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Abstract  

Context   A central tenet of landscape ecology is that both characteristics of patches and the 

matrix between them influence functional connectivity. Landscape genetics seeks to evaluate 

functional connectivity by determining the role of spatial processes in the distribution of genetic 

diversity on the landscape. However, landscape genetics studies often consider only the 

landscape matrix, ignoring patch-level characteristics, and possibly missing significant drivers of 

functional connectivity. 

Objectives (1) Evaluate drivers of functional connectivity for an amphibian metapopulation, and 

(2) determine whether local characteristics are as important as landscape features to functional 

connectivity of this species. 

Methods   We used gravity models to evaluate the evidence for hypothesized drivers of 

functional connectivity for Dryophytes wrightorum that included both local and landscape 

attributes and a novel combination of methods of genetic inquiry: landscape genetics and 

environmental DNA (eDNA). Hypothesized drivers of connectivity included effects of 

hydrology, canopy cover, and species interactions. 

Results    Evidence weights indicated that stream networks were the most likely driver of 

functional connectivity, and connectivity along stream networks was positively correlated with 

gene flow. We also found a strong correlation between abundance of D. wrightorum from eDNA 

data and effective population size estimates from microsatellite data. 

Conclusions   We found evidence that functional connectivity of D. wrightorum was strongly 

driven by stream networks, despite considering multiple local and landscape processes. This 

suggests that management of this species focused on landscape hydrologic connectivity as gene 
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flow corridors while maintaining current local management action is likely to have a positive 

effect on species conservation. 

 

Keywords: Arizona treefrog; Dryophytes wrightorum; environmental DNA; functional 

connectivity; gravity model 

 

Introduction 

Functional connectivity, the realized degree of genetic flow through the landscape, is 

influenced by the spatial arrangement of an organism’s habitat, its resource preferences or 

associations, and its ability to move through the landscape (With 1997; With et al. 1997). 

Understanding functional connectivity across a landscape is important for recognizing population 

dynamics such as genetic connectivity and gene flow (Hanski and Gilpin 1991). Additionally, 

functional connectivity analyses can be useful to inform conservation initiatives, especially for 

species in fragmented landscapes (Marsh and Trenham 2000). The field of landscape genetics 

combines population genetics and landscape ecology to understand how species’ interactions 

with the landscape shape characteristics of their populations, with an emphasis on gene flow and 

resulting functional connectivity (Manel et al. 2003; Storfer et al. 2007). 

Landscape genetic studies employ spatially explicit models to test specific hypotheses of 

how landscapes influence population processes (Balkenhol et al. 2009; Wagner & Fortin 2013). 

Functional connectivity assessments, particularly in landscape genetics, evaluate whether 

landscape attributes of the intervening matrix between sampling locations facilitate or inhibit 

functional connectivity such as gene flow (Ray 2005; McRae 2006; McRae et al. 2008). Patch-

level characteristics have been shown to influence functional connectivity in combination with 
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matrix attributes in a variety of taxa (Banks et al. 2005; Murphy et al. 2010; Dileo et al. 2014; 

Watts et al. 2015;  Zero et al. 2017; Robertson et al. 2018), yet patch variables, or local 

characteristics, are considered less frequently in assessments of functional connectivity than 

landscape characteristics (Sork and Waits 2010; Pflüger and Balkenhol 2014). 

Local habitat characteristics or patch-level species interactions such as predation, 

competition, or disease can influence functional connectivity through differential production of 

migrants or varying attractiveness to dispersing individuals (Fotheringham and O’Kelly 1989; 

Banks et al. 2005). What remains unclear is the relative contribution of local and landscape 

characteristics to functional connectivity for many species. Does the inclusion of local variables 

change our understanding of functional connectivity compared to landscape hypotheses alone? 

As a combination of local and landscape features likely influence functional connectivity, 

incorporating both local and landscape processes could better inform the most effective scale of 

management actions. 

Amphibians are a key study organism for questions regarding functional connectivity 

(Storfer et al. 2010) and have been broadly studied in landscape genetics (Spear et al. 2005; 

Goldberg and Waits 2010; Storfer et al. 2010). Amphibian population processes occur at a scale 

tractable for landscape genetic study, they associate with discrete breeding habitats (patches), 

and there is a growing need to improve the conservation of this taxon given the global threats 

they face (Storfer et al. 2009; Stuart et al. 2004). However, like many other taxa, studies of 

amphibian functional connectivity have typically focused on landscape processes without 

accounting for local variables. 

At the local scale, inter-and intraspecific interactions, such as predation or competition, 

may influence functional connectivity of a focal species through limiting population size or 
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dispersal. However, community information can be difficult to obtain and therefore include in 

landscape genetics studies, especially for species that are cryptic or exhibit less predictable 

phenology like many amphibians (Mazerolle et al. 2007). Other landscape genetic studies have 

used indirect estimates of species interactions, such as an environmental variable that covaries 

with the occurrence of species of interest (Murphy et al. 2010) or an index of predator densities 

from harvest data (Howell et al. 2016). Environmental DNA (eDNA) is an emerging technique 

that can be used to create multi-species datasets at the local level for landscape genetics studies. 

Environmental DNA is the detection of species via trace amounts of their DNA expelled into the 

environment (Rees et al. 2014). Although methods of eDNA analysis continue to be refined, it is 

already a powerful tool in ecological studies, especially for species that are not easily detected by 

traditional means (Ficetola et al. 2008; Goldberg et al. 2011; Biggs et al. 2015). Environmental 

DNA may provide information on local abundance of focal or interacting species, which can be 

used as part of analyses of functional connectivity. Assessing local abundance using eDNA data 

is at the forefront of development of eDNA methods and technology (Cristescu and Hebert 

2018). The incorporation of eDNA data in a landscape genetics study can provide new insights, 

such as the dynamics of populations and interactions with predators, competitors, or invasive 

species on functional connectivity. 

The Arizona treefrog, Dryophytes (Hyla) wrightorum, is a pond-breeding amphibian 

endemic to the arid southwestern United States and northern Mexico. Previous studies have 

demonstrated that the Huachuca Mountains Canelo Hills (HMCH) population segment of D. 

wrightorum is genetically isolated from the two larger populations, exhibiting differences in 

morphology and advertisement calls when compared to individuals in the rest of their range 

(Gergus et al. 2004a). Populations in this region have significant degrees of genetic subdivision 
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and behave as a metapopulation (Mims et al. 2016). Additionally, the HMCH region has 

relatively few populations of D. wrightorum (N < 20) and few predators exist in the area (but see 

Jones and Timmons 2010). The genetic and morphological distinctions of this population 

segment, along with its small and geographically restricted nature, led to its review as a 

candidate for listing under the U.S. Endangered Species Act as a Distinct Population Segment, 

though it has since been designated as not meriting federal protection (USFWS 50 CFR Part 17, 

2016). A recent genetic study evaluated four hypothesized drivers of functional connectivity 

assessing landscape characteristics (isolation by distance, isolation by slope, connectivity by 

canopy, and connectivity by stream) and found the most support for isolation by distance in their 

analysis, though there was some evidence for isolation by slope and connectivity by canopy 

(Mims et al. 2016). However, this work did not consider local characteristics.  

To investigate the relative contribution of local and landscape characteristics on 

functional connectivity, we evaluated a comprehensive suite of hypothesized relationships 

between D. wrightorum genetic structure and variables at the local and landscape scale. Of 

particular interest was whether the inclusion of local habitat and species interaction variables 

would alter our understanding of this species and its functional connectivity relative to the 

previous analysis of landscape attributes alone. We hypothesize that functional connectivity of 

this species may be influenced by a large suite of ecologically and biologically relevant 

processes influencing D. wrightorum in this area. These hypotheses include the influence of 

hydrology at ponds and throughout the landscape, topographical barriers, vegetation, pond 

network dynamics, and presence of predators, pathogens, and competitors, as well as local 

abundance of D. wrightorum itself (Table 1). This research will help inform the relative role of 

local and landscape characteristics in functional connectivity and have applied value for 
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conservation and management for D. wrightorum. We combined eDNA-derived sympatric, 

interacting species abundances, local and landscape variables, and population genetic data into a 

gravity modelling framework (Murphy et al. 2010) to answer the following questions: (1) What 

hypothesized model of functional connectivity is best supported for this amphibian? (2) Will 

these findings differ from those of Mims et al. (2016), which considered only landscape factors 

and their influence on functional connectivity? 

 

Methods 

Study Area 

The range of D. wrightorum is separated into three distinct portions: the Mogollon Rim 

of central Arizona and western New Mexico, the Sierra Madre Occidental of eastern Sonora and 

western Chihuahua, and the intervening small, isolated HMCH region in southeastern Arizona 

(Duellman 1970). The HMCH region is neighbored by several mountain ranges of mostly arid 

scrubland with variable elevation, precipitation patterns, vegetation, and temperature (Gehlbach 

1993). In this area, D. wrightorum is associated with streams, wetlands, and man-made cattle 

stock ponds (Mims et al. 2016). Currently, management of ponds in this area including 

hydroperiod alteration and removal of invasive species such as the American bullfrog is being 

conducted in order to support native herpetofauna (John Kraft, U.S. Forest Service, personal 

comm.). 

 

Genetic Data 

 We analyzed population genetic and eDNA data collected in 2014 at eight sites in the 

HMCH region (Figure 1) of southern Arizona by Mims et al. (2016) and Goldberg et al. (2018), 
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respectively. We used previously generated data for 17 microsatellite loci of 215 individuals with 

a mean sample size of 27.6 per site (sample size range: 19-40 individuals per site, see Mims et al. 

2016). Loci were screened for linkage disequilibrium and deviations from Hardy-Weinberg 

equilibrium with Bonferroni corrections using GenePop 1.2 (Raymond and Rousset 1995) and 

for full siblings using COLONY 2.0 (Jones and Wang 2009; Goldberg and Waits 2010). For any 

full sibling pairs detected, one member was randomly chosen to be removed (Goldberg and 

Waits 2010). We calculated pairwise proportion of shared alleles (DPS, Bowcock et al. 1994), 

fixation indices (FST, Weir and Cockerham 1984), and Slatkin’s linearized FST (linFST, Slatkin 

1995). Additionally, effective population size (Ne) for each sampling location was estimated 

using the linkage disequilibrium method (LDNe, Waples and Do 2008) in NeEstimator V2 (Do 

et al. 2014; Mims et al. 2016). 

Environmental DNA sampling was performed concurrently with genetic sampling of D. 

wrightorum. Four replicate 250 mL water samples were filtered from one location in each 

wetland using 0.45 µm cellulose nitrate single-use sterile filter funnels (Whatman
TM

, GE 

Healthcare, Pittsburgh, PA; Goldberg et al. 2018). DNA was then extracted from the filters 

following best practice protocols (Goldberg et al. 2016) using the Qiashredder and DNeasy 

method described in Goldberg et al. (2011). Samples were analyzed using species-specific 

qPCR, and negative controls were included at filtering, extraction, and PCR stages to test for 

contamination. Additionally, a positive control (IPC; Applied Biosystems, Foster City, CA) to 

test for inhibition was included in each reaction. Species-specific qPCR assays were used to 

survey sites for D. wrightorum (Goldberg et al. 2018), invasive American bullfrogs (Lithobates 

catesbeianus; Strickler et al. 2015), tiger salamanders (Ambystoma mavortium; Goldberg et al. 

2018), virile crayfish (Orconectes virilis; Table S1), and the fungal pathogen Bd 
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(Batrachochytrium dendrobatidis; Boyle et al. 2004). We used the concentration of eDNA 

estimated for each sample (averaged across the four replicates) as an index of species abundance 

at each site via quantitative standards for each species. Quantitative standard curves were created 

using diluted DNA samples from tissue in duplicate diluted from 10
-3

 to 10
-6

, except in the case 

of Bd where standards were created using gBlocks (Integrated DNA Technologies, Coralville, 

IA) from 10
4 
to 10

1
. 

 

Evaluation of Population Size Estimates from Genetic Sampling 

 In this study system, traditional population genetic surveys and quantitative eDNA 

analysis were conducted from simultaneously-collected samples in the same localities, a rare 

occurrence that provides the opportunity for additional analyses. We hypothesized that eDNA 

concentrations correlate with local abundance of D. wrightorum at a site, though we did not have 

census population size data to assess this relationship. To determine the validity of using eDNA 

concentrations as a surrogate for local abundance, we instead evaluated the relationship between 

eDNA concentrations and Ne estimates from microsatellite data. We tested for a relationship 

between these two data types (eDNA concentrations of D. wrightorum log transformed for 

normality) via Pearson product-moment correlation (Pearson 1896) using R version 3.6.1 (R 

Core Team 2019). 

 

Landscape and Spatial Data 

We collected landscape and spatial information related to our hypotheses that included 

landscape data, local variables, and pond-network variables that spanned ecologically relevant 

processes associated with D. wrightorum biology and the landscape of the HMCH region (Table 
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1; Table S2). We utilized a 30 m resolution digital elevation model (DEM) from the National 

Elevation Dataset (U.S. Geological Survey 2009) to derive various topographic measures. From 

the DEM, we calculated heat load index (hli, McCune & Keon 2002; ‘spatialEco’ 0.0.1-7 (Evans 

2017); R 3.5.0 (R Core Team 2018)), compound topographic index (cti, Gessler et al. 1995; 

Moore et al. 1993; ArcMap 10.4.1 (ESRI), Geomorphometry and Gradient Metrics Toolbox 2.0 

(Evans et al. 2014)), slope (ArcMap 10.4.1 (ESRI), Geomorphometry and Gradient Metrics 

Toolbox 2.0 (Evans et al. 2014)), and relative slope position (rsp, Berry 2002; ArcMap 10.4.1 

(ESRI), Geomorphometry and Gradient Metrics Toolbox 2.0 (Evans et al. 2014)). Additionally, 

we gathered Tier 1 Landsat satellite scenes over 4-years (Landsat 5: September 16 2010, 

September 19 2011, Landsat 8: September 24 2013, September 30 2015), targeting dates for each 

year near the end of the monsoon season when vegetation is most extensive and when cloud 

cover was not present. We standardized the LT05 scenes to the LC08 scenes using the Apply 

Gain and Offset function in the remote sensing software ENVI version 5.3.1 (Exelis Visual 

Information Solutions, Boulder, Colorado). We calculated Soil-Adjusted Vegetation Index 

(SAVI; Huete 1988) from the Landsat scenes (soil reflectance set to 0.50) to assess plant 

productivity while accounting for soil reflectance and averaged SAVI values across the 2010-

2015 time period for modelling. 

We extracted data from raster layers for landscape variables by taking the mean (SAVI 

and cti) or maximum (slope) value along a buffered straight-line connecting each pair of 

populations. To examine the effect of buffer size, we extracted edge data at three buffer widths 

(30m, 120m, and 300m) using ‘GeNetIt’ (v 0.1-2 Murphy et al. 2010, R 3.6.1 (R Core Team 

2019)) and evaluated pairwise correlations between the extracted data for each buffer width. We 

found edge values to be highly correlated (r > 0.74) across buffer widths, and we thus applied a 
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single buffer width of 30 m for between-site variables in building models as that scale is most 

relevant to D. wrightorum ecology (as in Robertson et al. 2018). Next, we extracted data from 

raster layers for local measures of SAVI and hli by calculating the mean of the data from a 100 

m radius around the coordinates of the centroid of each wetland and rsp at the centroid point of 

each wetland with no buffer using ‘GeNetIt’ (v 0.1-2 Murphy et al. 2010, R 3.6.1 (R Core Team 

2019)). 

We used the National Hydrography Dataset (NHD, U.S. Geological Survey 2013) to 

produce a pairwise stream distance matrix (stream network distance) between each of our sites. 

Stream network distance represents the shortest two-dimensional distance between each 

sampling location using stream network connections as paths. We used QGIS version 2.18 

(QGIS Development Team 2018) to trim the NHD stream network across the study area to 

include only reaches that were relevant to the connections among sites and then created a 

pairwise distance matrix between all sites using the package ‘riverdist’ (v 0.15.0 Tyers 2017, R 

3.5.0 (R Core Team 2018)). Two sampling locations (Ponds 7 and 9) are located in watersheds 

that are part of a different river basin (the San Pedro River Basin) than the other sites (the Santa 

Cruz River Basin).  For that reason, we assigned the stream network distance as one order of 

magnitude larger than the furthest stream distance of sites in the same river basin to avoid 

extraneous pairwise distance comparisons with those two sites (as these two river basins do not 

converge for >1000 km). 

To capture more hydrological detail on the small, intermittent ponds used by D. 

wrightorum for breeding, we created a wetland network of ponds in the HMCH region. We 

coupled a US Forest Service Ranger District Map, which reliably reports stock pond locations, 

with Google Earth imagery (2014) to manually create a digital pond database for the Huachuca 
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Mountains and its drainages (Figure 1). We used Google Earth to create polygons representing 

pond basins. We then used historical satellite imagery available via the Google Earth Historical 

Imagery tab (Map data: DigitalGlobe, USGS, USDA Farm Service Agency) to construct a time 

series of when ponds contained water (Figure S1). The wet/dry historical records for ponds were 

then used to determine whether ponds and lakes were intermittent (dry in at least one historical 

image) and potential breeding sites for D. wrightorum. All perennial ponds (those always 

observed with water) and dry basins (those never observed to hold water) were excluded from 

the candidate set of breeding ponds for the wetland network. All intermittent ponds were 

considered candidate ponds for use by D. wrightorum and included in the network. We defined 

the study’s spatial focal area as all intermittent ponds within a 7 km buffer of all known breeding 

sites for D. wrightorum in the Huachuca Mountains, as this is the longest distance between 

known breeding sites of D. wrightorum in this range. 

 To parameterize network location of sampled sites, we conducted a graph network 

analysis using the wetland network dataset that totaled 91 wetlands, including our eight sampling 

locations. We created a Delaunay triangulation network from our wetland network (Figure 1; 

‘deldir’ (v 0.1-15 Turner 2018, R 3.6.1 (R Core Team 2019)). We calculated two node-based 

graph metrics: degree (the number of connections a node has) and betweenness (the number of 

times a node is crossed in the shortest path between two other nodes) in ‘igraph’ (v 1.2.1 Csardi 

and Nepusz 2006, R 3.6.1 (R Core Team 2019)) and extracted both of these values for our eight 

sampling locations of interest.  

 For each of our eight sites with population genetic data, we estimated the stability of 

breeding ponds during breeding season using Google Earth (Map data: Google, DigitalGlobe, 

USGS). We calculated a hydroperiod index as the percent of images a pond was observed to 
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have water during the months of July through November (the primary breeding and larval 

development season for D. wrightorum) across all years of imagery available in our study area 

(1992-2014; Figure S1). Additionally, we calculated the surface area of each pond from Google 

Earth imagery at maximum water height in the historic images available occurring in 2003, 2006, 

2013, and 2015 depending on the pond location. We chose the imagery where ponds appeared 

largest to estimate pond size area around the occurrence of monsoon season; this is thus 

reflective of the maximum amount of habitat available when D. wrightorum are breeding and 

developing in those ponds. 

 

Gravity Models 

 We used gravity models (Anderson 1979; Fotheringham and O’Kelly 1989), a specific 

type of network model, to assess how characteristics of breeding ponds and the intervening 

landscape influence functional connectivity of D. wrightorum in the HMCH region. This 

approach models gene flow (1-genetic distance) as a function of Euclidean distance between 

sites and a combination of local characteristics that influence the production of migrants in the 

network and landscape characteristics that limit or facilitate migration between nodes (Murphy et 

al. 2010). Singly constrained gravity models include distance, local, and landscape parameters as 

fixed effects and sites as random effects to account for the non-independence between sites 

(Murphy et al. 2010; Robertson et al. 2018). For solving, the multiplicative, exponential gravity 

model form is natural log transformed for linearity, then estimated with a linear mixed effects 

model. 

Prior to modeling, we scaled each of our variables by standard deviation and centered 

them at zero using R version 3.6.1 (R Core Team 2019). In order to avoid negative or zero values 
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that result in missing data when the gravity model is log transformed, we added the absolute 

value of each scaled variable’s minimum plus 0.001 to all data values of the variable; with this, 

the minimum value of each variable was 0.001. Additionally, we evaluated our scaled data for 

collinearity and multicollinearity using Pearson product correlations and variable inflation factor 

(VIF; Mansfield & Helms 1982). We did not include collinear variables (r > 0.70) or 

multicollinear variables (VIF > 5) in the same model (Table S3). 

After removing correlated variables from each model, we performed singly-constrained 

gravity models using ‘GeNetIt’ (v 0.1-2 Murphy et al. 2010, R 3.6.1 (R Core Team 2019)). We 

specified sites as producers (producing migrants) on a saturated network, which included 

connections to and from every site. We evaluated model rankings for each estimate of gene flow 

(1-DPS, 1-FST, and 1-linFST) using maximum likelihood (ML) estimates of Akaike information 

criterion scores adjusted for small sample size (AICC), Bayesian information criterion (BIC) 

values, and evidence weights of each for model ranking (Akaike 1973; Burnham and Anderson 

2002). Finally, we used gravity models evaluated with restricted maximum likelihood (REML) 

to determine parameter estimates of our top models for each gene flow metric (Zuur et al. 2009; 

Zero et al. 2017). Gravity models calculate parameter estimates and confidence intervals from 

log transformed data and are presented as transformed values here. 

 

Results 

Genetic Data 

A total of 215 individuals were genotyped using microsatellites, and 32 eDNA filters 

were analyzed for the presence of five different species. Microsatellite loci screening for 

deviations from Hardy-Weinberg equilibrium and linkage disequilibrium showed inconsistencies 
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across populations and insufficient evidence for removal of loci from analysis (Mims et al. 

2016). There were only five cases of significant deviations from Hardy-Weinberg equilibrium 

after Bonferroni correction occurring across five different loci and three different populations. 

Similarly, linkage disequilibrium was observed in two marker pairs in only one population. 

Effective population sizes of the eight sampling sites ranged from 32.5 to 277.9 individuals with 

an average of 116.65 individuals. Pairwise genetic distances between the eight populations 

ranged from 0.212-0.392 for DPS, 0.0086-0.0891 for FST, and 0.009-0.098 for linFST. For 

complete population genetic analyses of sampling locations using these microsatellite markers, 

see Mims et al. (2016). 

There were few or no eDNA-detected presences in three out of five sampled species (Bd, 

tiger salamanders, virile crayfish). We did not detect tiger salamanders or virile crayfish in any 

of the eight sampling locations, and we detected Bd in low concentration at only one site (Table 

3). As a result, we only included D. wrightorum and bullfrog eDNA data in our analyses. 

Dryophytes wrightorum were detected at all eight sampling sites at concentrations ranging from 

0.031-18.703 ng/L. Bullfrogs were detected at three of eight sampling sites at concentrations 

ranging from no detection to 3.454 pg/L. Quantitative PCR efficiencies ranged between 95 and 

105% and standard curves had r
2
 ≥ 0.98.  

We found a strong positive correlation between eDNA concentrations of D. wrightorum 

and Ne estimates from each site (r = 0.81, p = 0.01; Figure 2). Based on this result, we 

determined that eDNA abundance estimates for D. wrightorum were an appropriate surrogate for 

local abundance, a local variable used in the abundance null model. 

 

Local and Landscape Data 
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  The local and landscape data collected for use in gravity modelling showed high levels of 

variation among the eight sampling locations (Table S2). Pairwise Euclidean distances between 

ponds ranged from 1.381 to 21.958 km, while pairwise stream network distances ranged from 

8.016 to 189.571 km within the Santa Cruz River Basin (excluding Ponds 7 and 9). Maximum 

slope between sites ranged from 18.605 - 41.942 degrees. Additionally, there was notable 

variation in pond area (365.33 - 55,962.95 m
2
) and hydroperiod index (0.17 - 0.82). 

We found significant correlations (r > 0.70) between three pairs of local variables. Two 

graph network metrics, degree and betweenness, were correlated (r = 0.91) along with 

hydroperiod index and the local SAVI measure (r = 0.74). Additionally, local SAVI was 

positively correlated with D. wrightorum abundance estimates from eDNA sampling (r = 0.81). 

There were no significant correlations among the landscape variables used in our gravity models. 

To avoid collinearity and multicollinearity, we omitted local SAVI, degree, and hydroperiod 

from the global model (Table S3). Correlated variables did not occur together in our 

hypothesized models, causing no further omissions.  

 

Gravity Models 

 Model rankings were similar between our three measures of gene flow (Table 2). The 

stream distance model was the most supported based on AICC and BIC rankings for all three 

measures of gene flow and accounted for around half of the evidence weight in each of our 

model sets (Table 2). Within this model, both Euclidean distance and stream network distance 

significantly impeded gene flow, with 95% confidence intervals that did not overlap zero (Table 

4).  
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The predation model was ranked higher than the isolation by distance model according to 

AICC but lower according to BIC for all measures of gene flow (evidence weights 0.13 and 0.12 

respectively, Table 2). Within this model, Euclidean distance significantly impeded gene flow, 

similar to the stream distance model (Table 4). Bullfrog presence facilitated gene flow, though 

not significantly in this model (95% confidence interval overlapping zero, Table 4). Second to 

stream distance, the isolation by distance model was more highly supported than all other 

candidate models in our model set (0.18 - 0.20 evidence weight, Table 2).  

 There was little support for hypothesized relationships between gene flow and 

topographic variables, parameters relating to productivity, other measures of water availability, 

or graph network statistics (Table 2). Additionally, our abundance null model containing distance 

and D. wrightorum eDNA estimates to represent the species’ abundance at a site was not highly 

supported in this framework (Table 2). 

 

Discussion 

Our results highlight the utility of applying multiple analytic methods and including both 

local and landscape characteristics to inform the functional connectivity of species across a 

landscape. By analyzing a more complete set of hypotheses, relative importance of local and 

landscape attributes can be determined and better inform management action to the most 

pertinent scale. We found that stream network distance is the most supported driver of functional 

connectivity for D. wrightorum when competed against a suite of both local and landscape 

characteristics in our hypotheses. Based on our analysis for this species, landscape-level 

connectivity along stream corridors may be more important than local factors. However, it is 

worth noting that our limited sample size may not have captured all biologically important 
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variables. We also found a novel correlation between eDNA abundance estimates of D. 

wrightorum and Ne estimates from microsatellite genetic data. This finding provides new insight 

on the dynamics of populations and allowing assessment of local variables and other 

demographic processes not captured in modelling of functional connectivity alone. 

 

Stream distance best explains functional connectivity of D. wrightorum 

 We found support for stream distance as the determinant driver of D. wrightorum 

functional connectivity within the HMCH region. Stream corridors provide access to water and 

vegetative cover to dispersing individuals that may aid in preventing desiccation and mortality 

when traversing the landscape (Thorson 1955; Pilliod et al. 2015). Considering the study area is 

in the arid southwestern United States, which exhibits variable precipitation patterns (Higgins et 

al. 1997), water is a limiting resource for D. wrightorum survival and dispersal. However, there 

was not support for models including other direct measures of water availability (water model, 

hydroperiod model, landscape moisture model) or vegetation (vegetation model). Additionally, 

the NHD used in creating this model is at a 1:100,000 scale which is likely coarser than what D. 

wrightorum are experiencing on the landscape. This suggests that either D. wrightorum 

individuals are using more prominent stream corridors for dispersal, or that river basins play an 

important role in shaping functional connectivity through other processes.  

 The finding that stream network distance was highly supported as an explanatory variable 

for functional connectivity, is contrary to results of resistance modelling on this same dataset 

(Mims et al. 2016). In the previous study, a resistance surface was created by buffering streams 

in the study area by 100 m and applying a low resistance value (1) within stream buffers and a 

high resistance value (100) outside of stream buffers, representing the hypothesis of low 
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resistance to dispersal along riparian corridors for D. wrightorum. Using this method, models of 

isolation-by-distance and slope influencing functional connectivity received more support than 

that for stream corridors. The difference in results while using the same genetic dataset is likely 

due to major differences between the two methods. Even within a single method, differing 

parameterization of resistance surfaces can influence outcomes (Peterman et al. 2019). 

Therefore, major differences between gravity models and resistance surfaces such as model 

transformations, model composition, or parameterization of the landscape could explain 

differences in these results. 

While the stream distance model better explained functional connectivity than the 

isolation by distance model, it is clear that Euclidean distance between ponds plays a large role 

in the functional connectivity of D. wrightorum. These results support the findings in Mims et al. 

(2016), which found that distance was a strong driver in D. wrightorum connectivity. Isolation 

by distance is common in ectothermic animals (Jenkins et al. 2010), especially amphibians 

(Beebee 2005), and distance has been shown to influence the genetic structure of other 

amphibian species in the same region (Mims et al. 2015).  

 

eDNA and landscape genetics 

Prior to the incorporation of eDNA into our modelling, we were interested in whether 

eDNA abundance estimates, based on concentration values, could be a proxy for local abundance 

of D. wrightorum and other sympatric, possibly interacting species. Environmental DNA is 

becoming a widely used tool for conservation and management applications (Goldberg et al. 

2016), with the frontier of eDNA research aiming to gain population-level information from 

environmental samples. Many studies have attempted to relate eDNA abundance to density or 
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biomass estimates (Pilliod et al. 2013; Biggs et al. 2015; Klymus et al. 2015); however, 

published relationships indicate low predictive power. To evaluate this, we assessed the 

relationship between eDNA and Ne estimates from microsatellite data and found a high level of 

correlation between the two. This shows an interesting convergence of different genetic 

techniques currently used to estimate local abundance and provides new insight toward the 

usefulness of eDNA as a tool for understanding populations.  

To our knowledge, this is the first study to incorporate eDNA data as explanatory 

variables into landscape genetics research. While we did not find support for the influence of 

these species with regard to functional connectivity, D. wrightorum abundance estimated from 

eDNA was positively correlated with our measure for local vegetation (SAVI). Though these 

variables separately were not shown to significantly influence functional connectivity in the 

gravity model framework, there was some evidence that canopy cover influences functional 

connectivity by Mims et al. (2016); this relationship may be indicative of other local 

demographic processes. For example, this correlation may indicate how D. wrightorum uses 

habitat for dispersal, especially considering the species’ reliance on emergent aquatic vegetation 

for calling and laying egg masses (Stebbins 1962). Local vegetation may generally be more 

indicative of D. wrightorum abundance at wetlands instead of explaining gene flow across the 

landscape, which provides valuable insight to the ecology of the species and can be used to 

inform conservation management. 

There was some support for the predation model, indicating that bullfrog presence may 

influence functional connectivity in this species. However, the direction of bullfrog influence in 

the model was opposite of what we expected (positive effect on gene flow). This result is 

surprising, given the substantial negative effects of bullfrogs upon native herpetofauna in the 
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region (Rosen & Schwalbe 1995; Schwalbe & Rosen 1988) and may indicate that this variable is 

collinear with another factor that was not measured or may reflect a process other than predation. 

For example, other anuran species have shown significant morphological and behavioral 

differences in the presence of predators (Lardner 2000, Relyea & Werner 2000, Relyea 2002). 

Though increased dispersal from ponds housing predators have not been directly shown, there is 

evidence for the possibility of this through morphological changes such as developing longer 

legs (Relyea 2001). Alternatively, the presence of bullfrogs may produce a sink population that 

could be forcing individuals to disperse. It is worth noting that only three of the eight sites in our 

analysis were positive for bullfrog eDNA, and we may have lacked the statistical power to reveal 

subtle effects of bullfrog abundance upon D. wrightorum functional connectivity. 

Despite the promise of eDNA to evaluate community assemblages and include species 

interactions such as predation into landscape genetics studies, there are also some limitations to 

its use in this context. DNA degrades rapidly in the environment (Strickler et al. 2015) and 

therefore is only indicative of contemporary species presence. This constraint makes it possible 

to have a temporal mismatch between measured variables (species interactions) and processes of 

interest (gene flow). It is also possible that we are faced with a similar temporal mismatch with 

landscape data and gene flow in landscape genetics studies depending on the temporal scale of 

reproductive attributes of the focal species and that of landscape change. However, DNA can be 

preserved in sediments far longer than in exposed environments and provide a more historic view 

of community assemblages (Bálint et al. 2018). Future studies incorporating eDNA in landscape 

genetics may want to consider samples from sediments to avoid potential disparity of 

contemporary eDNA samples with measures of gene flow.  

 



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer Nature B.V..

23 

 

Combining local and landscape attributes to inform functional connectivity 

Although we did not find strong support for both local and landscape characteristics 

influencing functional connectivity of D. wrightorum, our use of eDNA yielded additional 

interesting results such as the relationship between D. wrightorum abundance and patch-level 

vegetation. Combining information on both local and landscape processes in future landscape 

genetics studies allows for identifying drivers of functional genetic connectivity operating across 

scales. Among amphibians, both local and landscape features have been found to be major 

drivers of functional connectivity across several species and landscapes (Murphy et al. 2010; 

Watts et al. 2015; Robertson et al. 2018). Similar to our findings, other studies show that water, 

and particularly streams are important to functional connectivity of amphibians (Spear et al. 

2005; Pilliod et al. 2015). Different measures of water availability were strong drivers of 

functional connectivity in all studies involving amphibians and the combination of local and 

landscape variables (Murphy et al. 2010; Watts et al. 2015; Robertson et al. 2018), though water 

availability may be important in different ways depending on the species and habitat. 

Other studies using this approach to study functional connectivity of amphibians have 

found support for both local and landscape variables. For example, one study of boreal chorus 

frogs (Pseudacris maculata) in Colorado found that local and landscape measures of moisture 

availability, landscape topographic complexity, variation in annual precipitation, and underlying 

connectivity of wetlands were important for functional connectivity (Watts et al. 2015). Another 

study on sister taxa frogs (Rana pretiosa and R. luteiventris) in Oregon and Idaho found similar 

results regarding functional connectivity (Robertson et al. 2018). For both species, landscape 

measures of temperature and moisture had the most impact on functional connectivity, though 

there was variation among regions studied. In the central Oregon and Blue Mountain areas, both 
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local hli and elevation and metrics of landscape moisture and temperature were drivers of 

functional connectivity (Robertson et al. 2018). Finally, functional connectivity of R. luteiventris 

in Idaho was best explained by local measures of productivity and predation and landscape 

measures of temperature/moisture and topography (Murphy et al. 2010).  

We also see a similar pattern of the importance of including both local and landscape 

variables to explain functional connectivity in other taxa. In a study involving northern Idaho 

ground squirrels (NIDGS; Urocitellus brunneus) and southern Idaho ground squirrels (SIDGS; 

U. endemicus), both local and landscape characteristics were influential, though variables 

important for functional connectivity differed between species (Zero et al. 2017). NIDGS 

functional connectivity was driven by local productivity (hli) and landscape topographic 

complexity (elevation relief ratio (err), whereas local productivity (frost free period, hli, growing 

season precipitation), landscape topographic complexity, and barriers (err and impervious 

surfaces) were important for SIDGS. Additionally, functional connectivity among flowering 

dogwood (Cornus florida) was best explained by a combination of maternal plant (patch) 

characteristics and landscape attributes (Dileo et al. 2014). Both local characteristics (floral 

output, degree of canopy clumping over the maternal tree) and landscape characteristics (open 

canopy between maternal tree “patches”, occurrence of deciduous canopy between maternal tree 

“patches”) were important for functional connectivity of flowering dogwoods (Dileo et al. 2014). 

 

Conservation and management significance 

Understanding gene flow, and in turn population dynamics and functional connectivity on 

the landscape, is vital for species conservation initiatives in the face of stressors such as habitat 

loss (Hanski 1998). Habitat fragmentation or other disruptions in functional connectivity can 
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alter dispersal dynamics and may lead to isolation and increased extinction risk of affected 

species (Marsh and Trenham 2000). Our analyses indicate that the functional connectivity of D. 

wrightorum is best explained by stream network distances between sites. Conservation action for 

this species currently occurs at the scale of ponds and pond-level restoration, which includes 

invasive species removal and manipulation of hydrology. However, management for the species 

may improve by additionally focusing on connecting the landscape between sites to improve the 

functional connectivity of D. wrightorum. Though we recognize the general difficulty of 

managing hydrology across the landscape, stream restoration or protection may help maintain 

connectivity among populations of this species as well as provide benefits to entire biotic 

communities that rely on scarce water in an arid landscape. However, stream systems may also 

provide pathways for non-native species in this system such as bullfrogs and crayfish, 

necessitating any restoration to also be coupled with invasive species monitoring and 

management to benefit native fauna. Additional considerations such as the correlation between 

D. wrightorum abundance and local vegetation that may help prioritize other demographic 

processes should also be considered to complement conservation action for gene flow and 

provide a holistic management plan for this species.  
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Table 1. Hypotheses names, parameters, predicted direction of relationship between variables and gene flow, and ecological 

justification tested using gravity models for functional connectivity of D. wrightorum. In addition to edge and node variables, 

Euclidean distance is also included in each model. Predicted relationships denoted as (+) for increasing gene flow or (-) for impeding 

gene flow. DYWR eDNA denotes D. wrightorum eDNA abundance estimates. 

Hypothesis Parameters Justification 

Predation Edges: None 

Nodes: Bullfrog (-) 

Predators at ponds may reduce larval and adult survival at a site and subsequent gene flow 

(Rosen & Schwalbe 1995). 

Water Availability Edges: Mean cti (+) 

Nodes: Hydroperiod (+), pond 

area (+) 

Amphibians are physiologically water limited at breeding sites and across the landscape, 

especially in desert environments (Chew 1961; Thorson 1955). 

Hydroperiod Edges: None 

Nodes: Hydroperiod (+) 

Given the unpredictable nature of these precipitation events in the HMCH region (Higgins et 

al. 1997), the availability of water at breeding sites is likely an important factor in breeding, 

larval development, and the stability of local subpopulations, as has been shown for other 

arid-land amphibians (Pechmann et al. 2989; Amburgey et al. 2012). 

Landscape Moisture Edges: Mean cti (+) 

Nodes: None 

Amphibians have stringent water requirements (Buckley & Jetz 2007) and must conserve 

water when dispersing in a terrestrial environment due to desiccation risk (Thorson 1955). 

Stream Distance Edges: Streamdist (-) 

Nodes: None 

Dispersal may occur along stream corridors to avoid desiccation (Burbrink et al. 1998; 

Thorson 1955; Trumbo et al. 2013). 

Topography Edges: Max slope (-)  Topography may act as a barrier to gene flow in amphibian species (Funk et al. 2005) such as 
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Nodes: rsp (+) steep slopes (Richards-Zawacki 2009). Ponds higher in RSP may produce more migrants that 

settle in lower ponds by means of easier movement downhill than uphill (Oldham 1967; 

Malonza & Measey 2005; Measey et al. 2007) or by flash flooding caused by monsoons. 

Stepping Stone Edges: None 

Nodes: Betweenness (+) 

Wetlands within a network may act as stepping stones, facilitating dispersal among occupied 

wetlands (Fortuna et al. 2006). 

Connectedness Edges: None 

Nodes: Degree (+) 

Wetland structural connectivity is important in determining the pattern of functional 

connectivity in some amphibians (Ribeiro et al. 2011). Therefore, a particular breeding 

pond’s level of connectedness within a larger network of all intermittent wetlands in the 

HMCH region may influence functional connectivity of D. wrightorum.  

Vegetation Productivity Edges: SAVI (+) 

Nodes: SAVI (+) 

Vegetation along network edges should facilitate dispersal by inhibiting solar radiation and 

evaporation, lowering the threat of desiccation and increasing gene flow (Spear & Storfer 

2008; Mims et al. 2016). At the node level, D. wrightorum is associated with abundant 

vegetation at breeding sites (Stebbins 1962; Gergus et al. 2005b) 

Productivity Edges: None 

Nodes: hli (+), SAVI (+) 

Primary productivity can be a constraint in species richness (Buckley & Jetz 2007) and 

dispersal (Field et al. 2009). D. wrightorum is associated with breeding sites with abundant 

vegetation (Stebbins 1962; Gergus et al. 2004b) and hli has been used by others to estimate 

patch-level productivity (Murphy et al. 2010). 

Isolation by Distance (IBD) Edges: None 

Nodes: None 

The null expectation should conform to isolation by distance given the limited dispersal 

ability, strong site fidelity of many amphibians (Berven and Grudzien 1990; Pittman et al 

2008), and support for IBD from Mims et al. (2016) 
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Abundance Null Edges: None 

Nodes: DYWR eDNA (+) 

Larger populations may produce more migrants and act as source populations (Pulliam 1988) 

Global Edges: Max slope (-), mean cti 

(+), mean SAVI (+), 

streamdist (-) 

Nodes: Bullfrogs (-), hli (+), 

DYWR eDNA (+), pond 

area (+), rsp (+), 

betweenness (+) 

Functional connectivity of D. wrightorum is influenced by a combination of all variables 

tested. 
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Table 2. Functional connectivity models, total number of parameters in each model (K), and ML estimated results ranked by ΔAICC 

of DPS. Euclidean distance is included as a parameter in each model and accounted for in K, though not listed individually for each. 

  1-DPS 1-FST 1-linFST 

Model K ΔAICC 

AICC 

Weight ΔBIC 

BIC 

Weight ΔAICC 

AICC 

Weight ΔBIC 

BIC 

Weight ΔAICC 

AICC 

Weight ΔBIC 

BIC 

Weight 

Streamdist 2 0.00 0.43 0.00 0.42 0.00 0.51 0.00 0.49 0.00 0.51 0.00 0.49 

Predation 2 2.45 0.13 2.45 0.12 2.75 0.13 2.75 0.12 2.67 0.13 2.67 0.13 

IBD 1 3.47 0.08 1.45 0.20 4.02 0.07 2.00 0.18 3.98 0.07 1.96 0.18 

Hydroperiod 2 3.39 0.08 3.39 0.08 5.41 0.03 5.41 0.03 5.37 0.03 5.37 0.03 

Stepping Stone 2 3.81 0.06 3.81 0.06 5.36 0.04 5.36 0.03 5.30 0.04 5.30 0.03 

Landscape 

Moisture 

2 4.59 0.04 4.59 0.04 4.33 0.06 4.33 0.06 4.35 0.06 4.35 0.06 

Vegetation 3 5.18 0.03 7.20 0.01 5.55 0.03 7.58 0.01 5.57 0.03 7.60 0.01 

Global 11 5.25 0.03 23.48 0.00 5.46 0.03 23.69 0.00 5.37 0.03 23.60 0.00 

Connectedness 2 5.26 0.03 5.26 0.03 5.63 0.03 5.63 0.03 5.59 0.03 5.59 0.03 

Abundance Null 2 5.41 0.03 5.41 0.03 6.02 0.03 6.02 0.02 5.98 0.03 5.98 0.02 

Water 4 5.60 0.03 9.65 0.00 7.03 0.02 11.08 0.00 7.01 0.02 11.06 0.00 

Topography 3 6.90 0.01 8.93 0.00 7.61 0.01 9.64 0.00 7.54 0.01 9.56 0.00 

Productivity 3 7.39 0.01 9.42 0.00 7.85 0.01 9.87 0.00 7.80 0.01 9.83 0.00 
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Table 3. Environmental DNA sampling results from the eight sampling locations. Results are 

listed as eDNA concentrations normalized by quantitative standards produced independently for 

each species (DYWR denotes D. wrightorum), or as copy number for Batrachochytrium 

dendrobatidis (Bd). 

Sampling 

Location 

DYWR 

(ng/L) 

Bullfrog 

(pg/L) 

Bd 

(copy 

number) 

Tiger 

Salamander 

(ng/L) 

Virile 

Crayfish 

(ng/L) 

1 0.248 3.454 0.000 0.000 0.000 

3 18.703 0.000 0.000 0.000 0.000 

4 0.050 1.841 2133.3 0.000 0.000 

6 0.666 0.749 0.000 0.000 0.000 

7 0.956 0.000 0.000 0.000 0.000 

8 0.518 0.000 0.000 0.000 0.000 

9 3.811 0.000 0.000 0.000 0.000 

10 0.031 0.000 0.000 0.000 0.000 
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Table 4. Parameter estimates, standard errors (SE), and 95% confidence intervals (CI) for the top 

performing models based on AICC and BIC ranking, evaluated using REML. Parameter 

estimates and confidence intervals shown were calculated from log transformed, standardized 

data, and have not been back transformed.  

Gene 

Flow 

Measure 

Parameter β SE 95% CI 

Stream Distance Model     

1-DPS 

Intercept -0.3480 0.0111 -0.3697 -0.3263 

Stream Distance -0.0077 0.0033 -0.0142 -0.0012 

Distance -0.0147 0.0051 -0.0247 -0.0047 

1-FST 

Intercept -0.0439 0.0040 -0.0518 -0.0359 

Stream Distance -0.0028 0.0011 -0.0051 -0.0006 

Distance -0.0040 0.0018 -0.0075 -0.0006 

1-linFST 

Intercept -0.0465 0.0045 -0.0553 -0.0378 

Stream Distance -0.0031 0.0013 -0.0057 -0.0006 

Distance -0.0044 0.0020 -0.0083 -0.0005 

Predation Model     
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1-DPS 

Intercept -0.3199 0.0154 -0.3500 -0.2897 

Bullfrogs 0.0046 0.0028 -0.0009 0.0101 

Distance -0.0156 0.0053 -0.0260 -0.0052 

1-FST 

Intercept -0.0332 0.0056 -0.0442 -0.0222 

Bullfrogs 0.0018 0.0010 -0.0002 0.0038 

Distance -0.0043 0.0018 -0.0079 -0.0007 

1-linFST 

Intercept -0.0347 0.0062 -0.0468 -0.0226 

Bullfrogs 0.0020 0.0011 -0.0002 0.0042 

Distance -0.0047 0.0021 -0.0088 -0.0007 

Fig. 1 Known geographic extent for D. wrightorum Arizona, U.S.A. (IUCN, A, B). The 91 ponds 

found within the HMCH region (C) were used in the network analysis and include the eight sites 

from which genetic and eDNA sampling occurred (population numbers matched to the 10 sites 

assessed by Mims et al. (2016)) 

Fig. 2 Correlation (r = 0.812, p = 0.014) between qPCR-estimated D. wrightorum eDNA 

concentrations based on a quantitative standard curve, created from diluted tissue samples and Ne 

estimates from microsatellite data (Mims et al. 2016), with best fit line and 95% confidence 

interval shaded in gray 
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