;' )Ax (3.1.11)
Jw(1-vB) \/“‘——@'Li(aﬁ)‘j ms
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where L; is the length of the deformable section. This optimal twist
expression is slightly more complicated but very similar to the optimal
induced camber equation (Eq. 3.1.7). The optimal twist is dependent on the
same quantities as was the optimal induced camber, such as the relative
stiffness y, the thickness ratio, and the actuation strain A. However, in this
case the section aspect ratio, the bending/twist coupling parameter yp, and
the ratio of engineering constants are also important.

Twist Actuation Through Extension/Twist Coupling

The second method of inducing twist is through extension/twist
coupling and extensional actuation. In this analysis, typical plate sections
with extension/twist coupling, but no extension/bending coupling, are
considered. The actuators on either side of the neutral axis are commanded
to act in unison, rather than in opposition, to produce extensional strains and
equivalent extensional forces. Therefore spanwise twist is induced in the
sections without either chordwise or spanwise bending. The twist induced
from extension actuation and extension/twist coupling is governed by the
following relation [Lazarus and Crawley, 1989]

v =___ B
7 [AuDes - Bf]

(N,), (3.1.12)

In Eq. 3.1.12, B¢ i3 the extension/twist coupling of the wing skin, and (N ),
is the equivalent extensional force per unit length developed along the
spanwise dimension by the strain actuator layers.

Since twist is induced by an equivalent force (and extension/twist
coupling), rather than an equivalent moment (and bending/twist coupling),
the actuator layer has no optimal position above the neutral axis. Hence, the
maximum twist induced in the lifting surface is independent of the actuator
layer placement (as long as it is symmetric). However, there is still an
impedance matching problem to consider since the actuator provides both
forcing and stiffness. By differentiating the twist curvature equation
(Eq. 3.1.12) by the actuator thickness ¢,, the optimal actuator layer thickness
is found
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o=+ iy 7l (3.1.19)
Eq. 3.1.13 shows that the optimal thickness is dependent essentially on the
ratio of the extensional stiffness of the wing skin and the distributed actuator
layer, or mechanical impedance, as expected. The optimal induced twist
curvature can be found by substituting the optimal actuator thickness
expression (Eq. 3.1.13) back into the expression for induced twist through
extension/twist coupling (Eq. 3.1.12). An expression for the optimal induced

twist can be found by integrating over the lifting surface as done for the
bending/twist coupling case.

The deformable section analysis showed that an optimal configuration
is achieved for practical configurations when the actuator layer distance from
the neutral axis Z,,, is large. However, the greatest height which can be
achieved physically is approximately the height at which the wing skin lies
above the neutral axis (the difference in performance between bonding the
actuators to the interior or exterior of the wing skin, or embedding the
actuators in the skin is negligible since f{,<<Z,. ;). These performance
considerations, along with other factors such as actuator type, geometric
space constraints, material compatibility, damage protection and ease of
manufacturing, make bonding the actuators to the interior surface of the
wing skins a reascnable actuator placement choice. Such a configuration is
shown in Fig. 3.3. From geometry the height of the actuator layer can be
easily determined

Zona = Zipy = 5 (ta 1) (3.2.1)

Additionally, it may be desirable to have the total (skin plus actuator layer)
skin thickness of the wing with actuators equivalent to the original skin
thickness ¢,,,

t,+t, =t (3.2.2)

Thus, the actuator layer would just replace a portion of the original wing
skin. This geometry was chosen in order to keep the wing stiffness with the
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induced strain actuators close to the original wing stiffness, and to reduce the
weight added by the actuators.

Box Wing Wing Skin

Cross Section TR Actuator Layer

I ——— Neutral Axis
3 ) A R A N S R R S s
T Zms

T T SR, v, A SRR
AR R

Figure 3.3. Actuator layer bonded to under surface of wing skin.

Optimal Actuator Thickness

In the configuration described, all thie design variables have been fixed
except the thickness of the actuator layer. Therefore, in order to achieve
optimal performance, the actuator layer thickness ¢, is chosen which
optimizes the given actuator layer height Z,,,. This optimal thickness is
calculated by substituting the geometric constraints (Eqgs. 3.2.1 and 3.2.2)
into the optimal height equations (Eqs 3.1.6 and 3.1.10) and solving for the
actuator layer thickness ¢,,.

t, (camber) = - ;‘“’ (3.2.3)
Zma (EL)“ + 1
Z,, ) (EL),
: ~ lso ] ‘
t, (twist) = " (EL),(Grr), (3.2.4)

Zing 2(EL)a 1+-(‘E',‘)G(Gyr). + 1
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Eqgs. 3.2.3 and 3.2.4 show that the actuator layer thickness will always be less
than the original wing skin thickness, which means that practical designs are
possible using this configuration. By substituting the material and geometric
properties of a typical wing, actual optimal actuator layer thicknesses can be
calculated.

Actuator Layer Weight Penalty

The weight penalty associated with using induced strain actuators can
be assessed in terms of percent weight added. The percent weight added is
easily calculated from the original total weight and the final total weight
(with the actuator layer)

Original Total Weight = iS,- (tso); Ps
i=1 (3.2.5)

Final Total Weight = 3.5; [(5,); s +(ta); £] (3.2.6)
i=1

where all the weight has been assumed to come from either the wing skin or
the actuator layer. The percent weight added is found by dividing Eq. 3.2.6
by Eq. 3.2.5 and substituting the final skin thickness relation (Eq. 3.2.6).

Added Weight (%) = 3 (‘—) ("—0- 1] 100
i \Fs (3.2.7)

i=1\%s0

The added weight depends only on the ratio of actuator thickness to original
wing skin thickness and actuator density to skin density. As the actuator
thickness and density decreases, so does the added weight. And, if the
density of the actuator is equal to that of the wing skin, no weight is added.

For some designs, the amount of weight added, dictated by the actuator
thickness and density, for an optimal configuration is not tolerable. When
the added weight is limited by design constraints, the actuator thickness
must be reduced from the optimal thickness to some acceptable thickness.
Such a configuration is considered suboptimal, since neither the optimal
actuator height or thickness is achieved. However, a suboptimal design is not
necessarily a poor design, especially if the particular configuration meets all
the performance objectives.
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3.3 Scaling Laws,

Sections 3.1 and 3.2 identify the parameters important for selection
and placement of strain actuators in active structures. Such parameters
serve as useful tools for designing controlled structures such as active lifting
surfaces. In the design of model active structures, the laws governing the
scaling of the important parameters also need to be determined. The scaling
laws must be known in order to design models with non-dimensional
properties equivalent to those of the full scale articles, so that experimental
results can be applied to actual aeroelastic structures. For these reasons, the
basic active lifting surface scaling laws are found in this section.

Including the effects of chordwise bending (i.e., camber) is important
for predicting the behavior of plate-like structures. Similarly, proper
modeling of the three-dimensional unsteady aerodynamic forces associated
with the deflections of lifting surfaces is essential for a full aeroelastic
analysis. However for the purpose of identifying the scaling laws
fundamental to strain actuated aeroelastic control, ‘t is unnecessary to
undertake such a detaiied analysis. The important parameters can be
identified using simple steady strip theory aerodynamics, and a beam-like
structure which is free to bend and twist along the span, such that the out-of-
plane displacements w are described by

w(x,y)=w(x)+ y6(x) (3.3.1)

The differential aeroelastic equations of motion are found by applying these
assumptions to the strain actuated plate energy equation (5.1.1). The out-of-
plane solution ior periodic motion is found using a partial Ritz analysis,
similar to that of Jensen and Crawley [1984], to be

tw %0 9 A2A )
Du';x—;'i'leGga—'*'l HW = MA ? (3.3.2a)

%o 92

3
3 w axg + 2'2’1029 = qccla 2] (3.3.2b)

—24D16 jgx_a + C2D11 gx—‘{ - 48D66

Non-dimensionalizing the aeroelastic equations yields
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where the dynamic pressure, mass per unit area and vibration frequency are
normalized by the divergence dynamic pressure qp, average mass per area fi,
and fundamental natural frequency Ao, respectively. The remaining non-
dimensional quantities are defined as

- D, - M ¢ — u = A
D--:—U— = A aqa=— = A =—
Y Do A MA,, e ap g Ho ,10
w - oW codw ¢
w=— === =
Y% 5 hy h
=T ¥ (3.3.4)

where D, is the reference bending stiffness and M, is the reference strain
actuated equivalent moment. Note that in contrast with usual practice, three
length scales (span L, chord ¢ and thickness k) are used in normalizing the
equations so that the effects altering the lifting surface geometry can be
assessed in a consistent manner. Eq. 3.3.3a shows that while aspect ratio is
unimportant for the problem of simple spanwise bending, it is important for
creating the twist needed for aeroelastic control through bending/twist
coupling. The need to match aspect ratio is not a surprising result for the
plate-like structures under examination. This result is also not constricting
since aerodynamic considerations (for actual three-dimensional lifting
surfaces) usually requires that aspect ratio to be matched regardless of the
structural scaling. The equations also reveal another important non-
dimensional geometric factor. The non-dimensional coefficient of the last
term in Eq. 3.3.3a shows that the ability of strain actuators to deform &
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structure depends on the slenderness ratio A/L. However the slenderness
ratio is lumped with other terms so that the overall coefficient, rather than
the slenderness ratio itself, is the parameter which must be matched.

The essential non-dimensional parameter governing strain actuation is
found from Eq. 3.3.3a to be the actuator force stiffness ratio listed in
Table 3.1. This parameter is new to the aeroelastic scaling problem and
arises from the use of strain actuation. The force stiffness ratio is essentially
the ratio of the equivalent moment produced by the strain actuators to the
bending stiffness of the structure. Note that both structural elements and
the actuators contribute to the total bending stiffness, while only the strain
actuators contribute to the equivalent moment. By substituting the force
stiffness ratio into Eq. 3.3.3b, alternate representations of this fundamental
strain actuator aeroelastic control parameter can be identified. These
parameters are also listed in Table 3.1. They include the force pressure ratio,
a measure of the aerodynamic relative to the strain actuator forces, and force
mass ratio, a comparison of the inertial and strain actuator forces. These
non-dimensional parameters (valid for arbitrary geometries), along with
those normal to aeroelasticity such as mass ratio y and reduced frequency %,
are the quantities which must be matched for scale model test results to be
applied to actual lifting surfaces.

Further insight regarding the fundamental non-dimensional
parameters can be found by utilizing the wing stiffness (Eq. 3.1.2) and strain
actuator forcing (Eq. 3.1.3) associated with the box wing geometry displayed
in Fig. 3.2 or 3.3 (assuming h = 2Z,,, = 2Z,,,). Substitution of these terms
into the arbitrary geometry parameters yields the non-dimensional box wing
geometry parameters listed in Table 3.1. The box wing geometry parameters
emphasize the role of the slenderness ratio h/L (or thickness ratio h/c) in
strain actuation. The slenderness ratio is fundamental to both simple beam
bending and effecting aeroelastic control through bending/twist coupling.
Notice how the thickness ratio determines the geometric susceptibility of
aerodynamic forces to strain actuation as the slenderness ratio determined
the effectiveness of strain actuated beam bending. These parameters also
show the importance of the relative actuator to substructure stiffness y and
density y, ratios.
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Additional Aeroelastic Non-dimensional Non-dimensional Parameters
Scaling Law for Strain Parameters for for Box Wing Geometry
Actuated Structures Arbitrary Geometry

Force Stiffness Ratio hD, 1 )
MA L2 —(1 + W)LZ
Force Pressure Ratio qphL? gpL ( L )
cM A, E .\ c
Force Mass Ratio )lzgughL2 3‘2, (l + Wt AP)L2
MAo Ea / Pa
Aspect Ratio £ _L_
c c
Relative Stiffness Ratio _Ed,
— V=
Eata
Relative Density Ratio v, = Psts
pa Q

Table 3.1. Additional strain actuated lifting surface scaling laws.

Note that in the equations derived, the cut-of-plane displacements w
are normalized by the plate thickness & in order to obtain a rational non-
dimensionalization consistent with plate theory. However, other
normalization schemes may be more appropriate depending on the non-
dimensional quantities of interest. For example, in assessing quasi-static
aeroelastic control authority, scaling the loca! angle of attack or twist 0 is
more important than scaling the out-of-plane deflections in terms of plate
thickness. Therefore, the plate deflections should be normalized by the chord
¢ rather than the thickness h. Scaling the plate twist w/c rather than
deflections w/h introduces a factor of ¢/ h, which when multiplied by the force
stiffness ratio causes the box wing force stiffness ratio to scale like the
slenderness ratio and aspect ratio (rather than the slenderness ratio
squared). This explains why the optimal induced camber equation (3.1.7)
scales like the thickness ratio (not squared) and the optimal induced twist
equation (3.1.11) scales by the aspect ratio and thickness ratio, as shown in
section 3.1.

62



In addition to geometric scaling, the box wing parameters reveal other

important scaling considerations. The ratio of strain actuator force to
aerodynamic stiffness (force pressure ratio) shows that greater strain
actuator forces are required as the dynamic pressure increases. Larger strain
actuator forces can be obtained by increasing the actuator thickness. Note
that the need for increased control forces at higher dynamic pressures is a
problem encountered by all actuators (including conventional articulated
control surfaces) effecting aeroelastic control. The non-dimensional
parameters also show that strain actuators made from the same material
(defined by E,/p;) may be used for both scale models and actual lifting
surfaces with box beam construction since the reduced frequency k = b/ U
must be matched in aeroelastic testing. This can be seen more clearly by
substituting the reduced frequency into the force mass ratio yielding

2 U(1+y, +4,)
°  E/p,

2
(E) where 4, = Ho_ (3.3.5)

¢ aa

The reduced frequency and the aspect ratio must be matched so that the
aerodynamics are scaled properly. Also the scale model velocity ratio
difference should be accounted for by the added mass y,, as is the usual
practice for sub-velocity sub-length scale model testing [Ducharme and
Crawley, 1987]. Thus, the actuator properties are independent of other scale
factors, and actuators used on scale model tests may be applied to full scale
articles directly.

The force stiffness and force mass ratios have interesting implication
for using strain actuators to control realistic aeroelastic structures, since the
force created by strain actuators scales like length squared and the weight of
the actuators scales like length cubed. However the amount of aeroelastic
control effected is dependent on the work done on the structure by the strain
actuators, which is the product of the force multiplied by the distance that the
force is applied. Therefore the amount of control performed, which is a
function of the energy or work imparted by the actuators, scales like length
cubed and scales in exactly the same manner as the weight of the actuators.
Thus, the control authority demonstrated by strain actuators on scale model
lifting surfaces can be directly applied to the control of actual active wings.
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Chapter 4. Test Articles

In the previous chapters simplified models chowed that strain
actuators could be successfully employed to effect aeroelastic control. As a
result, test articles were built to experimentally demonstrate this aeroelastic
control potential. This chapter describes the lifting surfaces used and the
associated hardware needed for open and closed loop testing. The test
articles were constructed at the Massachusetts Institute of Technology (MIT)
Space Engineering Research Center (SERC) and are described in detail in
Lazarus and Crawley [1989]. The test articles were designed as thin, low-
aspect-ratio lifting surfaces so that both aeroelastic and transverse plate
effects would be important, thereby serving as a testbed for developing and
demonstrating plate-like strain actuated lifting surface aeroelastic modeling
and control law design techniques.

(.1 Strain Actuated Test Article Constructi

Fig. 4.1 shows a diagram of the strain actuated active lifting surface
test articles. The tes: articles had a span x of 11.5 in (29.2 cm) and a chord y
of 6.0 in (15 cm), which resulted in an equivalent full span aspect ratic of
3.83. The test articles had a thickness-to-chord ratio of 0.51 percent, and
were fixed at the root by an immobile clamp for both the bench-top and wind
tunnel experiments. Two model lifting surfaces were constructed, analyzed
and tested. A 6061 aluminum bench-mark article was designed and tested as
was a [+30,/0], bending/twist coupled AS4/3501-6 graphite/epoxy (G/E) plate
which exhibited enhanced torsional control. The material properties of the
lifting surface test articles are reported in Table 4.1. The aluminum plate
thickness was 0.03125 in. (0.794 mm) and each ply of the G/E plate was
0.00528 in. (0.134 mm), resulting in a total G/E plate thickness of 0.03166 in.
(0.804 mm). Due to the fiber migration associated with curing plates having
a small numbers of plies, the G/E plate stiffness properties were adjusted
(from the values in Table 4.1) by assuming that all graphite fibers were
located in the middle 70 percent of the six ply composite plate.

The aluminum plate was later (after all other experiments were
completed) modified to flutter within the wind tunnel operating range. The
test article was modified by attaching a lead mass at the wing tip one semi-
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chord behind the trailing edge. The mass weighed 285.5 g or 120.9 percent of
the original aluminum test article weight (236.22 g) and was held in place by
an 85.7 g aluminum brace, making the total modified-for-flutter aluminum
test article mass equal to 157.1 percent of the nominal aluminum lifting
surface. The added weight lowered the fundamental vibration frequency of
the modified-for-flutter test article by 57.6 percent, and lowered the flutter
speed by 32.3 percent (see Chapter 5 for details).

x
'} .
Cross Section A-A
F -84 R- <—a 5.1 ]
A ._ A —» =E-25cm
- - a—— 152 cm ——p
29.2 cm
t . Power Bus Cross Section
51cm 5 I 0.4 mm
- - P>
< 5.1 mm
y / Clamp
%/ it
l Power Bus
D Piezoceramics mm  Power Leads
Aluminum or === Ground Leads
G/E Substrate Copper Tape
Y Strain Gage Insulating Tape

@ Sensor Locations
- Disturbance Source Steel Target

Figure 4.1. Model strain actuated active lifting surface test article.

The strain actuated lifting surfaces were designed as integrated
controlled structures. The Piezoelectric Products Incorporated G-1195
piezoceramic actuators were intended to not only provide actuation, but also
to make up a substantial portion of the structure itself. Each of the active
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test articles had approximately 70 percent of each surface covered with the
surface-bonded piezoceramic strain actuators. The 10 mil (0.254 mm) strain
actuators accounted for 31.3 and 52.0 percent of the aluminum lifting surface
volume and weight, and 30.1 and 62.3 percent of the graphite/epoxy lifting
surface volume and weight, respectively. These piezoceramic actuators
increased the spanwise bending stiffness of the aluminum and graphite epoxy
plates by 201 and 437 percent, respectively, over the nominal substructure
stiffness.

Voltage was provided to the actuators via four spanwise power busses.
Each bus consisted of two layers of copper and three layers of insulating tape.
Power bus grooves were machined in the lifting surfaces so that the upper
surface of each bus was equal to that of the piezoceramic actuators. The 4 mil
(0.102 mm) bus grooves ensured that each plate had a smocth surface, but
decreased the bending stiffness in the grooved region by 41.2 percent for the
aluminum plate, and 6.4 and 14.8 percent for the G/E plate in the spanwise
and chordwise directions, respectively. The test articles were constructed so
that the 30 piezoceramic wafers which were bonded to each wing were divided
into twelve independent control groups for independent control of the first
three modes (details of the control groups are provided in Lazarus and
Crawley, 1989).

Aluminum G/E Piezoceramic Lead
E;, 70 GPa 142 GPa 60 GPa -
Ep 70 GPa 9.81 GPa 60 GPa -
vir 03 0.418 0.3 -
GrL 26.92 GPa 7.00 GPa 22.00 GPa -
Loy 0.794 mm 0.134 mm 0.254 mm -
P 2700 kg/m? 1500 kg/m? 5400 kg/m? 5400 kg/m?

Table 4.1. Lifting surface test articles material and geometric properties.

The surface of each test article was covered with a thin layer of
polyurethane in order to protect the wings from accidental damage and to
provide a smooth aerodynamic surface for the wind tunnel tests. The total
weight of the test articles, including the structure, piezoceramics, power buss,
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leads and polyurethane, was measured to be 236.2 g and 196.6 g for the
aluminum and G/E lifting surfaces, respectively.

4.2 Associated Hardware

In addition to the test articles, many other compenents were required
to perform control experiments. These components, which included hardware
such as sensors, a digital control processor, power amplifiers and disturbance
sources, are described below. The motion of the test articles was measured by
3 non-contacting Keyence LB-70 laser displacement sensors. Each sensor had
a half power (3 db gain reduction) bandwidth of 700 Hz, a range of 5.5 in
(14 cm) and a resolution of 7.1x10-3 in (180 um). The displacement sensors
were used to measure the plate motion 0.5 in below the tip cf each lifting
surface in both the bench-top and wind tunnel configurations. One sensor
measured the motion 0.5 in aft of the leading edge (y;), another was used to
measure the displacement &t the mid-chord (y,), and the third sensor detected
the motion 0.5 in forward of the trailing edge (y3). A. P. Circuit Corporation
variable frequency filters were used to eliminate high frequency (above
1000 Hz) noise from each sensor signal. It is acknowledged that actual lifting
surfaces are not able to take advantage of such displacement measurements.
However, actual lifting surfaces do have ample space (not available on the
small scale model lifting surfaces) for accelerometers, the sutput of which can
be integrated to yield measurements equivalent to the displacement
measurements made in this study.

All compensator designs were implemented by a Wind River Systems
VX Works UNIX-compatible real time operating system running on a
Heurikon HK68/V30 digital control computer. The Heurikon was linked to a
Supercard array processor for increased controller speed. The control
computer was capable of handling up to 16 sensor inputs (16 bit A/D's) and 8
control outputs (16 bit D/A's). Variable frequency four-pole anti-aliasing
Bessel filters were utilized to eliminate unwanted alias signals.

Power was provided for the piezoceramic strain actuators by high-
voltage low-impedance amplifiers constructed from Acopian 100PT3 voltage
supplies and Apex PAO8V operational amplifiers. Four 100 volt Acopian
supplies were tied in series to provide a maximum of plus or minus 200 peek
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Volts. This voltage was sufficient to supply an electric field just below the
coercive field (24 Volts/mil) of the piezoceramic wafers. Twelve Apex
operational amplifiers were used to provide independent amplification of each

actuator group control signal.

The strain actuated active lifting surfaces were tested in both bench-
top and wind tunnel configurations. Most of the hardware, including the
laser sensors, filters, control computer and amplifiers, was used in both sets
of experiments. However, the disturbance sources used to excite the test
articles in each set of experiments were not identical. Each disturbance had
& different bandwidth, forcing level, and spatial distribution.

A non-contacting magnetic proximity probe was driven as an actuator
to provide a disturbance source in the bench-top configuration. The magnetic
field created by the proximity probe produced a disturbance force on a one
inch square steel target attached to each test specimen. This disturbance
force was applied at the quarter chord in order to create forces similar to
those encountered during wind tunnel testing. The steel target was placed at
approximately the quarter span because at this location the disturbance
source was found to excite the test articles most effectively. The magnetic
shaker was held at a distance of about 0.125 1~. f.om the square target by a
stecl support bracket. The steel support bracket, shown in Fig 4.2, was also
used to hold the laser sensors at a distance of 4.0 in. (10.2 cm) from the test
articles.

The magnetic shaker created a localized force of sufficient magnitude
to cause deflections of roughly 0.25 in. (6.35 mm) at the tip of the test articles.
This forcing level combined with the accuracy of the laser sensors gives a
rough estimate of the measurement error for the bench-top experiments. The
estimated error was calculated to be 0.41 percent (see section 6.1). The
magnetic probe was exited by a 500 Hz bandwidth, zero-mean, white noise
signal generated by a Tektronix 2630 Fourier analyzer. The magnetic probe
was able to generate forces of roughly the same magnitude over a wide range
of frequencies. Thus, the forcing provided by the shaker had essentially no
high frequency roll-off in the excitation bandwidth.
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Figure 4.2. Side view of the steel support bracket used to hold the non-
contacting magnetic shaker and laser proximity sensors.

The wind tunnel experiments were conducted in the MIT department
of Aeronautics and Astronautics 1x1 foot laminar flow wind tunnel. A wind
tunnel test section, shown in Fig. 4.3, was constructed to house the lifting
surfaces, laser sensors, pitot tube and gust generator. The test section had a
width of 8.0 in. (20.3 cm) and a height of 12.0 in. (30.5 cm), and the lifting
surfaces were mounted vertically in the middle of the section. The flow area
was reduced from the 1x1 foot tunnel section to the 8x12 in. test section using
a minimum drag shape to ensure smooth flow. In this configuration, the
laser sensors were located 4.0 in. (10.2 cm) from the test articles (as was the
case for the bench-top experiments). This 4.0 in. stand-off distance gave a
usable measurement range of plus or minus 1.5 in (3.81 cm) from the laser
sensors which had a maximum range of 5.5 in. (14.0 cm). The lifting surfaces
were mounted at a zero root angle of attack using a rigid cantilever support
similar to that of the bench-top experiments. Any gaps between the
cantilevered root of the test articles and the test section floor were closed with
cellophane tape to ensure smooth air flow. Note that the bending/twist
coupled G/E lifting surface was tested in a washin (bending causes an
increased angle of attack) configuration.

The disturbance for the wind tunnel experiments was supplied by a
gust generator, designed and constructed to provide about a 1 degree broad
band angle of attack variation in the free stream flow. The gust generator,
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depicted in Fig 4.3, was constructed of three gust vanes made from 0.0625 in.
thick aluminum and a 0.75 in. aluminum push rod. The gust vanes, which
had a chord of 4.0 in. and a span of 11.5 in., were placed in the wind tunnel
test section 6.0 in. ahead (measure from the mid-chord of the lifting surfaces
to the mid-chord of the gust vanes) of the lifting surfaces. The gust vanes
were separated by 1.0 in. (perpendicular to the flow), with the middle vane
aligned with the test articles. The 0.75 in. push rod, which was connected to
the quarter chord of the vanes at the tip by 0.25 in. diameter aluminum rods,
was driven by an Indiana General 48 V 3320D-79B D.C. motor. The D.C.
motor produced a rotational speed roughly proportional to the input voltage.
The position of the motor shaft €,, was measured using a voltage source and
a varia_le resistance 120KQ ten turn trim pot connected to the motor shaft.

A feedback control circuit was designed using classical techniques so
that the gust generator frequency response was similar to that of a typical
gust spectrum. The closed loop response of the gust generator, measured
from voltage in V;, to motor shaft angle ©,,, had a gain of ten from zero to
40 Hz and then rolled-off due to a double real pole. Note that because the
open loop transfer function from V;, to ©,, had a frec integrator, this transfer
function had a closed loop steady state error of zero. The gust generator was
driven with a zero mean white noise signal generated by the Icurier
analyzer. This input produced a gust amplitude of approximately one degree
in the bandwidth of zero to 40 Hz. The excitation caused by the gust
generator at the gust alleviation test velocity of 60 mph was found to be
roughly three times that of the bench-top disturbance source or 0.75 in.
(1.91 cm). Thus, the lifting surface response to the gust generator
disturbance yielded a laser sensor measurement error of about 0.14 percent.

In addition to driving the bench-top magnetic shaker and the wind
tunnel gust generator, the Fourier analyzer was also used to process the
disturbance, sensor and control signals. The cutput of the Fourier analyzer
was used to produce disturbance and control transfer functions and calculate
the RMS response.
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Figure 4.3. Wind tunnel test section with active lifting surfacc vertically
mounted one semi-chord behind the gust generator vanes. The wa!!-
mounted laser displacement sensors are also shown in the figure.
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Chapter 6. Analytical Model

Building an aeroelastic model of sufficient accuracy for designing
closed loop centrollers requires considerable knowledge of structural
dynamics, aerodynamics and linear system analysis. Fig. 5.1 shows the
pieces of analysis needed and the logical flow of modeling tasks which lead to
a high fidelity aeroelastic model. Each analysis picce contributes states,
representing the dynamics of the physical phenomenon modeled, to the full
order model in a form compatible with linear time-invariant system analysis.
The full system includes models of the plant dynamics (structural dynamics
and unsteady aerodynamics), actuator and sensor dynamics, disturbance
source dynamics and any dynamics associated with electronic equipment such
as amplifiers and filters. This chapter details the models used to describe the
dynamics of the lifting surfaces, the assembly of the individual models into a
coupled state space system, and the reduction of the model to a size useful for
designing effective control laws.

In Vacuo Rita
Model Lifting Surface with Analysis
Plezoele.ctrics as Integrated Including Natural Vibration Modes
Plate Geometric and »|_Composite Plate —w»y Strain Energ; | Natural Frequencies
Material Propertic B Piezoelectric Forcing
pores Choose Assumed Mass and Stiffness
Mode Shapes
20 Modcs
40 States
Kernal Functio
Unsteady Non-Linear
— Aerodynaraic . Least Square Rational
rWind Tunnel Code Uasteady . Optimization aona :
: Acrodynamic | Approximation
(C)pe;gt.mg Forces of Aerodynamic
onditions Forces
Actuator / Scnsor
Actuators / Sensors Dynamics i*ull Order
State Space
@ Scnsor States Plant Model
24 Actuator Statcs
21 Statee

Figure 5.1. Aeroelastic modeling flow chart. Figure shows structural,
aerodynamic and other component analytical models, and how the
various pieces fit together to produce a full acroelastic model.

72



8.1 Lifting Surface Structural Model

A detailed structural model is essential for implementing high-
authority, large-bandwidth control systems. Accurate knowledge of the
system poles and zeros is required in order to develop effective control
schemes. To achieve such a high fidelity model, the active test articles with
surface mounted strain actuators are modeled as integrated components of a
composite structure. By modeling the substructure, piezoceramic actuators
and epoxy layers as plies of a laminated plate, the appropriate strain energy

relations can be derived using the usual Kirchoff plate assumptions [Lazarus
and Crawley, 1989, Lee and Moon, 1989 and Wang and Rogers, 1991].

17010 A B e e
U =2jf{er ’”{s D]{K}d (A)—”[N,,MA]{K}d (A)
A A (6.1.1)

Rayleigh-Ritz Assumed Mode Model

The Rayleigh-Ritz assumed mode method [Meirovitch, 1967] is used to
formulate the lifting surface equations of motion from the strain energy
relations. Ritz models have been shown to be superior at predicting the
natural frequencies of plate-like structures to FEM models for a particular
model order [Meirovitch and Kwak, 1990]. Also, it has been observed,
througn structural modeling experience, that Ritz models are better suited
for correctly identifying system transmission zeros and individual
actuator/sensor transfer function zeros. Although the Ritz method is a
powerful analytical technique, obtaining accurate results requires that a well
chosen set of assumed modes are used. The assumed modes are selected
based on the structural configuration, the natural vibration modes of similar
but less complex plate structures, experimentally observed modes shapes,
and engineering judgment.

Twenty assumed shape functions are utilized in the Rayleigh-Riiz
structural analysis of the strain actuated lifting surfaces. The spanwise x
and chordwise y displacements of the assumed modes are listed in Table 5.1.
The twenty modes include five spanwise beam bending (B), four spanwise
torsion (T), two chordwise bending (C) and four extensional (E), as well as two
"static” and three "segmented” modes. The spanwise bending modes, which
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have an assumed constant chordwise distribution, are found from the exact
solution of a cantilever-free beam [Blevins, 1984]. The spanwise torsional
modes are calculated by performing a Torsion Partial Ritz analysis (assumed
linear chordwise distribution), in order to include root warping stiffness
effects [Crawley and Dugundji, 1980]. The chordwise bending modes are the
exact solution of a free-free beam, where the spanwise deflection distribution
is found from a dynamic Camber Partial Ritz analysis (assumed quadratic

minus a constant distribution).

Mode | Mode Shape y;| Spanwise x Distribution | Chordwise y Distribution
o e e e s e e e e e e e e o ————
1-5 Bending (B) Exact Cantilever Beam Constant
. Torsion Partial Ritz .
6-9 Torsion (T) (Homogeneous Solution) Linear
10-11 Chordwise (C) (H(;?nrgzzgiir:lgllﬁgzn) Exact Free-Free Beam
12 Static x Quadratic Constant
13 Static y g’iﬂ?::lapfg;?i :};:‘z) Quadratic minus constant
Curvature in non-
14-15 Segmented x piezoceramic areas only Constant
16 Sepmented Camber Partial Ritz Curvature in non-
Em Y (Particular Solution) piezoceramic areas only
17-18 Spanwise (E) Sin(x), Linear Constant
19-20 Chordwise (E) Constant Cos(y), Linear

Table 5.1. Assumed mode shapes inciuded in the 20 mode Ritz analysis.

In addition to the usual dynamic mode shapes, modes are assumed
which are not associated with the solution of any eigenvalue problem. A
quadratic spanwise "static" and a quadratic chordwise "static" assumed mode
are included to model the strain energy associated with a constant distributed
bending moment. Also, two "segmented" spanwise modes and one
"segmented" chordwise mode are assumed in order to correctly model the
strain energy stored in the aluminum or G/E test article substructure at the
relatively soft locations in the gaps between the piezoceramics. "Segmented”
assumed modes have non-zero curvature in areas which do not contain
piezoceramics and zero curvature in areas which do. One spanwise
"segmented” mode had non-zero curvature in all the spanwise gaps and the

other "segmented” mode had non-zero curvature only in the gap nearest the
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root. The spanwise x distributions of the chordwise "static" and "segmented"”
modes are calculated from a static Chamber Partial Ritz analysis (assumed
quadratic chordwise distribution) similar to that used te calculated the
spanwise distribution of the torsional and dynamic chordwise bending modes.
Inclusion of the "static” and "segmented"” modes, as well as performing the
Partial Ritz analysis, is essential for correctly predicting the system poles,
transmission zeros and steady state transfer function magnitudes. Finally,
twoe spanwise and two chordwise in-plane modes are also iucluded to
introduce the added flexibility of allowing for extensional actuation. Note
that the assurned mode shapes which are dependent on the plate structural
stiffness (modes 6-9, 13, and 16) are calculated using uniforin averaged
properties. The stiffness properties are averaged by weighting the stiffness of
each section of the plate (substructure with piezoceramics, nominal
substructure and substructure with power bus grooves) by the area of the
section relative to the total plate area. Further Ritz analysiy details,
including full mathematical mode shape descriptions and a discussion of the
Partial Ritz analyses, can be found in Appendix 5.A.

The Rayleigh-Ritz analysis method combines the plate strain energy
relations and the assumed modes to calculate the plate equations of motion.
To facilitate these calculations, the strain actuated lifting surface is divided
into 91 sections which include grooved and non-grooved substructure,
piezoceramic wafer, and additional mass (epoxy and power bus component)
sections. The assumed mode shapes are integrated over each of the 91
segments, using isometric elements and a 32 point Gaussian integration
procedure. This analysis yields the modal mass m, stiffness k, piezoelectric
f, and disturbance f; forcing matrices

mq+kq="Ff,(¢)+f(¢)+£a(¢)

u
where| v |=yq
w
0 - 0 w7y vig 0 O
andy=|0 - 0 0 0 g Voo
vi - ¥ O 0 0 0 (5.1.2)
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where u, v and w are the in-plane longitudinal and transverse and out-of-
plane displacements, respectively. The generalized displacements q, in
Eq. 5.1.2, are related to the in- and out-of- plane displacement through the
assumed mode shapes y;, which are functions of both the spanwise x and
chordwise y coordinates. Note that the aerodynamic forcing matrix f4(2),
which is found using unsteady kernel function aerodynamics and a rational
approximation, is discussed in section 5.2.

Verification of Structural Model

The experimentally measured bench-top and analytically predicted
pole frequencies of the test articles are listed in Table 5.2. The Ritz
predictions were within 5 and 9 percent of the experimentally measured
values in the desired control bandwidth (about 200 Hz) for the aluminum and
G/E plates, respectively. The aluminum test article Ritz predictions had a
mean percent error of 2.6 with a variance in the percent error of 6.2, and the
G/E test article predictions had a mean error of 4.9 with a variance of 13.8 in
the control bandwidth. Note that the analysis method had the greatest
difficulty in predicting the aluminum test article chordwise bending natural
frequency (1C}, due to sensitivity of this plate to the change in stiffness
caused by the power bus grooves.

Aluminum Plate G/E Plate

=_ll‘lode Shape | Exp. (Hz) | Ritz (Hz) Error | Exp.(Hz) | Ritz (Hz) Error
1 1B 7.44 7.79 +4.7% 6.88 7.44 +8.1%
2 1T 36.6 36.0 -1.4% 35.3 35.3 +0.0%
3 2B 49.56 50.4 +1.8% 47.8 49.0 +2.5%
4 2T 117 122 +3.9% 114 124 +8.8%
5 3B/1C 143 149 +4.0% 138 145 +5.1%
6 1C/3B 204 185 -9.3% 166 161 -3.0%
7 3T 223 235 +5.4% 210 242 +12.4%
8 4B 283 298 +5.3% 282 306 +8.4%
9 4T 370 390 +5.4% 353 405 +14.6%
10 5B - 498 - - - -

Table 5.2. Experimentally measured and analytically predicted test article
natural vibration frequencies and dominant mode shapes.
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In addition to the relatively small error in the predicted and measured
natural frequencies, the Ritz analysis was also able to accurately compute the
modal residues such that the static response was correctly predicted and the
input/output transfer functions omitted no zeros and correctly ordered the
poles and zeros. For example, the predicted frequency of the first two zeros of
the disturbance to the leading edge sensor (y,/d) transfer function shown in
Chapter 7 (Fig. 7.1) were predicted within 7 and 5 percent of the bench-top
experimental values, respectively. This accuracy was found to be typical of
the results obtained (compare the open loop analytical and experimental
singular value plots in section 5.5 and the disturbance to sensor transfer
functions in Figs. 7.1, 7.2, 8.1 and 8.2) and sufficient for designing high-
authority control laws.

Mode 1 Modo 2
L L
€ c
£ §
~ ~
0 0
+Cr2 y position Cr2 +Cr2 y position -CrR
Mode 3 Mode 4
L L
J
g §
[ t
" “
0 0
+Cr2 y position Cr2 +Cr2 y position -Cr2
Modes Mode 6
L L
g g
:g | — :
" "
o 0
+CR2 y position -Cr2 +Cr2 y position -Cr2

Figure 5.2, Nodal contour plots of the first six aluminum plate vibration
modes ov the hench-top. Aspect ratio not io scale.
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In general, the Ritz model predicted the poles of the lifting surface with
the aluminum substructure with greater accuracy than the G/E substructure
because of difficulties in obtaining accurate estimates of the stiffness
properties of thin laminated G/E structures. The anisotropic stiffness
properties of the G/E substructure caused both the natural vibration mode
shapes and dominant mode order to differ from that of the aluminum plate.
This can clearly be seen in the nodal contour plots show in Figs. 5.2 and 5.3
for the aluminum and G/E lifting surfaces. The analyticzlly generated plots
show how stiffness cross coupling in the G/E plate causes the node lines of the
torsionally dominated modes to be skewed from those of the aluminum plate.
Also notice that the order of the third bending (3B) and first chordwise (1C)
(i.e., 5th and 6th) modes are transposed for the two plates.

Mode 1 Mode 2

x position
x position

+Cr2 y position -Cr2 +Cr2 y position Cre

Mode 3 Mode 4

L L
Ny

2 8
® x
(] 0
+Cre y position -Cr2 +Cr2 y position -Cr
Modeb Mode 6
1 L
p
/ '\
i g
x K
(4 0
+Cr2 y position -Cr2 +CR2 y position -Cr2

Figure 5.3. Nodal contour plots of the first six G/E plate vibration modes on
the bench-top. Aspect ratio not to scale
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The effect of different stiffness properties on the mode shapes is further
illustrated by the three dimensional mode shape plots shown in Fig. 5.4. In
this figure, the fifth natural mode is plotted for the aluminum and G/E plate.
Observe that the aluminum plate mode is dominated by spanwise bending
while the largest component of the G/E mode is chordwise bending. In
addition, the "segmented" nature of the G/E plate mcde shows the importance
of including such an assumed mode in the analysis. Additional three-
dimensional mode shape plots can be found in Appendix 5.B.

IRRR
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.-"";:‘.‘::“‘:\ X \\\\\\\‘\ t‘

Do Wy

AR A ’”Illll”””””'

Aluminum Plate Graphite/Epoxy Plate

Figvre 5.4. Three dimensional plot of the fifth natural vibration mode shape
for the aluminum and the graphite/epoxy plates.

The model was further refined by updating the damping ratio (,
(estimated based on the half-power bandwidth technique) and natural
frequencies @, using experimental frequency response data. Incorporation of
the experimental data into the analytic model was facilitated by mapping
(q = ®n) the system of Eq. 5.1.2 to modal coordinates using the mass

normalized eigenvectors @ of the Ritz model

Mﬁ+Df|+Kn:FA(t)+Fd(t)+FA(t)
u
where | v |=ydn

w (5.1.3)
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M=0"md= m, =1 K=0Tko= w?

and . -

|

The structural system can also be expressed in the Laplace domain as

[Ms? + Ds +K]n(s) = E4 (5) + E(s) + Ea(s) (5.1.4)

Including the experimentally determined damping estimates in the
model proved extremely important for compensator design since this quantity
directly affects the dynamic amplification of each mode, and therefore the
plant/compensator loop gain and degree of notching required by the
compensator in the roll-off region. In contrast, it was found that controllers
designed from models with the experimentally updated stiffness matrices
(adjusted using the measured frequencies) achieved no better performance
than those designed from the analytically predicted Ritz stiffness.

5.2 Lifting Surface Aerod ic Model

Calculating the unsteady forces acting on a lifting surface in a form
compatible with modern linear time-invariant dynamic analysis and control
law development routines requires a two step process. First, the unsteady
aerodynamic forces F4(k,M) due to wing motion and gust flow variation are
found from three dimensional compressible linear theory using either a
doublet lattice [Albano and Rodden, 1969] or kernel function [Watkins,
Woolston and Cunningham, 1959] method. The unsteady forces, which are
complex functions of reduced frequency k = wb/U.. and Mach nuraber
M = U../a,, are evaluated at several distinct reduced frequencies for each
flight condition (air speed and altitude). Second, the complex unsteady
forcing matrices are fit with a rational function approximation in the
(reduced) frequency domain. Such a fit normally includes mass-, damping-
and stiffness-like terms plus lag und gust forcing matrices. A variety of
techniques have been developed to obtain accurate fits including linear and
non-linear least squares [Tiffany and Adams, 1988; and Eversman and

80



Tewari, 1991] and minimum state [Karpel and Hoadley, 1991] methods.
Because the unsteady forves are functions of reduced frequency and Mach
number, a rational approximation must be found, in general, for each flight
condition. However, for low Mach number fixed altitude wind tunnel tests,
the unsteady aerodynamics can be accurately described as a function of only
reduced frequency Fa(k).

Unsteady Aerocdynamic Forces

The aerodynamic forces F4,(k), which are comprised of forces generated
by the lifting surface motion itself Fa,(k) and unsteadiness in the flow Fag(k),
are included in the modal equations of motion (Eq. 5.1.4) by pre multiplying
the aerodynamic forces by the transpose of the mass normalized in-vacuo
eigenvector matrix &.

DTF (k) = DTy, (k) + T Eag (k) = Q. (k) +9Q, (k)3 (5.2.1)

The elements of the generalized aerodynamic force matrix Q,(k) are
calculated by integrating over the lifting surface the product of the ith
deflection shape times the pressure distribution Cp due to the downwash &
associated with the jth deflection shape.

Qy, (k)="[[h(x, y)ACp5 (x,y)dxdy (5.2.2)

wing

Likewise, the generalized gust force vector Qg(k) is found by integrating over
the lifting surface the product of the ith deflection shape times the pressure
distribution Cp due to the downwash & associated with a sinusoidal gust

Qq, (k)= [[hi(x,y)ACps (x,y)dxdy (5.2.3)

wing

The gust profile is assumed to have the form

e I

where the gust velocity u, is normalized by the free stream velocity
UFS = Ug+U. 80 that the leading constant is the gust velocity ratio.
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Since modal forces are desired, the deflection shapes used are the
natural mode shapes of the in-vacuo system h, which are found by
multipiying the transpose of the mass normalized in-vacuo eigenvector
matrix ® by the matrix of assumed mode shapes .

h(xey)=d’T[\I’(x1»J’1) V(x2,52) ] (5.2.5)

The natural mode shape matrix h has dimensions of elastic modes by
physical stations on the lifting surface at which the deflections are measured.
Evaluating the aerodynamic forces directly in modal coordinates has
advantages over evaluating the forces in assumed mode generalized
coordinates and then transforming to modal space. First, fewer natural
modes are needed because only the aerodynamics associated with the
important natural vibration shapes need be known, rather than the
aerodynamics associated with all the assumed modes which combine to form
the natural modes. Second, it is less difficult to fit the aerodynamics with a
rational approximation near the reduced frequency of a natural mode, rather
than fit the aerodynamics in the reduced frequency regions associated with
the assumed modes combining to form a natural mode. Further, the in-air
aeroelastic frequencies are usuzally in the vicinity of the in-vacuo elastic
frequencies, but are not necessarily near any frequencies of the assumed
modes which contribute to a particular natural frequency. Thus, the
aerodynamic forces are found using the natural in-vacuo elastic mode shapes,
and are only calculated for the subset of natural modes which contribute
significantly to the aerodynamics (i. e., result in significant forces).

In this study, the modal aerodynamic Q;(k) and gust force Qg(k)
matrices are calculated using the kernel function unsteady aerodynamics
code UNSAER [Cunningham, 1971). The out-of-plane deflections of the
natural elastic modes are evaluated at seven chordwise and fourteen
spanwise physical locations on the lifting surface. These deflections are input
to UNSAER along with the lifting surface geometry and the reduced
frequencies at which the aerodynamic forces are to be calculated. The
unsteady kernel function code calculates the modal deflections and
corresponding slopes over the entire lifting surface using the supplied
deflections and internal interpolation functions. The downwash and pressure
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is evaluated at five chordwise and six spanwise control stations with the aid
of spanwise and chordwise assumed loading distributions. The loading
distributions are chosen (from a variety of user controlled opticns) to be
elliptic along the span and the distribution associaied with the two-
dimensional symmetric thin airfoil problem along the chord [Kuethe and
Chow, 1976]. Interpolation functions are once again used to calculate the
pressure distribution over the lifting surface. The product of the pressure
distribution and modal deflection is then integrated over the wing to yield the
generalized modal forces. Note that the generalized aerodynamic force
matrix Q,(k) is square and has dimensions of fitted natural modes, while the
gust force matrix Qg(k) has dimensions of fitted natural modes by gust
disturbance modes.

Aerodynamic forces were calculated for the first six natural elastic
mode shapes and the gust prefile of Eq. 5.2.4. Only the first six natural
modes were used in determining the aerodynamic forces for the active lifting
surface test articles because it was found that the deflections associated with
higher modes did not generate any significant aerodynamic forces. The
modal aerodynamic forces were evaluated for all airspeeds at which
experiments were performed and at 10 reduced frequencies (k£ = 0.01, 0.05,
0.1, 6.5, 1.0, 2.0, 3.0, 4.0, 5.0 and 6.0). In all cases the density was assumed
to be the standard sea level flight value of 1.225 kg/m3. The modal forces
were calculated at several values of reduced frequency k near zero so that the
rational approximation (described below) ot the unsteady aerodynamic forces
asymptotically approached the steady state solution as the reduced frequency
decreaser to zero. The remaining values were chosen to be evenly distributed
over the wide range of reduced frequencies associated with the first six
vibration modes in the wind tunnel (up to 100 mph) operating range.

Rational Approximation

The unsteady kernel function code provides the complex modal
aerodynamic forces acting on the lifting surface as a function of reduced
frequency. These forces can be combined with the in-vacuo modal mass,
damping and stiffness matrices in order to calculate the system stability,
natural frequencies and dynamic response. However, with the aerodynamic
forces left as compiex functions of reduced frequency, the dynamics of the
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system can only be determined using either the physical interpretation
lacking V-g [Bisplinghoff, Ashley and Halfman, 1957] or the time consuming
iterative p-k [Hassig, 1971] method. Further, modern control law synthesis
techniques cannot be utilizecd with the complex aerodynamic forcing matrices
known only at discrete reduced frequency. Therefore, it is essential that the
unsteady aerodynamic forces, which are transcendental functions in the
Laplace domain, are fit with rational approximations so that efficient liniear
time-invariant system algorithms (i.e., Matlab and MatrixX) may be utilized.

The unsteady forces are approximated with continuous functions by
equating the complex forcing matrices with partial fraction frequency domain
expansions, which are quadratic in reduced frequency & and have n; lag terms

Fa(k) = q[Qq(k)|n+4[Q,(k)]g

) o M Eo]
= q (Ao)n+(A1)ﬂk+(A2)nk -’-lgl(fizw)"k—‘-ﬁtl-rI

-

g M k
+ q_(Ao)g+(A1)gk+(A2)gk * El(Azn)g k+Rz]g (5.2.6)

The coefficient matrices A,, A, A and Ay, are solved for using a non-linear
least squares technique, where the problem becomes non-linear when the lag
poles R; are free parameters. Note that each coefficient matrix has
dimensions of the matrix to which it was fit (i.e., the dimensions of
(Aj)p = equals that of Q; and the dimensions of (A;), = equals that of Q).

In this study, the non-linear least squares routine SPLFIT [Tiffany and
Adams, 1988] was utilized to generate the rational approximation matrix
coefficients and lag poles. The first coefficient matrix Ay was fixed such that
the approximation matched the steady state solution exactly for k equal to
zero. The remaining coefficient matrices were solved for by SPLFIT. It was
found that the accuracy of the approximation improved as the number of lag
terms n; increased from zero. The accuracy of the fit, measured by the least
squares ervor between the rational approximation and the aerodynamic forces
calculated at discrete reduced frequencies, improved with the addition of a
first, second and third lag term, but no measurable improvement was found
with the addition of a fourth term. Thus, three lag terms were used in fitting
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the lifting surface test article unsteady aerodynamics. The value of each lag
pole was determined by an optimization procedure within SPLFIT which
minimized the total error over all elements of the matrix coefficients.

Verification of Unsteady Aerodynamics

The unsteady aerodynamics calculated by UNSAER were verified by
comparing the reraodynamic forces generated using two-dimensionai plunge
and pitch modes with the resnlts obtained by Theodorsen [1935]. The effects
of aspect ratio and Mach number were also verified by comparison with a
finite span correction and a Prandtl-Glaueit transformation, respectively. All
comparisons imade were found to be favorable. However, the real check on
the accuracy of the unsteady aerodynamic forces will be made by examining
the theoretical and experimental loop transfer functions (section 5.5), and
ultimately by performing closed loop aeroelastic control experiments
(Chapters 7 and 8). On the other hand, the ability of the rational function fit
to approximate the unsteady aerodynamics can be verified immediately.
Figs. 5.5 and 5.6 show the generalized (modal) aerodynamic forces and their
corresponding rational function approximations for the G/E lifting surface at
60 mph. Plots are displayed of the firsy (18t bending) and second (18t torsion)
modal forces generated by deflecting the lifting surface in the first six modes.
Both the real and imaginary parts of the generalized forces and rational
function approximations are plotted versus reduced frequency. The accurate
approximations of the generalized forces plotted were found to be typical of
those obtained for the other G/£ lifting surface modes as well as the modes of
the other test articles.

Figs. 5.5 and 5.6 show that the largest generalized forces acting on the
first end second modes, respectively, resulted from the motion of these low
frerquency modes themselves. However, some of the forces produced by the
higher frequency modes were also found to be quite large and contribute
significantly to the aeroelastic behavior of the lifting surfaces. The figures
also show that the magnitude (and often th.e sign) of the generalized forces
change considerably with frequency. Despite this large variation in forces the
rational approximations fit the tabular data remarkablv well. The total least
squares error over al! generalized forces was calculated to be 0.015 and 0.005
for the alnr.inum and G/E lifting surfaces at 60 mph and 0.038 for the
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modified-for-flutter lift 'ng surface at 90 mph, respectively. Finally, note that
all of the rational approximatiors asymptote to the steady lift solution (£=0),
and that all of the steady generalized rorces have imaginary parts equal to
Zero.

With the aerodynamic forces computed and approximated by rational
functions, the next step required to describe the (reduced) frequency
dependent unsteady aerodynamic forces in a form compatible with linear
time-invariant system analysis methods is to express the approximate forcing
functions (Eq. 5.2.6) in terms of the Laplace variable s. The transformation to
the Laplace domain is accomplished by letting s = iw (k = wb/U).

Fa(s) = o[ Qn(s)|n+4q[Q,(5)]e

= qr(Ko)n+(Kl)ns+(K2)ns +Z(A2+1)

~ pa

n; ___ S

+ q (Ko)g+(K1)gs+(zz)gsz+I§I(A2+,) = |g

where

(6.2.7)

This Laplace domain transformation is technically valid only for simple
harmonic motion (assumed for calculating the aecrodynamic forces). However,
the concept of analytic continuation i8 commonly used to justify extending
rational functions into the entire Laplace domain in: order to describe growing
and decaying motion [Tiffany and Adams, 1988). Unfortunately, what is
really being done is best described as approximate analytic continuation since
the function being continued in the Laplace domain is itself a continuous
approximation of discrete values. Despite such drawbacks, the method
described abeve has been found to model the unsteady aerodynamic forces
acting on lightly damped lifting surtaces quite well. This is because the poles
of these structures are generally near the imaginary axis, and for problems
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such as gust alleviation and flutter suppression the dominant response ic that
of simple harmonic vibratory motion and the poles which are most significant
are generally near the imaginary axis.

Of course the real motivation behind using the method described above
is to manipulate the unsteady aerodynamic forces into a form which can ke
easily incorporated into a state space model of the aercelastic system. Note
that the Laplace domain rational function approximation of the unsteady
aerodynamic forces described by Eq. 5.2.7 is in precisely the desired form.
Substitution of these Laplace domain aerodynamic forces into the 2nd order
modal equations of motion (Eq. 5.1.4) yields

[ﬁsz +Ds+ 'ﬁ]n = Q[Z?—h(xuz)n TI}:TH Z: 1( 1+2)g St R, g]

+q[(K2)g s? + (1_\1 )gs + (Ko)g ]g +F, +F,

where M=M- q(Xz)

n (5.2.8)

The final step in obtaining a state space description is to describe the
aerodynamic lag terms as augmented states. Following Tiffany and Adams
[1988] the aerodynamic states are defined to combine both elastic and gust
modes, thereby minimizing the number of states added

X, =-RIX, + (I§,+2)nsn + (K,+2)g sg (5.2.9)
Eq. 5.2.9 shows that for each lag term /, one state is augmented to the system
for each mode fitted with aerodynamics. Tlus the total number of augmented

aerodynamic states is equal to the number of lags times the number o! fitted
modes.
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Figure 5.5. Generalized aerodynamic forces (GAFs) and rational function
approximations acting on the first mode of the G/E lifting surface at
60 mph. The real and imaginary parts of the aerodynamic forces are
plotted versus reduced frequeuncy. Tabular GAFs are indicated by
the symbol 'o'.
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5.3 Combined Lifting Surface Aeroelastic Model

The aeroelastic behavior of the lifting surface test articles is analyzed
by combining the structural and aerodynamic models in a state space
representation. A state space representation of the structural and aeroelastic
system is obtained by combining Eqs. 5.2.8 and 5.2.9

sX=A X+B,u+L,d y=C)X
with X=[n sn X,]° and

[ 0 I ) 0 ] [0 ]
-M'K -MD M1 .. I M'F,
Ap=| 0 (&) IR, - 0 Bu=| 0
0 (K2+,)n 1 S -117,,,_ . 0|
o 7 o 0 ]
M—le QM*I(Ao)g QM—I Al)g qM—l(A2)g ’- g
Ld=| 0 [+ o (As) 0 sg
. . : £ . s%¢
L 0 4 0 (K2+l)g 0 |
Y(1ip,2E)® 0 0
Cp =| ¥(%ip:ymc)® 0 ©
V(%p,yE)® 0 0O (5.3.1)

This etate space aeroelastic system includes both structural n and
aerodynamic X, modes. The aerodynamic matrices combine with the
structural matrices in the form of apparent mass, acrodynamic damping,
aerodynamic stiffness and aerodynami lag statc terms. Only the
aerodynamic states, which model the time delays between the wing motion
and the aerodynamic forces created by the motion, increase the number of
stat-s needed to describe the system. However, the dynamic response is
influenced by all of the aerodynamic terms, and instabilities are caused by
both the non-symmetric nature of the aerodynamic mass, damping and
stifiness terms as well as the lag states. Note that the gust displacement,
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velocity and acceleration terms are dependent on the gust generation device
and input spectrum, and are determined by the dynamics of the gust
generation disturbance source (see section 4.3). Also note that the system
described in Eq. 5.3.1 reduces to the dynamic behavior of the test articles in
the bench-top configuration when q equals zero and F; equals some finite
value. Finally, observe that the outputs of the aeroelastic system (measured
by the laser sensors) are described by the output matrix C,, which is
comprised of the in-vacuo eigenvalues ® and the out-of-plane assumed mode
tip displacements et the leading edge LE, mid-chord MC and trailing edge TE.

Verification of Lifting Surface Aeroelastic Model

Tabular unsteady aerodynamic data was generated and fits were
calculated (similar to those in Figs. 5.5 and 5.6) for the nominal aluminum
and G/E lifting surface test articles at 60 mph, and for the modified-for-flutter
aluminum test article at 90 mph. The unsteady aerodynamic forces were
found at these air speeds for the purpose of obtaining the most accurate
aerodynamic model at the air speeds at which the active lifting surfaces were
tested (the gust alleviation and command following experiments were
conducted at 60 mph and the flutter experiments at 90 mph). However,
because of the low Mach numbers involved, it can be assumed that the
aerodynamic forcing functions are valid over the entire compressible range.

Eq. 5.2.1 is used to calculate the coupled aeroelastic vibration
frequencies of the lifting surface test articles. In calculating the lifting
surface natural frequencies, structural modes with experimentally updated
frequencies (as described in section 5.1) are utilized. The structural modes
are updated with frequencies recorded during previous wind tunnel
experiments with the air speed set to zero. Note that these frequencies differ
slightly from those measured in the bench-top experiments and current wind
tunnel configuration. The small discrepancies are most likely due to
differences in the mounting hardware, which provide the cantilever support
for the lifting surfaces, and constraints on the volume of air resting in the
wind tunnel test section.

The analytically predicted and experimentally measured natural
frequencies of the lifting surfaces in the wind tunne! test configuration are
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reported in Tables 5.3, 5.4 and 5.5 for the aluminum, G/E and modified-for-
flutter aluminum test articles, respectively. Theoretical predictions : e listed
for frequency and damping at 0, 20, 40, 60, 80 and 100 mph. The
experimental frequencies were measured in the wind tunnel at speeds of 0,
20, 40 and 60 mph for tke aluminum and G/E wings, while frequencies where
measured every 10 mph up to the flutter point for the modified-for-flutter
aluminum test article. The tables show good agreement between the
predicted and measured frequencies. The aluminum lifting surface had an
average error of -2.10 percent with a variance of 9.62 in the first two modes
over air speeds ranging from 0 to 60 mph. Similarly the G/E lifting surface
had an average error of +2.05 percent with a variance of 18.5 in the first two
modes. The result for the modified-for-flutter wing did not correlate as well,
having an average error of +0.24 percent with a variance of 51.8 in the first
two modes for 0 to 80 mph. The large variance was attributed to difficulties
in modeling the structural dynamics of the brace used to support the huge
mass added to make the wing flutter within the wind tunnel operating range.
Fortunately, the model was found to have sufficient accuracy for predicting
the flutter speed and designing controllers for flutter supprescion.

Tables 5.3, 5.4 and 5.5 also show that largz amounts of damping were
introduced into the low frequency modes by the aerodynamics at speeds above
40 mph. At the gust alleviation test velocity of 60 mph the damping in the
first mode increased by more than an order of magnitude, and the damping in
the second, third and fourth modes approximately doubled. Note that at
moderate air speeds (40 to 80 mph), the aerodynamic damping of the lower
modes is considerably larger for the G/E relative to the aluminum iifting
surface. This increased damping is due to the washin configuration of the
G/E plate and is typical of such aeroelastically tailored designs. The
aerodynamic damping has tremendous implications for controlling aeroelastic
systems since it is easier to achieve significant vibration reduction in
structures having lightly damped low frequency and heavily damped high
frequency modes. Thus, designing controllers for gust alleviation (lightly
damped low frequency and heavily damped high frequency modcs) was found
to be a much more difficult control problem than designing controllers for
bench-top disturbance rejection (all modes lightly damped) for the test
articles considered in this study. Finally, the data suggests that the

92



unsteadiness in the aerodynamics was a significant factor. The reduced
frequencies ranged from 0.03 to 0.9 for the gust alleviation and command
following experiments, and the reduced flutter frequency was approximately
0.03.

Mode 1
MPH Theory (Hz) Red.Freq.k % Damping  Exp. (Hz) % Error
0 7.20 156 7.50 40
20 7.16 0.171 45 7.60 -4.5
40 7.16 0.086 8.1 7.40 3.2
0 7.10 0.057 14.2 6.75 5.2
80 6.98 0.042 21.4
100 6.76 0.032 32.7
Mode 2
MPH Theory (Hz) Red.Freq.¥ % Damping  Exp. (Hz) % Error
W 1'5 36'0 -1.4—_
20 35.1 0.840 2.0 36.0 2.5
40 34.4 0.412 2.6 35.7 -3.6
60 332 0.265 3.2 34.1 2.7
80 31.3 0.187 3.8
100 28.6 0.137 4.2
Mode 8
MPH Theory (Hz) Red.Freq.k % Damping  Exp. (Hz) % Error
0 495 15 495 00
20 49.0 1.173 1.8 50.7 -34
40 49.0 0.587 2.2 50.4 2.8
60 49.1 0.392 2.6 49.6 -1.0
80 49.2 0.294 3.0
100 49.3 0.236 34
Mbode 4
MPH Theory (Hz) Red. Freq. k % Damping  Exp. (Hz) % Error
0 R Y
20 115. 2.753 1.7
40 115. 1.376 1.8
60 115. 0.918 2.0
80 115. 0.688 2.1
100 114. 0.546 2.3

Table 5.3. Analytically predicted and wind tunnel measured naturat
frequencies for the aluminum lifting surface.
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Mode 1

MPH " Theory (Hz) Red.¥req.k % Damping Exp. (Hz} % Error
0 6.88 1.5 6.88 0.0
20 6.84 0.164 7.6 6.56 4.3
40 6.67 0.080 16.6 6.25 6.7
60 6.25 0.050 29.1 5.70 9.6
80 5.33 0.032 53.2

100 2.01 0.010 230.0
Mode 2

MPH Theory (Hz) Red.Freq.k % Damping Exp. (Hz) % Error
0 34.2 1.6 345 -0.9
20 33.8 0.809 2.2 339 -0.3
40 329 0.394 3.0 33.2 -0.9
60 3.3 0.250 4.0 32.0 -2.2
80 28.7 0.172 4.7

100 25.0 0.120 3.7
Mode 3

MPH Theory (Hz) ﬁed.?mq. k % Damping Exp. (Hz) % Exror
0 478 1.5 48.0 -0.4
20 47.2 1.130 19 46.6 1.3
40 471 0.564 2.2 46.6 1.1
60 47.1 0.376 2.6 475 -0.8
80 47.1 0.282 29
100 47.1 0.226 3.3

Mode 4
MPH  Theory (Hz) Red.Freq.k % Damping  Exp. (Hz) % Error
— o0 110 1.5 111, 09
20 109. 2.609 1.7 111. -1.8
40 109. 1.305 19 110. 0.9
60 109. 0.870 2.2 110. 09
80 108. 0.646 24
100 108. 0.517 2.6

Table 5.4. Analytically predicted and wind tunnel measured nstural
frequencies for the G/E lifting surface.
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Mode 1

MPH ~ Theory (Hz) Red. Freq.k % Damping Exp. (Hz) % Error
0 3.04 1.5 2.80 86
20 3.07 0.073 24 2.88 6.6
40 3.19 0.038 3.3 2.95 8.1
60 3.45 n.028 4.2 3.25 6.2
80 4.22 0.025 6.3 4.37 -34
90 5.52 0.029 30.1

100 4.63 0.022 69.5
Mode 2

MPH Theory (Hz) Red. Freq. k% Damping Exp. (Hz) % Error
20 12.0 0.287 2.2 13.3 9.8
40 114 0.136 3.2 124 -8.1
60 10.3 0.082 4.6 10.5 -1.9
80 8.03 0.048 6.6 7.75 3.6
90 5.68 0.030 -134

100 5.19 0.025 42.8
Mode 8
~ MPH “Theory (Hz) Red.Freq.k % Damping  Ezn. (Hz) % Error
o 36 284 185
20 334 0.800 1.6
40 33.2 0.297 1.7
60 32.% 0.26% 19
80 32,0 0.192 21
90 315 0.168 2.1
100 31.0 0.148 2.2
Mode 4
T T MPH Theory (Hz) Red. Freq.k % Damping  Exp. (Hz) % Error
T 153 1.5 3. 5.3
20 449 1.075 1.8
40 449 0.537 2.0
60 44.9 0.358 21
80 43.0 0.269 2.2
90 45.1 2.240 2.2
100 45.2 J.216 2.3

Table 5.5. Analytically predicted and wind tunnel measured natural
frequencies for the modified-for-flrttc» aluminum lifting surface.
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The behavior of the lifting surfaces can be examined further by plotting
the movement of the system poles with air speed. Such aerodynamic root loci
are shown in Figs. 5.7, 5.8 and 5.9 for the aluminum, G/E and modified-for-
flutter aluminum test articles, respectively. The poles are plotted for air
speeds from 0 to 100 mph at increments of 5 mph. For each wing, the poles
move farther into the left half-plane as the air speed initially increases from
zero. The movement of the poles into the left half-plane, which indicates an
increase in damping, continues at low air speeds. Then at some intermediate
air speed the poles associated with the first torsion mode reverse direction
and move rapidly toward the imaginary axis. This reversal of direction,
which indicates that the system is approaching an instability, occurs at about
90, 80 and 70 mph for the aluminum, G/E and modified-for-flutter aluminum
lifting surfaces, respectively. The poles associated with the first bending
mode of the aluminum and G/E wings decrease toward the real axis
indicating either a pure torsion flutter or bending divergence instability will
occur, while the bending poles increase towards the torsior poles for the
modified-for-flutter wing resulting in a coalescence flutter instability. Note
that the poles on the real axis are aerodynainic lag poles, since the bending
poles do not reach the real axis for air speeds within the wind tunnel limit.

Fig. 5.7 shows that the aluminur lifting surface is far from any
instabilities at the gust alleviaticn and command following test velocity of
60 mph. In fact, the poles of the aluminum lifting surface are predicted to be
stable well above the operating range of the wind tunnel (100 mph), with
flutter at 130 mph and divergence at 165 mph. The poles of the G/E lifting
surface are also stabie over the entire wind tunnel range, as indicated in
Fig. 5.8. Flutter and divergence are predicted to occur at the lower air speeds
of 110 ana 115 mph, respectively. In contrast, the modified-for-flutter lifting
surface, shown in Fig. 5.9, is predicted to flutter below the tunnel limit at
87.6 mph. The flutter speed for this wing was experimentally measured at
88 mph. The flutter mode was predicted and observed to be due to a
coalescence of the first bending and first torsion modes. The classical
coalescence nature of this instability is clearly illustrated in Fig. 5.10, which
plots the natural frequencies of the first two modes versus air speed for the
modified-for-flutter aluminum lifting surface. The bending pole increases and
the torsion pole decreases with air speed until coalescence flutter occurs.
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Figure 5.7. Poles of the aluminum lifting surface for air speeds increasing
from zero to the wind tunnel limit of 100 mph. All poles are on the
left hand side of the imaginary axis, indicating the system is stable.
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Figure 5.8. Poles of the G/E lifting surface for air speeds increasing from
zero to the wind tunnel limit of 100 mph. All poles are on the left
hand side of the imaginary axis, indicating the system is stable.
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Figure 5.9. Poles of the modified-for-flutter aluminum lifting surface for air
gpeeds increasing ‘rom zero to the wind tunnel limit of 100 mph.
Above the flutter speed (88 mph) a pair of poles have moved to the
right hand side of the imaginary axis, making the system unstable.
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Figure 5.10. Natural frequency of the modified-for-flutter aluminum lifting
surface bending and torsion modes for air speeds increasing from
zero to the wind tunnel limit of 100 mph. At the flutter speed
(88 mph) the poles have coalesced causing an instability.
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5.4 Full Order Analvtic Model

The plant model of any controlled system must be augmented to
include the dynamics of sensors, actuators and any other electronic
components in the feedback path such as anti-aliasing filters and amplifiers.
A block diagram of the system components to be modeled is shown in
Fig. 5.11. Incorporating all the system components is easily facilitated by
transforming the structural system into state space form (A,, B,, C, and L,
of Eq. 5.3.1). The state space model is then combined with the appropriate
dynamics associated with the other components in the system.

The full bench-top system created had 75 states, while 93 states were
needed to describe the test articles in the wind tunnel. Forty of the states
were associated with the twenty structural modes, and 18 states were used to
model the unsteady aerodynamic lags. The remaining states resulted from
the dynamics of three optical sensors (modeled with 1 pole at 700 Hz), twelve
piezoceramic actuator arrays (no dynamics) and power amplifiers (no
dynamics) and anti-aliasing filters (modeled with 2 poles at 1000 Hz for each
of the 3 sensor outputs and 2 poles at 2500 Hz for each of the 12 control
inputs). The disturbance source model added no additional dyr.amics to the
system for the bench-top test, however two additional states were included in
the wind tunnel model to account for the roll-off of the gust spectrum
produced by the gust generator. This large order system evaluation model
was used to calculate the open and closed loop disturbance transfer functions
and to evaluate the stability and performance of the control laws designed.
The dynamics of this large order open loop system can be described in either a
state space

x=Ax+Bu+Ld y=Cx (5.3.1)
or transfer function representation

y=G(s)u G,=C(sI-A)"'B
y =Gy(s)d Gy =C(sI-A)'L (5.3.2)

where G.(s} «untains the control and Gy(s) holds the disturbance transfer
functions.
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Figure 5.11. Block diagram of the experiment:l system including the lifting
surface (Ap, Bp, Cp, and Lp), compensator (Ag,K, and F), disturbance
(d) and measurement noise (8).

5.5 Model Order Reduction

Since the use of large order evaluation models for developing model
based control laws usually leads to similarly large order compensators, which
are difficult to implement at high rates in real time and unnecessary for
obtaining effective controllers, the 73 or 93 state evaluation model was
reduced to a lower order design model. The reduction was based on the
Hankel singular values of the system. The Hankel singular values were
found by first obtaining a minimal realization and then balancing the system
using the algorithm of B. C. Moore [1981] in Pro-Matlab. The states
associated with the Hankel singular values greater than 0.1% of the
maximum Hankel singular value were retained in the model. The steady
state components of the discarded states were also retained in the model.

This procedure reduced the 73 state bench-top evaluation model to a 22
state design model for the aluminum and G/E test articles and reduced the 93
state wind tunnel evaluation model to 32, 34, and 38 states for the aluminum,
G/E and modified-for-flutter aluminum wind tunnel evaluation models,
respectively. It was found that the disturbance to sensor output (y/d) and
control input to sensor output (y/u) transfer functions of the design models
were nearly identical to those of the associated evaluation models in the
evaluation bandwidth (500 Hz on the bench and 200 Hz in the wind tunnel).
Further, it was found that increasing the order of the design model had no
effect on the transfer functions, the controllers designed or their performance.
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The accuracy of the analytical model and the fact that model fidelity is
not affected by the model reduction procedure can be shown by plotting the
singular values of the control transfer function matrix Gg(s). Figs. 5.12
and 5.13 display the analytically predicted and experimentally measured
transfer function matrix maxin: am singular values for the aluminum and G/E
test articles on the bench-top, respectively. The figures show excellent
agreement between the predicted and measured frequencies and magnitudes.
Also note that large responses are found at high as well as low frequencies.

Similarly, Figs. 5.14 and 5.15 display the analytically predicted and
experimentally measured transfer function matrix maximum singular values
for the aluminum and G/E test articles in the wind tunnel at 60 mph,
respectively. As before the theory and experiment are in good agreement, but
it appears that the torsion modes were excited more than anticipated in the
wind tunnel. Also, turbulence in the free stream flow raised the noise floor
considerably. The wind tunnel singular value plots show the significant.
amount of aerodynamic damping introduced in the first bending and torsion
modes, relative the damping found on the bench-top. However, it can be seen
that the higher frequency modes remain lightly damped in the wind tunnel.
Thus, the wind tunnel transfer function magnitudes do not roll off as quickly
as the bench-top magnitudes. Note that the laser sensor output filters
included an additional times ten gain for the bench-top experiments. The
additional output gain increased the analog to digital conversion accuracy of
the relatively smaller bench-top sensor signals.
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Figure 5.12. Maximum singular values of the control transfer function
matrix Ge(s) for the aluminum test article on the bench-top.

Analytical and experimental singular values are plotted.
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Figure 5.13. Maximum singular values of the control transfer function
matrix G¢(s) for the G/E test article on the bench-top. Analytical and
experimental singular values are plotted.
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Figure 5.16. Maximum singular values of the control transfer function
matrix G.(s) for the G/E lifting surface in the wind tunnel at 60 mph.
Analytical and experimental singular values are plotted.
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All of the assumed modes y; used in the Ritz analysis to model the
plate-like test articles were composed of both spanwise y,; and chordwise v,
non-dimensional functions. The dynamic spanwise beam bending modes (1-5)
assumed were those of the exact solution to the cantilever beam bending
problem along the span with a constant chordwise distribution

Vs, (%) = [cosh(B;X) - cos(B;%)) - o;[sinh(5;%) - sin(B;%)]
v, (¥) = constant
where ¥X=x/L and y=y/c (5.A.1)

The constants o; and B;in Eq. 5.A.1 are listed in Table 5.6 and were taken
from Blevens [1984].

Assumed Mode G; Bi
0.734096 1.875104
2 1.018467 4.694091
3 0.999224 7.854757
4 1.000034 10.99554
5 0.999998 14,13717

Table 5.8. Coefficients of the spanwise beam bending assumed modes for the
aluminum and G/E plates.

The spanwise torsional assumed modes (6-9) were found from a Torsion
Partial Ritz analysis (similar to the analysis of section 3.3) for an isotropic
plate with an assumed linear twist distribution

w(x,y)=0(%)y (5.A.2)

The Torsion Partial Ritz analysis used the variational statement of stationary
energy, assumed periodic motion and the assumed displacement distribution

of Eq. 5.A.2 to derive the equation governing spanwise twist for a cantilever
plate

4 2 2 2,74
o Dll c ox Dll
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Note that in addition to the usual torsional stiffness and rotary inertia terms,

Eq. 5.A.3 includes the effects of root warping. The homcgeneous sclution and
assumed shape of the torsion modes is given by

vy, (%) =Ty cos(g;X) + Tjo sin(g;x) + Tiz cosh(f;x) + T4 sinh(f;x)

v, () =¥

(5.A.4)

where the torsional constants g;, f; and Ti; were found by applying the

appropriate boundary conditions and solving the resulting transcendental

equation [Crawley and Dugundji, 1980]. The constants are listed in Table 5.7
for the aluminum (AL) and graphite epoxy (G/E) test articles.

Mode | & | fi Tis Tig Ti3 T;

AL6 | 1777237 | 8.054099 | -0.220694 | 1.000000 | 0.220694 | -0.220694
AL7 | 5.051262 | 9.339443 | -0.540795 | 1.000000 | 0.540795 | -0.540853
AL8 | 8121630 | 11.29915 | -0.718797 | 1.000000 | 0.718797 | -0.718782
AL9 | 1118019 | 13.66406 | -0.818217 | 1.000000 | 0.818217 | -0.818219
GE6 | 1780696 | 7.915441 | -0.225003 | 1.000000 | 0.225003 | -0.224965
GE7 | 5.050597 | 9.219103 | -0.547773 | 1.000000 | 0.547773 | -0.547840
GES | 8117240 | 1119700 | -0.724964 | 1.000000 | 0.724964 | -0.724948
GE® | 1117561 | 1357857 | -0.823031 | 1.000000 | 0.823031 | -0.823033

Table 5.7. Coefficients of the spanwise twist distribution of the torsional
assumed modes for the aluminum and G/E plates.

The dynamic chordwise bending modes (10, 11) were assumed to have

the chordwise distribution of a free-free, free-free beam

Wy,- (y) = [COSh(ﬁciy) + cos(ﬂc,-y)] - Uci[Sinh(ﬂciy) +sin (ﬁcty)]
where the constants o,; and B,; are listed in Table 5.8.

(5.A.5)

Assumed Mode Oci ﬂci
_————— e e e e e
10 0.982502 4.730041
11 1.000777 7.853205

Table 5.8. Coefficients of the chordwise distribution of the dynamic chordwise
bending assumed modes for the aluminum and graphite epoxy plates.
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The spanwise deflection distributions for these modes were calculated from a
Camber Partial Ritz analysis. The Camber Partial Ritz analysis was similar
to that used for obtaining the torsion mode shapes, however a spanwise
camber distribution was assumed for the Camber Partial Ritz

w(%,7)= x(f)[4y2 - —] (5.A.6)

By substituting this camber distribution into the variational statement of
stationary energy and once again assuming periodic motion, the equation
governing the spanwise camber distribution was found

r

4 2192 4 2,74
gx_ 240%(5) K, 7209&(5) JABL o 5AD)
% Dy \c) |d& Dy \c Dy,

As before, the solution to this differential equation was found by applying the
appropriate boundary conditions and solving the resulting transcendental
equation. The homogeneous solutions for these dynamic camber modes (10,
11) of the test articles were found to be

¥y, (%) = C;1 cos(g,E) + Cipsin(g;X) + Cig cosh(fix )+ C;ysinh(f;¥) (5.A.8)
For the static (13) and segmented (19) camber modes, a particular solution
(resulting from a constant strain actuator applied moment) of Eq. 5.A.7 was

used to find the assumed spanwise camber distributions. These assumed
shape functions were found to be

V/x‘, (f) = Cil cos(g,-f) + Ci2 sin(g,-5c') + Ci3 COSh(fif) + Ci4 smh(f,f) + C,'5 (5.A.9)

The constants and coefficients of Eqgs. 5.A.8 and 5.A.9 vsed in the Ritz
analysis are listed in Table 5.9.
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Mode gi fi Ciy Ciz Cis Ciq Cis
AL 10,11] 1.66399 | 17.6442 | 1.00000 | -10.6036 | -1.00600 | 1.00000 -
G/E 10,11 167572 | 10.3166 | 0.99996 | -6.15292 | -0.99996 | 1.00000 -

AL | -2.43329 | -7.73280 | 0.25000 | -0.79436 | 0.25000 | 0.24997 | -0.50000
13,16 | +7.73270j | +2.43329j | +0.79434j | +0.24997j | -0.79434j | -0.79436; | +0.00000j
G/E | -1.22570 | -7.29742 | 0.36011 | -2.14362 | 0.36011 | 0.36005 | -0.72022

18,16 | +7.29742j | +1.22570j | +2.14365j | +0.36005j | -2.14365j | -2.14365j | +0.0000j

Table 5.9. Coefficients of the spanwise camber distribution of the dynamic,

static and segmented chordwise bending assumed modes for the
aluminum and G/E plates.
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Figure 5.16. Three dimensional plots of the first six natural vibration mode
shapes of the aluminum test article.
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Figure 5.17. Three dimensional plots of the first six natural vibration mode
shapes of the graphite/epoxy test article.
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Chapter 6. Control Law Synthesis

The first step necessary in designing control laws for the active lifting
surfaces is to define the performance objectives and metrics for the controlied
systems. The dynamic aeroelastic control performance objectives of greatest
interest include flutter suppression, vibration suppression and gust
alleviation. In terms of control system design, these issues translate into
those of stability, plant regulation and disturbance rejection, respectively.
Since a well-regulated plant automatically carries the properties of
guaranteed stability and good disturbance rejection, the control law design
problem reduces to that, of plant regulation. Thus, the compensator design
goal for the bench-top disturbance rejection, wind tunnel gust alleviation and
wind tunnel flutter experiments is to turn the system into one which is well-
reguiated, and similar compensator design techniques may be used in each
case. On the other hand, well-regulated plants are not recessarily good for
command following, and command following compensators must be designed
using procedures which differ considerably from those used for plant
regulation.

Performance metrics for the bench-top disturbance rejection, and wind
tunnel gust alleviation and flutter suppression control objectives can be
defined by quadratic cost functiors which measure the output y RMS
response. The outputs y are the response of the lifting surfaces as measured
by the laser displacement sensors. Defining the performance index as a cost
function enables the cost used in the LQG design synthesis procedure to be
both selected in a logical manner and a meaningful measure of controller
performance (in fact the cost is exactly the performance metric). The specifics
of the design procedure used in il linear quadratic regulator (LQR) and
Kalman filter portions of the model based LQG compensator synthesis are
described below for the bench-top and wind tunnel tests. The bench-top
disturbance rejection and wind tunnel gust alleviation designs make use of
essentially the same cost minimization procedure. The wind tunnel flutter
suppression controllers are also designed by cost minimization, but the plants
being controlled in this case are unstable. In contrast, command following
performance is specified in the frequency domain. Thus, command following
controllers are designed to meet frequency domain specifications using the
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LQG-LTR method, which manipulates the LQG cost into a form that can be
used to impose frequency domain constraints.

Initially, control laws were avaluated with the piezoceramic actuators
grouped in various combinations. It was found that the best actuator control
authority was achieved by dividing the piezoceramic wafers into three
actuator groups. This actuator grouping was most effective because of the
trade-off between the number of control outputs and the speed at which these
outputs could be generated by the digital control computer. The three groups
were formed by first pairing each of the piezoceramics on opposite sides of the
neutral axis, thus creating individual bending actuator pairs. One actuator
group was then formed from the five actuator pairs nearest the leading edge
of the lifting surface (1,). The second group was comprised of the five
actuator pairs centered at the mid-chord (u,). The third group was made up
of the five actuator pairs near the trailing edge (z,). This arrangement was
then used in all subsequent control designs. All three of the laser
displacement sensors were utilized in all the experiments performed, so that
each multivariable system to be controlled had 3 inputs and 3 outputs.

6.1 LG Cost Minimization Compensator Design

The state cost was chosen as the sum of the output y RMS response
squared for the bench-top disturbance rejection, wind tunnel gust alleviation
and wind tunnel flutter suppression experiments. Similarly, the control cost
was chosen to be the sum of the control u RMS response squared. The total
cost J was therefore

J=[ [F7y+puud
=[; [xTQx + puTRu]dt
Q = [C / ymax]T[C / Ymax]

R=1I/uf (6.1.1)
where p is the relative state to control weighting design parameter. The
scaled outputs ¥ and inputs @ were calculated by normalizing the physical
outputs and inputs by their maximum values. The maximum outputs ymax
were estimated based on the maximum expected sensor outputs caused by the
disturbance sources. The largest two sigma (the signal is below this value
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95 percent of the time) tip displacements measured by the laser sensors were
found to be about 0.25in. (0.635 cm) on the bench-top, caused by the
magnetic shaker, and 0.75 in. (1.905 cm) in the wind tunnel, exited by the
gust generator. Since the laser sensor voltage displacement constant was
0.1 V/mm, these displacements corresponded to laser sensor two sigma output,
voltages ¥max of 0.635 V and 1.905 V for the bench-top and wind tunnel gust
alleviation experiments, respectively. Note that this normalization is similar
to that developed by Bryson and Ho [1969]. However in the procedure
described above, the outputs are normalized by the maximum expected open
loop values, rather than the desired closed loop values, to account for the
different disturbance sources (bench-top shaker versus wind tunnel gust
generator) in a consistent manner.

During the wind tunnel flutter experiments, the gust vanes had to be
removed because of instabilities found in the individual vanes at speeds lower
than the modified-for-flutter aluminum plate flutter speed. Therefore, the
disturbance was provided only by the turbulence in the free stream flow. The
turbulence excited the modified-for-flutter test article and was found to
caused a two sigma laser sensor outputs of about 1.0 V at 80 mph. The
measured maximum output was used to estimate an equivalent sinusoidal
gust amplitude capable of producing the same sensor outputs. This value was
found to be 0.02 degrees, and the sensor outputs measured at 80 mph were
used to normalize the flutter suppression test (90 mph) sensor outputs.

The maximur control inputs uy,.c were taken to be those which could
be generated by the control computer (£10 V), since the amplifier gains (fixed
at 20 to generate a maximum of £200 V) were already included in the system
model. This normalization procedure increased the mathematical robustness
of the control design calculations and facilitated inputs which were
measurable (+1C Volts) and outputs which were commandable (+10 V) by the
digital control computer. With the maximum values fixed, the control weight
p was the only remaining free parameter in the LQR design process.

The Kalman filter half of the problem was set up by defining
disturbance and sensor noise covariance matrices based on laboratory
measurements of the disturbance source intensities and the accuracy of the
laser displacement sensors. Such measurements are useful starting points
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for determining the intensities or the disturbance and measurement noise
covariance matrices. However, in reality the intensities of these stochastic
processes, which do not actually have zero means or white frequency
distributions, are not known. Thus, these intensity matrices are actually
used as design tools in a manner similar to the control weighting p. In this
study, the disturbance intensity was normalized by its maximum value and
fixed at unity since the disturbance signal used in the experiments was
always the maximum value.

The measurement noise was computed based on the laser sensor
accuracy (180 pm) and the two sigma sensor output ymax values. The
normalized measurement noise was calculated from the following formula
which correctly acrounts for the digitization error of the sensors [Rabiner and
Schafer, 1978]

1 180x107°

Noise% =
"v/§ ¥ max

(100) (6.1.2)

This normalized value was found tn be 1.64 percent for the bench-top
experiments. For the wind tunnel gust alleviation experiments the
measurement noise was found to be 0.56 percent, three times lower than on
the bench-top because of the larger disturbance source intensity produced by
the gust generator. The measurement noise was estimated to be the larger
value of 1.00 percent for flutter tests, since the gust generator could not be
used and the only disturbance source was the free stream turbulence. From
these values of measurement noise, the covariance matrices needed for the
LQG design procedure could be generated. However, in order to provide
stability robustness to un-modeled and mis-modeled plant dynamics, the
intensity of the measurement noise was assumed to be roughly double the
value calculated using Eq. 6.1.2. Further, the measurement noise was
assumed to vary from this nominal value. Thus, the measurement noise was
actually used as a free parameter in the Kalman filter design.

Standard routines in the Matlab Robust-Control Toolbox (Mathworks,
Inc., 1988) are used to solve for the filter gain K, compensator dynamics A
and output gain F which make up the LQG compensator. In state space form
the compensator can be written in terms of the error e and control signal u
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x=A % +Ke u=Fx (6.1.3)

where the error signal e is equal to the command r. minus the sum of the
output y and the measurement noise ®. The model based compensator
dynamics are described by

A_=A-BF-KC+KDF (6.1.4)

where the feed through term D results from the model order reduction
procedure described in section 5.5.

Desired command following performance is usually specified in the
frequency dornain by the sensitivity (disturbance to error signal) transfer
functions or singular values. Typically the transfer functions or singular
values are required to be below some value (determined by the largest
acceptable error) over a particular bandwidth (set by the speed of response
needed). One way such frequency domain specifications may be imposed
within the LQG compensator design framework is by the loop transfer
recovery (LTR) method [Stein and Athens, 1987]. The LQG-LTR method
manipulates the matrices defining the LQG cost functions so that e limited
number of frequency domain specifications may be imposed.

The LTR method was used to design compensators for the wind tunnel
command following experiments. In theory, the LTR procedure consists of
three basic steps: Augment integrators to the plant, design the Kalman filter
loop, and increase the control gain (decrease the control weight) until the
filter loop is recovered. However, some modifications to this procedure were
needed to actually use LTR for active lifting surface command following.
First, it was necessary to move the added integrator poles away from the
origin to prevent quasi-steady actuator saturation. Thus, the integrators
became low frequency quasi-integrator poles which set the low frequency
command following limit. Second, the upper frequency limit, or command
following bandwidth, was determined by the ability to "recover the loop"
rather than the design of the Kalman filter loop. Loop recovery is difficult at.
best and impossible for plants with non-minimum phase zeros because plant
inversion is required (the plant dynamics are canceled by the compensator
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dynamics). This makes high frequency command following extremely
difficult, since achieving good command following requires recovery (and
therefore an extremely accurate model) at least a decade above the command
following bandwidth. The "dubious" aspects of plant inversion and other
problems associated with LTR are discussed by Stein and Doyle [1991].

Two sets of compensators were designed for the active lifting surface
command following tests. A set of low frequency compensators were designed
for quasi-steady and very low frequency command following with a quasi-
integrator low frequency pole set to 1.0 Hz. And, a set of high frequency
compensators were designed for mid-range frequency command following
with a quasi-integrator pole at 5.0 Hz. In each set, the Kalman filter loop
was designed to match all singular values over the command following
bandwidth, which extended from the quasi-integrator poles to the designed
cross-over frequency. The filter loop was designed to be equal to ul/s in order
to obtain large low frequency gain (for performance) and small high frequency
gain (for stability robustness). The sensor noise, equal to 1/4, was used to set
the cross-over frequency for each compensator design.

6.3 Conftroller Order Reduction

To facilitate implementation on the real time control computer, model
based compensators found from the design models (22, 32 and 34 states)
were reduced to 14 states using the ordered Hankel singular value procedure
described previously. As an alternate design procedure, reduced 14 state
compensators were computed directly from the design model using a fixed
architecture optimal projection gradient search technique [Mercedal, 1991].
Optimal projection designs differ from the two step (design and reduce)
process in that the compensators are designed to a specific model order with
the knowledge of the model urder incorporated in the design equations. The
optimal projection compensators were compared to the reduced order LQG

compensators in the aluminum test article bench-top experiments so that the
effect of ad-hoc compenrsator reduction could be assessed.

Finally, the reduced order continuous time compensators were
transformed to the discrete time domain via a Tustin transform. The
sampling rate was chosen to be 2000 Hz, which provided adequate frequency



resolution in the desired control bandwidth (about 200 Hz). This rate was
found to be the practical limit of the control computer used to implement
these three-input, three-output, fourteen state digital compensators. The
actual delay of the digital control computer was measured at roughly one
sample period, two times the delay normally associated with a zero order hold
[Franklin and Powell, 1980].

The equations describing the reduced order LQG or optimally projected
compensators can be expressed in state space

£=A_%+Ke u=Fx+De (6.3.1)

or transfer function form
u=K(s)e K(s)=F,(sI-A,) K, +D, (6.3.2)

where A.. contains the reduced order compensator dynamics and D, is a
compensator feed through term which results from the reduction process.
Note that the additional subscript "c¢" differentiates the reduced order
compensators (Egs. 6.3.1 and 6.3.2) from the original designs (Egs. 6.1.3
and 6.1.4).

In the design of dynamic compensators, the loop transfer function T(s)
plays an important role. This transfer function shows the relative control
authority being exerted and the potential for driving the system unstable,
which depends on the magnitude relative to unity for MIMO systems and the
gain margin for SISO systems. The loop transfer function, measured from
the compensator error inputs to the plant sensor outputs, is found from the
compensator (Eq. 6.3.2) and plant control (Eq. 5.3.2) transfer functions

y=T(s)e  where T(s)=G_(s)K(s) (6.3.3)

The compensator and resulting loop transfer functions are detailed below for
the various bench-top and wind tunnel tests performed.

6.4 C or Design Detail

For the bench-top disturbance, wind tunnel gust alleviation and wind
tunnel flutter suppression tests, control laws were designed to minimize the
cost made up of the sensor outputs and control inputs as described above.
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The state cost evenly weighted each sensor output, while the control cost
weighted the control inputs by the total piezoceramic actuator area of each
control group. Compensators were designed from the design models for
relative state to control cost weights p ranging from 10+4 to 10-%.
Compensators were designed for control weighting increments of 10, so that a
series of 9 controllers were designed for each assumed sensor noise value.
The command following controllers, which were designed using the LTR
method, were computed for relative control weights of 1.0 to 10-8 in the hopes
of achieving true filter loop recovery. These compensators were also designed
for control weighting increments of 10 to obtain a series of 9 controllers.

Bench-Top Disturbance Rejection Compensator Details

Compensators were designed from the 22 state design models for the
aluminum and G/E bench-top test articles using sensor noise estimates of 1, 3
and 6 percent. Figs. 6.1 and 6.2 display the compensator K(s) and the loop
T(s) transfer function singular values of the G/E bench-top test article
compensators designed with a sensor noise estimate of 3 percent. Fig. 6.1
plots the singular values of a low gain (p = 1.0) compensator design and
Fig. 6.2 displays the singular values of a high gain (p = 10-2) design. A
significant increase in gain is observed between the two designs. Note that in
each design the compensator gain begins rolling-off at about 120 Hz (the
actual control bandwidth), and notching is observed in the roll-off region.
Moreover, observe the increased notching of the high gain compensator.

Wind Tunnel Gust Alleviation Compensator Details

The wind tunnel gust alleviation compensators were designed from the
32 and 34 state design models using sensor noise estimates of 0.5, 1.0 and 2.0
percent for the aluminum and G/E lifting surface, respectively. Fig. 6.3 plots
the compensator K(s) and loop T(s) maximum singular values of a low gain
(p = 1.0) compensator design and Fig. 6.4 displays the singular values of a
high gain (p = 10-1) design for the G/ lifting surface with a sensor noise of
1.0 percent. The figures show the increased low frequency control authority
and the decreased actual control bandwidth (about 80 Hz) of these gust
alleviation compensators relative to the bench-top compensators. As before,
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significant notching occurs in the roll-off region for these gust alleviation
controllers.

Wind Tunnel Command Following Compensater Details

Figs. 6.5 and 6.6 show the compensator and loop transfer function
maximum singular values of a low frequency and high frequency command
following compensator designed for the G/E lifting surface, respectively. The
low frequency command following compensators were designed so that the
loop transfer functions would cross over at about 80 Hz. The best performing
stable low frequency command following compensator was designed with a
control weight p of 10-4, This compensator was only able to recover the
desired filter loop (ul/s) enough to yield a cross-over frequency of about 10 Hz,
as shown in Fig. 6.5. The high frequency compensators were designed for a
loop cross-over of roughly 160 Hz. The best performing stable high frequency
command following compensator was designed with a control weight p of 106.
As with the low frequency design, even this very low control weight was not
sufficient to properly recover the loop of this higher bandwidth compensator.
As seen in Fig 6.6, cross-over is only at about 50 Hz. The figures also show
the large low frequency gain of these compensators and the quasi-integrator
poles which limit the very low frequency gain so that quasi-steady actuator
saturation is avoided. Fina'ly observe that command following performance
was not limited by the low cross-over frequency of the desired filter loops (80
and 160 Hz), since small modeling errors and large compensator gains
prevented good loop recovery even for these modest designs.

Wind Tunnel Flutter Suppression Compensator Details

The wind tunnel flutter suppression compensators were designed from
the 38 state design models using sensor noise estimates of 1.0 percent for the
modified-for-flutter aluminum lifting surface. Fig. 6.7 plots the compensator
maximum singular values for a medium gain (p = 1.0) flutter suppression
compensator. The singular values show control being applied to the first two
flexible modes, which coalesce in the open loop causing flutter. The
compensator then rolls off through the higher frequency modes. Notice that
this controller also exhibits high gain at low frequencies and notching in the
roll-off region.
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Figure 6.1a. Maximum singular values of a low gain compensator K(s)
transfer function matrix for the G/E test article on the bench-top.

Loop Transfer Function Max. SVs (db)
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Figure 6.1b. Maximur singular values of the loop T(s) transfer function
associated with the low gain compensator for the G/E test article on
the bench-top.
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Figure 6.2a. Maximum singular values of a high gain compensator K(s)
transfer function matrix for the G/E test article on the bench-top.
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Figure 6.2b. Maximum singular values of the loop T(s) transfer function

associated with the high gain compensator for the G/E test article on
the bench-top.
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Figure 6.3a. Maximum singular values of a low gain compensator K(s)
transfer function matrix for the G/E lifting surface in the wind

tunnel.
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Figure 6.3b. Maximum singular values of the loop T(s) transfer function
associated with the low gain compensator for the G/E lifting surface
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Figure 6.4a. Maximum singular values of a high gain compensator K(s)
transfer function matrix for the G/E lifting surface in the wind

tunnel.
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Figure 6.4b. Maximum singular values of the loop T(s) transfer function
associated with the high gain compensator for the G/E lifting surface
in the wind tunnel.
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Figure 6.5a.
following compensator K(s) transfer function matrix for the G/E
lifting surface in the wind tunnel.
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Figure 6.5b. Maximum singular values of the loop T(s) transfer function
associated with the low frequency command following compensator
for the G/E lifting surface in the wind tunnel.
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Figure 6.6a. Maximum singular values of a high frequency command
following compensator K(s) transfer function matrix for the G/E
lifting surface in the wind tunnel.
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Figure 6.6b. Maximum singular values of the loop T(s) transfer function
asgsociated with the high frequency command following compensator
for the G/E lifting surface in the wind tunnel.
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Figure 6.7. Singular values ¢f a high gain flutter suppression compensstor
K(s) for the modified-for-flutter aluminum test article.
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Chapter 7. Bench Experiment

Although the ultimate objective of this study is aeroelastic control, it is
desirable to first demonstrate that multivariable compensaiors can be
designed and implemented to control the active test articles in a bench-top
setting. Before closed loop wind tunnel testing, it is important to check as
much of the analytical model as possible, verifying the control law design
procedure and acquire needed control law design experience. Further it is
essential to check the functionality of the digital control computer, power
amplifiers and other associated hardware. These tasks are much easier to
accomplish in a laboratory bench-top setting than in the wind tunnel where
aerodynamic forces introduce additional complications and time constraints
are severe.

The bench-top experiments are also important because of the high-
bandwidth nature of the bench-top disturbance source, which enables the
demonstration of high-authority and high-bandwidth disturbance
attenuation. Therefore, another goal of the closed loop bench-top experiments
is to show the ability of distributed strain actuators and multivariable
compensators to control the quasi-steady lifting surface response as well as
add significant amounts of damping to several structural modes in the control
bandwidth.

7.1 Closed Loop System Evaluation Criteri

The compensators were evaluated analytically for stability and
performance using the 73 state evaluation model (the full order model
without aerodynamics). The ability of the compensators designed to control
the active test articles was determined from numerical simulation and closed
loop bench-top testing in three different experiments. First, performance was
evaluated by comparing the experimentally measured and analytically
predicted closed loop disturbance attenuation to the open loop output Gu(s),
described by Eq. 5.3.2. The closed loop response was calculated using a state
space representation of the reduced order compensator and full order
evaluation model.
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&]_[A-BD.C -BE]x] [L],
7| K A, [x]T|o

y=[C 0][?]
x (7.1.1)
Second, the performance obtained was evaluated in terms of the
greatest disturbarice attenucation achieved before encountering instabilities,
by examining the stability robustness of the systems. Stability robustness
measures how near to instability particular controllers are, and the likelihood
of driving the system unstable by increasing the control gain. The stability
robustness is measured by comparing the closed loop and inverse error
maximum singular values. In this study, a modificd stability robustness
criteria is developed which is shown to be significantly better at predicting
stability boundaries for lightly damped flexible structures than the usual
methods.

Third, performance was further assessed by comparing the
experimentally measured and analytically predicted state versus control cost
of each controller. The closed loop state cost is directly related to the RMS
response of the outputs and measures the performance of each control design.
Similarly, the control cost is directly related to the RMS response of the
control inputs and is a measure of the amount of control used. By sclving the
Lyapunov equation associated with the closed loop system

x] [A-BD,C -BF.Jx] [L -BD,]d
[x]"[ KC A, ][i]+[0 K. ][@] (7.1.2)

the state and control costs can be found directly from the covariance matrices.
StateCost = Trace(QE[xx” )

Control Cost = lTrace(GR'lGT E[iiT])
p (7.1.3)

Note that the experimental RMS values were calculated by integrating the
frequency responce over the 500 Hz evaluation bendwidth.
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7.2 Performance Results

The frequency response of the open versus closed loop analytical and
experimental disturbance to leading edge sensor (y;/d) transfer functions are
displayed in Figs. 7.1 and 7.2 for the aluminum and G/E test articles,
respectively. Nctice the good agreement bef,ween the analytic model and the
experimental results, verifying the ability of the Ritz model to correctly
predict the steady state magnitudes, poles, zeros, and lags of the dynamic
systems. The agreement between the model and the experiment also
indicates that the dynamics of the other system components (such as sensor
roll-off and fiiter dynamics) were modeled correctly. Further, the excelient
closed loop performance validates the compensator design, order reduction
and digital implementation methods utilized.

Figs. 7.1 and 7.2, which display the tip displacement due tc a
broadband (500 Hz) excitation from the magnetic probe, illustrate the high-
authority, large-bandwidth nature of these controller designs. Significant
amounts of damping were introduced into the first four structural modes by
these control designs (p = 10-2) without destabilizing any high frequency
modes. For both test articles the magnitude of the closed loop frequency
response was reduced from that of the open loop system (which had an
estimated 1.5 percent structural damping in each mode) by approximately 30,
10, 20, and 10 db in the first four modes, respectively. Comparison of
Figs. 7.1 and 7.2 shows the increased torsional (2M and 4th modes) control
authority of the bending/twist coupled G/E plate, however the ability of the
bend/twist coupled G/E plate to effect additional torsional control was not as
pronounced as expected in the bench-top tests.

Figs. 7.1 and 7.2 clearly illustrate the high-authority nature of the
compensator designs. In addition to significantly reducing the steady state
response (by approximately 10 db), the controllers are able to completely
eliminating the resonant behavior of first structural mode in both test
articles. These results demonstrate that strain actuation, which provides
direct contrel of the strain in the structure, can be used to implement high-
authority control designs.
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Figure 7.1a. Analytical open and closed loop frequency response of the
aluminum test article for a LQG disturbance rejection compensator
designed with p = 102 and the sensor noise estimated at 3%.
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Figure 7.1b. Experimental open and closed loep frequency response of the
aluminum test article for a LQG disturbance rejection compensator
designed with p = 10-2 and the sensor noise estimated at 3%.
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Figure 7.2a. Analytical open and closed loop frequency response of the G/E
test article for a LQG disturbance rejection compensator designed
with p = 10-2 and the sensor noise estimated at 3%.
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Figure 7.2b Experimental open and closed loop frequency response of the
G/E test article for a LQG disturbance rejection compensator
designed with p = 10-2 and the sensor noise estimated at 3%.
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7.3 Stabilitv Robust

Transfer functions such as those in Figs 7.1 and 7.2 shiow the ability of
strain actuation to effect significant amounts of disturbance attenuation, but
offer no information with regard to the amount of control authority used or
the amount which can be applied to the system before errors in the analytic
model cause instabilities. Therefore, a stability robustness test is needed
which can predict the control authority which can be successfully applied to
the system. Unfortunately, most currently employed stability robustness test
are overly conservative for lightly damped flexible structures. One of the
more common stability robustness tests employed [Lehtomalki, et. al., 1984]
requires the maximum singular values of the closed loop transfer function
OmaxlC(8)] to be less than the reciprocal of the maximum singular values of
the multiplicative model error 1/o,,,,[A(s)] acting at the plant output

1
Omax|C(s)] < o—mu—[@
C(s)=[1+T(s)] "L(s)

A(5)=[Ge(5)orp ~ G (8)]Ge(5)
where  T(s)=G,(s)K(s) (7.3.1)

where T(s) is the loop transfer function (Eq. 6.3.3), with the loop broken at
the sensor outputs. The stability robustness test of Eq. 7.3.1 assumes all
model errors are reflected at the plant output, as opposed to several other
possibilities [Doyle, Wall and Stein, 1982]. The actual model error is
computed using the evaluation model calculated G.(s) and experimentally
measured Gq(8)exp control transfer functions (Eq. 5.3.2). Note that this
robustness test guarantees stability.

Unfortunately, this method yields overly large error maximum
singular values and an extremely conservative stability robustness test. The
conservatism of this nominal test is illustrated in Fig. 7.3 which shows the
maximum singular values of the closed loop control transfer function
6max[C(8)] and the inverse error matrix 1/Gmax[A(8)] for the aluminum test
article. Notice that the test is violated (predicting instabilities) over the
entire evaluation bandwidth for a compensator designed with a control
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weighting p = 1, two orders of magnitude greater (resulting in much lower
control gains) than that of the stable high-performance compensator depicted
in Fig. 7.1. Obviously this nominal test is very conservative, and not a useful
tool for predicting the amount of control effort which can be utilized before
instabilities are encountered.

10.00 - Max. C(s) SYQ---—

b - - -
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Figure 7.3. Bench-top closed loop C(s) maximum singular values and the
reciprocal of the error A(s) maximum singular value for the
aluminum plate with a LQG compensator designed with p = 1 and the
sensor noise estimated at 3%. The plot shows the inability of the
nominal robustness test to predict stability.

Motivated by the deficiencies of this nominal method, a new stability
robustness test was developed in order to provide a more realistic estimate of
the maximum control effort which can be utilized before such instabilities
occur. This test is derived from the small gain theorem [Maciejowski, 1989],
as is the test described above. However, rather than breaking the loop
transfer function at the sensor outputs (as in Eq. 7.3.1), a singular value
decomposition (SVD) is performed on the plant control transfer function,
G.(s) = UXV, and a new loop transfer function Ty is found by breaking the
loop at the output of the plant singular values £. A new closed loop transfer
function matrix Cjy is then formed and compared to the error Ay, which is
found from the calculated and experimentally measured singular values.
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Because the error Ay is calculated from the singular values, the error
matrix is made up of only diagonal terms, each of which is essentially a
measure of the percent error in the particular singular value. This method
disregards any difference between the analytical and experimental singular
vectors collected in the unitary matrices, U(s) and V(8), in the formulation of
the multiplicative error. However, since the stability robustness test is
derived from the small gain theorem, which does not consider directional
information, disregarding the directional information contained in the
unitary matrices is considered consistent, and leads to a modified stability
robustness test useful for actual controlled flexible structures.

1
Omax AS(S)

Cx(s)=[I+Tx(s)] " Tx(s)

B5(5)=[2(6)xp - Z(s)[2(5)”
where  G(s)
and Ty (s)

max[CZ(s)] <

1

U(s)Z(s)V(s)
V(s)K(s)U(s)%(s) (7.3.2)

This modified stability robustness test carries no guarantees of
stability (in contrast with the nominal conservative test) but was found to be
fairly accurate at predicting robustness to model errors. This new robustness
test was applied to the test articles used in this study. Example results are
plotted in Figs. 7.4 and 7.5 for the aluminum and G/E plates, respectively. In
the region where control is being effected, the control law utilizes directional
(phase) information to maintain steubility even when the small gain theorem
is violated. However, in the bench-top roll-off region (above 120 Hz) the
compensator uses gain notching to avoid destebilizing higher modes, as
shown in Fig. 7.6, and makes no use of any directional information. It is in
this roll-off region that any violation of the robustness test will cause an
instability. Figs 7.4 and 7.5 clearly show that the new robustness test
predicts stability for the p=1 compensator design (Omax[C x(8)] does not
penetrate through 1/6,ax[Ax(8)] in the controller roll-off region). In contrast,
the commonly employed method (Fig. 7.3) predicts that instabilities will occur
(Omax[C3x(8)] penetrates and extends above 1/0max[A5(8)] in the roll-off region).
Note that this compensator design was found experimentally to be stable.
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Figure 7.4a. Bench-top closed loop transfer function Cz(s) maximum
singular values and the reciprocal of the error Az(s) maximum
singular values for the aluminum plate with a LQG compensator
designed with p = 100 and the sensor noise estimated at 3%.
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Figure 7.4b. Bench-top closed loop transfer function Cg(s) maximum
singular values and the reciprocal of the error Az(s) maximum
singular values for the aluminum plate with a LQG compensator
designed with p = 102, and the sensor noise estimated at 3%.
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Figure 7.5a. Bench-top closed loop transfer function Cg(s) maximum
singular values and the reciprocal of the error Ax(s) maximum
singular values for the G/E plate with a LQG compensator designed
with p = 100 and the sensor noise estimated at 3%.
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Figure 7.5b. Bench-top closed loop transfer function Cz(s) maximum
singular values and the reciprocal of the error Ay(s) maximum
singular values for the G/E plate with a LQG compensator designed
with p =10'2) and the sensor noise estimated at 8%.
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As the relative control weighting is decreased and the control designs
utilize higher gains, the maximum singular values of the closed loop transfer
function omax(Cx(8)] increases and moves closer to the reciprocal of the
maximum singular values of the error 1/omax[As(8)] in the roll-off region. The
plots indicate that model errors, even if relatively small, will eventually cause
instabilities as the gain increases. These instabilities are associated with
notches found in the roll-off region of LQG compensators, which become
sharper and deeper as the gain is increased and eventually miss the mode
targeted for gain stabilization.

For a control weight of p = 10-2 the two curves are very close in the roll-
off region, indicating that the amount of control used is very close to causing
an instability. It was found experimentally that controllers with relative
control weights greater than or equal to 10-2 were stable while those designed
with control weights less than 10-2 were unstable for both test articles,
demonstrating that this stability robustness test is useful for obtaining good
order of megnitude estimates of the control authority which can be applied te
the test articles without destabilizing mis-modeled modes.

Magnitude db
&
S
i

O-m i i PO Y ‘i A '

1 10 100
Frequency (Hz.)
Figure 7.6. Typical bench-top compensator maximum singular value plot.

The graph shows high gain in the control bandwidth and notching in
the roll-off region. The compensator was designed for the aluminum
test article with of control weight of 10-2 and sensor noise of 3
percent.
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7.4 Performance Robustness Correlation

The stability robustness test provides a means for comparing the
amount of control authority being used to the amount which can be applied to
the system without causing instabilities. It is instructive to combine this
control authority information with performance measurements for
comparison of the relative control effectiveness of various compensator
designs. Further, the stability robustness test is used to explain the cause of
high gain compensator instabilities which limit the maximum achievable
performance.

Such a comparison can be made by plotting the analytically predicted
and experimentally measured closed loop state cost versus control cost
(normalized by the open loop state cost). Cost curves for the compensators
designed with an assumed measurement noise of 3.0 percent are plotted in
Fig. 7.7 for the aluminum test article. Analytically predicted cost curves are
shown in the fijzure for design model LQG, reduced order LQG and optimal
projection compensators. The figure shows that the reduced order LQG
compensators deviated from the design model compensators only for those
designs with very high control gains (p = 10-3 and 10-4). The reduced order
LQG and optimal projection experimentally measured cost curves are
compared to the analytic results in Fig. 7.7. Experimental results are plotted
for designs with relative control weights p of 1 (large state cost and low
control cost), 10-1 and 10-2 (low state cost and large control cost). Notice that
the two experimental compensator cost curves provide the same disturbance
attenuation performance (optimal projection offers no improvement) and that
these results compare favorably to those predicted analytically.

It was determined analytically that the high gain stable reduced order
compensator (relative state to control cost weighting p = 1e-3) decreased the
state cost by 97.2 percent (83.4 percent RMS) or 15.6 db for the aluminum
plate test article. However, model errors predicted by the stability robustness
test prevented such performance from being achieved experimentally.
Fig. 7.7 shows that the most effective controller implemented (p = 10-2) was
able to reduce the state cost significantly. This reduced order LQG
compensator was analytically predicted to decrease the state cost by
97.1 percent (83.1 percent RMS) or 15.4 db. It was found experimentally that
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this controller actually reduced the state cost by 96.3 percent (80.8 percent
RMS) or 14.3 db.

Similarly, excellent disturbance attenuation results were found for the
G/E test article. Analytical and experimental cest curves for compensators
designed with an assumed measurement noise of 3.0 percent are plotted in
Fig. 7.8. As with the aluminum test article compensators, the G/E plate
design model and reduced order LQG compensator cost curves deviate orly
for the very high gain controllers derived using a control weight p of 10-3.
Also, the experimentally measured and analytically predicted costs are in
good agreement over the entire set of compencator designs. Further, only
those designs which were predicted to be stable by the stability robusiness
test were experimentally found to be stable.
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Control Cost
Figure 7.7. Analytical and experimental state versus control closed loop

cost curves for the aluminum test article disturbance rejection
compensators designed for a sensor noise estimate of 3%.

State Cost (Closed Loop/Open Loop)

The best (largest state cost reduction) experimentally stable G/E plate
compensator was predicted to reduce the state cost by 97.5 percent
(84.2 percent RMS) or 16.0 db. This compensator (p = 10-2) was
experimentally found to attenuate the state cost response by 97.1 percent
(83.0 percent RMS) or 15.4 db. Such a large reduction in the state cost or
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RMS response is especially significant in light of the 500 Hz bandwidth over
which the cost was calculated, which included 10 structural modes.
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Figure 7.8. Analytical and experimental state versus contrel closed loop
cost curves for the G/E test article disturbance rejection
compensators designed using a sensor noise estimate of 3%.

The cost curves showed that reducing the order of the compensator had
essentially no effect on controller performance, and the compensators
designed using optimal projection performed no better that those derived
from the design model and then reduced. Additionally, it was observed that
increasing the order (above 14 states) of the compensators implemented had
no effect on closed loop performance. Therefore, all experimental instabilities
were attributed to model errors, as predicted by the modified stability
robustness test, rather than model or compensator order reduction.

139



Chapter 8. Wind Tunnel Experiments

The bench-top experiments showed the ability of the controllers
designed to add significant amounts of damping to the lightly damped test
articles. The control laws were able to add damping to several flexible modes,
each of which had roughly the same low (1.5 percent) structural damping.
Similar performance results are desired in the wind tunnel. However, the
structural dynamics of the test articles and the nature of the controllers
designed are different in the wind tunnel due to the unsteady aerodynamic
forces. The presence of the unsteady aerodynamic forces influences the mode
shapes, natural frequencies and damping of the lifting surface test articles.
The unsteady aerodynamics also adds additional lags to the system. Further,
the nature of the gust disturbance forces are much different (higher force,
lower bandwidth) than those disturbances encountered on the Lench-top.

Three sets of wind turnel investigations were performed. First, guct
alleviation experiments, similar to the bench-top disturbance rejection tests,
were carried out to show the ability of strain actuation to attenuate simulated
atmospheric gusts. Second, command following experiments were performed
to nccess the ability of active lifting surfaces to follow commands typical of
those required for aircraft maneuverability. Third, flutter suppression
experiments were conducted to not only demonstrate flutter suppression, but
also to show that the response to disturbances in the air steam could be
suppressed using strain actuation.

The wind tunnel experiments served to both validate the analytical
aeroelastic model and demo=nstrate the ability of distributed strain actuators
to control aeroelastic lifting surfaces. Since effective model-based
compensators can only be derived from accurate models, the ability to
implement effective controllers simultaneously demonstrates modeling and
control capability. Further, the degree of model fidelity determines the
performance which can be achieved, as shown by the performance achieved in
the bench-top tests. Similar performance, stability robustaess and
performance robustness correlation results are reported for the wind tunnel
experiments.
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8.1 Gust Alleviation Perf Resull

The unsteady aerodynamic forces created by the lifting surface motion
were found to add large amounts of damping to the first bending and torsion
modes at the gust alleviation test velocity of 60 mph. The analytical modeis
(see Tables 5.3 and 5.4) predict damping increases of roughly 10 and 20 times
for the first bending mode and 2 and 3 times for the first torsion mode over
the bench-top values for the aluminum and washin configured G/E test
articles, respectively. The fact that these low fiequency modes are so heavily
damped, along with the large low frequency disturbance forces created by the
gust generator, means that large actuzior forces must be applied by the
strain actuators to achieve significant disturbance attenuation. These large
actuator forces can be created by designing compensators with large low
frequency gain. However, the compensator gain must roll-off without
destabilizing the high frequency modes, which are not heavily influence by
the aerodvniamics and remain lightly damped. The combination of having
large compensator gains at low frequencies and needing to roll-off the
compensator through lightly damped modes makes the problem of achieving
good gust alleviation performance while maintaining stability robustness
very challenging.

Despite the aforementioned difficulties, good gust alleviation can be
obtained from lifting surfaces with distributed strain actuators. Figs. 8.1
and 8.2 display the analytical and experimental gust generator input d to
leading edge laser sensor y; open and closed loop response. The open loop
response was calculated from Eq. 5.3.2 and the closed loop response was
calculated using Eq. 7.1.1, as were the bench-top disturbance transfer
functions. However the disturbance forcing matrix L now represents the gust
generator forces and the system matrices include aerodynamic forces and
additional states. As for the bench-top experiments, 14 state reduced order
compensators were implemented experimentally and evaluated analytically.
The compensators were evaluated using the 98 state full order aeroelastic
evaluation modei. Figs. 8.1 and 8.2 show the disturbance transfer functions
for the compensator designs which achieved the best gust response
attenuation for the aluminum and G/E washin configured lifting surfaces,
respectively. The controllers were designed using a controi weight p of 10-!
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and a sensor noise of 1.0 percent for both the aluminum the G/E lifting
surfaces.

The gust response transfer functions show both the accuracy of the
aeroelastic analytical model and the ability of the actively controlled lifting
surfaces to alleviate gust disturbances. The validity of the analytical model is
shown by comparing the quasi-steady response and the pole and zero
locations of the analytical and experimental disturbance transfer functions.
In each case the agreement was found to be quite good. The active lifting
surface gust alleviation effectiveness can be observed from the first bending
and quasi-steady response in Figs. 8.1 and 8.2. For both lifting surfaces,
controllers are shown which reduce the response of the first bending mode by
approximately 10 db, even though there was about 14 and 29 percent open
leop damping in this mode of the aluminum and G/E test articles, receptively.
Control effectiveness is also shown in the quasi-steady response which was
observed to decrease that of the open loop by 3 db for the aluminum and 6 db
for the G/E test article. Note that the G/E lifting surface was more effective
in controlling the quasi-steady response because of its bending/twist coupling.

It was also expected that the G/E plate bending/twist coupling would
allow for enhanced control of the torsional vibration modes. However, this
control was not realized because the gust forces barely excited the torsional
modes (compared to the first bending mode), which caused the compensators
designed to only attempt to effect control of the bending mode. In fact, so
much of the vibration energy and therefore the cost was associated with the
first bending mode and quasi-steady response, that other modes were
purposely destabilized (but not made uastable) in favor of applying more
control to the first bending mode and quasi-steady response. The fact that all
control efforts are concentrated in the frequency range only up to the first
bending mode is shown by the destabilized third mode (second bending) seen
in the figures. Note that the destabilized mode is not a result of either model
error or reduction, since this behavior was found even when evaluating
design model compensators using the design model itself. Finally, note that
the disturbance forces are large compared to those experienced on the bench-
top (no times ten output factor was used in the wind tunnel).
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Figure 8.1a. Analytical open and closed loop frequency response of the
aluminum lifting surface for a LQG gust alleviation compensator
designed with p = 10°1 and a sensor noise of 1.0 percent.
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Figure 8.1b. Experimental open and closed loop frequency response of the
aluminum lifting surface for a LQG gust alleviation compensator

designed with p = 10"1 and a sensor noise of 1.0 percent.
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Figure 8.2a. Analytical open and closed loop frequency response of the G/E
liftin.g surface for a LQG gust alleviation compensator designed with
p =101 and a sensor noise of 1.0 percent.
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Figure 8.2b. Experimental open ard closed loop frequency response of the
G/E lifting surface for a LQG gust alleviation compensator designed
with p = 10’1 and a sensor noise of 1.0 percent.
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8.2 Gust Alleviation Stability Robust

The compensators used to calculated the analytical and implemented
to measure the experimental disturbance transfer functions (Figs. 8.1
and 8.2) were those found to be most effective at attenuw ing gust
disturbances. These compensators were designed using a control weight p of
10-1. Compensators designed with lower control weights (higher gains) were
found experimentally to be unstable. The stability of both the stable high
performance compensators (p = 10-1) and the unstable compensators (p < 10-1)
was predicted using the modified stability robustness test described in
section 7.3. The modified stability robustness test was able to give a good
order-of-magnitude estimate of the maximum control authority which could
be used before encountering instabilities for both the aluminum and G/E
lifting surfaces.

The results of applying the modified stability robustness test
(Eq. 7.2.2) to the gust alleviation compensators designed for the aluminum
and G/E test articles are shown in Figs. 8.3 and 8.4, respectively. The figur.s
display the maximum singular values of the modified closed loop transfer
function matrix 0myax[Cx(s)] verses the inverse of the error maximum singular
values 1/6pyax[Ax(s)] for low (p = 1.0) and high (p = 10-1) gain stable
compensator designs. For both lifting surfaces, the closed loop maximum
singular values are below the inverse error maximum singular values in the
wind tunnel gust alleviation compensator roll-off region (above 80 Hz).
Therefore, the modified stability robustness test suggests that these
compensator designs will be stable.
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Figure 8.3a. Wind tunnel closed loop transfer function Cz(s) maximum
singular values and the reciprocal of the error Ay(s) maximum
singular values for the aluminum plate with a LQG compensator
designed with p = 100 and the sensor noise estimated at 1.0%.
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Figure 8.3b. Wind tunnel closed loop transfer function Cz(s) maximum
singular values and the reciprocal of the error Ax(s) maximum
singular values for the aluminum plate with a LQG compensator
designed with p = 10-1 and the sensor noise estimated at 1.0%.
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Figure 8.4a. Wind tunnel closed loop transfer function Cy(s) maximum
singular values and the reciprocal of the error Ay(s) maximum
singular values for the G/E plate with a LQG compensator designed
with p = 100 and the sensor noise estimated at 1.0%.
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Figure 8.4b. Wind tunnel closed loop iransfer function Csz(8) maximum
singular values and the reciprocal of the error Ax(s) maximum
singular values for the G/E plate with a LQG compensator designed
with p = 16'1 and the sensor noise estimated at 1.0%.
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As observed in the bench-top stability robustness section, decreasing
the control weight increases the control gain and moves the maximum
singular values of the closed loop transfer function closer to the inverse error
maximum singular values. Figs. 8.3 and 8.4 show that the high gain stable
compensators designed with a control weight p of 10-1 have closed loop
maximum singular values omax{Cg(s)] which just touch the inverse error
maximum singular values 1/6,ax[A3(s)] in the roll-off region. The proximity
of the two singular value curves indicates that some of the poles in the roll-off
region are close to being driven unstable, and any increase in gain will cause
such instabilities to occur. Further, during closed loop wind tunnel testing it
was found that controllers designed for both gust alleviation test articles with
a control weight of 10-2 were, in fact, unstable. But, factors other than
modeling errors (accounted for by the modified stability robustness test) could
have contributed to such instabilities. For example, aerodynamic,
substructure and actuator nen-linearities (especially important for
compensators with high gains) can help drive a system unstable. Note that a
considerable amount of non-linear behavior, in the form of limit cycle
oscillations and saturated actuators, was observed during wind tunnel
testing.

The performance shown by the gust disturbance response transfer
functions can be quantified and correlated with the contrel authority needed
and the maximum control authority available (determined by the stability
robustness test) by plotting the state cost versus control cost. Wind tunnel
gust alleviation state versus control cost plots identify the incremental state
cost reduction obtained from increased control authority, as was found for the
bench-top experiments. Analytical and experimental cost curves are plotted
in Figs. 8.5 and 3.6 for the gust alleviation experiments. The analytic values
were calculated by solving the associated closed loop Lyapunov problem
defined by Eqs. 7.1.2 and 7.1.3. The experimental values were found from the
RMS sensor outputs and control inputs measured over the 200 Hz wind
tunnel test evaluation bandwidth. All values were normalized by the open
loop state cost, so that the infinite control weighting (zero control gain) cost is
unity.
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Controllers designed for the gust alleviation experiments with sensor
noise estimates of 1.0 percent are shown in Figs. 8.5 and 8.6 for the
aluminum and G/E lifting surfaces, respectively. The analytic curves show
the expected state cost reduction for the design model and reduced order LQG
compensators. The curves, calculated using the full order evaluation model,
show that no performance degradation results from the compensator
reduction process needed to implement the compensators on the digital
control computer, even for very high gain (experimentally unstable)
compensator designs. Reducing the compensators had no effect on
performance due to the high-authority, but lower bandwidth (compared with
the bench-top tests) nature of the compensators. Experimental results are
plotted for controllers designed with control weights of 1.0 and 10-1 for the
aluminum and 101, 1.0 and 10-! for the G/E lifting surface. The figures show
excellent agreemeiy between the analytical and experimental results, and
that significant disturbance attenuation was achieved despite the relatively
high open loop damping in the lower modes.
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Figure 8.5. Analytical and experimental state versus control closed loop
cost curves for the aluminum lifting surface gust alleviation
compensators designed with a sensor noise estimate of 1.0%.
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It was found that the compensators best able to attenuate disturbances
were designed with a control weight p of 10-1. Compensators designed with
lower control weights (higher gains) were unstable, as discussed in the
stability robustness section. The high performance gust alleviation
compensator designs (p = 10-1) were analytically predicted to reduce the
aluminum lifting surface state cost by 77.3 percent (52.3 percent RMS) or
6.4 db, and the G/E lifting surface compensator was predicted to reduce the
state cost by 84.1 percent (60.1 percent RMS) or 8.0 db. The aluminum lifting
surface compensator was experimentally found to reduce the state cost by
79.2 percent (54.3 percent RMS) or 6.8 db, while the G/E lifting surface
compensator was able to reduce the state cost by 83.6 percent (5§9.6 percent
RMS) or 7.9 db.
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Figure 8.6. Analytical and experimental state versus control closed loop
cost curves for the G/E lifting surface gust alleviation compensators
designed with a sensor noise estimate of 1.0%.

Note that the control authority, measured by the voltage supplied to
the piezoceramics, used by the highest performing stable controllers (roughly
100-140 V RMS) was about double the largest amount used in the bench-top
experiments. Therefore, not only were the actuators behaving non-lkinearly
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due to the high voltages relative to the coercive field [Lazarus and Crawley,
1989], but also, the peak voltages commanded were being clipped by the
power amplifiers which were limited to pius or minus 200 V. The amplifier
clipping added yet another factor which contributed to causing very high gain
compensator designs (control weights less that 10-1) to be unstable.

The previous sections showed the ability of active control systems to
suppress unwanted lifting surface vibrations due to gust disturbances. Active
gust alleviation is desirable for improving ride quality and reducing loads. It
is also desirable to enhance aircraft maneuverability through the use of active
controls. Aircraft maneuverability can be improved by using distributed
strain actuators to control the shape of the lifting surface and thus the
aerodynamic forces needed for pull-up and roll maneuvers. One command in
particular, which could be used to generate such maneuver forces, is that of a
commanded lifting surface tip twist.

The ability of active lifting surfaces to respond to a commanded tip
twist is investigated in the command following wind tunnel experiments.
Specifically, the leading y; and trailing y3 edge tip displacements, which
results from the tip twist associated with a constant spanwise bending
moment acting on the bending/twist coupled G/E test article, is examined.
The ability of the leading and trailing edge tip positions to track quasi-steady,
low frequency and high frequency commands in the presence of disturbance
forces is assessed in closed loop wind tunnel experiments. The performance
achieved by the compensators designed for command following is determined
in the frequency domain by examining the closed loop error transfer
functions, which are the response from a commanded signal to the error. The
closed loop error transfer functions can be expressed in state space form as

%]_[A-BD,C -BR.Jx| [BD,
7| ke A, |zT]-k ]

e=[C 0][:]—[I]rc

(8.4.1)

where the error e is defined as the difference between the commanded tip
displacements r, and the displacements measured by the laser sensors y.

151



Controllers were designed to enhance the command following
performance of the G/E lifting surfaces using the LQG-LTR method described
in section 6.2. The results of the command following wind tunnel
experiments, which were conducted at 60 mph, are reported in the form of
command r. to leading y; and trailing y3 edge sensor closed loop error
transfer functions. Analytical and experimental closed loop error transfer
functions are reported in Figs. 8.7 and 8.8 for reduced order LQG-LTR
compensators designed to achieve low frequency and high frequency
command following, respectively. The analytical transfer functions were
calculated by substituting reduced order compensators and the full order
model into Eq. 8.4.1. The experimental transfer functions were found by
subtracting the centrol input froin the sensor output signal.

Fig. 8.7 shows the leading edge sensor closed loop error achieved by a
LQG-LTR controller designed for low frequency command following. As
discussed in section 6.2, the measurement noise was used to set the cross over
frequency at about 80 Hz. The control weight p was chesen to be 10-4, which
was the lowest control weight (highest gain) that yielded a stable
compensator. This control weighting gave excellent loop recovery in this low
frequency control bandwidth. Therefore, this controller was expected to
exhibit good command following performance up to 8.0 Hz. The closed loop
error transfer function shews that adequate command following was obtained
up to about 7 Hz (note that the command following performance is arbitrarily
considered adequate as long as the magnitude of the error transfer function is
below -6 db). Fig. 8.7 shows the error approaching zeros as the command
frequency decreases towards the steady state, due to the "free" integrators in
the compensator. However, the error actually does not continue to decrease
past 1.0 Hz since the "free" integrators have been replace with quasi-
integrator poles at this frequency to avoid very low frequency actuator
saturation. This causes the error from D.C. to the frequency of the quasi-
integrator pole to be constant and equal to the value at the frequency of the
quasi-integrator. The quasi-steady (about 1.0 Hz) error was analytically
predicted to be 20 percent (-14 db). The actual error was measured at
10 percent (-20 db), where the discrepancy between the expected and
measured error is due to difficulties in measuring the turbulence in the free
stream flow (the gust generator was not activated during these experiments).
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Figure 8.7a. G/E command following analytical closed loop error transfer
function for a low frequency LQG-LTR compensator designed with
cross over at 80 Fiz and p = 10-4,
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Figure 8.7b. G/E command following experimental closed loop error
transfer function for a low frequency LQG-LTR compensator
designed with cross over at 80 Hz and p = 104,
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Fig. 8.8 displays the closed loop trailing edge ys error found using a
LQG-LTR compensatc 1lesigned for higher frequency command foliowing.
The compensator was designed with a cross-over frequency of 160 Hz and a
control weight of 10-6, which gave good loop recovery only to about 30 Hz.
The compensator was analytically predicted to follow commands from quasi-
steady though the first hending mode up to about 10 Hz. The controller was
also predicted to follow commands near the first torsional frequency at about
30 Hz. The experiment shows that adequate command following was
achieved up to 8 Hz and again at about 30 Hz, although performance was
found to be a few decibels worse that predicted. Also, Fig. 8.8 shows that the
quasi-steady command following performance suffers considerably when
attempting to follow commands at higher frequencies. The reduced quasi-
steady performance was caused by the need to move the quasi-integrator pole
up te 5 Hz in order to avoid very low frequency (less than 1.0 Hz) actuator
saturation.

The less than ideal performance achieved emphasizes several problems
with using the LTR method for designing compensators to control the
command following response of flexible structures. First, it is very difficult to
obtain a maodel of sufficient accuracy to fully recover the desired filter loops.
A detai.ed plant model is required at least one decade above the bandwidth in
which command following is desired, since cross-over of the loop transfer
function maximum singular values will occur above this bandwidth. Second,
an order of magnitude increase in control authority is needed for each decade
in which commands are to be followed, since the design method employed
shaped the loop singular values to a 20 db per decade ul/s roll-off. In the
command following experiments carried out, both modeling inadequacies and
low frequency actuator saturation limited performance. However, a more
sophisticated target filter loop, designed using 7L techniques, would probably
have provided better performance results.
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After completing the bench-top disturbance rejection, wind tunnel gust
alleviation and wind tunnel command following experiments, a lead mass was
attached to the aluminum lifting surface for the purpose of performing flutter
experiments (configuration details are provided in Chapter 4). The added
mass lowered the predicted flutter speed of this modified-for-flutter lifting
surface to 88 mph. The flutter mode was observed in the wind tunnel to be
the result of a classical coalescence of the first bending and torsion modes,
which occurred at the predicted air speed of 88 mph (flutter analysis details
can be found in Chapter 5). The gust generator was removed from the wind
tunnel for the flutter suppression experiments since the gust vanes
themselves fluttered at about 80 mph. Therefore, the disturbance source for
the flutter experiments was generated only by the turbulence in the free
stream flow, which produced significant disturbance forces because of the
high speeds (relative the tunnel maximum speed of 100 mph) at which the
flutter suppression experiments were conducted.

Flutter suppression controllers were designed and tested at 90 mph.
The flutter suppression controllers were also evaluated analytically for
stability and performance at 80 and 85 mph. All compensators designed to
suppress flutter at 90 mph were predicted analytically and found
experimentally to be stable at both 80 and 85 mph. Therefore, the
experimental procedure was as follows: First, the air speed was set at
80 mph and the open loop response of the laser sensors, due to the flow
turbulence, was measured. Then, the control computer was turned on and
the wind speed was slowly raised to the flutter suppression design speed of
90 mph. At the design speed, the RMS sensor outputs and control inputs
were measured using the Fourier analyzer. Finally, the wind speed was
increased until either the system became unstable or the tunnel limit was
reached.

The results of the wind tunnel flutter suppression experiments are
reported by plotting closed loop state versus control cost curves, similar to
those reported for the bench-top disturbance rejection and wind tunnel gust
alleviation tests. The costs curves show the incremental improvement of the
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state cost gained (reduction in RMS response) as the control effort is
increased, relative to the maximum control authority which could be used
before high frequency modes were destabilized. As before the analytical costs
were calculated by inserting the compensators and the full order aeroelastic
model into Eqs. 7.1.2 and 7.1.3, and the experimental costs were found by
measuring the RMS sensor outputs and control inputs (200 Hz bandwidth).
However unlike the previous tests, there is no open loop state cost by which
the results can be normalized since the open loop system is unstable at
90 mph. Thus, the closed loop state and control costs are normalized by the
open loop state cost at 80 mph. In addition, the vpen loop state cost is not
recovered and the control gains do not go to zero as the control weigh p
becomes large because the open loop system is unstable. Instead, some
amount of control authority is needed, indicated by a finite control cost and a
vertical asymptote of the cost curve, to stabilize the system.

Fig. 8.9 displays the analytical and experimental cost curves for the
modified-for-flutter aluminum lifting surface tested at 20 mph with
compensators designed using an assumed sensor noise of 1.0 percent.
Observe that stable flutter suppression compensators (finite state costs) have
been designed and implemented, and that agreement between the
analytically predicted and experimentally measured results are quite good.
Also note that the figure shows the minimum control effort needed to
stabilize the initially unstable system, indicated by the low control weight
asymptote. Compensators designed with control weights greater than 1.0 are
observed to only have enough control authority te stabilize the system.
However, as the control weight is decreased, higher gain compensators are
designed which are capable of not only stabilizing the system, but also of
reducing the disturbance response. The disturbance response continues to
decrease as the control weight is decreased (gains increase) until the design
with the minimum disturbance response is found (p = 10-2). The figure
indicates that compensators with higher gains (p = 10-4) were analytically
predicted to further decrease the state cost, however stability robustness
issues prevented any of these designs from actually achieving better
performance. These designs were found either to destabilize high frequency
modes, indicated in the figure by the design with an experimentally measured
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high state cost and high control cost, or to be unstable (not shown in the
figure).

‘| —@— Reduced Order LQG
- - O - - LQG Experiment

0.1 L 1 . llll'{ 1 L 1 lllll{ ’ (1 L ‘l‘l'l i L L1 11141
107 102 10! 1° 10!
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State Cost (Closed Loop at 80/ Open Leop at 80)

Figure 8.9. Analytical and experimental state versus control closed loop
cost curves for the modified-for-flutter aluminum lifting surface
90 mph flutter suppression experiments. Ccmpensators were
designed with a sensor noise estimate of 1.0%, and all values are
normalized by the 80 mph open loop state cost.

The compensator design (p = 10-2) which stabilized the system at
90 mph and minimized the disturbance response was analytically predicted to
decrease the state cost from that of the 80 mph open loop system by
71.9 percent (47.0 percent RMS) or 5.5 db. This compensator was found
experimentally to stabilize the system and reduce the disturbance response
by 76.0 percent (51.0 percent RMS) or 6.2 db. In addition, this controller was
able to suppress flutter up to 98 mph, 11 percent above the flutter speed and
9 percent above the 90 mph air speed for which the compensator was
designed.
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Conclusicns

This thesis has investigated and developed the basic technology
necessary for the aercelastic control of plate-like lifting surfaces using
distributed strain actuators. Simple models were used to reveal the
fundamental mechanisms and limitations of aeroelastic control. This
analysis showed that the poles of an aeroelastic system and the zeros of
various actuator to sensor transfer functions move rapidly with airspeed,
which indicates that certain actuator and sensor combinations may be more
desirable than others. In particular, it was found that combinations which
include strain actuators often lead to input/output combination which are
advantageous for closed loop control, especially compared with conventional
aileron controlled transfer functions which sometimes contain non-minimum
phase zeros. This analysis also pointed out the advantages of having multiple
actuator inputs, and that only through the use of strain actuation can such
multiple input systems be realized. Simple models were also used to identify
the parameters important for the effective use of strain actuators integrated
in plate-like structures. It was found that strain actuators are most effective
when the mechanical impedance of the actuators are matched to that of the
substructure, not dissimilar to the impedance matching arguments familiar
to electrical engineers.

The concepts revealed by the simple models were used to design scale
model active lifting surface test articles. Detailed analytic models were then
formed to analyze the test articles. An aeroelastic model was developed for
plate-like structures with integrated strain actuators which gave sufficient
fidelity so that implementable high-authority, high-bandwidth model-based
compensators could be designed. The model combined the Rayleigh-Riiz
assumed mode method, kernel function unsteady aerodynamics and a non-
linear least squares rational app.oximation prozedure. It was found that by
carefully selecting the assumed modes and number of aerodynamic lags, and
incorporating experimentally measured damping estimates, a model of
sufficient fidelity for designing high-authority compensators could be
obtained.
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A control law development procedure was established which utilized
performance measurements and LQG design variables in a consistent
manner in order to design high-authority multivariable compensators. A
model order reduction procedure was also developed for the purpose of
implementing the conirollers on a real time digital computer. Further, a
stability robustness test was found which could estimate, a priori, the amount
of control authority which could be applied to the system without
destabilizing high frequency modes. The robustness test was able to give
reasonably good estimates of closed loop stability based only on open loop
transfer function data and the analytic model.

Closed loop bench-top and wind tunnel experiments validated the
modeling and control law development procedures, and demonstrated the
ability of integrated strain actuators to effect high-authority multivariable
control on flexible plate-like structures. The bench-top resulis showed that
considerable disturbance attenuation could be achieved throughout large
bandwidths containing several flexible modes. Controllers implemented
reduced the quasi-steady response by over 10 db and the response of the first
flexible mode by over 30 db. These high performance controllers decreased
the RMS response of the system by more than 83 percent.

Wind tunrel testing demonstrated the ability of strain actuated active
lifting surfaces to effect a variety of aeroelastic control objectives such as gust
alleviation, command following and flutter suppression. These objectives
relate directly to aircraft design criteria such as ride quality and maximum
wing loading, maneuverability, flight envelope and overall performance. The
wind tunnel tests showed that significant performance improvements could
be obtained through strain actuated active aeroelastic control. The active
lifting surface test articles were found to attenuated the RMS gust response
by over 60 percent in the gust alleviation experiments. And, flutter
suppression test demonstrated the ability of stain actuated active lifting
surfaces to not only suppress flutter, but also to significantly reduce the
response to disturbances in the free stream flow.

Note that the importance of the active lifting surface scaling laws
developed shouid not be overlooked, for it is these fundamental relations
which governs the applicability of the results obtained to the active control of
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actual lifting surfaces. The lifting surface test articles used in this study
were able to achieve a remarkable degree of aeroelastic contrel authority.
However these results may only be generalized to other lifting surfaces with
the same non-dimensional parameters, such as aspect ratio, thickness ratio,
force stiffness ratio and force pressure ratio. In certain applications, such as
panel flutter or stabilizer control, scaling the results may require little effort.
because the geometric parameters are similar. However, scaling the results
for some applications may be problematic. For example, typical wings are
made of box beam construction and have thickness ratios of at least 2 percent.
In order to apply the results of the test articles (thickness ratio of 0.5 percent)
to such a wing, the actuator thickness would have to be considerably larger in
order to match the force stiffness ratio. On the other hand, engineering
ingenuity can be applied to increase control authority using other
mechanisms such as increasing the bending/twist coupling (by sweeping the
wing) or actuation strain (by making use of dss).

A final concern is that of added actuator weight. With a density more
than twice that of aluminum, piezoceramics are hardly the ideal aerospace
material. It must be admitted that the implications of such a large actuator
weight penalty have been largely ignored in this study, but is a topic which
should certainly be investigated thoroughly. One can only hope recent
advances in material science are able to provide improved strain actuators
which are light in weight, high in strength and have high actuation strains,
because this is what is needed to make strain actuated aeroelastic control a
truly useful technology.
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