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Abstract: We introduce a new set of effective field theory rules for constructing La-

grangians with N = 1 supersymmetry in collinear superspace. In the standard superspace

treatment, superfields are functions of the coordinates
(

xµ, θα, θ†α̇
)

, and supersymmetry

preservation is manifest at the Lagrangian level in part due to the inclusion of auxiliary

F - and D-term components. By contrast, collinear superspace depends on a smaller set of

coordinates
(

xµ, η, η†
)

, where η is a complex Grassmann number without a spinor index.

This provides a formulation of supersymmetric theories that depends exclusively on propa-

gating degrees of freedom, at the expense of obscuring Lorentz invariance and introducing

inverse momentum scales. After establishing the general framework, we construct collinear

superspace Lagrangians for free chiral matter and non-Abelian gauge fields. For the latter

construction, an important ingredient is a superfield representation that is simultaneously

chiral, anti-chiral, and real; this novel object encodes residual gauge transformations on

the light cone. Additionally, we discuss a fundamental obstruction to constructing inter-

acting theories with chiral matter; overcoming these issues is the subject of our companion

paper, where we introduce a larger set of superfields to realize the full range of interactions

compatible with N = 1. Along the way, we provide a novel framing of reparametriza-

tion invariance using a spinor decomposition, which provides insight into this important

light-cone symmetry.
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1 Casting off

Supersymmetry (SUSY) is a powerful tool for exploring formal aspects of field theory, in-

cluding Seiberg duality [1], Seiberg-Witten [2, 3], AdS/CFT forN = 4 SUSY [4], supersym-

metric localization [5, 6], on-shell recursion applied to SUSY theories [7], and more [8–14].

Therefore, new formulations of SUSY are of great interest in their own right, especially

when they can expose new formal features. Theories with N = 1 SUSY can be expressed

in superspace [15, 16], which makes SUSY manifest at the Lagrangian level by relying

on non-propagating field content (including the auxiliary F - and D-terms). A conven-

tional formalism for systematically extending the superspace formalism to theories with

N > 1 SUSY is not known, in part because of complications associated with a prolif-

eration of auxiliary fields, although progress has been made in harmonic and projective

superspaces [17–26].

There do exist superspace formulations that involve only propagating physical degrees

of freedom, specifically in N = 4 SUSY [27–29]. These constructions, however, are typically

discovered by starting with a component Lagrangian and then guessing a superspace formu-

lation that reproduces the component-level result. Ideally, one would want a set of effective

field theory (EFT) rules for how to put together the strictly propagating degrees of freedom

into superspace Lagrangians such that SUSY would be made manifest. In this paper, we

realize this goal for N = 1 SUSY theories that do not require non-propagating F - and

D-term auxiliary fields to model their interactions: free chiral matter and (non-)Abelian

gauge theories. A companion paper will provide the necessary formalism to realize theories

with non-zero F - and D-terms, such as Wess-Zumino models and gauge theories with chiral

matter [30].

Progress towards an on-shell EFT for SUSY was recently made in refs. [31] and [32],

where the interplay of SUSY with Soft-Collinear Effective Theory (SCET) [33–35] was

studied. By introducing the formulation of “collinear superspace”, these papers arrived at

a “SUSY SCET” Lagrangian with only light-cone degrees of freedom.1 The logic used in

refs. [31] and [32] was decidedly top down: start with a full-theory Lagrangian, integrate out

non-propagating degrees of freedom directly in superspace, and truncate to leading power.

While this was a useful first step (since it is non-trivial to show that SUSY and SCET

can be compatible), any self-respecting effective field theorist would only be satisfied by a

fully bottom up treatment: specify the building blocks, define their power countings and

transformation properties under the relevant symmetries, and construct the (sub)leading-

order Lagrangian directly, all without appealing to an underlying full theory.

In this work, we present a concrete set of rules to construct N = 1 SUSY Lagrangians

directly in collinear superspace. The key insight is to make only a subgroup of N = 1 SUSY

manifest and to replace full Lorentz symmetry with reparametrization invariance (RPI) [43,

1Collinear superspace is closely related to light-cone superspace, which has a long history. It was famously

utilized to prove the UV finiteness of N = 4 SYM [27–29]. Additional work has illustrated the utility of

formulating various SUSY theories [36] (and even supergravity [37]) on the light cone and more [4, 36–40].

Notably, much of the original light-cone superspace literature was focused on representation theory and

implications for extended objects (see, e.g., [41, 42]), whereas the focus of our present work on collinear

superspace is identifying the bottom-up rules to construct EFTs.
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44]. Note that without any loss of information, the ordinary superspace coordinate θα can

be expressed as

θα = ξαη + ξ̃α η̃ , (1.1)

where ξα and ξ̃α are orthogonal commuting basis spinors that satisfy ξα ξ̃α = 1, and η and

η̃ are complex Grassmann numbers. Then, to reduce to collinear superspace, we simply set

η̃ = 0 =⇒ θα = ξαη , (1.2)

which halves the number of manifest supercharges. By exploiting the RPI freedom to

rotate ξα and η, we will show that this construction preserves enough Lorentz invariance

to maintain the full N = 1 SUSY at the S-matrix level.2

With the replacement in eq. (1.2), the superspace coordinate now has the unfamiliar

property that θαθα = θ†α̇θ
†α̇ = 0. This means that one cannot include F - and D-term

components in a superfield, at least not in the standard way, nor can one include non-

propagating components of a spin-1/2 matter field. Therefore, if a self-consistent theory

of collinear superspace exists with standard superfields, it must only involve propagating

degrees of freedom. We will show that this is indeed the case, and the choice in eq. (1.2)

corresponds to expressing the theory with respect to a light-like direction nµ = ξ̃ σµ ξ̃†. The

choice of nµ corresponds to an explicit breaking of Lorentz invariance, leading to a set of

low-energy RPI constraints. For example, the following rescaling

ξα → e−κ/2 ξα , η → eκ/2 η , (1.3)

is known as RPI-III, which acts like an (imaginary) internal R-symmetry that leaves θα

unchanged. By imposing collinear SUSY, RPI, and simple power counting based on mass

dimension, we can construct the unique gauge-invariant EFT of free chiral superfields and

(non-)Abelian vector superfields at leading power.

Another set of RPI transformations, known as RPI-II, acts to rotate η̃ into η, which

is clearly incompatible with the projection in eq. (1.2). In order to have a fully Lorentz-

invariant theory, however, RPI-II must also be preserved. Because RPI-II transforms out

of the collinear SUSY algebra, we can only test RPI-II on component fields, not directly

on superfields.3 For the constructions in this paper, we find that RPI-II is an accidental

symmetry that is only respected by interactions that are leading-order in mass dimension.

By the Haag- Lopuszański-Sohnius extension [48] of the Coleman-Mandula theorem [49],

this implies that these leading-ordering constructions exhibit the full N = 1 SUSY for the

S-matrix, even though only collinear SUSY is manifest at the Lagrangian level. Establish-

ing RPI-II for higher-order terms is more subtle, though, with complications arising when

one tries to use only standard superfields. In the companion paper [30], we introduce novel

2The restriction in eq. (1.2) is reminiscent of on-shell superspace [45–47], with the important distinction

that our construction does not require the component fields to be exactly on-shell, i.e., p2 = m2 is not

enforced.
3An analogous situation arises when writing N = 2 Lagrangians in N = 1 superspace. While this makes

the N = 1 SUSY subgroup manifest, the full N = 2 algebra can only be tested on components.
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superfields which have non-trivial RPI transformation rules and which incorporate F - and

D-term components, allowing for a description of the full range of N = 1 interactions.

Though some of the discussion here is just a bottom-up recapitulation of the top-down

physics already in refs. [31] and [32] (with an emphasis on RPI in collinear superspace),

there is a crucial new ingredient. Gauge theories in collinear superspace are most naturally

expressed in light-cone gauge with n̄ ·A = 0. Without a full gauge symmetry, there seemed

to be no easy way to constrain the EFT interactions to ensure gauge invariance without

appealing to the full-theory Lagrangian. As we will describe below, the light-cone gauge

condition leaves a residual gauge redundancy. Remarkably, this is encoded in a new type

of superfield that is simultaneously chiral, anti-chiral, and real:

DΩ = 0, D̄Ω = 0, Ω = Ω†, (1.4)

where D and D̄ are covariant derivatives (without spinor indices) in collinear superspace, see

eq. (2.30) below. In ordinary superspace, such a field would just be a constant; in collinear

superspace, this field is only constant along the light cone. A residual gauge transformation

encoded by Ω is sufficient to enforce gauge invariance for both the Abelian and non-Abelian

cases. It is intriguing to speculate that a similar object could help illuminate the structure

of light-cone supergravity.

The main result of this work is to show that — given transformation rules governed

by RPI-I, RPI-III, collinear SUSY, and residual gauge redundancy — it is possible to

construct an interesting subset of collinear SUSY theories, namely those whose interactions

do not require non-propagating auxiliary degrees of freedom. We will show that RPI-II is

obscured by choosing a fixed light cone to define collinear superspace, though we then go

on to verify that RPI-II does not yield any useful constraints on the theories studied here,

at least for the leading-order interactions. Foreshadowing, RPI-II will impose non-trivial

constraints in our companion paper [30], which deals with interacting theories that require

the reintroduction of the non-propagating degrees of freedom.

The rest of this paper is organized as follows. In section 2, we introduce our formalism

for constructing an on-shell superspace organized around eq. (1.2), and we discuss the

SUSY charges, transformations, and multiplets that manifest in such a constrained setup.

Next, we show how these ingredients transform under RPI in section 3. In section 4, we

show that the kinetic term for a chiral multiplet in collinear superspace is unique. Section 5

then applies analogous logic to Abelian and non-Abelian gauge theories. Finally, section 6

provides an outlook. A more technical discussion of RPI is provided in an appendix,

followed by an appendix summarizing some useful formulae.

2 Charting collinear superspace

Our goal is to define a reduced N = 1 collinear superspace which eliminates non-propa-

gating degrees of freedom from the Lagrangian. This construction will make heavy use of

light-cone projections with spinors, allowing us to consistently remove half of superspace.
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We can then construct collinear superfields that only involve the complex Grassmann co-

ordinate η.4

2.1 The light cone in spinor-helicity formalism

To define standard light-cone coordinates, one introduces two light-like directions nµ and

n̄µ which satisfy n · n̄ = 2. We then perform a spinor-helicity decomposition in terms of

two bosonic spinors ξα and ξ̃α :

nαα̇ ≡
(n · σ

2

)

αα̇
= ξ̃α ξ̃

†
α̇ , n̄αα̇ ≡

( n̄ · σ
2

)

αα̇
= ξα ξ

†
α̇ , (2.1)

or, equivalently:5

nµ = ξ̃† σ̄µ ξ̃ = ξ̃ σµ ξ̃†, n̄µ = ξ† σ̄µξ = ξσµξ† . (2.2)

Because the spinors are bosonic, they satisfy

ξαξα = ξ̃αξ̃α = 0 . (2.3)

We choose the normalization condition

ξα ξ̃α = 1 , (2.4)

which ensures the desired normalization for nµ and n̄µ via a Fierz identity:

n · n̄ = nµ n̄µ = 2nαα̇ n̄αα̇ = 2
(

ξ ξ̃
)(

ξ̃†ξ†
)

= 2 . (2.5)

Note that ξ̃αξα = −ǫβα ξα ξ̃β = −1. The standard RPI transformations correspond to all

possible shifts in nµ and n̄µ such that eq. (2.5) is maintained. We derive a version of RPI

that constrains possible operators in collinear superspace in section 3.

When it is convenient to choose an explicit reference frame, a common choice is to

align nµ and n̄µ along the z-direction. This canonical frame is specified by

nµ = (1, 0, 0, 1) , n̄µ = (1, 0, 0,−1) , (2.6)

which is equivalent to the fixing the spinors to6

ξα = (0, 1) , ξα = (−1, 0)⊺, ξ̃α = (1, 0) , ξ̃α = (0, 1)⊺ , (2.7)

as can be verified using eq. (2.2). As we show below, this frame choice is equivalent to

working in the collinear superspace frame developed in ref. [31].

4In all that follows, we use the mostly minus metric, the two-component spinors conventions of ref. [50],

and SUSY conventions defined in pages 449–453 of ref. [51].
5Throughout this work, we suppress spinor indices when the structure is obvious, and when no confusion

with scalars can arise.
6Note that this is consistent due to the unfortunate fact that ǫ12 = −ǫ21 = ǫ21 = −ǫ12 = 1.
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Any operator can be projected along the ξα and ξ̃α spinor axes. Consider the dif-

ferential operator σµ ∂µ, where ∂µ is the four-vector partial derivative. We can construct

differential operators on the light-cone as

d = n̄ · ∂ = ξα(σ · ∂)αα̇ ξ†α̇ , d̃ = n · ∂ = ξ̃α(σ · ∂)αα̇ ξ̃†α̇ ,
d⊥ = ξα(σ · ∂)αα̇ ξ̃†α̇ , d∗⊥ = ξ̃α(σ · ∂)αα̇ ξ†α̇. (2.8)

Here, we have introduced the d notation to emphasize that we have not made a specific

frame choice.7 The d’Alembertian can be expressed along an unspecified light-cone direc-

tion as

� = dd̃ − d∗⊥d⊥ . (2.9)

2.2 Projecting spinors and gauge fields

Throughout this paper, we make use of the light-cone decomposition of fields that carry

Lorentz indices. We begin by discussing the light-cone projections for a left-handed two-

component Weyl spinor uα. Recall that uα may be decomposed (by acting with chiral

projection operators) onto a helicity component that is aligned with the light cone and

another that is anti-aligned.8 Specifically, we can decompose

uα = ξ̃αu− ξα ũ , (2.10)

with

ξαuα = u and ξ̃αuα = ũ . (2.11)

Here, u is the helicity component that propagates in collinear superspace, while ũ is the

other helicity which will play a role in ref. [30].

Next, we decompose the full Lorentz four-vector field Aµ as

(σ ·A)αα̇ = ξα ξ
†
α̇ n ·A+ ξ̃α ξ̃

†
α̇ n̄ ·A+

√
2 ξα ξ̃

†
α̇A∗ +

√
2 ξ̃α ξ

†
α̇A , (2.12)

where we have projected the gauge field Aµ onto a complex “light-cone gauge” scalar using

A =
1√
2
ξα (σ ·A)αα̇ ξ̃†α̇ , A∗ =

1√
2
ξ̃α (σ ·A)αα̇ξ†α̇ . (2.13)

This A field encodes the two propagating degrees of freedom of a gauge field, i.e., those

that are transverse to the light cone.

The two other degrees of freedom, n ·A and n̄ ·A, while non-propagating (and therefore

not the focus of the current work) can be obtained via the projections

n̄ ·A = ξα (σ ·A)αα̇ξα̇† , n ·A = ξ̃α (σ ·A)αα̇ ξ̃†α̇ . (2.14)

7Note that d/d̃, which are equivalent to n̄·∂/n·∂, are often referred to in the literature as ∂±. See ref. [52]

for a review on standard light-cone conventions. We adopt the new d/d̃ convention to emphasize that we can

formulate the theory without appealing to a specific frame. We are unaware of any light-cone-independent

analog of d⊥ in the literature.
8This decomposition is valid for both massless and massive fermions, though in the massive case, the

helicity components are not mass eigenstates.
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The n̄ · A mode may be eliminated by enforcing light-cone gauge, as will be done in what

follows. Furthermore, it is straightforward to see that no light-cone time derivatives act

on n ·A, and as such it can be treated as a non-propagating component of the gauge field.

It is therefore prudent to integrate it out using the equations of motion, which yields the

well known light-cone Lagrangian for the gauge field, see e.g. ref. [52].

The Lagrangians constructed in sections 4 and 5 will involve only the propagating

degrees of freedom: φ, u, and A. As we will see in section 3.3, however, RPI-II transforms

us away from our chosen slice of collinear superspace. For this reason, it will often be

convenient to make RPI-II manifest by introducing auxiliary degrees of freedom: ũ, n ·A,
and n̄ · A. We have just shown that these fields correspond to projections of the full

Lorentz representations uα and Aµ, so we can derive their RPI properties from the “top

down” using the Lorentz algebra (see appendix A). That said, we will construct the actual

Lagrangians from the “bottom up”, relying on the auxiliary fields only to check for possible

RPI-II constraints on the low-energy effective theory. At the end of the day, we will find

that RPI-II does not introduce any additional requirements on the theories studied here.

2.3 Projecting superspace coordinates

We can now use the light-cone spinors to isolate half of superspace. Starting from the

standard N = 1 superspace coordinate θα, we can construct two spinor projections:9

η = ξ̃α θα
η̃ = −ξα θα

, ⇐⇒ θα = ξα η + ξ̃α η̃ , (2.15)

where η and η̃ are complex Grassmann numbers which do not carry a spinor index. Note

that the minus sign in eq. (2.15) results from the identity ξ ξ̃ = 1 = −ξ̃ ξ. The conjugate

superspace coordinates are defined analogously:

η† = −ξ̃†α̇ θ
†α̇

η̃† = ξ†α̇ θ
†α̇ , ⇐⇒ θ†α̇ = η† ξ†α̇ + η̃† ξ̃†α̇ . (2.16)

It is helpful to note that
(

ξα ξ̃α
)†

=
(

ξ̃α
)†(

ξα
)†

= ξ̃†α̇ξ
†α̇ = 1 = −ξ†α̇ ξ̃

†α̇. As expected from

their anti-commuting nature, one can verify that η2 =
(

η†
)2

=
{

η, η†
}

= 0. Crucially,

ξα and ξ†α̇ are complex conjugates of each other, such that the superfield Φ† will be the

conjugate of Φ (see eqs. (2.35) and (2.36) below). We choose as convention for the mass

dimension

[

ξ
]

= 0 ,
[

η
]

= −1/2 , (2.17)

such that the standard mass dimension
[

θ
]

= −1/2 is maintained.

We can perform a similar decomposition of the supercoordinate derivative:

∂η

∂θα
= ξ̃α and

∂η̃

∂θα
= −ξα =⇒ ∂

∂θα
= ξ̃α

∂

∂η
− ξα

∂

∂η̃
. (2.18)

9For later convenience, we have chosen a different sign convention for the projection of a superspace

coordinate than for the projection of a spinor field in eq. (2.10).
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This is consistent with the anti-commutation relations:

{

η,
∂

∂η

}

= 1 ,

{

η̃,
∂

∂η̃

}

= 1 ,

{

η,
∂

∂η̃

}

= 0 ,

{

η̃,
∂

∂η

}

= 0 . (2.19)

Now that η and η̃ are factorized, reducing to collinear superspace is as simple as

η̃ = 0 =⇒ θα = ξα η ,
∂

∂θα
= ξ̃α

∂

∂η
. (2.20)

With this restriction, it follows that θαθα = 0, implying that the usual F - and D-term

auxiliary fields must be absent in this setup (see section 2.6).

2.4 The collinear SUSY algebra

Using this light-cone spinor decomposition, the supercharges and superspace derivatives

take a simple form. Starting from the full N = 1 SUSY algebra,10

{

Qfull
α ,Q†full

α̇

}

= −2i (σ · ∂)αα̇ , (2.21)

we can construct various sub-algebras by contracting with the ξα and ξ̃α spinors. For

instance, contracting with ξα and ξ†α̇, we obtain

{

Qfull,Q†full
}

= −2i d , with Qfull ≡ ξαQfull
α , Q†full ≡ Q†full

α̇ ξ†α̇ , (2.22)

where Qfull and Q†full are collinearly-projected SUSY generators without spinor indices.

The collinear sub-algebra in eq. (2.22) will be the focus of this study.

Without loss of generality, the original SUSY generators can be expressed in terms of

the η and η̃ coordinates as

Qfull
α = iξ̃α

∂

∂η
− iξα

∂

∂η̃
− (σ · ∂)αα̇

(

η† ξ†α̇ + η̃† ξ̃†α̇
)

, (2.23)

and similarly for
(

Qfull
α

)†
. Using the definition of Q in eq. (2.22), this yields

Qfull = i
∂

∂η
− η† d − η̃† d⊥ . (2.24)

Note that the d⊥ term does not contribute to the anti-commutator in eq. (2.22) since
(

Qfull
)†

depends on ∂/∂η†, not on ∂/∂η̃†.

To restrict to collinear superspace, we simply set η̃ = 0. The collinear SUSY generators

are now

Q ≡ ξαQfull
α

∣

∣

∣

∣

η̃=0

= i
∂

∂η
− η† d, Q† ≡ Q†full

α̇ ξ†α̇
∣

∣

∣

∣

η̃=0

= i
∂

∂η†
− η d . (2.25)

10We use the superscript “full” to be explicit when working with objects of the full N = 1 theory, or in

situations where we have not yet restricted to collinear superspace, i.e. set η̃ = 0.
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Even with this restriction, the collinear versions of Q and Q† still satisfy eq. (2.22), i.e.,
{

Q,Q†} = −2i d . Note that d commutes with both collinear SUSY generators:

[

d,Q
]

= 0 =
[

d, Q̄
]

. (2.26)

When using the canonical frame in eq. (2.7), this sub-algebra is equivalent to the collinear

superspace algebra in refs. [31] and [32], given by

{

Q,Q†
}

=
{

Q2,Q†
2̇

}

,
{

Q2,Q†
1̇

}

=
{

Q1,Q†
2̇

}

=
{

Q1,Q†
1̇

}

= 0 . (2.27)

Closure of this sub-algebra will be discussed section 2.7.

For completeness, we note that other projections yield

{

ξαQα,Q†
α̇ ξ̃

†α̇
}

= −2i d⊥ ,
{

ξ̃αQα,Q†
α̇ ξ

†α̇
}

= −2i d∗⊥ , (2.28)
{

ξ̃αQα,Q†
α̇ ξ̃

†α̇
}

= −2i d̃ ,

corresponding to different sub-algebras of the full N = 1 SUSY. In this way, the spinors ξα

and ξ̃α allow us to define SUSY sub-algebras that point along the collinear, anti-collinear,

and transverse directions.

2.5 Collinear super-covariant derivatives

In order to manipulate and restrict superfields, it is useful to define collinear super-covariant

derivatives. These can be obtained by projecting the ordinary super-covariant derivatives

using the light-cone spinors. Starting from the full superspace derivative

Dfull
α =

∂

∂θα
− i(σ · ∂)αα̇θ†α̇ = ξ̃α

∂

∂η
− ξα

∂

∂η̃
− i(σ · ∂)αα̇

(

η† ξ†α̇ + η̃† ξ̃†α̇
)

, (2.29)

we can reduce to collinear superspace operators by setting η̃ = 0:

D ≡ ξαDfull
α

∣

∣

∣

∣

η̃=0

=
∂

∂η
− iη† d, D̄ ≡ D̄full

α̇ ξ†α̇
∣

∣

∣

∣

η̃=0

=
∂

∂η†
− iη d , (2.30)

where these operators carry mass dimension
[

D
]

=
[

D̄
]

= 1/2. We see that

{

D, D̄
}

= −2i d,
{

D,Q
}

= 0 =
{

D,Q†
}

=
{

D̄,Q
}

=
{

D̄,Q†
}

, (2.31)

so these objects behave as superspace derivatives in our constrained superspace. In partic-

ular, D or D̄ acting on a collinear superfield yields another collinear superfield.

A number of properties of Dfull
α and D̄full

α̇ carry over to D and D̄. For example, one

can perform integration by parts under the collinear superspace integral
∫

dη dη†. One key

difference, however, is that

D2 = D̄2 = 0 , (2.32)

since we only have a single Grassmann coordinate η after setting η̃ = 0. As usual, D and

D̄ allow us to define a notion of chirality for a superfield, as will be discussed next.
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2.6 Collinear superfields

A generic collinear superfield is any function of
(

xµ, η, η†
)

. Here, we focus on superfields

that do not carry any Lorentz indices, with the idea being that such indices could always

be contracted with ξα and ξ̃α to form a Lorentz scalar.11 Due to its Grassman nature,

η2 = 0, the most general bosonic scalar superfield is

S
(

x, η, η†
)

= a(x) + η b(x) + η†c(x) + η†η v(x) , (2.33)

where a and v are complex scalar fields, b and c are complex Grassmann fields, and we

follow the common practice of using bold font to delineate a superfield. To make this look

more familiar, we could instead take an ordinary superfield written in terms of θα, and just

make the replacement θα = ξα η, remembering that θ2 = 0. This yields

S = a+ η ξα bα + η† ξ†α̇ c
α̇ + η†η ξ

(

σµvµ
)

ξ† , (2.34)

where again a is a complex scalar, bα is a spinor, cα̇ is an anti-spinor, and vµ is a vector.

Of course, these different ways of writing S contain the exact same information, with

b ≡ ξα bα, c ≡ ξ†α̇ c
α̇, and v ≡ ξ

(

σµvµ
)

ξ†.

From this generic collinear superfield, we can apply constraints in the usual way:

• Chiral: D̄Φ = 0;

• Anti-Chiral: DΦ† = 0;

• Real: V = V
†.

These are analogous to the representations in ordinary N = 1 SUSY, with an important

twist: because D̄2 = 0, acting a single D̄ on any superfield gives a chiral superfield. For the

same reason, there is no notion of a linear superfield L, since D̄2
L = D2

L = 0.

Focusing on the components of a chiral multiplet Φ,

Φ
(

x, η, η†
)

= φ(x) +
√
2 η u(x) + iη†η dφ(x) , (2.35)

it is clear that this representation is built from a complex scalar φ degree of freedom and a

single helicity fermionic degree of freedom u ≡ ξα uα, i.e. an anti-commuting Lorentz scalar.

It is easy to check that the chirality condition is satisfied since D̄Φ = iη dφ − iη dφ = 0.

Similarly, an anti-chiral superfield can be written as

Φ†(x, η, η†
)

= φ∗(x) +
√
2 η†u†(x)− iη†η dφ∗(x) , (2.36)

where again u† ≡ ξ†α̇u
†α̇ is the propagating helicity of the fermion. Note that eq. (2.36) is

indeed the complex conjugate of eq. (2.35). These chiral superfields can be used as building

blocks to generate additional superfields by acting on them with superspace derivatives:

DΦ =
√
2u− 2i η†dφ− i

√
2 η†η du ,

D̄Φ† =
√
2u† − 2i η dφ∗ + i

√
2 η†η du† . (2.37)

11Superfields with non-trivial Lorentz structure will be utilized in the companion paper [30].
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Next, consider a real superfield field V , written in the notation of eq. (2.34),

V
(

x, η, η†
)

= a(x) + iη ξα bα(x)− iη† ξ†α̇ b
†α̇(x) + η η† ξ

(

σ · v(x)
)

ξ† , (2.38)

where a is a real scalar, bα is a spinor, and vµ is a real vector. In the standard N = 1

SUSY approach, real superfields are used to encode gauge fields and gauginos, but this is not

possible in collinear superspace for a few reasons. First, vµ in eq. (2.38) only contains one

propagating degree of freedom, instead of the two helicities needed for a physical gauge

field. Second, bα has the wrong mass dimension (and the wrong gauge transformation

properties) to play the role of the gaugino. Third, the usual approach to constructing

the gauge field strength via W α =
(

D̄full
)2Dfull

α V does not work in collinear superspace

because D̄2 = 0. A new approach is required, which is the subject of section 5.

A key ingredient for understanding gauge theories is a new type of superfield which

does not have a counterpart in ordinary superspace. This is a representation that is simul-

taneously chiral, anti-chiral, and real:

D̄Ω = 0, DΩ† = 0, Ω† = Ω , (2.39)

where the symbol Ω was chosen since this will encode residual gauge transformations in

light-cone gauge. The chirality condition implies that Ω can be written as

Ω
(

x, η, η†
)

= ω(x) + iη ξ ψω(x) + iη†η dω(x) , (2.40)

for the bosonic scalar field ω and the fermionic scalar field ψω. The reality condition implies

ω = ω∗, ψω = 0, dω = −dω∗ = −dω = 0 =⇒ Ω
(

x, η, η†
)

= ω(x) .

(2.41)

In the full N = 1 superspace, this would just be trivial constant superfield. In collinear

superspace, d⊥ω 6= 0; this will turn out to be exactly the component we need to encode

the superfield gauge transformations.

2.7 Collinear superspace translations

Under an ordinary SUSY transformation, the superspace coordinates transform as

θα −−−−−→
SUSY

θα + ζα ,

θ†α̇ −−−−−→
SUSY

θ†α̇ + ζ̄α̇ ,

xµ −−−−−→
SUSY

xµ + iζσµθ† + iζ̄σ̄µθ , (2.42)

where ζα is a constant two-component Grassmann spinor. To capture the same information

in collinear superspace, we simply make the replacement θα = ξα η and ζα = ξα ǫ, which

gives a representation of the collinear SUSY algebra in eq. (2.22):

η −−−−−→
SUSY

η + ǫ ,

η† −−−−−→
SUSY

η† + ǫ† ,

xµ −−−−−→
SUSY

xµ + in̄µ
(

ǫ η† + ǫ† η
)

. (2.43)
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We emphasize that ǫ, which parametrizes collinear SUSY transformations, does not carry

a spinor index.

Acting on a chiral superfield from eq. (2.35), a collinear SUSY transformation yields

δǫΦ = −i
(

ǫQ + ǫ† Q†)Φ

=
√
2 ǫ u+ 2i ǫ† η dφ+

√
2i ǫ η†η du , (2.44)

from which we can deduce the component transformations,

δǫφ =
√
2 ǫ u ,

δǫu = −i
√
2 ǫ† dφ , (2.45)

with similar results for the conjugate fields. As for ordinary chiral multiplets, we can

introduce a shifted spacetime coordinate to simplify SUSY manipulations:

yµ ≡ xµ + in̄µ η†η , yµ −−−−−→
SUSY

yµ + 2i n̄µ ǫ† η . (2.46)

From this, it is clear that

Φ
(

x, η, η†
)

= Φ
(

y, η
)

= φ(y) +
√
2 η u(y) , (2.47)

which gives a slightly simpler way to derive eq. (2.45). That said, we will stick with the

xµ coordinates throughout this paper.

Note that the highest component of a collinear chiral superfield — the fermionic u

component — transforms as a total derivative. Because it is fermionic, though, we cannot

construct a collinear-SUSY-invariant action using a standard bosonic chiral superpotential.

In the companion paper [30], we show how to construct a novel fermionic chiral superpo-

tential, using fermionic chiral superfields whose highest component is bosonic. As shown

in eq. (2.37), this kind of object is what one gets from D̄Φ†.

Starting from a real collinear superfield from eq. (2.38), we can derive the component

transformation rules:

δǫa = i
(

ǫ b− ǫ†b†
)

,

δǫb = −iǫ v + iǫ da ,

δǫv = ǫ db+ ǫ† db† . (2.48)

Here b = ξαbα and the highest component v = vµ ξσ
µξ† is bosonic, real, and transforms

as a total derivative, and we will use that to construct Lagrangians in sections 4 and 5.

For the superfield in eq. (2.41), which is simultaneously chiral, anti-chiral, and real, it

transforms as

δǫΩ = 2i η† η ǫ† ξ† dω = 0 , (2.49)

implying that Ω is a supersymmetric object, though we have not found a way to construct

nontrivial Lagrangians with it.
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Finally for completeness, we can test whether the collinear SUSY sub-algebra closes, by

showing that the commutator of two transformations is a spacetime translation along the

light-cone direction. Given two SUSY transformations δǫ1 and δǫ2 acting on the components

of a chiral superfield, we find

[

δǫ1 , δǫ2

]

φ = 2
(

ǫ2 ǫ
†
1 − ǫ1 ǫ

†
2

)

du ,
[

δǫ1 , δǫ2

]

u = 2
(

ǫ2 ǫ
†
1 − ǫ1 ǫ

†
2

)

dφ , (2.50)

as expected from eq. (2.22).

3 A collinear superspace sextant: reparametrization invariance

The spinor projections in section 2.1 naively appear to be an explicit breaking of Lorentz

symmetry, since they identify a preferred light-cone direction. However, this breaking is

artificial: the choice of ξα and ξ̃α is arbitrary since any light-cone choice would yield the

same physics. The redundancy of choosing a light-cone direction encodes the underlying

Lorentz structure of the theory via the RPI transformations (see appendix A for details).

For our purposes, RPI simply enforces that the physics must be unchanged by the choice of

light-cone direction and therefore that every object decomposed in light-cone coordinates

must have well-defined RPI transformation properties.

3.1 RPI transformations of the light cone

To derive the action of the RPI transformations, we need to identify transformations on

ξα and ξ̃α which preserve

ξα ξ̃α = 1, (3.1)

which is equivalent to n · n̄ = 2 in eq. (2.5). The most general linear transformation on ξα

and ξ̃α is

ξα −→ a ξ̃α + b ξα , (3.2)

ξ̃α −→ c ξ̃α + d ξα , (3.3)

where a, b, c, and d are complex coefficients. Maintaining eq. (3.1) requires

ad− bc = 1. (3.4)

This implies that the group of transformations that maintain the normalization of the

spinors are complex linear transformation with unit determinant, namely SL(2,C).12 The

six generators correspond to Lorentz transformations on the celestial sphere [53], whose

properties are reviewed in more detail in appendix A.

12More specifically, the group is projective because overall signs play no role.
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These six transformations are usually grouped into three categories:

ξ −−−−−→
RPI-I

ξ , ξ̃ −−−−−→
RPI-I

ξ̃ + κI ξ , (3.5)

ξ −−−−−→
RPI-II

ξ + κII ξ̃ , ξ̃ −−−−−→
RPI-II

ξ̃ , (3.6)

ξ −−−−−−→
RPI-III

e−κIII/2 ξ , ξ̃ −−−−−−→
RPI-III

eκIII/2 ξ̃ . (3.7)

While κI and κII are in general complex, we typically restrict κIII to be real, since a simple

phase rotation of ξ and ξ̃ does not change nµ or n̄µ, as is clear from eq. (2.2). One can

also understand the reality of κIII by examining the algebra given in appendix A, or by

recognizing that imaginary κIII corresponds to the SO(2) little group. Thus, there are

five non-trivial RPI generators, which correspond to three different ways of maintaining

eq. (3.1). Taking ξ to be fixed while shifting ξ̃ in the perpendicular direction yields RPI-I.

Reversing the roles of ξ and ξ̃ yields RPI-II. If both spinors transform by equal and opposite

scale transformations, this yields RPI-III.

3.2 RPI transformations of projected objects

To derive the action of RPI on projected objects, we simply apply the transformations for

ξ and ξ̃, while leaving the underlying Lorentz-covariant objects unchanged. The relevant

RPI transformations of various objects are summarized in table 1.

Under RPI-I and RPI-II, the light-cone four-vectors transform as

nµ −−−−−→
RPI-I

nµ +∆µ
⊥ , n̄µ −−−−−→

RPI-I
n̄µ , (3.8)

nµ −−−−−→
RPI-II

nµ , n̄µ −−−−−→
RPI-II

n̄µ + ǫµ⊥ , (3.9)

where we have defined

∆µ
⊥ = κI ξσ

µ ξ̃† + κ∗I ξ̃ σ
µξ† and ǫµ⊥ = κII ξσ

µ ξ̃† + κ∗II ξ̃ σ
µξ†. (3.10)

The four-vectors ∆µ
⊥ and ǫµ⊥ only have non-zero components in the directions perpendicular

to the light-cone, so RPI-I and RPI-II correspond to rotations around the light-cone [54].13

Under RPI-I and RPI-II,

d −−−−−→
RPI-I

d , d̃ −−−−−→
RPI-I

d̃ + κI d⊥ + κI
∗ d∗⊥ , (3.11)

d −−−−−→
RPI-II

d + κ∗II d⊥ + κII d
∗
⊥ , d̃ −−−−−→

RPI-II
d̃ . (3.12)

The mixed spinor derivatives transform as

d⊥ −−−−−→
RPI-I

d⊥ + κ∗I d , d∗⊥ −−−−−→
RPI-I

d∗⊥ + κI d , (3.13)

d⊥ −−−−−→
RPI-II

d⊥ + κII d̃ , d∗⊥ −−−−−→
RPI-II

d∗⊥ + κ∗II d̃ . (3.14)

13To make contact with the notation used in the SCET literature, simply replace ∆⊥ · ∂ = κI d⊥ + κ∗
I d∗

⊥

and ǫ⊥ · ∂ = κII d∗
⊥ + κ∗

II d⊥, as can be verified using eqs. (2.8) and (3.10). This helps confirm that the

generators we identify as RPI-I, -II, and -III correspond to the usual ones in the SCET literature.
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Object RPI-I RPI-II RPI-III

ξ̃α ξ̃α + κI ξ
α ξ̃α eκIII/2 ξ̃α

ξα ξα ξα + κII ξ̃
α e−κIII/2 ξα

d̃ d̃ + κI d⊥ + κ∗I d∗⊥ d̃ eκIII d̃

d d d + κ∗II d⊥ + κII d
∗
⊥ e−κIII d

d⊥ d⊥ + κ∗I d d⊥ + κII d̃ d⊥

d∗⊥ d∗⊥ + κI d d∗⊥ + κ∗II d̃ d∗⊥

φ φ φ φ

u u u+ κII ũ e−κIII/2 u

ũ ũ+ κI u ũ eκIII/2 ũ

n ·A n ·A+
√
2 (κIA+ κ∗I A∗) n ·A eκIII n ·A

n̄ ·A n̄ ·A n̄ ·A+
√
2 (κ∗IIA+ κIIA∗) e−κIII n̄ ·A

A A+
κ∗
I√
2
n̄ ·A A+ κII√

2
n ·A A

A∗ A∗ + κI√
2
n̄ ·A A∗ +

κ∗
II√
2
n ·A A∗

Table 1. The RPI transformation properties for various spinor projections, derivatives, and com-

ponent fields. RPI-II transformations can be derived for the component fields, but not for collinear

superfields.

We can repeat the above logic for RPI-III, yielding

nµ = ξ̃ σµ ξ̃† −−−−−−→
RPI-III

eκIII/2 ξ̃ σµ eκIII/2 ξ̃† = eκIII nµ, (3.15)

n̄µ = ξσµξ† −−−−−−→
RPI-III

e−κIII/2 ξσµ e−κIII/2ξ† = e−κIII n̄µ, (3.16)

which correspond to boosts along the light-cone direction [54]. Therefore, d = n̄ · ∂ and

d̃ = n · ∂ defined in eq. (2.8) transform as

d −−−−−−→
RPI-III

e−κIII d , and d̃ −−−−−−→
RPI-III

eκIII d , (3.17)

since ∂µ is an ordinary Lorentz vector that is unaffected by RPI. Note that d⊥ and d∗⊥
are invariant under RPI-III, as they contain both ξα and ξ̃α. Additionally, we see that

� = dd̃− d∗⊥d⊥ is invariant under all of RPI-I, RPI-II, and RPI-III, which is an important

consistency check.

3.3 RPI transformations of component fields

The RPI transformation properties of component fields can also be derived from the trans-

formations on ξ and ξ̃. A scalar field φ transforms trivially. The fermion field u = ξαuα is
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invariant under RPI-I

u −−−−−→
RPI-I

u , (3.18)

as can be derived using eq. (3.5), and transforms as

u −−−−−−→
RPI-III

e−κIII/2 u , (3.19)

as is clear from eq. (3.7). As will be discussed below in section 3.5, u transforms into

ũ ≡ ξ̃αuα under RPI-II:

u −−−−−→
RPI-II

u+ κII ũ . (3.20)

Note that the ũ field does not appear explicitly in the constructions in this paper. This

is connected to the fact that we will be forced to check RPI-II directly on the component

Lagrangian, as explained below in section 3.5.

As discussed in section 2.2, the propagating modes of a gauge field are naturally ex-

pressed as a complex scalar

A ≡ Aµ ξσ
µ ξ̃† . (3.21)

However, since this “scalar” explicitly depends on ξ and ξ̃, it has non-trivial RPI transfor-

mations. In particular, A is not invariant under RPI-I or RPI-II, although it is invariant

under RPI-III:

A −−−−−→
RPI-I

A+
κI√
2
n̄ ·A , (3.22)

A −−−−−→
RPI-II

A+
κII√
2
n ·A , (3.23)

A −−−−−−→
RPI-III

A . (3.24)

In light-cone gauge where n̄·A = 0, A is invariant, which is useful for writing a gauge theory

Lagrangian that is consistent with RPI-I transformations. This observation will allow us

to construct theories in collinear superspace that preserve both RPI-I and RPI-III, while

again RPI-II must be checked at the component level.

3.4 Implications for collinear superspace

Due to the connection between SUSY and Lorentz invariance, clearly the superspace coor-

dinates η and η̃ must transform non-trivially under RPI. Using their definitions in eq. (2.15)

and remembering that a Lorentz spinor — specifically θα for our purposes here — is in-

variant under RPI, implies

η −−−−−→
RPI-I

η − κI η̃ , η̃ −−−−−→
RPI-I

η̃ , (3.25)

η −−−−−→
RPI-II

η , η̃ −−−−−→
RPI-II

η̃ − κII η , (3.26)

η −−−−−−→
RPI-III

eκIII/2 η , η̃ −−−−−−→
RPI-III

e−κIII/2 η̃ . (3.27)
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Field RPI-I RPI-III

η η eκIII/2 η

Q Q e−κIII/2Q

D D e−κIII/2 D

D̄ D̄ e−κIII/2 D̄

Φ Φ Φ

Table 2. RPI transformations for various collinear superspace objects after setting η̃ = 0. Note

we have not provided the RPI-II transformations since they take us outside the collinear SUSY

sub-algebra.

Additionally, the collinear SUSY generators Q and Q† have non-trivial transformation prop-

erties under RPI, as they must since the ordinary SUSY generators transform as Lorentz

spinors.

We immediately see that setting η̃ = 0 is compatible with RPI-I and RPI-III, but not

with RPI-II. The reason is that the shift required by eq. (3.26) generically makes η̃ non-

zero. Therefore, as discussed further in section 3.5 below, we cannot make RPI-II manifest

in collinear superspace.

There is a reduced RPI compatible with collinear superspace, consisting of just RPI-I

and RPI-III:

taking η̃ = 0 η −−−−−→
RPI-I

η, η −−−−−−→
RPI-III

eκIII/2 η . (3.28)

Note that RPI-III acts like an imaginary R-symmetry where η has R-charge +1/2. Re-

lated transformation properties are inherited by the collinear super-covariant derivatives

from eq. (2.30):

D −−−−−−→
RPI-III

e−κIII/2 D , and D̄ −−−−−−→
RPI-III

e−κIII/2 D̄ . (3.29)

The RPI-I and RPI-III transformation properties of various collinear superspace objects

are given in table 2.

In order for RPI-I and RPI-III to be manifest at the Lagrangian level, collinear super-

fields have to have well-defined transformation properties. Because the lowest component of

a standard chiral multiplet is a Lorentz scalar, we expect Φ from eq. (2.35) to be invariant

under both RPI-I and RPI-III. This can be verified explicitly using the component trans-

formation properties from table 1. For example, performing an RPI-III transformation,

we find

φ −−−−−−→
RPI-III

φ ,

η u −−−−−−→
RPI-III

eκIII/2 η e−κIII/2 u = η u ,

η†η dφ −−−−−−→
RPI-III

eκIII/2 η† eκIII/2 η e−κIII dφ = η†η dφ . (3.30)
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Note that κIII is real, so η†η is not RPI-III invariant on its own. A similar calculation

shows that each term of Φ is RPI-I invariant as well. We emphasize that Φ does not have

well-defined superfield RPI-II transformation properties, though its components do.

3.5 Where is RPI-II?

Ultimately, we are interested in constructing Lorentz-invariant theories, so we want to

enforce the full RPI symmetry, including RPI-II. Because RPI-II and collinear SUSY do

not commute, though, we cannot simultaneously realize RPI-II while imposing the defining

constraint of collinear superspace: η̃ = 0. The reason is that RPI-II corresponds to a

translation of η̃, as can be seen in eq. (3.26). Therefore, unlike for RPI-I and RPI-III,

there are no EFT rules for constructing RPI-II-invariant operators directly in collinear

superspace.

Of course, what is really going on is that RPI-II and collinear SUSY are just non-

commuting sub-algebras of a larger N = 1 structure. After all, collinear SUSY (two

supercharges) plus full RPI implies at least N = 1 SUSY (four supercharges), since that

is the smallest graded algebra consistent with Lorentz invariance [48]. So while RPI-II

does not map collinear superfields to collinear superfields, we can still apply the RPI-II

transformations from table 1 to component fields. We will later use these component trans-

formations to show that RPI-II is respected by the Lagrangians constructed in sections 4

and 5.

From table 1, we see that u transforms into ũ under RPI-II. The field ũ has a “top-

down” interpretation as the helicity component (of a massless spinor representation of the

Lorentz algebra), which is non-propagating when we construct a theory on the light cone.

From the “bottom-up” perspective, we can view ũ as a constrained fermion mode in the

effective theory, whose constraint equation must be the most general one allowed by the

symmetries of the theory, namely RPI-I and RPI-III. These two perspectives are of course

related, where the bottom-up constraint should corresponds to the top-down equation of

motion used to integrate out ũ.

Assuming ũ is linear in u, we can derive a constraint equation of the form ũ+ Ôu = 0,

where Ô is some differential operator. To ensure RPI-III invariance, we need all terms

in this constraint equation to have the same RPI-III charge, so that we may consistently

set it to zero. Since u (ũ) has RPI-III charge −1/2 (+1/2), Ô must have RPI-III charge

+1, which means that Ô must be proportional to d̃ or 1/d. Note that d⊥ and d∗⊥ have no

RPI-III charge, so we can use them freely as long as Ô has mass dimension zero.

Turning to RPI-I, u is inert but ũ → ũ+κIu, so we must have Ô → Ô−κI. Assuming

there are no mass scales in the problem, this uniquely fixes Ô = −d∗⊥/d, yielding the

constraint ũ = (d∗⊥/d)u.
14 Inserting this into eq. (3.20) yields the RPI-II transformation:

u −−−−−→
RPI-II

u+ κII
d∗⊥
d

u . (3.31)

One can verify that this transformation is consistent with the RPI algebra given in eq. (A.8).

14More generally, Ô could include a term proportional to f/d if f has mass dimension one.
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For the massless theories in sections 4 and 5, we can use eq. (3.31) to verify the RPI-II

invariance of our derived Lagrangians at the component level. For theories that involve

additional mass scales, the RPI-II transformations of u cannot be uniquely defined using

the above logic. This is one of the reasons why in the companion paper, instead of imposing

a constraint on ũ, we introduce a novel superfield whose lowest component is ũ [30]. Here,

our focus is on massless theories, so we can simply use eq. (3.31) without reference to ũ.15

4 Learning the ropes: free chiral multiplets

In the spirit of EFTs, our goal is to elucidate the underlying symmetries and power-

counting rules that yield valid Lagrangians in collinear superspace. We are now armed

with all the necessary tools to understand what superspace operators are allowed without

having to rely on matching to an explicitly Lorentz-invariant construction as in refs. [31]

and [32]. Using the ingredients from sections 2 and 3, we can construct Lagrangians directly

in collinear superspace by demanding RPI-I, RPI-III, collinear SUSY, and global/gauge

symmetries. As emphasized in section 3.5, imposing RPI-II requires explicit manipulation

of the component Lagrangian. In this section, we consider the simplest case of a single

free chiral multiplet, which already illuminates many aspects of the collinear superspace

formalism.

4.1 Rules for building an action

The most straightforward way to impose collinear SUSY on an action is to express the

Lagrangian as the lowest component of a total superspace derivative:16

L =
(

DD̄V comp + DΦcomp + D̄Φ†
comp

)
∣

∣

∣

0
, (4.2)

where V comp is a composite real multiplet
(

V comp = V
†
comp

)

, Φcomp is a composite chiral

multiplet
(

D̄Φcomp = 0
)

, and the zero subscript indicates the restriction to η = 0 =

η†. Here, “composite” means that it is constructed from elementary superfields, e.g. a

product of elementary chiral multiplets is a composite chiral multiplet. Using eqs. (2.45)

and (2.48), it is clear that the lowest components of DD̄V comp and DΦcomp transform

as total derivatives under collinear SUSY. Therefore, the action S =
∫

d4xL is invariant

under collinear SUSY. An analogous logic is used to justify the SUSY invariance of the

standard off-shell superspace formulation of N = 1 SUSY, see e.g. [55].

In this paper, we work exclusively with elementary superfields that are bosonic. If

Φcomp is bosonic, then DΦcomp is fermionic, so it is not useful for our purposes here to

15While this realization of RPI-II might seems odd, is not unexpected given that the opposite helicity

field ũ is absent from the theory. Indeed, the RPI-II transformations of an uncharged fermion in SCET can

be derived by demanding that the full theory fermion be invariant [31].
16An equivalent way to write eq. (4.2) is

L =

∫
dηdη†

V comp +

∫
dηΦcomp +

∫
dη†

Φ
†
comp , (4.1)

though we found eq. (4.2) to be more convenient for practical calculations.
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include such a term in the action, eq. (4.2). Therefore, we set Φcomp = 0 for the remainder

of this paper, yielding the generic collinear SUSY Lagrangian

L = DD̄V comp

∣

∣

∣

0
, (4.3)

which effectively means that there is no analog for the “superpotential” in this construc-

tion.17

The Lagrangian must satisfy the following requirements, which impose a set of con-

straints on the form of V comp:

• Mass dimension four: recall that
[

D
]

=
[

D̄
]

= 1/2, which implies that V comp

must have mass dimension three.18 The kinetic term for chiral superfields is given in

eq. (4.4) below, along with arguments for its validity and uniqueness.

• Lorentz invariant: Lorentz invariance of the S-matrix is equivalent to RPI as

discussed in section 3. Since D and D̄ are invariant under RPI-I, V comp must be as

well. The product DD̄ has RPI-III charge −1, so V comp must have RPI-III charge

+1. As discussed in section 3.5, RPI-II has to be checked at the component level and

cannot be directly enforced as a property of V comp.

• Gauge invariant: to have an RPI-I invariant action, we must fix to light-cone gauge,

as discussed around eq. (3.21). In section 5, we show that a residual gauge symmetry

survives in the form of a real, chiral, and anti-chiral multiplet Ω. Enforcing residual

gauge symmetry yields additional constraints on the Lagrangian.

As in standard EFTs, we can write down a valid collinear SUSY action by identifying

all terms consistent with these requirements. Unlike standard EFTs (but familiar from

SCET), the action will contain inverse momentum scales, which nevertheless yields a local

S-matrix as it must since this construction is equivalent to the manifestly local off-shell

superspace description.

4.2 Constructing the kinetic term

We next want to build the kinetic term for the chiral superfield defined in eq. (2.35). As

we argue in the following, the unique kinetic term allowed by the criteria listed above is:

V comp =
i

2
Φ†�

d
Φ . (4.4)

Despite the inverse momentum scale, this kinetic term is in fact local since � is paramet-

rically small compared to d, in keeping with the analysis of refs. [31] and [32]. Note that

V comp in eq. (4.4) is bosonic, real,19 and has mass dimension three, thereby following the

rules outlined in the previous section.

17If Ψcomp is bosonic and chiral, then Φcomp = D̄Ψ
†
comp is fermionic and chiral. Inserting this Φcomp into

eq. (4.2) is equivalent to setting V comp = Ψcomp +Ψ
†
comp, and not only does it not generate a new type of

term, but it in fact yields a total derivative.
18In this paper, we perform power counting based on mass dimension, which one can show is equivalent

to the SCET power counting (d̃, d, d⊥) ∼ Q(λ2, 1, λ) when RPI-III is taken into account.
19Strictly speaking, V comp is only real up to total derivative terms appearing in the Lagrangian.
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Writing out the kinetic term in components, we have

L = DD̄V comp

∣

∣

0
=

i

2
DD̄

[

Φ†�

d
Φ

]
∣

∣

∣

∣

0

=

[

−Φ†�Φ+
1

2

(

D̄Φ†
) i�

d
(DΦ)

] ∣

∣

∣

∣

0

= −φ∗�φ+ iu†
�

d
u , (4.5)

which are the canonical light-cone kinetic terms for the φ and u fields. In the second line,

we made use of the product rule D(XY) = (DX)Y ±X(DY), where the sign depends on

whether X is bosonic (+) or fermionic (−). We also used the anti-commutation relation

and chiral condition to write DD̄Φ† = −2i dΦ†.

It is illustrative to explain in detail why eq. (4.4) is the unique kinetic term, since

similar arguments will be applied in section 5. The kinetic term has to be bilinear in

superfields, with one chiral and one anti-chiral field to make sure that DD̄V comp does

not vanish. Naively, the closest analog to the usual canonical Kähler potential would be

V comp = Φ†Φ, but this is disqualified since it has mass dimension two instead of three.

Additionally, this term has the wrong RPI-III transformation since V comp → e−κIII V comp is

required to balance DD̄ → eκIII DD̄ to obtain an invariant action, whereas Φ†Φ is invariant.

We can compensate for this by including either d̃ or 1/d, both of which have RPI-III charge

+1, but only 1/d is invariant under RPI-I.20 Then to achieve the correct mass dimension,

we can insert factors of the RPI invariant �. Altogether, this yields V comp = i
2Φ

† �
d
Φ

as claimed, with the factor of i needed to ensure that V
†
comp = V comp and the 1/2 for

canonical normalization of the kinetic terms.

One might be concerned that starting from the required bilinear Φ†Φ, there could

be additional independent terms one could write down using alternate derivative choices.

However, the space-time derivatives d̃, d⊥, and d∗⊥ have non-trivial RPI-I transformations,

and are as such not useful for constructing the kinetic term, since Φ is RPI-I invariant.

Said another way, while it is possible for V comp to involve d̃, d⊥, or d∗⊥ directly, integration

by parts can always be used to combine them into �. Regarding the super-covariant

derivatives, note that since they are fermionic and Φ is bosonic, D and D̄ have to come in

pairs. Then we can use {D, D̄} = −2i d, integration by parts, and the chirality conditions

to convert them to space-time derivatives. Note that the discussion in this paragraph only

holds for bilinear terms, where integration by parts is particularly powerful, but it will not

hold in general, see section 4.4.

4.3 Verifying RPI-II

To verify that eq. (4.5) satisfies RPI-II, we have to work directly in components. Following

section 3.5, we assume that eq. (3.31) is the correct RPI-II transformation law. The scalar

20It is interesting that the action is forced to have inverse momentum scales by RPI. For example, the

local operator V comp = Φ D̄DΦ
† = −2iΦ dΦ† has mass dimension three but has RPI-III charge −1 instead

of +1.
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kinetic term is manifestly RPI-II invariant. We can check the fermion kinetic term by

direct computation:

L ⊃ iu†
�

d
u −−−−−→

RPI-II
i

(

u† + κ∗II
d⊥
d

u

)(

�

d
− �(κ∗II d⊥ + κII d

∗
⊥)

d2

)(

u+ κII
d∗⊥
d

u

)

= iu†
�

d
u+O

(

κ2II
)

, (4.6)

confirming that the full kinetic term for a collinear chiral superfield satisfies RPI-II. To-

gether with RPI-I, RPI-III, and collinear SUSY, this confirms that eq. (4.5) describes a

theory with full N = 1 SUSY, albeit written in a language where Lorentz invariance and

half of SUSY is obscured.

4.4 Where is the Kähler potential?

We argued above that these constructions lack a “superpotential”, which means that we

will need the new technology to be introduced in ref. [30] to write down mass terms and

Yukawa interactions.21 In a similar spirit, it is natural to wonder if it is possible to write

down a non-trivial “Kähler potential”, which would allow us to investigate higher-order

interactions.

As a warm up, consider making the replacement � → �+m2 in eq. (4.4). This yields

the Lagrangian

L = DD̄V comp

∣

∣

0

?⊃ i

2
DD̄

[

Φ† (�+m2)

d
Φ

]
∣

∣

∣

∣

0

= −φ∗ (�+m2
)

φ+ iu†
�+m2

d
u, (4.7)

which naively looks like a theory with mass terms. However, since the fermion is now in

a massive representation of the Lorentz group, its corresponding RPI transformations are

not given by eq. (3.31). Specifically, the RPI-II transformations of u must now depend

on m, and this spoils the RPI invariance of the conjectured Lagrangian given in eq. (4.7).

This should not come as a surprise, since from the top-down perspective, a mass term in

SUSY yields non-trivial F -term equations of motion, which are absent from the present

construction.

In fact, most non-canonical choices of V comp will violate RPI-II in some way. As a

concrete example, consider a massless theory (such that eq. (3.31) still holds) with the

following class of higher-dimension operators

V comp
?⊃ i

Λ(n+m−2)

(

Φ†)n �

d

(

Φ
)m

+ h.c. , (4.8)

where n and m are integers and Λ has mass dimension 1. This term is bosonic and real,

has mass dimension 3 and RPI-III charge +1, and is RPI-I invariant: it is therefore a

candidate for inclusion in V comp. By explicit computation, though, one can check that it

violates RPI-II. In fact, apart from introducing additional factors of (�/Λ2) into eq. (4.4),

we have been unable to identify any non-canonical V comp that preserves RPI-II while still

respecting RPI-I, RPI-III, and collinear SUSY.

21The Wess-Zumino model was studied in ref. [32], but only with the help of external currents.
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From the bottom-up perspective, this simply emphasizes the importance of RPI-II in

enforcing Lorentz invariance. From the top-down perspective, it underscores an interest-

ing fact about Kähler potentials. Even in theories with a vanishing superpotential, non-

canonical Kähler potentials generate non-zero F -terms proportional to fermion bilinears:

F i =
1

2
Γi
jk χ

j χk, (4.9)

where Γi
jk is the Christoffel connection derived from the Kähler metric. Since our con-

structions lack auxiliary fields, we cannot generate such a term (at least not with a linear

realization of collinear SUSY).

In the companion paper, we introduce superfields whose lowest component is ũ and

whose highest component is F , making it possible to realize non-trivial Kähler potentials

(and superpotentials) after imposing RPI-II. For this paper, though, we have only provided

the technology for writing the Lagrangian for massless free chiral multiplets. To obtain

non-trivial interactions, we have to turn to gauge theories.

5 Maiden voyage: gauge theories

Now that we have gained experience applying the EFT rules of collinear superspace to a

free chiral multiplet, it is straightforward to explore the structure of gauge theories. In

this section, we explain how gauge invariance constrains operators in collinear superspace,

starting from the simplest case of an Abelian gauge theory and then lifting to a non-Abelian

gauge theory. Obviously, the latter case requires introducing interactions, which provides

a non-trivial check of the collinear superspace formalism.

As discussed in section 2.6, the familiar N = 1 method of organizing gauge degrees

of freedom into a vector multiplet is not possible in collinear superspace. That said, the

physical polarizations of the gauge field and the gaugino can be packaged into a chiral

superfield ΦA whose kinetic term is given by eq. (4.5). In what follows, we demonstrate

how a residual gauge symmetry, along with RPI, can be used to derive the rest of the gauge

theory Lagrangian.

5.1 Abelian gauge theory

We begin with the Abelian case. As discussed in section 2.2, our construction is based on

a complex light-cone scalar field A that is built from the two propagating gauge degrees of

freedom. Under RPI-I, A has non-trivial transformation properties, so in order to package

A into a superfield, it is necessary to enforce light-cone gauge in collinear superspace, where

n̄ · A = 0 and n · A is non-propagating and therefore integrated out. In light-cone gauge,

A is inert under both RPI-I and RPI-III.

Since we have written the gauge modes suggestively as a complex scalar A, it is clear

how to package it into a gauge chiral superfield (see e.g. [56] for a review):

ΦA = A∗ −
√
2iηλ† + iη†η dA∗ with D̄ΦA = 0 ,

ΦA
† = A−

√
2iη†λ− iη†η dA with DΦA

† = 0 . (5.1)
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In analogy to eq. (2.11), we have defined the propagating gaugino as λ ≡ ξαλα, which

is operationally an anti-commuting scalar. Note that in eq. (5.1), the chiral superfield

contains the conjugate fields A∗ and λ†, and vice verse for the anti-chiral field. This

unusual organization of the degrees of freedom arises because one has to add +1/2 units

of helicity to go from the lowest to highest component of a chiral multiplet, 0 → +1/2 for

eq. (2.35) and −1 → −1/2 for eq. (5.1). One can also understand this by matching to the

full N = 1 theory (see refs. [31] and [32] and further discussion in ref. [30]).

Even after enforcing light-cone gauge, there is a residual gauge transformation on the

chiral gauge superfield. As mentioned in section 2.6, this can be parametrized by Ω, a

superfield that is both chiral and real (and therefore anti-chiral):

ΦA −−−−−→
Gauge

ΦA + d∗⊥Ω , (5.2)

In components this yields,

A −−−−−→
Gauge

A+ d⊥ω , λα −−−−−→
Gauge

λα , (5.3)

Note that the gaugino λ does not transform since this is an Abelian model. The transfor-

mation of the gauge scalar A is inferred by inserting the standard gauge transformation

Aµ → Aµ+ ∂µω into eq. (2.13). Crucially, the residual gauge transformation ω is consistent

with light-cone gauge. To see this, note that

n̄ ·A −−−−−→
Gauge

n̄ ·A+ dω = n̄ ·A, (5.4)

where in the last step we used the fact that ω is the lowest component of Ω and therefore

satisfies dω = 0. Thus, the light-cone gauge condition n̄ · A = 0 is maintained by the

residual gauge transformations defined in eq. (5.2).

Plugging the gauge chiral superfield into the chiral kinetic term from eq. (4.5), the

component Lagrangian takes the desired form:

L =
i

2
DD̄

[

ΦA
†�

d
ΦA

]∣

∣

∣

∣

0

= −A∗�A+ iλ† �

d
λ . (5.5)

It is straightforward to check that this superspace Lagrangian is gauge invariant,

L −−−−−→
Gauge

L+
i2

2

[

(

d∗⊥ D̄Ω†)�

d

(

DΦA
)

−
(

D̄ΦA
†)�

d

(

d⊥DΩ
)

]∣

∣

∣

∣

0

+ O
(

Ω2
)

= L , (5.6)

since Ω is both chiral and anti-chiral. Note that we have used the fact that dΩ = 0 to

remove any terms arising from the anti-commutator {D, D̄} = −2i d.

5.2 RPI for the Abelian theory

As is clear from table 1, the components of ΦA have the same RPI-I and RPI-III transfor-

mations as the matter chiral superfield (assuming light-cone gauge). Therefore, the RPI-I

and RPI-III invariance and uniqueness of eq. (5.5) follow from the arguments in section 4.2.

However, ΦA has non-trivial RPI-II transformations, so we must check that eq. (5.5) is
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consistent with this symmetry. For the λ kinetic term of eq. (5.5), it is RPI-II invariant for

the same reasons as for the u kinetic term of eq. (4.6). Checking RPI-II for the A kinetic

term requires a new argument.

As is the case with all non-covariant gauge choices, light-cone gauge obscures Lorentz

invariance, which here manifests by studying the RPI-II transformations. Note that A,

n · A, and n̄ · A transform under RPI analogous to d⊥, d̃, and d. Under RPI-II, the light

cone scalar transforms as A → A + κII√
2
n · A, and plugging this into eq. (5.5) yields an

apparent violation of RPI-II. The resolution comes from realizing that n̄ · A transforms

as n̄ · A → n̄ · A +
√
2 (κIIA∗ + κ∗IIA). Thus, it is unsurprising that fixing n̄ · A = 0

obscures RPI-II.

To verify RPI-II, we need to restore the terms in our Lagrangian that depend on n̄ ·A.
From the top down, the Lagrangian can be derived by expanding the full kinetic term on

the light cone. From the bottom up, though, it is also possible to reconstruct the correct

operator by only considering the properties of the effective theory. In particular, there is

a unique gauge artifact term that is linear in n̄ · A, is RPI-III invariant, and transforms

under RPI-I into something that still vanishes once light-cone gauge is enforced. Adding

this term to the Lagrangian, yields

L ⊃ −A∗�A+
1

2
n̄ ·A�(n ·A) , (5.7)

such that under an RPI-II transformation

L −−−−−→
RPI-II

−
(

A∗+
κ∗II√
2
n·A

)

�

(

A+
κII√
2
n·A

)

+
1

2

(

n̄·A+
√
2 (κIIA∗+κ∗IIA)

)

�(n·A)

= L+ κ∗II√
2

(

(n·A�A)−A�(n·A)
)

+h.c. = L , (5.8)

where we have integrated by parts and set n̄ ·A = 0 to show the final equality holds. This

demonstrates that the collinear superspace Abelian gauge theory respects both RPI and

gauge symmetry.

5.3 Gauge transformations and covariant derivatives

Now that we have shown how the Abelian theory can be expressed in collinear superspace,

we can lift this to non-Abelian theory, which requires the introduction of interactions.

Each gauge field has a corresponding chiral multiplet ΦA
a labeled by the group index

a, with corresponding residual gauge transformations Ωa. Furthermore, to write down

gauge-invariant interactions, we need to covariantize eq. (5.5). To this end, we introduce a

non-Abelian covariant derivative in superspace,

∇⊥ΦA ≡ d⊥ΦA − i√
2
g
[

ΦA
†,ΦA

]

, ∇∗
⊥ΦA ≡ d∗⊥ΦA − i√

2
g
[

ΦA,ΦA
†] , (5.9)

where we are assuming that both operators are acting on a field with the same charge. Here,

we are using the matrix notation ΦA = T aΦA
a, where T a are the adjoint generators of
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the gauge group defined as
(

T a
)

bc
= −ifabc. In terms of the matrix components, eq. (5.9)

becomes

∇∗ab
⊥ = d∗⊥δ

ab + gf cabΦA
c , ∇ab

⊥ = d⊥δ
ab − gf cabΦA

c†. (5.10)

Notice that the lowest component of ∇⊥ is related to the ordinary gauge-covariant deriva-

tive Dµ as

∇⊥
∣

∣

0
= d⊥ − igT aAa = ξσµ ξ̃†

(

∂µ − igT aAa
µ

)

= ξσµ ξ̃†Dµ. (5.11)

The fermionic component of ∇⊥ involves the gaugino.

The gauge transformations are now given by

ΦA −−−−−→
Gauge

eigΩ
(

ΦA + i
√
2 d∗⊥

)

e−igΩ, (5.12)

where we write the residual gauge transformation parameter in matrix form Ω = T aΩa.

In matrix components, Φa → Φa + (∇∗
⊥)abΩb, so that eq. (5.12) becomes

Aa −−−−−→
Gauge

Aa + d⊥ω
a + gfabcAbωc , (5.13)

λa −−−−−→
Gauge

λa + gfabcωbλc, (5.14)

and similarly for the conjugate fields. This verifies that eq. (5.12) reproduces the expected

non-Abelian gauge transformations of the light-cone-projected degrees of freedom. The

gauge transformation of ∇⊥ follows from that of ΦA, with

∇⊥ΦA −−−−−→
Gauge

eigΩ
(

∇⊥ΦA −
√
2 g d⊥d∗⊥

)

e−igΩ ,

∇∗
⊥ΦA −−−−−→

Gauge
eigΩ

(

∇∗
⊥ΦA −

√
2 g d∗⊥d∗⊥

)

e−igΩ , (5.15)

in matrix notation.

One complication with introducing ∇⊥ and ∇∗
⊥ is related to RPI. These objects are

inert under RPI-III and transform under RPI-I as

∇⊥ΦA −−−−−→
RPI-I

∇⊥ΦA + κ∗I dΦA , (5.16)

and similarly for ∇∗
⊥. However, d̃ transforms under RPI-I as d̃ → d̃ + κI d⊥ + κ∗I d∗⊥, and

the mismatch between d⊥ and ∇⊥ makes it more complicated to verify RPI-I below.

Another way to view this mismatch is that, because n̄ ·A and n ·A are not present in

light-cone gauge, there is no way to write gauge-covariant versions of d and d̃. Importantly,

∇⊥ and ∇∗
⊥ alone are sufficient for writing down gauge-invariant interactions in a pure

gauge theory without matter. With matter, a covariant version of d̃ is required, as discussed

in section 5.5, which will also help to make RPI-I manifest in the companion paper [30].
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5.4 Non-Abelian gauge theory

Using eq. (5.9), we can now write down a Lagrangian in superspace that is invariant under

the residual non-Abelian gauge transformation Ω. Making the replacement in eq. (5.5):

�

d
= d̃ − d⊥d∗⊥

d
=⇒ d̃ −∇⊥

1

d
∇∗

⊥ , (5.17)

and introducing explicit group indices from eq. (5.10), we have the proposed Lagrangian:

L =
i

2
DD̄

[

ΦA
a†
(

δac d̃ − ∇ab
⊥
1

d
∇∗bc

⊥

)

ΦA
c

]
∣

∣

∣

∣

∣

0

. (5.18)

We now will argue that eq. (5.18) is the unique dimension-four Lagrangian allowed by

gauge invariance and RPI. Dropping terms of order Ω2 and expanding out the covariant

derivatives, the residual gauge transformations result in two classes of terms. The first

class of terms vanish following the same logic as eq. (5.6). Schematically, these looks like

DD̄

[

ΦA
a ÔΩa

]

∣

∣

∣

∣

∣

0

=

[

(DΦA
a) Ô (D̄Ωa)

]

∣

∣

∣

∣

∣

0

+
(

terms ∝ dΩa
)

= 0 , (5.19)

and similarly for the conjugate expression, where Ô is some differential operator involving

d⊥, d∗⊥, and d̃. Since Ω is simultaneously chiral and anti-chiral, these vanishes under DD̄.

Additionally, we have invoked the anti-commutation relation
{

D, D̄
}

Ω = 2i dΩ = 0. The

second class of terms contain products of fields like Φ†a
A Φb

AΩc with insertions of derivatives

and an overall structure constant. After using integration by parts and combining with

Hermitian conjugates terms, these cancel among themselves due to the asymmetry of fabc.

To see why RPI-III holds, note that all of the terms in eq. (5.18) have the same RPI-III

charges as their Abelian counterparts. RPI-I is a bit more subtle to verify, for the reasons

mentioned around eq. (5.16). It is convenient to write out the Lagrangian more explicitly:

L =
i

2
DD̄

[

ΦA
a†�

d
ΦA

a

]
∣

∣

∣

∣

0

− i

2
gfabcDD̄

[

(

ΦA
†aΦA

b
) d∗⊥

d
ΦA

c −ΦA
†a d⊥

d

(

ΦA
†bΦA

c
)

]
∣

∣

∣

∣

0

− i

2
g2fabcf cheDD̄

[

(

ΦA
†aΦA

b
) 1

d

(

ΦA
†hΦA

e
)

]
∣

∣

∣

∣

0

. (5.20)

The first and last terms in this expression are manifestly RPI-I invariant. For the two

middle terms, note that d∗⊥/d → d∗⊥/d + κI, so under RPI-I, we have

L −−−−−→
RPI-I

L − 2 i κI gf
abcDD̄

[

ΦA
†aΦA

bΦA
c
]

+ h.c. = L, (5.21)

where in the last step we have used the fact that fabc is completely antisymmetric. This

highlights the link between light-cone gauge invariance and RPI, which can be traced to

the link between gauge redundancy and Lorentz invariance.

Verifying RPI-II again requires going to components and checking the invariance explic-

itly. Because this is a rather tedious exercise, here we appeal to the top-down construction
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in refs. [31] and [32], which had to satisfy RPI-II since it was derived by matching to the

full Lorentz-invariant theory in light-cone gauge. The expression in eq. (5.20) is identical to

the Lagrangian derived in refs. [31] and [32] (up to conventions and superspace derivative

manipulations), which implies that RPI-II is indeed satisfied.

Finally, to see why this term is unique, we can appeal to the same logic as in section 4.2.

Apart from the replacement of d⊥ with ∇⊥ (and the corresponding replacement of � in

eq. (5.17)), there are no additional ingredients in the gauge case compared to the free chiral

multiplet. Therefore, without introducing any new mass scales, eq. (5.18) is the unique

Lagrangian one can write consistent with gauge invariance and RPI.

5.5 Where is charged matter?

Armed with the covariant derivatives in eq. (5.9), one might naively think that it would be

straightforward to add interactions involving charged matter. For a charged matter chiral

multiplet M , it should transform under the residual gauge transformation Ω as

M −−−−−→
Gauge

eigΩM , (5.22)

M
† −−−−−→

Gauge
M

†e−igΩ†

= M
†e−igΩ, (5.23)

where we have enforced the chirality/reality of Ω = Ω†. One can verify that the covariant

derivative acts as expected,

∇∗
⊥M −−−−−→

Gauge
eigΩ∇∗

⊥M , (5.24)

and one might be tempted to propose the candidate Lagrangian:

Lcandidate
?⊃ i

2
DD̄

[

M
†
(

d̃ −∇⊥
1

d
∇∗

⊥

)

M

]
∣

∣

∣

∣

0

, (5.25)

in analogy with the non-Abelian gauge kinetic term in eq. (5.18).

It is easy to check, however, that eq. (5.25) is neither gauge invariant nor RPI-I in-

variant. Specifically, the manipulations below eq. (5.19) and in eq. (5.21) no longer work,

because arguments invoking the asymmetry of fabc fail when M and ΦA are distinct fields.

Because dΩ = 0, we do not need a covariant version of d to achieve gauge invariance, but

we do need a covariant version of d̃ which involves n · A. This same n · A term is relevant

for restoring RPI-I, but as discussed many times, this field does not appear in the present

light-cone-gauge construction.

Another way to understand why this construction fails is that SUSY gauge theories

with charged matter involve non-zero D-term auxiliary fields. In the companion paper,

we introduce a novel real superfield with non-trivial RPI transformation properties whose

components include n · A and D [30]. In this way, the restoration of gauge invariance,

RPI-I, and the required auxiliary fields are all achieved using related machinery. From this

perspective, the reason why n ·A did not need to appear in the pure gauge Lagrangian in

eq. (5.18) is that D is identically zero in the full N = 1 construction. We leave a more

detailed discussion of this point to the companion paper.
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6 Future horizons

In this paper, we provided a set of rules for constructing on-shell SUSY Lagrangians directly

in collinear superspace, without any reference to the original Lorentz-invariant description.

This can be contrasted to the approach advocated in refs. [31] and [32], where the La-

grangian was derived from the full N = 1 theory by fixing a light cone and integrating out

non-propagating degrees of freedom in superspace. We now have a set of fully-consistent

EFT rules for collinear superspace, based on the simple restriction given in eq. (1.2), which

yields a superspace where θ2 = 0. This restriction selects a SUSY sub-algebra that is

expressed on a light cone, and whose representations are built using only propagating

degrees of freedom. Furthermore, we were able to express the residual light-cone gauge

invariance (encoded using the novel superfield Ω), which was then used to derive the La-

grangian of both Abelian and non-Abelian gauge theories. A formalism for reintroducing

non-propagating degrees of freedom will be provided in ref. [30], which is necessary to con-

struct Wess-Zumino models and matter/gauge interactions where auxiliary F and D terms

are essential.

While this was in some ways an academic exercise for N = 1 SUSY, which of course

has a simple Lorentz-invariant superspace formulation using off-shell degrees of freedom,

there are a number of aspects of our construction which are interesting in their own right.

We described RPI in the language of spinor/helicity, which is not so commonly encountered

in the EFT literature. We introduced a superspace gauge-covariant derivative ∇⊥, which

has no analog (to our knowledge) in the standard N = 1 treatment. Beyond the novel real

and chiral gauge parameter Ω, even more exotic superfields will be encountered in ref. [30],

defined by mixed constraints involving both spacetime and superspace derivatives.

Ultimately, our hope is that these collinear superspace rules will generalize in a straight-

forward way to theories with N > 1 SUSY (or even to theories with d > 4). It is well

known that the standard superspace approach only works for N = 1, so discovering the

underlying rules for an N > 1 collinear superspace could in principle be useful to achieve

a deeper understanding of these theories. For example, perhaps the uniqueness of the

N = 4 Lagrangian could be proven within collinear superspace directly, or maybe these

constructions would illuminate the equivalence of the N = 3 and N = 4 Yang-Mills ac-

tions. Additionally, it would be interesting to search for connections between the collinear

superspace formalism and the on-shell recursive approach to scattering amplitudes, see

e.g. [47] for a review. By obscuring Lorentz invariance, we hope this formalism will shed

additional light on some of the amazing structures that emerge in SUSY field theories.
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A The generators of RPI

In this appendix, we discuss the details of the RPI generators [43, 57].22 The Poincaré

group is defined by

[

Pµ, Pν

]

= 0 , (A.1)
[

Mµν , P ρ
]

= igµρ P ν − i gνρ Pµ , (A.2)
[

Mµν ,Mκρ
]

= −igµκMνρ − igνρMµκ + igµρMνκ + igνκMµρ , (A.3)

where Pµ = i∂µ is the generator of translations, and Mµν is the usual anti-symmetric

matrix of Poincaré generators

Mµν =











0 K1 K2 K3

−K1 0 −J3 J2

−K2 J3 0 −J1

−K3 −J2 J1 0











, (A.4)

composed of rotations M ij = −ǫijkJ
k and boosts M0i = Ki, which satisfy the algebra

[

Ji, Jj

]

= iǫijkJk,
[

Ji,Kj

]

= iǫijkKk, and
[

Ki,Kj

]

= −iǫijkJk . (A.5)

Projecting Mµν onto the canonical frame nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1) yields

Rν⊥
I = n̄µM

µν⊥ = M0ν⊥ +M3ν⊥ , (A.6)

Rν⊥
II = nµM

µν⊥ = M0ν⊥ −M3ν⊥ ,

RIII = nµ n̄νM
µν = 2M03 = 2K3 ,

where ν⊥ = 1, 2, yielding five broken Lorentz generators. Note that these projections can

be equivalently expressed in terms of ξ and ξ̃ using eq. (2.1).

We can immediately identify RPI-III as the scalar operator corresponding to boosting

along the light cone direction, ẑ in the canonical frame. The remaining four generators

R1
I = K1 − J2 , R2

I = K2 + J1 ,

R1
II = K1 + J2 , R2

II = K2 − J1 , (A.7)

correspond to boots and rotations about the directions transverse to the light cone.

22See ref. [58] for an analysis of Lorentz invariance and RPI generators in heavy particle effective theories.
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By inspecting eqs. (A.6) and (A.7), we see that there is no explicit dependence on the J3
generator. This is to be expected since we have picked the canonical frame, which points in

the ẑ-direction, and the RPI transformations are the combinations of rotations and boosts

which leave this direction unchanged. However, when we compute the commutators

[

Rµ⊥

I , Rν⊥
I

]

= 0 ,
[

Rµ⊥

II , Rν⊥
II

]

= 0 ,
[

R1
I , R

1
II

]

= iRIII ,
[

R2
I , R

2
II

]

= iRIII ,
[

R1
I , R

2
II

]

= −2iJ3 ,
[

R2
I , R

2
II

]

= 2iJ3 ,
[

R1
I , RIII

]

= −2iR1
I ,

[

R2
I , RIII

]

= −2iR2
I ,

[

R1
II, RIII

]

= 2iR1
II ,

[

R2
II, RIII

]

= 2iR2
II ,

(A.8)

we see J3 is generated by successive RPI transformations. This is exactly the sense in

which RPI secretly encodes the full Lorentz invariance, in that one can reconstruct the

“missing” J3 generator through the application of the RPI transformations alone.

B The rigging: a summary of useful formulae

This appendix provides a set of reference formulas that are useful for deriving the results

presented in the main text. Note that some expressions are redundant with the body of

the paper, but we reproduce them here for convenience.

We work in Minkowski space with metric signature gµν = diag (+1,−1,−1,−1), and

our γ-matrices are in the Weyl basis. We follow spinor conventions of refs. [50] and [51].

For a useful review of the conventions relevant for SUSY see pages 449–453 of ref. [51].

B.1 Frame-independent expressions

Here, we briefly summarize the frame-independent expressions. For light-cone derivative

we have:

σ̄µ∂µ = ξ̃†α̇ξ̃α d + ξ†α̇ξα d̃ + ξ†α̇ξ̃α d⊥ + ξ̃†α̇ξα d∗⊥ ,

σµ∂µ = ξ̃αξ̃
†
α̇ d + ξαξ

†
α̇ d̃ + ξαξ̃

†
α̇ d∗⊥ + ξ̃αξ

†
α̇ d⊥ . (B.1)

Note that we can write � = dd̃ − d∗⊥d⊥. For light-cone spinors we have:

uα = ξ̃αu− ξαũ so that u = ξαuα , and ξ̃αuα = ũ , (B.2)

where the choice of convention will be discussed further below. Finally for the gauge field

we have:

(σ ·A)αα̇ = ξα ξ
†
α̇ n ·A+ ξ̃α ξ̃

†
α̇ n̄ ·A+

√
2 ξα ξ̃

†
α̇A∗ +

√
2 ξ̃α ξ

†
α̇A . (B.3)
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B.2 The canonical frame

We often appeal to the canonical frame, which is specified by

nµ = (1, 0, 0, 1) , n̄µ = (1, 0, 0,−1) , (B.4)

and can be rewritten using a spinor helicity decomposition as

nµ = ξ̃†σ̄µξ̃ = ξ̃σµξ̃† and n̄µ = ξ†σ̄µξ = ξσµξ† . (B.5)

This is equivalent to fixing the spinors to

ξα = (0, 1) , ξα = (−1, 0)⊺, ξ̃α = (1, 0) , ξ̃α = (0, 1)⊺ , (B.6)

where

ξα ξ̃α = 1, ξ̃αξα = −ǫαβ ξα ξ̃β = −1 , ξ†α̇ ξ̃
†α̇ = −1, ξ̃†α̇ ξ

†α̇ = 1 . (B.7)

To express a Weyl spinor fermion in the canonical frame, we note that the projection

operators that act as

Pnuα =
n · σ
2

n̄ · σ̄
2

uα = u2 and Pn̄uα =
n̄ · σ
2

n · σ̄
2

uα = u1, (B.8)

where we note that the α index is lowered in these expressions. We identify u2 as the

helicity aligned with the light-cone and u1 is anti-aligned helicity, so that

u ≡ u2 and ũ ≡ u1 . (B.9)

Given (B.6) this can be all be made consistent with the following conventional choice:

uα = ξ̃αu− ξαũ so that ξαuα = u and ξ̃αuα = ũ . (B.10)

We note that this minus sign is not required for the expansion of θα on the lightcone, and

so we do not include it, see (2.15).

A vector V µ can be decomposed on the light cone as

n · V = ξ̃†σ̄ · V ξ̃ = ξ̃σ · V ξ̃† = V0 + V3 = −
(

V 0 + V 3
)

,

n̄ · V = ξ†σ̄ · V ξ = ξσ · V ξ† = V0 − V3 = −
(

V 0 + V 3
)

,

V⊥ = ξ̃†σ̄ · V ξ = ξσ · V ξ̃† = V1 + iV2 = −
(

V 1 + iV 2
)

,

V ∗
⊥ = ξ†σ̄ · V ξ̃ = ξ̃σ · V ξ† = V1 − iV2 = −

(

V 1 − iV 2
)

, (B.11)

where in the final steps we have fixed to the canonical frame. This can be conveniently

packaged as

σ · V =

(

n · V −V ∗
⊥

−V⊥ n̄ · V

)

and σ̄ · V =

(

n̄ · V V⊥

V ∗
⊥ n · V

)

. (B.12)
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B.3 Conventions in soft-collinear SUSY

It is useful to keep in mind the spinor structure of objects in LCG used in the soft-collinear

SUSY paper [32]. For instance,

σµ∂µ =

[

n · ∂
√
2 ∂∗

√
2 ∂ n̄ · ∂

]

αα̇

, σ̄µ∂µ =

[

n̄ · ∂ −
√
2 ∂∗

−
√
2 ∂ n · ∂

]α̇α

. (B.13)

Note the
√
2 difference between the ∂⊥ definitions and the d⊥ definition used in this pa-

per. Similar expressions hold for other contractions such as σµAµ. These expressions are

independent of the choice of nµ and n̄µ direction.

Note that throughout we include the Lorentz contraction in the definitions of ∂2
⊥, as

this is convenient when working with LCG scalars:

∂2
⊥ ≡ ∂µ

⊥∂⊥µ = −∂2
1 − ∂2

2 = −2 ∂∂∗ , (B.14)

where we have converted to LCG derivatives. This is in contrast to some places in the

literature which relate ∂2
⊥ to the explicit component expression with the opposite sign. In

terms of this notation

� = ∂µ∂µ = n̄ · ∂ n · ∂ + ∂2
⊥ = n̄ · ∂n · ∂ − 2 ∂∂∗ . (B.15)
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