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Abstract The Verified Software Toolchain builds foundational maehahecked proofs
of the functional correctness of C programs. Its prograriciogerifiable C, is a shal-
lowly embedded higher-order separation Hoare logic whsgbroved sound in Coq
with respect to the operational semantics of CompCert Q.lihis paper introduces
VST-Floyd, a verification assistant which offers a set of sertomatic tactics helping
users build functional correctness proofs for C progranrsyigerifiable C.

1 Introduction

In our interconnected world, software bugs can serioustymomise our safety and
security. Protection mechanisms such as operating systeymo libraries, and lan-
guage runtimes can protect buggy programs from each othetrthbse protection
mechanisms are also software, often written in low-levelgpamming languages
such as C. To provide adequate safety or protection, thésease componentsin C
must be functionally correct.

To assure functional correctness of C programs, we can uascHigic [16] and
its extensions such as separation logic [29]. But such ctress proofs are large
and complex enough that we cannot trust them unless they achine-checked.
The Verified Software Toolchain (VST) is a set of verified tothat enable users
to formally verify the functional correctness of C progransng Hoare logic: at
bottom, the CompCert verified C compiler from INRIA; abovattitore Verifiable
C, a separation logic proved sound in Cog with respect to tleadipnal semantics
of CompCert Clight; above thaterifiable G a derived separation logic that supports
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proof automation; above that, a proof automation systeradisethe user in applying
the program logic to the program. The users’ proofs, the dnass of the tools, and
the correspondence of the compiled program to the formaletade all machine
checked.

In this article we explain VST-Floyd, which includes a praaftomation system
for interactively constructing functional correctnessgfs of C programs, along with
the special-purpose derived Hoare rules and predicatatpsrof Verifiable C that
support this proof automation. Appet al. [3] describe an early prototype of VST-
Floyd, but in this paper we describe many new techniques|tsssnd engineering
(every feature described in sections 3-9 is either comlatav or substantially im-
proved) since that publication. We design a canonical faraseertion for automatic
generation of strongest postconditions. We offer sepgardtigic predicates to de-
scribe data of C aggregate types stored in memory. The wislera acts as a tactic
library enabling our users to proform forward verification.

This system has been used to construct correctness proséveifal real-world
C programs, including components of various cryptographiaries (see §11). Our
Coq development can be found online at,

https://github.com/PrincetonUniversity/VST/reledtzgyv1.9

1.1 Hoare logic

Hoare logic is a formal system for reasoning about programectness. It uses as-
sertions to describe programs’ behavior: a precondiftpa progrant and a post-
condition @ form a Hoare triple{ P} ¢ {Q}. The triple means that for any initial
states and ending statg if s E P (“s satisfiesP”), then runninge from s is safe (in
particular, it cannot result in undefined behavior); andtérminates in state then
t E Q. Our tools implement a Hoare logic pértial correctnessmeaning that may
loop infinitely.

Hoare logic is compositional, i.e. a Hoare triple of a pragrean be proved by
the Hoare triples of its components. For example, here isulegor sequential com-

position:
(P} {@QF {Q} e {R}
{P} ciye2 {1}
Because of this compositionality, the proof of a Hoare &ighn be written as a dec-
orated program. Figure 1 shows the decorated program aprbité tree.

Using assertions and partially decorated programs tatifites program correct-
ness has already been widely used in software development.

HOARE-SEQ

1.2 Machine checkable proofs

Our previous work, core Verifiable C [3, Part Ill], is a shallg embedded higher-
order separation Hoare logic formalized in Coq. Coq is agrattive, programmable
proof assistant in the tradition of Edinburgh LCF: userddproofs interactively by

applying tactics, transitioning from a proof goal to zeraware subgoals that imply
the original proof goal. When all proof goals are solve@eal command checks the
correctness of the user-constructed proof.
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{XI =anly] =t}

zZ = X,
{IXI=anlyl =bAlz] =a}
X =y,
{IxXI=bAlyl =bn[z] =a}
y =z
{IxXI=brlyl =anlz] =a} {Xl=an.} {.Alyl=bA..}
X =Yy y =2
{XI=bA..} {.Alyl=anr.}
{Ix] =anly] =0t} {XI=aAy] =bA[z] = a}
zZ =X X =y, y =1z
{IxXI=anlyl =bA[z] =a} {IxXI=bAy] =aAz] =a}

{IxXI=anlyl=0btz =x; x =y; y =z {[x]=bAlyl=anz] =a}

Fig. 1: Decorated program and proof tree

Verifiable C is used to prove Hoare triples of C programs.tFire front-end of
the CompCert C compiler [25] parses and translates the Gamomto an abstract
syntax tree irClight, a variant of C in which (for example) side-effects have been
factored out of subexpressions into separate commandsugédrewrites gunction
specificatiorfor each function, giving the function’s precondition arasfrondition.
Then the Hoare triple of each Clight function body is a theote be proved in Coq;
this proof goal can be broken into Hoare triples of smallegpam fragments (Coq
subgoals) by applying structural Hoare rules (such@sRE-SEQ) using Coq tactics
in Verifiable C. Triples of atomic C commands (such as ass@rtrstatements) can be
proved using Verifiable C's atomic Hoare rules. el commands at the end check
the correctness, i.e. proofs of Hoare triples by VerifiablenCoq are all machine
checked.

Moreover, Verifiable C is proved sound [3, Part VI] with respt® the operational
semantics of Clight, formalized in Coq. The back end of Coenp@anslates C light
to assembly language, and is proved correct w.r.t. the tipeeisemantics of Clight
and assembly. Thus, the trusted base of functional coesstproofs by Verifiable
C contains only Coq’s kernel (proof checker) and the forrealiassembly-language
semantics for a target machine such as x86, ARM, PowerPCISC.

Verifiable C is an extremely expressive program logic: itlisgher-order impred-
icative concurrent separation logic. That means it canoeabout function point-
ers, higher-order predicate quantification, data abstraobbject protocols, shared-
memory concurrency [26], and pointer data structures wittiation—all with re-
spect to specifications of functional correctness in a garprrpose logic, namely
Coqg. No other mechanized program logic for C that we know of thés level of
expressiveness and flexibility.

The basic principles of VST function specifications and thiersiness of Verifi-
able C have been described elsewhere [3]. In this paper wis fat how to automate
proofs by forward interactive symbolic execution.
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1.3 VST-Floyd

Using Verifiable Cdirectly to verify C programs would be quite inconvenient! There
would be two main problems: (1) Coq’s notion of tactic-diegt backward proof,
when applied to Hoare logic, would be like writing a proofdrgsuch as in Fig. 1)
from the bottom up. This does not correspond well to the ogner’s intuition
of executing the program in statement order. (2) C’s seroafiiis many subtleties
and corner cases. Verifiable C’s primitive proof rules haamyside conditions to ac-
count for these issues. Satisfying all these conditionkldoeiquite tedious, requiring
long proofs in Cog.

In this article, we present VST-Floyd, a lemma and tacticalifp which solves
these two problems and helps users build Hoare triples iifiadele C.

The most important feature of VST-Floyd is its forward pretfle. Fig. 2 demon-
strates a tiny example of it. One step of forward verificatieduces the proof goal
in 2(d) to 2(e) and another step reduces 2(e) to 2(f). Thegaosimulates how one
might write a decorated program: from 2(a) to 2(b) and frob) 2§ 2(c). During this
process, the shaded lines in 2(a-c) represent Hoare trigleeh are not yet proved.

The VST-Floyd user does not see the decorated programlgjrastin Fig. 2(a—
c). Instead, one sees the corresponding proof goals in)2(d-f

{xX]=anly] =t}
z ;

= x a: val

b: val

{IX] =anly] =0}

X =Y,

y =2;
{xI=0Alyl =a}

@)

{IXI =anly] =b}

z = x;
{Xl=arlyl=bA[z] = a}

X =Y,

y =2z,
{IxI=bnlyl =a}

(b)

{[x] =anly] =0}
z = x;
{IxXI=anlyl =bA[z] =a}
X = y;
{xI=bAlyl =bA[z] = a}
= Z.:

y ;
{IX] =b Ayl = a}

©

Z =X, X =Y,y =2
{IxI=bAlyl =a}
(d)

a: val

b: val

{IxXI=anly] =bA[z] =a}
X =Y,y =12

{IxI=bonlyl =a}
(e)

a: val
b: val

{xXI=bAlyl =bA[z] =a}
y =z
{IxI=bAlyl = a}

()

Fig. 2: Forward proof style
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VST-Floyd helps automate forward verification. In the exéagbove, users need
not write the intermediate assertions in Fig. 2. Previoghn@ues for generating
strongest postconditions [13] introduced an existertidlind the “old” value of a lo-
cal variable. Oucanonical formmakes this simpler by making the old value explicit
in the precondition, so that no existential is introducea. &dtomatically generate
the strongest postconditions of atomic commands—uwithxistentials—along with
proof terms which certify the corresponding Hoare triples.

To enhance the usability of our verification tool, we provalseparation logic
predicatep d for writing concise assertions. This predicate says, dafeC type

t is stored at addregs Here,t can be any C type including integers, floats, pointers,
st ruct,uni on, and arraysst r uct , uni on, and arrays can be nested.

Also, we provide useful tactics to manipulate Hoare tripteg ST-Floyd. Rather
than pushing symbolic execution (akin to strongest-paslitmn generation) all the
way through a program and then dealing with an intractabdefpgoal at the end,
one can use the rule of consequence to adjust the asserdittmsdm commands:

PP {P}c{Q}
{P} c{Q}

The side conditior® - P’ is a separation logic entailment. VST-Floyd provides tac-
tics to simplify (and sometimes even solve) entailmenterbsnay apply domain-
specific theorems in these entailment proofs. Besides, M8yd also provides tac-
tics to manipulate quantifiers, separation logic subfoemugtc., in proof goals.

We have engineered Floyd to ké#icient.Earlier versions of our tactics were so
slow that it was impractical to verify real programs, so warfeed how to reformulate
our Hoare lemmas and tactics for faster verification.

We organize the rest of this article as follows. 82 briefly suamizes Verifiable
C, our previous work. 83 describes VST-Floyd's data-stiieeassertions; 84 intro-
duces the canonical form of our Floyd assertion languageh8®s how to generate
strongest postconditions of atomic commands. 86 and &Gdnte the interface and
implementation of the tactics that perform forward verifica. §8 introduces the
tactics to perform structural proof rules. §9 presentddad¢db manipulate and solve
separation logic entailments. 8§10 and 811 describe thefus8BFloyd in practice.

HOARE-PRE

2 Background: Verifiable C

Verifiable C is a separation logic proved sound with respetiié operational seman-
tics of CompCert Clight, which is an early-stage intermeglianguage of the Comp-
Cert verified optimizing C compiler. CompCert offers a pramrcalled “clightgen”
to generate corresponding C light programs from a C program.

The syntax of Clight is very similar to C. The key differendbat matter in
this paper are that Clight (1) distinguishes addressalrlahlas and nonaddressable
variables, (2) unifies different loop commands, and (3) haside effects nested
inside subexpressions.
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In the C language, one can take the address of vanablethe syntax&v. Any
scalar (int, float, pointer) local variable whose addreseiger taken (a property eas-
ily to determine statically) is callegonaddressablell other variables—globals, ag-
gregatesgt r uct , uni on, arrays), and those whose address is taken-addesss-
able Addressable variables are stored in memory, while noreaddble variables are
typically kept in machine registers. We pay attention todifference because, in a
program logic, nonaddressable variables can often bemedsabout by substitution,
instead of the heavyweight mechanism of separation.

CompcCert’s front end unfolds C's looping constructs (fohile, do-while) into
theloop construct of Clight (and of Verifiable C). In particular, @'®r loop is not
an instance of itsvhi | e loop, since theontinue statement jumps to thiecrement
rather than to the loop test. In the commahabp(¢;) ", cis the loop body and
¢; is the increment command. Specificallpti | e (b) ¢”is defined as

loop(;) {if (b) /+skipx/; else break; c}
and‘for (co; b; ¢) c"isdefinedas

co; loop(c;) {if (b) /+skipx/; else break; ¢}

2.1 Verifiable C programs

Almost all Clight constructs can be verified by Verifiable Gthwfour limitations:

A. Verifiable C does not support tlgot o statement.

B. Only primary r-value expressions and primary I-valueresgions are allowed. A
primary r-value expression does not contain any memoryfeleneces or func-
tion calls. A primary I-value expression refers to an adsliasmemory and the
computation of the address does not involve any memory elenetes or function
calls. For example, ik andy are nonaddressable variables of integer typeaand
is a variable of integer array type, themy, x* X, x<=y, a+x, & a[ x + 1])
are primary r-value expressiores 0] , a[ x], a[ x+1], * (a+x) are primary
I-value expressions; araf x] +a[ y] , a[ x] *2,a[ a[ x] ] are not primary ex-
pressions. When the source-language command has nonperpessions, the
clightgen tool automatically factors the command (insgreéxtra assignments to
temporary variables), so the user does Verifiable C prooédstract-syntax trees
that have only primary expressions.

C. Only the following four kinds of assignment commands diaaed:

1. Set command: the left side is a nonaddressable varialltharright side is a
primary r-value expression

2. Load command: the left side is a nonaddressable variabléw right side is
a primary l-value expression

3. Store command: the left side is a primary |-value expogsaid right side is
a primary r-value expression

4. Function call: the left side (if present) is a nonaddrbkesgariable and the
right side is a function call (perhaps wrapped in a cast).
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Again, where the source program contains more generalramsigts, clightgen
factors them into commands of this form before the user ddesiiable C proof.

D. Testexpressions of commands, expressionsriet ur n commands, and argu-
ments in function calls must be primary r-value expressidhe clightgen tool
handles this as well.

Verifiable C imposes these limitations for simplicity of tlegic (seeRemarkat
end of §2.3). And these limitations do not decrease the sspigy of C language:
any nonprimary expression can be split into multiple assignt commands with the
help of auxiliary nonaddressable variables. Program toametions can eliminate
got o commands, although less conveniently.

2.2 Contextual Hoare logic

Verifiable C uses a contextual Hoare triple:A F {P} ¢ {Q, Qork, Qcon, Qret}
to describe the behavior of a C commandlhe contextA contains the types of
all C variables (accessible from the current function) drelgpecifications of all C
functions (that might be directly called from the curremidtion). Four different post-
conditions are involved in one triple because C (or Cligkthantics allows to exit
the execution ot in four different ways: exit normally, exit by br eak command,
exit by acont i nue command and exit by et ur n command.

The triple means that for any initial stateif s = P, then running: under context
Afrom s is safe (i.e., it will not cause a run time error or undefineldwéor) and for
any possible ending stateof this executiont F Q, t E Qprk, t F Qcon OF t F Qret if
the execution ends normally, loy eak, by cont i nue or byr et ur n respectively.

Verifiable C’s program logic is very similar to normal Hoaogic. The structural
Hoare rules are as follows.

A+ {P} C1 {Qa Rk, Reon, Rret}

A+ {Q} C2 {R7 Rork, Reons Rret}

A {P} C1;C2 {R7 Rork, Reons Rret}

PEP Ak {Pl} c {Qa Qbrk, Qcon, Qret}
Atk {P} c {Q7 Qbrk, Qcon, Qret}

SEMAX-SEQ

SEMAX-PRE

Q/ F Q Qérk F Qbrk Qéon F Qcon Q;et F Qret
AF {P} c {Qla Qé}rk’ Qé:onv Q;et}

Ak {P} c {Q7 Qbrk, Qcons Qret}

SEMAX-POST

A F {P A [[b]] = true} C1 {QaQbrh Qcon, Qret}
A F {P A [[bﬂ = false} C2 {Qa Qbrk, Qcon, Qret}

SEMAX-IF -
A F{P Atcexpr(A,b)} i f (b) c1 el secs {Q, Qurk, Qcon, Qret}
A F{P}C{P/,Q,P/,Qret}
A F {Pl} Ci {PvJ-aJ-aQret}
SEMAX-LOOP

A F {P} l oop (Ci) c {Qa Qbrk, Qcon, Qret}
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We use[e] to represent the value of expressioin the current local-variable
state; since is a primary r-value then it is independent of memory. Howgveight
still fail to evaluate if it refers to an uninitialized locahriable or (e.g.,) divides by
zero. The functioftc_expr( A, e) “type-checks” the expressiaenif tc_expr(A, e) then
e is a primary r-value expression and the evaluation doeswobie undefined behav-
ior. Furthermoretc_expr is efficient in most cases, what the assertiorexpr(A, e)
computes to is simply true.

Similarly, whene is a primary I-value expression, we uf&e] to represent the
address it evaluates to, atedivalue(A, e) typechecksce.

2.3 Separation logic

Separation Hoare logic is an extension of Hoare logic desidor programming lan-
guages with explicit memory manipulation. To support caneet reasoning about
pointer (and array-slice) manipulation in C, Verifiable Giiseparation logic.

Separation logic adds separating conjunctiémthe assertion language. Suppose
program states can be represented as pairs of stack (adiufrctin local variables to
values) and heap (also called memory, a partial functiomfaoldresses to valués)
then the semantics of separating conjunction is definedlasvi

(s,h) E P xQ iff there existh; andhs s.t.
hi1® hy = h, (S,hl) EP and(s,hg) EQ

whered represents the disjoint union of heaps. Intuitivdlyi @ is satisfied on a
piece of memory if it can be split into two parts, one of whictisfies P and the
other satisfies).

Separation logic has two advantages over normal Hoare:logic

First, separation logic allows for a concise representatibnon-aliasing. For
example,P; x P, x ... * P, claims that these assertions are satisfied andisjoint
pieces of memory. In propositional logic, thén — 1)/2 antialiasing claims might
require a quadratically long formula.

Second, separation Hoare logic has an extra Hoare rulerdh@efrule, which
enables one to prove a triple locally and use it globally.

AFA{P} c{Q, Qork, Qcon, Qret}  Closedwrt modvarge, )
At {F*P} c {F*QaF*QbrkaF*QCOHaF*QI’et}

The following are Hoare rules for atomic commands in Verigab:

SEMAX-FRAME

P (tc_expr(A,e) A [e] =v)
A A{P} x=e {F/.[x]=vAP[z'/x],L, L, L}

SEMAX-SET

Pt (tclvalue(A,e) A [&e]=p A pr—ov * T)
AHA{P} x=e {F2'.[x] =vAP[z'/x],L, L, 1}

SEMAX-LOAD

1 The “heap” in Verifiable C is actually a step indexed model @i®Cert's memories, following
Hobor et al. [17].
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P - (tclvalue(A,e1) A [&e1] =p A tcexpr(Q,e2) A [e2] =)
AF{Pxp— _} e;=es {Pxpr—wv, 1, 1 1}

Here,p andv range over terms that are independent of program states; v
is a separation logic predicate which describes a heapstorgsbf only one single
addres9, at which the value is stored. Remember that™represents separation of
memory access, 30— v * ¢ — u implies thatp andgq are different addresses. These
rules can be applied without needing to separately applyréme rule, because of
thexT in SEMAX-LOAD and thePx in SEMAX-STORE

SEMAX-STORE

Remark.In §2.1, we only allow 4 simple kind of assignment commanadbsamly al-
low primary r-value expression outside assignment commabdr separation Hoare
logic rules benefit from this setting: evaluations Ik§ and[&e¢] are heap indepen-
dent and only one memory block (describediby- v) is critical for every load/store
command.

2.4 Shallowly embedded logic

Verifiable C is a program logic shallowly embedded into Cagother words, every
assertionP is a predicate on stack-heap pdir§he satisfaction relation is defined
straightforwardly:
(s,h)EP == P(s,h)
Shallow embedding enables Verifiable C to represent quardifin the assertion
Vo : A. P(x)

P has type(A — assertion and the universal quantifier in the object language can
be directly defined as follows:

Vo : A. P(x) == As:stack Ah:heap foranyz: A, P(z,s,h)

Notation Distinction: In order to distinguish connectives in object language and
metalanguage, we will always use symbals 4, *) in object language (separation
logic assertions) in this paper, while English words (“ardt”, “for all”) will rep-
resent metalanguage (Coq) connectives.

It is easy to do natural deduction with quantifiers in a shdlfeembedded logic.
For example, the following is the generalization rule fa tiniversal quantifier for-
malized in Coq.

Lemma allpright: foral AP Q, (foralla: A,P F(Qa)) — P FVa A Qa.

In a Coq proof scenario as belopply allp_right; intro a), a tactic in Coq, will turn
the proof goal on the left into the proof goal on the right.

2 Readers can understand the typePolis stack— heap— Prop. But actually, this predicate must be
monotonic w.r.t. the step indexing, i.e. we define it Coq agpeddent pair of a predicate and a proof of
monotonicity [3, Part V].
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Itis particularly convenient to use variables of the megaldo represent variables
of the object language. In comparison, in a fully deeply eddeel logic one might
have to write the generalization rule for universal quagtifias,

I'a:A|PFQa/x] végl
[|PFvz:A Q

in which ¢ and all other variables in Coq’s proof context)(are symbols of object
language. But the variablein allp_right is a Coq variable, i.e. a metalogic variable
and object logic constant.

Using this design, the only object logic variables in VelifaC are C program
variables. All other variables in paper proofs are fornedizn Coq as metalogic
variables. For example, o08EMAX_SETrule is formalized as follows:

Theorem semax.set:
forall A (P: assertion) x e (v: val),
P Htceexprie) AJe] =v — A F{P}x:=e{EXX:val [x] =v A P[X/x]}.

Here, the termv is formalized as a Coq variable since it represents valuepi@ndent
of program states. The terRix’/x] is semantic substitution, i.e.

Plx'Jx] = \(s, h).P(s[x’/z], h)

2.5 Unlifted logic: stack-independent heap predicates

In the separation logic of Verifiable C, assertions indepenaf stacks are widely
used in verification. For example, jfandv are values, thep — v is a predicate
independent of stacks. In comparisx] — 0 is not independent of stacks, since it
relies on the current value of the local variakle

In a shallowly embedded logic, these assertions indeperafestacks are just
predicates over heaps. These predicates also form a Sepdoafic, i.e.

h E P x Q iff there existhy andhs s.t.hy ® ho = h,h1 F Pand ha E Q

We call this separation logic unlifted and we call the pregi@mne lifted. The
lifted separation logic and unlifted separation logic hthefollowing connection.

P AQ = Xs : stack. P(s) A Q(s)

P« Q = \s : stack. P(s) x Q(s)
Jx: A. P(z) = As : stack. 3z : A. P(x,s)
Yz : A. P(x) = As : stack. Vo : A. P(z, s)
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Here, all connectives on the left side are logical connestif the lifted logic while
the connectives on the right side belong to the unlifteddoghe situation with other
connectives is similar; we omit them here.

Itis particularly useful to describe data structures usiegp-only (unlifted) pred-
icates. The list or tree you build now, in this function wittese local-variable values,
will still be the same list or tree in some other function watkifferent stack context.
Our canonical forms in Section 4 facilitate this decomposibf assertions into a
stack-relevant part and a heap-relevant part.

2.6 Function specifications and the function call rule

Because of the shallow embedding, function specificationgerifiable C are not
only pre/postconditions but parameterized pre/postdmmdi. For example, suppose
swapi nt has the following signature in C:

void swapint(int = x; int * y);

when we informally writé

swapi nt (x, y) :{[x] = ax*[y] — 0}{[x] — b [y] —a}

we mean that this specification is valid no matter what vaduasdb are instantiated
(the same paifa, b) should be used to instantiate the precondition and the postc
dition). In Verifiable C, its pre/postconditions are actyal

AMa,b). [X] —ax[y] —b and X(a,b). [X] —bx[y]+— a

whose types are/al x val — assertion”.
To indicate that the specification is parameterized, wewille them in the fol-
lowing way:

swapi nt (x, y) :11(a,b). {[x]— ax[y]— b}IxX] — b*[y] — a}
In VST-Floyd, in Coq notation rather than math notation, wad write this a8,

DECLARE swapi nt

WITH a: val, b: val

PRE[XOFint ,yOFint [[x]—ax[y]—b
POST[void][X] — bx[y] — a

3 This specification oswapi nt is not strong enough, because it does not say whether thesvafu
[x] and[y] change or not after running the function. In actual verifazgtwe will use:

swapi nt(x, y) :{[X] =pAlyl=gApr—axqg—bi{pr—bxq+rs a}

4 In actual Coq code, Clight uses identifiers to represent @lvier names and C function names. So,
when we writeswapi nt, the real Coq code is_$wapint” which is an identifier, i.e. a positive number,
in Cog. Similarly, the real Coq code fomt is “tint” whose type isClight.type, a Coq inductive type
representing the syntax tree of C types.
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Here,[x OF i nt ,y OF i nt ] represent the argument list of the function gndi d]
is the return type.

Generally, a specification can be parameterized by vagatfleny type, so a
Verifiable C’s function specification has type

Z (A — assertion) x (A — assertion)
A€Type

where, in our swap exampld, = val x val.
Verifiable C has a rule for each kind of C command; here is thefar function
calls.

Rx P(a)[v /Y] Ftcivalue(A,€) A [€] =7
f(¥) :Ta: A{P(a)}{Q(a)} € A

AF{R*Pa)[v/Y]} x =f(€) {Rx*Q(a)[x/retval], L, L, L}

SEMAX-CALL

2.7 From C command verification to program verification

In Verifiable C, a function specification is verified if the cesponding Hoare triple
of its implementation is proved. Formally,

AF f(X):Ha: A {P(a)}{Q(a)} :=
foranya € A,
AF {P(a) x LocalVar(f)} bodyof f {1, L, L, Q(a)* LocalVar(f)}

Here,LocalVar(f) is the spatial assertion fgt's addressable local variables. For ex-
ample, if this functionf has one local addressable varigblef typei nt (suppose it
is addressable because its address is requested in thefunetly), therLocalVar( f)
is Ju.[&p] — v.

The correctness of a C program is composed from the coretfall its func-
tions. Specifically, the main process of verifying a C prognaith »n functions f;,
f2, <oy fn IS as follows.

1. Use parameterized pre/postconditions to specify atitians. Assume these spec-

ifications are:
fi(x7) : Ma = Ay {Pi(a) {Qi(a)}

Here,X; is the list of the parameter names of functifjn

2. Verify every function, i.e. prove\; - f;(X;) : Ta : A;. {P;(a)}{Q;(a)} for all
i. Here, each; includesall the function specifications of all thg;, plus type
specifications for the local variables ¢f and type specifications for all global
variables.

Since function specifications appear both as assumptionsofitexts) and as
conclusion in the steps above, we have to worry about thfaueltledness of the
self-reference in this verification process. Verifiable @&/es this problem by using
step-indexing [4]; details are hidden from users (the stepxes are in the model by
which the Hoare logic is proved sound, not in the Hoare lotelf). Verifiable C
allows recursive and even mutually recursive C functions.
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3 Concise Separation Logic Predicates For C Aggregate Types

In Reynolds’s original version of separation logic, he [28pd abbreviations like
p — a,b for conciseness, to mean— a x p + 1 — b. To improve the usability
of Verifiable C beyond atomic maps-to predicapes> v, VST-Floyd provides sep-
aration logic predicates for structured data. Specificpllyt—> v or (data_at t v p)

in CocP, says that a datum of C typet is stored at addregs Here,t is the AST
(syntactic description) of any C-language type expressimiuding integers, floats,
pointersst ruct , uni on and array.

The assertiop il is dependently typed: the type oflepends on the value of

t. Whent is astruct, v is a tuple. For example

struct IntPair { int fst; int snd; };

p——ab F p—axp+4—b
I nt Pai r
An integer occupies 4 bytes, so the second field is stored-at4. (The reader
might find p + 4 insufficiently abstract; later we describe an addressirsgrattion,
field.address.) The entailment shown is not an equation! The left sider@gter than
the right side. The left side, our new predicdtga_at, also enforces alignment and
end-of-memory constraints for C structured data. In themeple, alignment enforces
that addresg is a multiple of4 (sizeof(int)) andp+8 is not beyond the end of memaory.
Similarly, whent is auni on, v's type is a sum type. Whenis an arrayyp is a

list. For example,

pT[a;b;c]l—pHa*p+4|—>b*p+8»—>c
n

It's no coincidence that the length ff; b; c] matches the declared array size 3; this is
enforced bydata_at, else the predicate is equivalent to false.

Struct, union and array can be nested. For example, the following prezlidet
scribes an array oft r uct type.

Prraia [(a1,a2); (b1, b2); (c1,c2)]

In principle, there is no need for the abbreviatjpr— a, b; one could write a
separation conjunction of primary mapsto predicates. Btitaut this abbreviation,
when verifying am-statement basic block that manipulates:afield structure, each
assertion (precondition of each statement) will hav@atial conjuncts on which to
do operations that are linear-time (or often quadratie),iteading to quadratic (or
cubic) time for the whole block. Many-field structures arfisiently common in real
programs that this inefficiency is a significant problem—dudiéion to the notational
inconvenience.

5 Our— anddata_at predicates take another argument that we omit in this articbermission-share
indicating read-only, read-write, or various other levaflgccess to the data.
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3.1 Proof theory of datat and fieldat.

Besidey 0, VST-Floyd provides another predicaatef—> v, or (field_at ¢ 7 v p)

in Coq. It says, starting from addregsfollow the path? of field-selection/array-
indexing to arrive at a memory datusof typet. For example,

[fst] [snd]
pr————mab = p : * ,
I nt Pair I nt Pai r I nt Pair
[1] [1;fst] [1;snd]
——————b1,bp = 1 b i b
I nt Pai r[ 3] 1,72 p I nt Pai r[ 3] L*p I nt Pai r[ 3] 2

Thenested field7> is a path of general fields & r uct field, auni on field or an
array subscript).

The proof theory ofiata_at andfield_at has unfolding rules and a reroot lemma,
shown in Figure 3. The unfolding rules composed transfdata_at into separat-

[l

prov =P @
7 — T

pr v = pp f — v if t. f is an elementary type 2)
F T - e

p——v = % <p ——v.f * Spac@ff,p)) if t. f isanonempty struct  (3)
t f6t7 t

7 L TFr L= .
pnT{f.v} _p%v*Spacéff, ) if ¢t. f isaunion 4
P + v= % p n% v; if t. f is an array of positive length 5)
0<i<n

P |L>v = pb? — (6)

t t.f

Fig. 3: Unfolding rules and reroot lemma

ing conjunctions of ordinary maps-to predicates. In Figdirequation (1) says that
data_at is field_at with empty field path. Equation (2) says tliietd_at on elementary
types (integers, floating point numbers, pointers) is emjaivt to an ordinary maps-to
predicate with an offset. Equations (3), (4), and (5) arglsitayer unfolding rules.
Here, we usé.? to represent the type of fieﬁ in t and we use the Space predicate
to implement C’s alignment rules fett r uct fields anduni on fields.

Equation (6) is the reroot equation: its left side is a prattion an internal node
of a “tree” and the right side treats the internal node as & Fmwy example,

[fst]

I nt Pai r - pD[fSt] int “

We usep > f to represent an address with an offset (in Coq, written
(field_address t f p), Wheret is the type ofp). Specifically, we defing > f as
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the starting address of nested ﬁe}ﬁwhen the base address of the entire aggregate
is atp. If

1. pis alegal starting address for typd.e. (1a) there is enough space in heap from
p to store a data of typeand (1b)p is a multiple of the alignment of typee

2. 7 is a legal nested field af i.e. (2a)struct or union fields in the path are fields
in structure definition and (2b) array subscripts are in eang

thenp > 7 is equivalent top + 5(7), Where5(7) represents the offset (f. In
VST-Floyd, we usdield_compatible to represent conditions (1) and (2) above. Thus,

the meaning op > 7 is,

— - . e
p> f =p+d6(f) Iif field_compatible(t, f,p)

- .
p> f = Vundef otherwise

3.2 Coq implementation of daia and fieldat.
In Coq, the predicatg il (or data_at) is typed as follows.

reptype : Clight.type — Type
data.at : forall t : Clight.type, reptype t — val — pred heap

The functionreptype means “representation type”; it translates from a syntas#
scription of a C type to a Caotype. A C array is represented as a Coq lissta uct

is represented as a tuple, andi@i on is represented as a sum. Bydd heap) in
Coq, we mean predicates over heaps.

Using this concepty |i—> v (or field_at) is typed as follows.

nested_field_type: Clight.type — list gfield — Clight.type
field_at : forall (t : Clight.type) (path: list gfield),
reptype (nested_field_type t path) — val — pred heap

Here, ¢gfield means “general field” and a general field can bsta uct field, a

uni on field or an array subscript. Thus a listgffelds represents a path from a root

type to a field type. The functiomested_field_type computes that field type from the
—

given root type and the given path of general fields. We wirife as an abbreviation
of (nested._field_type ¢ 7)

We first define an auxiliary predicaﬁer——;--e v, Of (data_at_rec t v p), as a
recursive function in Coqg. Then we defifield_at as an instance afata_at_rec and
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definedata_at asfield_at with empty field path. Specifically:

Pro-r v = pow if ¢ is integer, float, a pointer
a4 LU TR U R)
pr---—----» {f:v} == pr---» v x Space([f],p)
union t t.f
F--—=% U = % (p-H'-sizeof(t) F--» 'Ui)
t[n] 0<i<n ¢
7 2 | ible; (F
pr—v u= p+o(f) -2 v A field.compatible,( f,p)

t.f

pr—uv :::p%»v

Here,v.f represents the element indexedpwhenv is a tuple. When is a list, v;
represents the element indexediby

We couldlet data_at be defined as a conjunctionddta_at_rec andfield_compatible
directly and let the reroot equation be the definitionfiefd_at. However, treating
data_at asfield_at with empty path enables us to handle both constructionetmlf
in our tactics.

Reptype anddata_at_rec are implemented as Coq functions recursive on Clight
type®. Nested_field_type andnested_field_o set (J(f)) are implemented as Coq func-
tions recursive on the path.

4 Canonical Form

In this section, we introduce the canonical form of assestiwhich plays an impor-
tant role in strongest postcondition generation and oulémpntation of forward
verification tactics.

Our canonical form segregates a separation-logic assédioredicate over stack-
heap pairs) into three parts:

PROPR pure propositions that are independent of stack and heaps
LOCAL: values of nonaddressable variables and addresses okadihe variables
SEP. spatial separation-logic predicates that are indeperafestacks

6 In CompCert 2.4 and earlier versions, the Clight type définits a Coq inductive type. However,
from CompCert 2.5st r uct anduni on types are represented by name instead of by structure. fisptygi
every Clight program is associated witlt@nposite_env. A composite_env is a dictionary mapping every
st ruct/uni on name to a list of all its fields. The meaning ofiar uct or auni on needs to be interpreted
by looking it up in the dictionary. From then orgptype and data_at_rec are no longer Coq functions
recursive on Coq inductive structure. The CompCert dewspccepted our suggestion that every type
should be tagged with a rank, which is a natural number. Thkimg system ensures that the rank of a
struct type is the max rank of its fields plus one; the rank ohimm type is the max rank of its fields
plus one; the rank of an array type is the rank of its elemgue: lus one. The rank of elementary types
(including pointers) is zero. Our current definition reptype and data_at_rec are recursive functions on
this rank.
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Formally, a canonical assertion has the form
PROP(P; Py;..)LOCAL(Q1; Q2; ..)SEP(R1; Ra; )

The P; have typeProp in Cog. TheQ); are fully syntactic (deeply embedded), and
have denotations in typstack— Prop; and theR; are predicates over heaps (i.e.
assertions in the unlifted separation logidvery conjunct in the OCAL part is one
of the following:

temp x v, meaning thax is a nonaddressable variable gxd = v
var X v, meaning thax is a local addressable variable gj&] = v
gvar X v, meaning is a global variable anfBx] = v.

For example, this assertion in canonical form
PROP(a > 0;b > 0) LOCAL(temp X p) SEP(p — a;(p+4) — b)

representsa >0 A b>0 A [X]=p A p—a x (p+4)—b.

A useful property of this canonical form is that theopand Sep parts are in-
dependent of the stack. Their conjuncts cannot test thewdlnonaddressable vari-
ables or the address of addressable variables directly;rthest do so indirectly,
using auxiliary variables (i.e. Coq variables) shared whihLOCAL part. In the ex-
ample above, all communication between the C variatdad its properties is done
by means of Coq variable

Other than this restriction, the canonical form is flexibteits PROP and SEp
parts. In the rest of this section, we demonstrate some dearaftriples (subsection
4.1) and function specifications (subsection 4.2) in cagadfiorm. At the end of this
section, we discuss the expressiveness of canonicaliassart subsection 4.3.

4.1 Examples: triples of atomic C commands

Fig. 4 shows a program fragment, to demonstrate Hoare srigflset, load and store
commands. The assertions in this decorated program aretdimin canonical form,
and the postconditions are strongest postconditions.

4.2 Examples: function specifications

Suppose we have a C function with the following signature:
voi d swaplntpair(struct IntPair * Xx);

wherelntPair the struct from Section 3. Then the following specificatiagsthat the
numbers stored in the two fields will be swapped:

swaplntpair : Ilabp.
{PROP()LOCAL (temp X p)SEP(p ———— a,b)}

IntPair

{PROP()LOCAL()SEP(p ———— b,a)}

7 In the Coq development, we use the nasneiron for what we call “stack” in the paper.
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int xx; int vy, z;

{PROP() LOCAL(temp X p;temp y a) SEP(p b;p+4 —_— 0)}
n

int

Z = * X;
{PROP() LOCAL(temp X p;temp y a;temp z b) SEP(p —_— by p+4 — . 0)}
n n
y =y +1z
{PROP() LOCAL(temp X p;temp y (a + b);temp z b) SEP(p — " b;p+4 — . 0)}
n n
{PROP() LOCAL(temp X p;temp y (a + b)) SEP(p —_— b; p+4 — . 0)}
n n

X =x + 1;
{PROP() LOCAL(temp X (p+ 4);temp y (a + b)) SEP(p
{PROP() LOCAL(temp X (p+4);temp y (a + b)) SEP(p

b§P+4\f0)}
n

int

b;p+4\f>a+b)}
in

int

Fig. 4: Program annotated with Hoare assertions

Sometimes it is useful to wrap an existential quantifier atba canonical-form
assertion.
void sort(int *» bg; int *» ed);
sort : IIlpn.
{PROP()LOCAL (temp bg p;temp ed (p + 4n))SEP(p

int [n]

{3’ .PROP(Permutation(, !"); ordered(l’) )LOCAL()SEP(p ———— ')}

int[n]

User-defined predicatés the unlifted separation logican describe data structures
in memory. For example, the following €& r uct is a C structure for linked lists of
integers.

struct IntList { int num struct IntList *» link };

Users can define a separation logic predicate for this datetste:

) if l=nil, p=null A emp
list(p,0) == Vit 1 = hd = t, 3q. pr—— hd,q * list(g, t])

I ntLi st
Such definitions can be easily formalized in Coq:
Fixpoint list (p: val) (I: list int): pred heap :=
match | with
| nil = (fun .= p = null) A emp
| hd :: tl = 3 g. data.at IntPair (hd, q) p « list q tl
end.

A C function to reverse linked lists can be specified using finedicate:

struct IntList * reverse(struct IntList * hd);
reverse: Illp.

{PROP()LOCAL (temp hd p)SEP(list(p, 1)}
{3p’ .PROP()LOCAL (temp ret_temp p')SEP(list(p’, rev(1)))}

whererev denotes list-reversal function from Coq’s standard liprar
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4.3 Discussion: expressiveness

In the examples that we presented above, we have seen thenienee achieved by

limiting the use of C variables in canonical assertions c8pally, the postcondition

of a set command or a load command only modifies or adds onemcinn the

LOCAL clauses. With a store command, the postconditiseBclause differs only

in one term from the precondition’s. It is natural to ask wiegtthis setting restricts

the expressiveness of the assertion language. We answejuigstion here.
Observation one: any assertion can be decomposed int@mtély quantified

canonical form. LetP be any assertion about (nonaddressable) local variables

X1,X2,--+ ,X,. ThenP can be decomposed into,

dr1z9 ... 25

PROP() LOCAL(temp X1 Z1;...temp X, @) SEP(P[z1/[X1], .., Zn/[Xx]])

Addressable local and global variables can be substitigieg) lvar, gvar andsgvar.
Observation two: existential quantifiers in preconditiocan be eliminated using
the Hoare rule,

Vz: A (A {P(z)} c {Q})
AF{3z: A P)} ¢ {Q}

EXTRACT-EXISTS

When doing proof by forward symbolic execution, one appies rule and exposes
the underlying canonical-form preconditiéhfor further manipulation.

To conclude, VST-Floyd requires all preconditions in fuoktspecifications to
be in canonical form and requires all postconditions to bistentially quantified
canonical assertions. This setting does not decreasessinaess and it is actually
very practical for describing the behavior of C functions.

5 Sound and Efficient Postcondition Generation

In Fig. 4, we illustrated how atomic commands can be congiskracterized by
Hoare triples with canonical assertions. Now we demorestiatv those postcondi-
tions in triples can be generated. VST-Floyd produces gstpostconditions, with
soundness proofs for the corresponding triples. The ptppébeingstrongesipost-
conditions is not proved in Coq; it is only a meta-propertguaing that any sound
Hoare triple can be proved by Floyd.
Formally speaking, when the commanis a set, load, store, or function call, our

tactics in Coq prove the following proposition, instantigtthe unification variable
?Post with a strongest postcondition.

AF {PROP() LOCAL@) SEP I_f} ¢ {?Post, L, L, 1}

Because an assignment statement or function call doesrrexk, cont i nue, or
r et ur n, those three postconditions can be false. Only the postiiomdor normal

termination is nontrivial. We assume that every C variaplesars at most once ﬁ
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Otherwise, e.g. ifj were[temp X x1;temp X 2], we could remove a conjunct and
addz; = x5 into thePrROPpart. During symbolic execution, canonical preconditions
have emptyprROPclauses because they can all be moved “above the line” intp Co
assumptions of the whole triple. StilroPpart is useful in other assertions like ex-
istentially quantified canonical assertions and precdomdih parameterized function
specifications.

For handling these atomic commands, there are two commoess©ne is de-
riving C expression evaluation. For example¢ifs a set command = ¢ then in
order to generate the strongest postcondition, we needd@fualuev such that

— —
PROP()LOCAL ) SEP R | [e] = v

If cis a store commang, = e, then we need to find valugsandv satisfying both
of the following criteria

— —
PROP()LOCAL @ SEP R | [&e1] =p

— —
PROP() LOCAL ) SEP R I [es] = v

The other common issue is eliminating C variable substitutind its existential
quantifier (there may be other existential quantifiers).&@mple, this rule for load
commands was presented in §2.

Pttclvalue(e) A [&e]=p A p—ov x T
AF{P} x=e {I2'.[x] =vAPlx'/x],L, L, 1}

SEMAX_LOAD

These quantifiers and variable substitutions make prootswenient, especially in-
teractive proofs. Actually, this is one of the most impottdrawbacks of forward
verification, compared to backward verification. To solis iroblem, we must elim-
inate them in our strongest postconditions.

In 85.1 and 8§5.2 we present our solutions to these two comssues. Both of
our solutions greatly benefit from using canonical form. T,hee will introduce our
tactics that generate strongest postconditions of set @rds load commands, store
commands, and function calls.

5.1 Computational derivation of expression evaluation

As motivated above, we want to derive the value of a C exprasgiven a primary
—

. . g -
r-value expression and a canonical preconditicimor() LOCAL () SEP R, we need
to find a valuev such that

— —
PROP()LOCAL @ SEP R | [e] = v
Similarly, whene is a primary I-value expression, we need to findsuch that

PROP() |_OCA|_C_2> SeP R I [&e] = v
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Without the canonical form, this task is complicated, evidhé precondition is
as simple as in the following example:

XI=1A]=1A[z] =0F[x + y]=wv

In this example, we can reduce this task to the following Cappgoal:

p: stack

H: [x] p=1
HO: [y] p=1
H1:[z] p=0

XIp+Iylp="v

Then, we can look for useful assumptions and rewrite thenfénconclusion, i.e.
rewrite H, HO. However, searching useful assumptions needs carefid f@cigram-
ming. Moreover, both proof searching and rewriting are siowoq.

We define two mutually recursive functiomsubst_eval_expr (for primary r-value
expression) anchsubst_eval_lvalue (for primary I-value expression) which do sym-
bolic evaluation independent of stéck

msubst_eval _expr: Clight.expr — list localdef — option val
msubst_eval _lvalue: Clight.expr — list localdef — option val

Their definitions are almost the same[afand[&e]. The only difference is thdk]
and [&e] look up values of nonaddressable variables and addressekicéssable
variables in stacks butsubst_eval_expr andmsubst._eval _lvalue look them up inLo-
CAL clauses. We prove the following lemmas and use them to aaristkpression
evaluation directly.

—
msubst_eval_expr e () = Some v
MSUBST-EXPR

— —

PROP() LOCAL @ SEP R | [e] = v
—

msubst_eval_lvalue e Q = Some v

PROP() LOCAL@) sep R [&e] = v

MSUBST-LVALUE

The valuev will then be generated by computation which is much fastan throof
search and rewriting in Coq.

5.2 Symbolic variable substitution

If an atomic command modifies a nonaddressable variabledesgt command or a
load command), its forward rule (Robert W. Floyd’s assigntrele, to distinguish

from C. A. R. Hoare's “backward” assignment rule) containgagistential quantifier

and variable substitution (seemax_set in §2.4).

8 In our Coq development, we actually turn the symba@CAL clauses into binary trees first. Then
we look up in these trees during symbolic evaluation. We dineittechnical details here.



22 Qinxiang Cao et al.

Floyd Hoare:
{PYo=FE {3y« = Ely/a] APly/al}  1QIE/a]} = E {Q}
Having variable substitutions in assertions is very in@rignt for later proofs.
Fortunately, variable substitution on canonical assestaan be reduced away. Specif-
ically, if x is a nonaddressable variable, then:

-
(temp X v) € Q
(PROP P LOCAL@) SEP Tf)[zo/x] F
— — —
PROP(z¢ = v; P )LOCAL(remove_temp(X, @) ))SEP R

(temp x _) does not appear ir@)

— — — — — —
(PROP P LOCAL @) SEP R)[z(/x] A PROP P LOCAL () SEP R

Here,remove_temp is a Coq function which deletes conjuncts about a specifiadon
dressable from the local clauses (if there exists one). fitésis sound because: (1)
Both PROPandsEePparts are independent of stacks; thus variable substititiave
no effect on them. (2) AlLOoCcAL conjuncts other thantémp x” are not affected by
substitutingx .

Actually, in the first lemma above, the left side and the rigiet also equivalent,
instead of left implies right, ik does not appear multiple times in thecaL part.
Later in this section, we will use the direction from left ight to prove soundness
of Hoare triples while the direction from right to left ensarthat the generated post-
conditions are strongest postconditions. We do not prage‘strongest” property in
Coq. Thus, we do not need to prove right-to-left in Coq either

As an immediate consequence of two lemmas above, exidtgnfimntified old
values can be eliminated together with substitution, i.e.

— — — — — —
Jxg.(PROP P LOCAL () SEP R)[zo/X] - PROP P LOCAL(remove_temp(X, @ ))SEP R

5.3 Strongest postcondition of set commands

Based on previous theorems of C expression evaluation anddic variable sub-
stitution, we prove the following derived rule:
Lemma SEMAX-SET-CANON:  forall A Q R x e v,

PROP() LOCAL ) SEP R - tc.expr A e —

msubst_eval _expr e 6 =Some v —

A+ { PROP() LOCAL (J SEP R }

X = e
{ PROP() LOCAL(temp X v; remove_temp X 6) SEP ﬁ 1,1, 1%

To solve the following proof goak(is a primary r-value expression):

— —
{PROP() LOCAL () SEP R} X = e{?Post, L, 1L, 1}
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we run “eapply semax.set.canon” in Coq. Two proof goals will be left. One proof
goal is the typechecking requirement. Most of times, it carsdlved automatically,
i.e. the right side is just true. Whenis an expression likg/ z, thentc_expr(A, e)
computes to the assertidn] # 0, which the user must prove manually (if the tactic
automation does not solve it automatically).

The other proof goal is:

msubst_eval _expr e C_j = Some ?v
We use te exivity” in Coq to solve this proof goal. Then the unification var@abl
will be filled by the computation of left side.

By all these steps above, together with the derived Hoaesfanlset commands,
we have already generated a (strongest) postconditioreafetfjuired set command
and a soundness proof of corresponding triple. The geremistcondition is in
canonical form. It®ROPpart is empty; itSEPpart is the same as in the precondition;
the LOCAL part replaces the conjunct ofetmp x” with the expression evaluation
result.

5.4 Strongest postcondition of load and store commands

In the previous section, we focused on heap-independensiGressent commands,
but Verifiable C also provides proof rules for assignments tio loads or stores. A
loadis an assignment = e in whichx is a nonaddressable variablds a primary
I-value and (therefore) computing the addrese @& heap-independent. storeis

an assignment; = ep in which e; is a primary |-valueg, is a primary r-value
and (therefore) computing the addresgpfind the value oé, is heap-independent.
C-language assignments whete:;, or e are nonprimary can be refactored into a
series of loads perhaps followed by a store.

5.4.1 Store command examples

We illustrate with an example taken from a case study, viegfthe mbedTLS imple-
mentation of AES encryption [14]. The program uses a corstentt which is passed
to all functions and is defined as follows (simplified):

struct aes.context {

int nr; // nunber of rounds
int rk[60]; // round keys

H

In the following examples, assume that a pointer nanmgédk of type
struct aes.context* isin scope. We will now consider different ways of ini-
tializing (parts of) the round key array of this context stru

The most straightforward way is to write out in the assignhm@mmand the
whole access path to the data:
for (i =0; i <8; i++) {

(*ctx).rk[i] = ... (a)

That is, both r k and[ i ] are on the left-hand side of the assignment statement.
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In C, one usually would writet x—r k instead of( * ct x) . r k. VST supports
both notations and treats them identically. Here we witet x) . r k to illustrate
thepath. r k[ i ] more clearly. Althouglf = ct x) looks like a memory dereference,
when treated as an I-value it is effectivél§x ct x) , whichis like( ct x) ; thereis no
load or store in the computation of the I-value on the leftdaide of the assignment.

The actual AES implementation optimizes by precomputireg thk part of the
path before the loop:
int xp = (*xctx).rk;
for (i =0; i <8 i++) {

} pli] = ... (b)

As we can see, only part of the access path (harhely) is visible in the as-
signment command, while the first part of the access pathogeathe loop. Another
common pattern is to increment a pointer in each loop itenati

int xp = (*xctx).rk;

for (i =0; i <8; i++) {
*p o= ... (c)
p++;

}

Here, the array index is not written explicitly in the souomele. But C code can
be even more intricate than that: In the next example, addpien a case study on a
garbage collector, we have a memory access with a seemiagitiue array index:
int xp = (*ctx).rk + 1;
for(i =0; i < 8 i++) {

p[-1
p++;

(d)
}

Given a precondition and a C store command, the goal of sésimpstcondition
generation is to find theepclause affected by the store, and to update the modified
substructure of its value with the assigned value. For mtafor the store command
in example (b), it should identify the (onlgEePclause fore and update théth entry
of its value? (which is achieved byipd_Znth) with the resultv of evaluating the
right-hand side of the store command:

{PROP (0 < i < 8)
LOCAL (temp ct X a; temp p (a>[rK]); temp i i)

W 0y

SEP (a
aes_cont ext

pli] =e2
{PROP (0 < i < 8)
LOCAL (temp ct X a; temp p (a>[rK]); temp i i)
M (upd_znth i £ v))}

aes_cont ext

For load commands, on the other hand, s clauses remain unchanged, but
the LocAL clause for the modified variable has to be updated. For instahwe
assignp[ i ] to the variabley, strongest postcondition generation should figure out

SEP (a



VST-Floyd: A separation logic tool to verify correctness@programs 25

that the value op[ i ] is defined by thesepclause fora, and that it can be selected
from the value/ by taking theith element;, and it should update theocAL clause
for y to this calculated valug:

{PrROP (0 < i < 8)
LOCAL (temp ct X a; temp p (a>[rk]); tempi i;tempy 0)

W, 0y

aes._cont ext
y = pl[i]
{PrROP (0 < i < 8)
LOCAL (temp ct X a; temp p (a>[rK]); temp i i; tempy £;))

[rk] [)}

aes_cont ext

SEP (a

SEP (a

5.4.2 General load and store rules defined in termgetd_at

The foundational separation logic of Verifiable C providee basic rulessEMAX-
LOAD andSEMAX-STORE(82.3), to reason about memory loads and stores. However,
their pre- and postconditions are not in canonical form,theg are defined in terms

of the mapsto operator, which talks only about primitive values, but niobat (pos-
sibly nested) structs and arrays lifi@dd_at anddata_at.

One way to solve this would be to unfold tfield_at or data_at into manymapsto
assertions, applgEMAX-LOAD Or SEMAX-STORE, respectively, and then fold them
back intofield_at or data_at. One could automate these steps with tactics, but this
would be very slow to run and generate huge proof terms, wiaich a long time to
typecheck duringQed.

So instead, we design (and prove) higher-level versionsestMAX-LOAD and
SEMAX-STORErules defined in terms dield_at, and using canonical assertions; and
we program tactics to infer all parameters needed to appintiso that wefficiently
obtain strongest postconditions for load and store commé&gether with a proof
for the claim.

Consider the following load and store rufes:

— — —
PROP P LOCAL Q SEP R I [&e] = ¢
— - = - To ,
q=ab>f f = fo+r+f1 Riz(a't—”f)
(the component in’ denoted byff) =0

(5 with the value forx updated ta) = 67

— — — — A —
AE {PROP P LocAL @ sep R} X = e {PROP P LocAL Q' sEP R}

LOAD-1

9 All the load and store rules of this section also need typekihg side conditions, i.et¢_expr(A, €)
for each involved C expressian We omit them for brevity.
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— — —
PROP P LOCAL Q SEP R I [&ei] = g A [ex] = v
— - = = To
g=anvf [ =for+fi Ri=(a i Vold)
(vola With the substructure denoted Lﬁ/ updated t@) = vpey

(R with R; replaced by(a L o) = R

STORE1
— — — — — —;
Al {PROP P LocAL Q SEP R} e1 = e {PROP P LocaL QQ SEP R }

The notation%++z stands for concatenation of paths (i.e. lists of field names
or array indices). In Coq, it is written the same, except thatlists are read back-

wards. Remember from 83.1 thatdfis a pointer value of type, thena D? de-
—

notes the address obtained by following the pdttstarting froma. Note that it is

only well-defined if f is compatible withe’s typet, as determined by the assertion

field_compatiblét, f ,a) (see §3.1).
STORE1 can be used to prove the Hoare triple for example (a):

o [&(xctx).rk[i]]=a+4+4i A [ex] =v
atdtrdi=avlrk,i  [rk.i]=[rk]++li] Ro=(ar—"
aes._cont ext
(¢ with the substructure denoted by updated ta) = (upd_Znth i £ v)

0)

{PrOP(0 < i < 8)LOCAL(temp Ct X a;temp i i) SEP(a I, 0}
. aes_cont ext
(*ctx).rk[i] = es
{PROP(0 < i < 8)LOCAL(temp Ct X a;temp i i)SEP(a k]

aes_cont ext

(upd_Znth i £ v))}

where((upd_Znth 7 ¢ v) updates theth entry of the list/ with the new value.
Note that the expression evaluatif@( * ct x) . r k[ i ] ] returns a pointer-arithmetic
expression. That's why we need another equality to turn riéssilt into the field
address: > [r k, 1].10

5.4.3 More automation-friendly specialized load/storkesu

Equalities such as + 4 + 4i = a > [rk, 4] from the previous examples are not
easy to prove automatically, because we neetietdLcompatible side conditions of
the field-address operator, and such reasoning resultsvintattics and large proof
terms.

We prefer to do this kind of reasoning once and for all, ingidemma that the
tactics can use, instead of doing it every time we apply the fithe idea is to exploit

10" One might wonder why the expression evaluation functionsduat directly return a field address.
Forst ruct anduni on fields, this could work, but for array indices, it wouldn'edause the field-address
operator is only well-defined if the array index is within #meay bounds, but adding an integer to a pointer
is always defined in CompCert Clight, even if dereferencingight be undefined. So the evaluation
function could only use the field-address operator if thayamdex is within bounds, but it cannot know
whether this is the case, because it does not have accessaodly size.
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the knowledge about the access path that we get by lookirngeatyintax of the C
command. For instance, in example (a) the whole path isleigithe C command.
To do so, we derive special versions of the load and stors:rule

— — — — —
PROP P LOCAL ) SEP R | [&e] =a AN[F] = f

— - = %’ , ] —

f=for+fi Ri=(a o ) legal_nested_field t f

(the component in’ denoted byff) =
(5 with the value forx updated ta) = @’

LOAD-2 — — — — — - —
AE {PROP P LocAL ) sep R} X=eF {PROP P LocaL Q' sep R}

— — — —
PROP P LOCAL Q SEP R - [&ei] =aA e =vA[F] =

<] ==l

—_— —_— d f() .
f = for+fi R, =(a i Vold) legal_nested_field ¢
(vola With the substructure denoted Lﬁ/ updated t@) = vpeyw

[es] =v (R with R; replaced bya J% Vnew)) = R

STORE2
— — — — — — —;
Al {PROP P LocAL Q SEP R} e1.F =ey {PROP P LocAL QQ SEPR }

We distinguishf> from 7: they represent a nested field in a C command and its
denotation respectively. At r uct /uni on field in a C expression is the same as its
denotation but an array subscript is an int expression in @evits denotation is a
Coq value of type.. We write this correspondence @?]] = 7

Moreover, the assertiolegal_nested_field ¢ 7 ensures that the patﬁ exists
within the typet. In particular, it checks that array indices are within tiogibds.

These rules work very well to automate strongest postcmmdigeneration for
examples like snippet (a): First, the left-hand side of tegignment is split into a
root expression; and a patrF, i.e.intoxct x and[ rk, i] inourexample. Next,

&e; andesy are evaluated, an&> is inferred from aF such thatﬂ?ﬂ = 7 holds.
In our example, this results if&(*ctx)] = eand[[rk, i]] = [rk,i]. Next,
all sepclauses are searched to find one ahouthose path is a prefix o?. Note
that this must be unique, because g&r clauses talk about disjoint memory areas,
and no two distinct memory areas can be accessed by the samépae thesep
clause is found, it's clear how to spﬁ into ﬁ;++z; in our case we havg = [rk]

andﬁ> = [¢]. The sEPclause also gives the value fogg, which isZ in our case,
and now one has to select the substructure,gf according to the remainder of the
path,ﬁ, to obtain the part of,1q to be updated. Now, all parameters needed to apply
STORE2 are known, so we obtain a strongest postcondition togetitie a proof for
our claim. Occasionally, some typechecking or array bowdis conditions might
not be solved automatically and left open as subgoals to teeprby the user, but
this never prevents the tactics from applying #1@®RE 2 rule, so most of the work
is always done automatically.

However, the tactic described above us8TpRE2 does not work for the exam-
ples (b), (c) and (d): In example (b), the root expressipthat it picks isp, which
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evaluates ta + 4, where 4 is the offset of the field within the structaes_context.
So, thesepclauses will be searched for a clause of the f¢fm+ 4) — _), which
will not be found, because we have onlgaprclause of the fornja — _).

As we can see, the problemis that tteaD-2 andsTORE 2 rules assume that the
whole access path appears in the source code of the loadrerisstruction, which
is not always the case.

We could resolve this by applyingToRE1 instead (which works for all four
examples), but as described before, the proof of the equatiod + 4i = a>[r k, 7]
would be hard to automate.

So we design yet another pair of load and store rules:

— — — — —
PROP P LOCAL Q SEP R I [&e]| =g A [F] = fp
— - = - = fo
q=abf, fat+fo = fo++fi Ri—(arTw))
- =
legal_nested_field ¢ (fo++f1)
A
(the component in’ denoted byf;) =

(Zj with the value fox updated ta) = 67
— — — — — — —
AE {PROP P LocAL @ sep R} X=e.F {PROP P LocAL Q' sEP R}

LOAD-3

PROP P LOCALQ SeP IR - [&e1] = g A [ex] =v A [[F]} = fb
(=asf  Fowrho= Forrf Ri= (0 va)

legal_nested_field ¢ (f0++ﬁ)
N
(vola With the substructure denoted by updated t@) = Vnew

[es] =v (R with R; replaced bya % Unew)) = R

STORE3

— — — —
Al {PROP P LOCALQ SEP R} er. F = es {PROP P LocAL SEPR/}

The key |nS|ght here is that there are two ways of sphturegatbcess pattf The
first, f = f0++f1, is imposed by thesepclause, and the secongf = fa++fb, is
given by how much of the path is contained in the valug @$§ how much of the path
is written out asF in the C command.

Applying LOAD-3 andsSTORE 3 can be automated in the same way.@sD-2
andsTORE2, provided that the root expressierfor e;, respectively) evaluates to a
local variabley for which theLocaL clauses of the precondition contain an entry of the
form (temp ¢ (a DE) For situations when this is not the case, we deS|gned a™hint

interaction system! If the tactics fail to prove an equality of the forgm= abfa, they
display an error message asking the user to prove an eqobiitg formg = ?a >,
wheregq is obtained by computationally evaluatingand?a and?f are Coq evars to
be instantiated by the user. That is, the user has to prowdass that the pointer
arithmetic expression can be turned into a field addressesesfum. After proving

11 The kind of hints we are talking about here aatrelated to Coq’s hint databases.
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such a hint, the user can retry invokifogward, which invokes the tactics for loads or
stores, respectively, and they will use the hint and thusesed.

So, areL0OAD-3 andsTORE3 the ultimate solution which works always? No, for
the following two reasons:

First, Whenﬁ> is the empty pathi], we still have to proveg = a > [], which is
not trivially true, because it requirdisld_compatible, [] a to be proven. Automating
this would be possible, but it is easier to do it once and fianal specialized lemma,
and it turns out that we already proved such specialized lesnithey are exactly the
LOAD-2 andSTORE2 rules.

And second, there are cases such as example (d) where wel stadawlindly
trust and use the access path written in the C command: Ifattees matchp[-1]
with el.?, they obtain the patf1], which is never a valid path, because all arrays
in C start with index). So, proving theegal_nested_field assertion will fail, because
this assertion checks that all array indices are within loisuim those cases, we have
to useLOAD-1 andsTORE1, which do not infer any path fragments from the C
code. But their downside is that they are bad at automategtbof of the equation
qg=a 1>7. In fact, it only works automatically if the wholge (or &ey, in the store
case) evaluates to just a nonaddressable varéigiolewhich we have aocaL clause
of the form(temp ¢ (a I>JT¢:)), such as example (c). In all other cases, we have to resort
to the the hint system, and compared to tlieD-3 andsTORE 3 rules, where the
required hintis only about the first part of the path, the lbout the full path here,
which is a bit more work for users.

The following table summarizes the advantages and disaalyas of the three
store rules with respect to the four examples:

(a) (b) (©) (d)
p=(*ctx).rk; p=(*ctx).rk; p=(*ctx).rk+1;
(xctx).rk[i]=] p[i]= p++; *p= p++; p[-1]=
STORE1 | requires full-path| requires full-path| requires suitable| requires full-path
hint hint precondition or| hint
full-path hint
STORE2 | works not applicable not applicable not applicable
automatically
STORE3 | requiresg = a>[] | requires suitable| requires suitable| not applicable
proof precondition or| precondition or
root-path hint root-path hint

5.4.4 The final tactic for memory loads/stores

So overall, our final tactic for a memory store of the foaf[nF> = ey now works as
shown in Figure 5 (the tactic for memory loads is similar).

Note that it uses all threeTORErules, even thougsTORE1 would be general
enough to be applicable in all cases. The only reason to esetlier store rules is
to overcome the proof automation difficulties. In fact, @&l of attempting to use
tactics to perforﬂg the tricky task of bringing the result e&kiating an expression

into the forma > f , we prefer to do this work with lemmas, by having three sgecia
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- Evaluate the whole expressi@m.f> and check if the context contains a user-
defined hint on how to bring it into the form|>7.
- If yes, find aseP clause about. whose path is a prefix OF, and apply
STORE1 and solve its side conditions.
- Otherwise, evaluate the root expressigrand check if the result already has
the forma Dﬁ or if the context contains a user-defined hint on how to bring i

into the forma I>JT,;.

- Ifyes, findﬁ) such thatﬂ?ﬂ = E: and find asepclause about whose
path is a prefix off_;++ﬁ>, and applysTORE3 and solve its side condi-
tions.

- Otherwise, find? such tha{[?]] = 7 and check if there is aEPclause
abouta whose path is a prefix o?.

- If yes, applysTORE2 and solve its side conditions.
- Otherwise, fail with an error message containing the fofrhiots
which were not found before.

Fig. 5: Tactic for calculating the strongest postconditidistore commands together with a proof

ized lemmas, and depending on the case, picking the one Wwhigdsiest to apply
automatically.

Now, one might wonder if this is the end, or whether at some timthe future,
we might come across another C code example where thesesttaiti We believe
that, except for the deliberately chosen restrictions rilesd in §2.1, there will be
no further such C code examples, becaused-1 andSTORE1 do not impose any
restriction on the form of the expression which denotes tleenory location, and
if evaluating this expression cannot turn it into somethiighe forma |>7> auto-
matically, the tactics can fall back to the user hint mecsraniallowing to request
that the user proves the tricky part in such a way that all &s& can still be solved
automatically.

However, the tactics for loads and stores do have one limitaT hey only work
if the requiredsep clause is written as data_at or field_at assertion. If users cre-
ate custom separation logic assertions, they will have foldnhem intodata_at or
field_at form. Automating this would be difficult, because the reasty users create
custom separation-logic predicates tend to be domainfpeo the right strategy to
unfold the custom assertions requires domain-specific ledye as well; this should
be left to the user, who may choose to achieve this task byiaddi domain-specific
automation.

5.5 Strongest postcondition of function calls

The effects of C function calls are more complicated thanlset, or store com-
mands. A function call may assign its result to a nonaddi#ssariable and may
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modify the data stored in heap. Fortunately, separatiaio Elpws us to reason about
the behaviors of calls and the canonical form allows us tsgueit concisely.

Consider a functiorvoi d swapi nt (i nt *x, int =y); with this spec-
ification:

swapi nt (x, y) :
H(a7b5p7Q)

{PROP() LOCAL(temp X p;temp y q) SEP(p — g b)}
In n

{PROP() LOCAL() SEP(p —— b1 g — a)}

Assume this specification is id (that is, the fun-spec part af associates this spec-
ification with the namewapi nt).

Then consider this function caBwapi nt (x, x+2),ina contextwherg is a
pointer into an array of at least three consecutive integeswould have this proof
goal:

A+ {Propr() LOCAL(temp X z) SEP(x —— U +4 —— v +8 — w)}
n n n

swapi nt (x, x + 2)
{?Post, L, 1,1}

The strongest postcondition is,

PROP() LOCAL (temp X z) SEP(2 + 4 U T oW Tt 8 T w)
n n n

How this can be generated? First, the user instantiatesattanetera, b, p, ¢) with
the value(u, w, z, x 4+ 8). Then the instantiated specification is:

swapi nt (x, y) :
{PrROP() LOCAL(temp X x;temp Yy (z + 8)) SEP(x —— T+ 8 — w)}
n n
{PROP() LOCAL() SEP(x —— w; 8 — u)}
n n

Second, theocAL part of the precondition in this specification is verifiedauati-
cally (and computationally) by C expression evaluatia, i.

msubst_eval _expr [temp X z] (X) = x
msubst_eval _expr [temp X z] (x +2) = x + 8

(Sincex+2 in C is a pointer-integer add, the semantics of C gives theesdd + 8.)

Third, for thesep part, we pick out the precondition of the instantiated dpeci
cation in the precondition of the proof goal, replace it vtitle postcondition of the
instantiated specification and use the replacement resulieagenerated postcon-
dition in the proof goal. This “picking out” is a form of “fraeinference,” and is
accomplished by a cancellation tactic.

Fourth, this function call has no return value, so the LOCALtpf the generated
postcondition is the same as the precondition.
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We mostly automate this process in VST-Floyd, but requireusers to manually
instantiate the parameters in the specification. The sasaof this process is en-
sured by the following Hoare rulseMAX-CALL-00. We prove it in Coq as a derived
rule of Verifiable C.

Lemma semax.call .00

—= = = _— ) ——
forall A Q R F "¢ aPrePost Ppre Rpre Ppost Rpost f,
(f(X):Tla : A. {Pre(a)}{Post(a)}) € A —

5 L= — o
Pre a = PROP(Pp;.) LOCAL(temp.list X ') SEP(Rpe) —
e e
Post a = 3 b: B, PROP(Ppos; (b)) LOCAL() SEP(Rpost (b)) —
P
PPre -
— — L
PROP() LOCAL(Q) SEP(R) - tc.expr.list € —
L= —
msubst.eval _expr.list € @ = Some v —
—_ —> —
Permutation R (Rpyec ++ F') —
— —
A+ {PROP () LOCAL (Q) SEP (R) }
—
fCe)
—— — P—— —
{ 3 b: B, PROP(Ppost (b)) LOCAL(Q) SEP(Rpost (b) ++ F'), L, 1, 1 }

A C function may or may not return a value. If it does return eugathe call site
may or may not assign that value to a variable. Therefore,ave three cases:

11 The function returns a value, and the call site assigosatvariable.

01 The function returns a value, but the call site throws aw

00 The function does not return a value, and (therefore inlatygmed C program)
the call site does not expect a value.

The example above (witsemax_call_00) is of the third kind. The derived lemmas for
the other two kinds are similar, and have names ending witdntil01.

Intheswapi nt example above, the PROP part of the precondition in the speci
fication is empty. If it were not empty, our postcondition geator would check these
pure facts.

The postconditions in specifications can be existentiallgrgified (which does
not happen in our example above). Our postcondition gemeaiatd the derived Hoare
rules do cover those cases. Generally speaking, the gedgrastcondition is an ex-
istentially quantified canonical assertion. When the pouddion in a specification is
not quantified, we treat it as quantified over unit type. WhHendenerated postcon-
dition is quantified over unit type, our generator removesgbhantifier and presents
a quantifier-free version.

Comparing to the cases for set, load or store, the genemtdumction calls
imposes more restrictions on the user. Besides the factsbies uneed to manually
provide values to instantiate specification, users alsd t@ensure an exact match

between specification SEP clauses and part of SEP claudespndof goal. Specif-

ically, when handling load or store commands, we do dqieelt%» a inside
ntPair

P a,b. But we choose not to support a similar feature when handling
ntPair

function call because the situation here is much more caafgld. For example, the
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correspondence between the specification and the premmidithe proof goal may
be many-to-one. Itis very hard to detect

seP(p>[ fst] ﬁa;pb[snd] T’b)
n n

insidep e b. We require users to apply related transformations in preco
ntPair

ditions first. We provide tactics for these transformatieeg( §7).

6 Automatic Tactics for Forward-Style Proof

The most important feature of VST-Floyd is its forward pratfle. We provide a
set of tactics in VST-Floyd to perform forward verificatidfrom one point of view,
these tactics help users build proof trees of Hoare tripfesautomate the routine
work. From another point of view, building proofs of Hoargles using forward
tactics is like demonstrating a decorated program fromdabedbwn—for example,
each call to the tactiforward (see 86.1) is like demonstrating one more C assignment
command and one more assertion in a decorated program.

In this section, we introduce the forward tactics which aostly automatic. They
areforward, forward.call, forward.if andforward.while. We will introduce the interac-
tive tactics in the next section.

Remark.Both automatic and interactive tactics are essential in-#8Yyd. On one
hand, some proof strategies in verifying a Hoare triple antine. For example, when
the C command in the triple is an sequential composition dfipie commands, we
should applysEMAX-SEQfirst. Automatic tactics can easily handle this and let VST-
Floyd be more convenient for users. On the other hand, it ligfilefor our users

to manually manipulate Hoare triples as well. For exampdeysican apply domain-
specific mathematics to simplify the precondition. It is stimes necessary to unfold
some user-defined separation logic predicates to perfdan daitomic tactics. It is
also helpful sometimes, to fold some user-defined predicatel get more concise
preconditions.

6.1 Forward on set, load or store commands

VST-Floyd offers two tacticsforward andforward_call, to perform forward verifica-
tion on singleton commands. Specifically, when the first camais a set command,
load command or a store commaifgtward should be applied. When the first com-
mand is a function call (with or without return valué&yward._call should be applied.

The tacticforward analyzes the first command in a triple and proceeds by for-
ward reasoning to shrink the proof goal. Fig. 6 and 7 showseaaeple of applying
forward. The Coq proof goal on the right side of Fig. 6 is the proof duefore ex-
ecutingforward. The one on the right side of Fig. 7 is the proof goal after akag
forward. The decorated programs on the left correspond to the \aidit process on
the right; the shaded lines correspond to the Coq proof goals
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PROP() AF
LOCAL (temp X p;temp Yy a) PROP()
p———b; LOCAL(temp X p;temp y a)
int .
int
Z = % X! p+4 T 0
y =y + z; Z = * X;
X =X + 1; y =y + z;
* X =Y, X =X + 1;
PROP() £ X =y,
LOCAL (temp X (p + 4)) PROP()
pr———b LOCAL(temp X (p + 4))
SEP 44 sa+b)’ pr—>b;
P int SEP int
1,11 p+4Ta+b ’
1,1,1
Fig. 6: Before executinfprward
PROP()
LOCAL(temp x p”el’)“p y a) MORE.COMMANDS :=
pI——0; X =X + 1, *xx =y,
int 1 ’
SEP (;D + 4 — " 0>
n
PROP() PROP()
temp X p;temp y a; LOCAL (temp X p;tempy a;)
LOCAL < R b ) terr;p zb
——>b; PrHE—"=0
sep( U im " SEP int
p+4+—0 p+4 T 0
it
y =y + z; H y =Yy + z; MORE_.COMMANDS
X =X + 1; PROP()
* X =y, LOCAL (temp X (p + 4))
PROP() p——b;
int
LOCAL(temp X (p +4)) SEP (p +4——a+b]’
pr———b; int
SEP 4 ot bl 1,41
P+ i +
1,1, L

Fig. 7: After executingorward. Floyd has made a local definitiolORE_.COMMANDS so that the proof
goal below the line is not cluttered with the entire remaimafehe block.

Generally speaking, if the first command in the proof goahi@ssignment (set,
load or store command) and the precondition i#, forward will eliminate ¢ and
replace the precondition with the strongest postcondiifoR andc. Fig. 8 and Fig.

9 demonstrate this process. In Fig. 8, there is more than@menand in the original
proof goal. Applyingforward reduces the proof goal to a new triple in which the new
precondition( is the strongest postcondition &f andc. In Fig. 9, ¢ is the only
command in the original proof goal. Applyirfgrward reduces the proof goal to a
separation logic entailmenty A Q F R.



VST-Floyd: A separation logic tool to verify correctness@programs 35

P
‘ c:} AF
C2 {P}
{Rv Rbprk, Rcon, Rret } C C2
{R, Rbrk, Rcom Rret}
{P}
< Ak
& (@}
c2 s
{R’ Hor - Rcon, e } {R, Rbrk, Rcom Rret}
Fig. 8: More than one command
{P} AF
5 {P}

{R7 Rbrk, Rcon, Rret }

&
{R, Rbrk, Rcom Rret}

{r}

(e
{Q} AANQFR
{R, Rbrk, Rcon, Rret }

Fig. 9: Only one command

6.1.1 Implementation.

The implementation obrward contains the following steps:
First, forward analyzes the C command in the proof goal. If it has fdrm c2)
andc; is an assignment, thdarward will do

eapply semax_seq’
If it has is a single assignment commandhenforward will do
eapply semax._post’

Here,SEMAX_SEQ and SEMAX_POST are derived Hoare rules. Cocgapply tactic
creates a unification variable for “floating” variables, mistcase the intermediate
assertior().

A F{P} a1 {Q, L, L, 1}
A F {Q} C2 {R, Rbr, Reon, Rret}
Ak {P} C1;C2 {R, Rbr, Reon, Rret}
AF{P}c{Q,L, 1,1} QFR
At {P} c {Ra R, Reon, Rret}
Either way, two proof goals will be generated. The first ong floam:

AF{P}c{?Q,L, L, 1}

SEMAX-SEQ

SEMAX-POST
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and the second one is eithek - {?Q} co {R, Rork, Rcon, Rret} Or 7Q F R, respec-
tively. The unification variabl@q is to be filled in later.

In 85, we described our Ltac programs which can generatettbegest post-
condition for an assignment and solve the first proof gleakard calls these Ltac
programs and instantiat@g). As a result, the second proof goal, fully instantiated, is
presented to users.

Forward requires the original precondition to be in canonical formd &nsures
that the new precondition is also canonical.

Forward is mostly automatic: most premises and side conditionslekrsuch as
STORE2 are proved automatically. But sometimes users must @aige condition
(e.g., that some expression evaluation is defined) or ta efieme hint (like which
data_at or field_at is loaded from or stored to).

6.1.2 Reassociating sequences

The first step inforward is find first command in a sequence of commands. Clight
formalizes sequential composition as a (deeply embeddediybsyntactic operator.
If the proof goal is{P} c¢1 - (c2 - ¢3) {Q} wherec; is an assignment statement,
forward can use th@emax_seq’ rule (like HOARE-SEQin 8§1.1) to produce the proof
goals{P} ¢; {?U} and{?U} c2 - c3 {Q}, where?U is a unification variable to be
filled in.

Butif the goal is{ P} (c1-c2)-c3{Q}, thenforward first reorganizes the sequential
composition using this rule:

Ak {P} Co - (Cl '02) {Qa Qbrk, Qcon, Qret}
Ak {P} (CO ’ Cl) © C2 {Qa Qbrk, @con, Qret}

SEQ-ASSOC

6.2 Forward on function calls

Forward_call verifies a function call. Its interface and implementatiomaery similar
to forward, except that it takes an argument: the instantiation of tiieausally quan-
tified parameter of the function specification. We have auati®eh the instantiation of
specification parameters.

The following is a specification faswapi nt , which swaps the numbers stored
in two different addresses.

void swapint(int = x; int * y);
swapi nt (x, y) :
I(a,b,p, q).
{PROP() LOCAL(temp X p;temp y q) SEP(p — g —— b)}
n In

{PrOP() LOCAL() SEP(p — b;q — a)}

Figures 10 and 11 illustrate the effect of running
“forward.call (2a, a2+1, p, p+4)".
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MORE_COMMANDS =

PROP() AL
LOCAL (temp X p)

o o PROP()
SEP int ’ LOCAL(temp X p)
pHar o —a®+1 P 2
swap (x, x + 1); SEP<p+4,+>a2+1>
MORE_COMMANDS swap (x, ')f(“ f 1)
Foscoha o MORE_COMMANDS
{POSTCONDITION}

Fig. 10: Before executingprward_call (Fig. 7 explainsMORE_COMMANDS).

PROP()
LOCAL (temp X p) _
p— 2%: MORE_.COMMANDS := ...
SEP Al ey
pt+4i — a® + AL
swap (x, x + 1); PROP()
PROP() LOCAL(temp X p)
LOCAL (temp X p) - a® +1;
2 5 in
SEP<p'Ta +1’> SEP pra— 2
n
P2 MORE.COMMANDS
MORE_.COMMANDS {POSTCONDITION}

{POSTCONDI TI ON}

Fig. 11: After executindorward_call

VST-Floyd only requires the postconditions in function dfieations to be in
existentially quantified canonical form. Thus, the new pratition may have such
existentials. We usktros (see §7.1.2) at the end fafward.call so that the triple left
for users has a canonical precondition.

6.3 Forward on if commands

When the first C command in the proof goal isighcommandforward.if should be
applied to perform forward verification.

In general, after forward proof through two branches af finone needs to merge
the postconditions together. One could say the postcomdijust a disjunction in
separation logic, but that just reduces to the problem afiakting disjunctions and
returning to canonical form. So we require the user to prett joined postcondi-
tion as an argument forward.if; exceptwhen thel f command is the only command
in the proof goal (e.g., the last command in a block), in widake the postcondition
is already concretenpt a unification variable), and is therefore already provided.

Consider the following sample program and specification:

{ PROP() LOCAL(temp X x;temp s s) SEP(s —_— o) }
n
if (x > 0) theny =x; elsey = x;
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t =% s; *» s =1t +y,
{ PROP() LOCAL(temp X x;temp S s) SEP(s — .
n

o+lz), L, L, L}

Thei f command in this example stores the absolute valufcpfinto y. We can
applyforward.if PROP() LOCAL(temp X x;temp S s;temp Y |z|) SEP(s — o).

Then three subgoals are left for us to prove (see Fig. 12)fartbe if-then branch,
one for the if-else branch and one for the C commands afteiswar

H:ix >0 Hixz 20
PROP()
PROP() PROP() ‘temp X x;
LOCAL temp X x; A JLocal temp X x; A {LOCAL |temp S s;
temp s s temp S s tempy |z|
SEP(s — o) SEP(s L o) SEP(s — o)
n n n
y:x; y:.x; t:*s;
PROP() PROP() *s =t 4y,
temp X z; temp X x; PROP()
LOCAL [temp S s; LOCAL [temp S s; LOCAL temp X z;
tempy |z temp y |z temp s s
SEP(s — o), SEP(s — o), SEP(s 0 + |z|),
n n n
1,1,1 1,1,1 1,1,1

Fig. 12: Subgoals aftdgorward_if

Fig. 13 and 14 is a sketch of the effectfofward.if Q) in general. One important
detail in this tactic interface is how we handle the predi¢hat “the denotation df
is true/false”. Traditionally[b] = true will be a conjunct of the precondition in the
if-then branch. In VST-Floyd, it does not show up in the pradion but appears
above the line as an assumption of the whole if-then tripl@ur example above, if
the precondition of the conditional is

PROP() LOCAL(temp X x;temp S s) SEP(s — o)
n

andb is x >= 0. Thusz > 0 will an assumption of the if-then triple. Similarly,
x # 0 will be an assumption of the if-else triple. Treating thistieg result as a Coq
assumption about values, instead of a Hoare logic predondibout expressions, is
very convenient in verifying real C programs.

Implementation In “forward.if )", we first applySEMAX-SEQto split the proof goal
into two. The first one will be handled Byrward.if and the second one, a triple for
the rest of program is directly left to the users.
The implementation dbrward.if is based on the following auxiliary Hoare rule.
P tc_expr4,b)
PE[b] =v
If v = true, thenA + {P} ¢1 {Q, Qork; Qcon, Qret}
If v = false, thenA - { P} ¢ {Q, Qbrk, Qcon, Qret}

A F {P} if (b) c1 else co {Qa Qbrk, Qcon, Qret}

SEMAX-IF’
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{P}
if (b)
THEN_BRANCH, A {P}if (b) THEN.BRANCH;
el se el se ELSE_.BRANCH,
ELSE_BRANCH, MORE.COMMANDS
MORE_.COMMANDS {R, Rork; Roon, Rret}

{R, Rprk, Reon, Rret }

Fig. 13: More than one if command—befdreward._if

{r}
if (b)
/] extra context:
/1 [b] =true H : The denotation of b is true
{r}
THEN_BRANCH, AkF {P} THEN—BRANCH{Q7 Rbrk, Rcom Rret}
{Qv Rbrk, Rcon, Rr et }
el se
/] extra context: H : The denotation of b is false
/1l [b] =false
{P} Ak {P} ELSE-BRANCH{Q7 Rbrk, Rcom Rret}
ELSE_BRANCH,
{Q7 Rprk, Reon, Rret }
{Q} AF {Q} MORE_COMMANDS{R, Rbl’k7 Rcon, Rret}
MORE_COMMANDS

{R, Rprk, Reon, Rret }

Fig. 14: More than one if command—befdteward._if

We doeapply semax.if’ first in forward.if. Four subgoals are generated. The first one
is typechecking; it will usually be solved automaticallhél'second is C expression
evaluation, which solves by computation amavill be instantiated (see 8§5.1) if the
precondition is in the canonical form. The last two proof lgg#en-clause Hoare
triple, else-clause Hoare triple) will be presented to siser

6.4 Forward proof on loops

Recall that Clight unifies different loops in C into the fofrmop( ¢;) ¢. In this gen-
eral loop command,;is the loop body and; is the increment command. Specifically,
“while (b) c"isdefinedas
loop(;) {if (b) /*xskip*/; else break; c}
and‘for (co; b, ¢) c'isdefinedas
co; loop(e) {if (b) /+skipx/; else break; c}.
Verifiable C offers a primary Hoare rule for general loops.
A+ {P} c {PvaaP/aQret}
A+ {Pl} & {P7J-7J-7Qret}
Ak {P} loop (Cz) c {Q7 Qbrk, Qcon, Qret}

SEMAX-LOOP
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This rule is already pretty easy to use, compared to othergygi Hoare rules in
Verifiable C. There is no expression evaluation or typectmeckriterion involved.
So we do not provide forward tactics for general loops. Usears apply this rule
directly. To apply this rule in forward verification, usersau to provide two loop
invariants, one before incremental stégf)and one after incremental stef); and
one postcondition®).

However, it's inconvenient to provide three assertidtisP, Q when there are
common special cases where only one is neededwkol e loops, the two loop
invariants are identical. Farhi | e loops withoutor eak command inside, the post-
condition is just a conjunction of the loop invariant and@estondition that the loop
condition is false. Therefore, we provide a taébievard.while for simple while loops
without break statements.

We also have a special-purpose for-loop tadtioyard_for_simple_bound, to han-
dle loops ofthe formfor (...; i <E; i ++).

7 Interactive Tactics for Forward-Style Proof

In the previous section, we introduced forward tactics inMFoyd which perform
forward verification. But sometimes those tactics do notnemh well to each other.
All forward tactics assume that the precondition in the prgoal is in canonical
form, but some tactics’ postconditions (efgrward._call), and typical loop invariants,
are in existentially quantified canonical form.

Another problem isseP clause reorganization. THerward for load and store

commands only detects predicates with fqa’mt—> v andp ni—> v in SEPclauses but

cannot handle user-defined predicates. foheard.call tactic requires an exact match
between specificatioaepclauses and a subset of thepclauses in the proof goal.
Users must sometimes rewrite the precondition of the proaf go thatorward can
work.

In this section, we introduce the interactive tactics in M3adyd to manipulate
assertions and triples. These tactics are the glue codewdéid tactics.

7.1 Intros

Intros is the basic tactic to extraeRoPclauses in preconditions, to pull out existen-
tially quantified variables and to improve the arrangeméoaaonical preconditions.

7.1.1 ExtractrropPclauses

The first effect ofintros is extractingprRoPclauses. Fig. 15 is such an example. The
right side of it shows the Coq proof goals before and aftetyapg Intros: two propo-
sitionsa > 0 andb > 0 are dragged above the line and become assumptions of the
whole triple. The corresponding decorated program say#tiwely: “from this point
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PROP(a > 0;b > 0)
LOCAL(temp X p)

P int i
1
SEP P-F4F—TT—+b
in

COVMANDS
{POSTCONDI TI ON}

PROP()
LOCAL(temp X p)

p|—>a
SEP p+4|

N\ Suppose a>0 >0
PROP()
LOCAL(temp X p)

P int &
1
Sl prdr———b
1
COMVANDS

./ {POSTCONDI TI ON}
{POSTCONDI TI ON}

a:Z
b:Z

[N

'_
PROP(a > 0;b > 0)
LOCAL (temp X p)
p >—>t a;
n
SEP p+4 e b
n

COMMANDS
{POSTCONDITIONS}

a:Z
bz
H:a >0
H1:56>0

AtE
PROP()
LOCAL (temp X p)

p ’—l’ a;
In
SEP p+4 T b
In
COMMANDS
{POSTCONDITIONS}

Fig. 15: Example: Intros

to the end of current block, let's assumeé> 0 andb > 0”. Such transformations are
sound because of the following proof rule.

—— — —
If PthenAt {PROPPA LOCAL @ 4 SEPRA} ¢ {Post}

EXTRACT-PROP

— — —
AF {PROP (P; P4) LOCAL@Q 4 SEP RA} ¢ {Post}

It is a very practical proof strategy in VST-Floyd to pull pasitions from the
precondition into Coq assumptions. It enables users to/ajgphain-specific mathe-
matics in a more flexible environment, i.e. the Coq’s prootled-or exampley > 0,

b > 0 anda + b = 0 together tell us = b = 0. This can be proved directly by Coq’s
default solver for linear programmingnega. Moreover, if assumptions like = 0

is above the line, Coq tactics lilkeibst can be applied to further simplify the proof
goal.

7.1.2 Extract existentials

Intros also extracts existentially quantified variables. If thegirgoal is a Hoare
triple, Intros = y moves existential quantifiers in the precondition abovdities in-
troducing Coq variables, y.

One or more arguments aftitros indicate the name of the new Coq variables.
Fig. 16 is a tiny exampldntros i will transform the proof goal on the top to the one
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on the bottomIntros also finds existential quantifiers insidesap clause (see Fig.
17).
Intros works (soundly) by applyingXTRACT-EXISTS, proved in Coq:

Forallz. (A+ {P(z)} ¢ {Q})
AR {3z: A P(2)} ¢ {Q}

EXTRACT-EXISTS

Moving existential quantifiers out of orgEPconjunct is sound due to the commu-
tativity between existential quantifier and separatingwoction: (Ja.P(a)) * Q -
Ja.P(a) * Q. We prove the following derived rule for canonical assersioMore
specifically, our Ltac program always moves an existegt@llantifiedsepconjunct
to the beginning first, then apply this rule.

— — — — — —
PROP P LOCAL ) SEP(Jx.Ro(z); R) -+ Jx. PROP P LOCAL Q SEP(Ry(z); R)

7.1.3 Flatten thesepclauses

The other effect ofntros is flattening thesep clauses. In the original precondition,
there is only onesepclause, but the clause itself is a separating conjunchidrs
splits it into twosepPclauses. This transformation is sound because of the coaamut
tivity and associativity of separating conjunction. Fig.dhows an example.

7.2 Introduce more propositions in the context

We have shown thdhtros can extract propositions iRROP clauses. Besides that,
VST-Floyd provides another tactissert.PROP which adds an propositioR, into
the Coqg assumption if it is derivable from the precondition.

Fig. 19 shows an example agsert.PROP. Here,(isptr p) saysp is a pointer value
and it is notnull. Applying assert.PROP (isptr p) adds this proposition to the Coq
assumption list (see the change from the proof goal on thegbpto the one on the
bottom right). Users are responsible for the soundnessobgeration. In this case,
we need to prove a separation logic entailerment: precondinplies (isptr p). We
know this is true because some data is store at addr&4ST-Floyd offers tactics to
solve entailments (semi)automatically (see 89). Here,aveapplyentailer! to solve
this sidecondition.

7.3 Manipulating separating conjunctions in SEP clauses

We providegather.SEP andreplace-SEP to manipulatesep clauses in preconditions
or in the left sides of entailments.

For example, suppose the proof goal is a triple (or an enggitnresp.) whose
precondition (or left side, resp) is

PROP() LOCAL 6 SeP(a; by c;d;e; f59;h; 45 7)
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3 a b AF
PROP() Jab.
LOCAL (temp X p) PROP()
pr——m4a; LOCAL (temp X p)
SEP int )
ptar———b int ’
int SEP
COMVANDS p+4 — b
{POSTCONDI TI ON} COMMANDS
{POSTCONDITIONS}
3 a b
PROP()
LOCAL(temp X p) az
sep PTim bz
p+4— " b
n
N\ \\ Gvenab Ar
PROP() PROP()
LOCAL(temp X p) LOCAL (temp X p)
. p—— a;
sep Uim SEP int
pHA— nt b ptid int b
COMVANDS : COMMANDS
./ {POCSTCONDI Tl ON} {POSTCONDITIONS}

{POSTCONDI TI ON}

Fig. 16: Example: Introg b

a:Z
PROP() AL
LOCAL (temp X p) PROP()
SEP P LOCAL (temp X p)
. p+4+——b — a;
SEP int
COMVANDS BHop+d—b
wD n
HEECEN) S COMMANDS
{POSTCONDITIONS}
PROP()
LOCAL(temp X p) a:Z
( P 0 > b:Z
SEP in
Jb. p+4 —_— b AL
N\, \\ Gven b PROP()
PROP() LOCAL(temp X p)
LOCAL (temp X p) p —— a;
o int
sep( D m @ SEP (P+4"—>b>
p+4r—b i nt
int COMMANDS
COMVANDS {POSTCONDITIONS}

./ {POSTCONDI TI ON}
{PCSTCONDI TI ON}

Fig. 17: Example: Intro$



44 Qinxiang Cao et al.

PROP() ar
{ LOCAL(temp X p;temp y q) } PROP()
SEP(p — R b) LOCAL(temp X p;tempy q)
o int {SEP(;D»_—Hl * q%b)}
COMMVA int int
{POSTCONDI Tl ON} COMMANDS
{POSTCONDITIONS}
PROP()
{ LOCAL(temp X p;temp y q) } A
SEP(p ———a * qr———b)
— - PROP()
PROP() LOCAL(temp X p;temp ¥ q)
LOCAL (temp X p;temp y q) SEP(p @i a )
SEP(p——a; ¢ ———b COMMANDS

{POSOQIWND% - {POSTCONDITIONS}

Fig. 18: Example: Intros

gather.SEP i j k will bring theith, jth, andkth items to the front of theEeplist and
conjoin them into a single element.
gather.SEP 5 results inPROP() LOCAL C_j SEP(f; a; b; ¢;d; e; 95 h; 15 ).
gather.SEP 1 3 results inPRoP() |_OCA|_Z2> SeP(bx d;a;c;e; f5g;h;i; 7).
gather.SEP 31 results inPROP() |_OCA|_Z2> SEP(d * by a;c;e; g5 hy 5 7).
replace.SEP i R will replace item # with predicateR.
replace.SEP 5 R results inPRoP() LOCALC—j SeP(a; b; c; d; e; R; g; h; i3 ) and
a proof subgoal:
A A PROP() LOCALZj SeEP(f)F R
These tactics are very useful to handle user-defined pitedida §4, we showed

a user-defined predicdtst which describes integer linked lists. Here, we use a simple
version of it to demonstrate how the tactics above can be used

list2(p, a,b) :=3q. p——— a,q * qg+——— b,null
IntList IntList

This predicatdist2 describes a 2-element linked list.
Now, suppose we start from the following proof goal:

A+ {ProP()LoCAL(temp X p)seP(list2(p, a,b))} ... {...}
To unfold this user defined predicate, we can doféld list2; Intros ¢”:

q: val

A+ {PROP()LOCAL(temp X p)SEP(p T GG b,nul)} ... {...}

If we want to refold this definition, we can first applydther.SEP 0 1"
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PROP()
LOCAL(temp X p)
SEP(p 'T a)

COVMVANDS
{POSTCONDI TI ON}

PROP()
{ LOCAL(temp x p)}

AbE
PROP()
LOCAL (temp X p)
SEP(p — a)

COMMANDS
{POSTCONDITIONS}

PROP()
AA {LOCAL(temp X p)}

SEP(p ——— a)
int

SEP(p — a) H! (isptr p)
In

N \\ Assune isptr(p)

PROP() H: isptr

LOCAL (temp X p) Sprp

SEP(p —_— a) A

COVMANDS PROP()
./ {POCSTCONDI Tl ON} LOCAL(temp X p)
{PCSTCONDI TI ON} SEP(p — a)
int
COMMANDS
{POSTCONDITIONS}

Fig. 19: Example: asseRROP(isptr p)

q: val

A+ {PROP()LOCAL(temp X p)SEP(p ———— a,q * ¢ ———— b, null)} ... {...}
I ntList I ntList

then tactic teplace.SEP 1 (list2(p, a, b))” can change the proof goal back to the orig-
inal one. Here, we will be left to prove a subgoal:

q: val

A A PROP()LOCAL(temp X p)SEP(p g * g b,null) F list2(p, a, b)
ntLrs

e —
I nt Li st
To solve this proof goal, we can darifold list2; Exists ¢; entailer!”. We will introduce
the tactics for solving entailments in §9.

A more convenient tactic, in place ghther.SEP/replace.SEP is sep.apply f,
wheref is any lemma of the forn#; * - - - x P,, b @Q); it gathers theP; from wherever
they appear in the left-hand side of the entailment, andhogs them withg).

8 Structural Proof Rule in Forward-Style Proof

We have shown our tactic library for forward style proof ie fhrevious sections (86
and 87). Besides that, VST-Floyd also provides supportdones structural proofs.
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The most useful structural rules are the sequence rule anfiaime rule. We intro-
duce their corresponding proof rules and tactics in VST.

8.1 Reorganizing Sequential Composition and Applying 8age Rule

Suppose the user writes a program,
c1; Co; ¢3; ¢q; \* blank line =\ ¢s; ¢g; ¢7;

Here, the blank line in the middle means that cs, c3 andc, are for one subtask
andcs, ¢g ande; are for another subtask. It is natural for our user to vehfse two
segments of code separately and then achieve the correcthébe whole program
by SEMAX-SEQ. In other words, we want to prove the triple on the top righFif.
20 by decomposing it into two triples on the bottom right. Téfécolumn of Fig. 20
shows the corresponding decorated program.

{P}
C1; C2; C€3; C4
C5: €6 CT A+ {P}ci;coe35e4505 ¢65 01 {R, L, L, L
{R,L,1,1} ) ’ { I

{P}
C1,
{Q}

C5, C6; Cr,
{R’ J—’ J—’ J—}

c2; c3] c4 AFA{P} ci5e25e35¢4; {Q, L, L, 1}

AF {Q} C5;5C6; CT5 {RyJ—7J—7J-}

Fig. 20: Proof by subtask decomposition

Recall that the sequential composition of C commands is &tined as a bi-
nary oparator in CompCert Clight (see §6.1.2). That meaEsIAX-SEQ cannot
be applied directly and we must refactar- (c2 - (¢3 - (ca - (¢5 - (c6 - ¢7))))) into
(c1-(ca-(c3-cq))) - (c5- (co-c7)). TheseQAssOcrule (8sec:id-1st-cmd) cannot
do it, since it does not come with a congruence rule (for cicaf#d reasons related
to step-indexing of our underlying model).

To reassociate a block, we define a Coq functiofold_Ssequence to turn a C
command into a list of commands; it flattens the syntax tregeqfiential composi-
tion:

unfold_Ssequence(c) =] if ¢ is not a sequential composition

unfold_Ssequence{c;; ca} ::= unfold_Ssequence(cl)++unfold_Ssequence(c2)

where++ is list concatenation. We prove the Hoare rule,

unfold_Ssequence(c; ) = unfold_Ssequence(cz)
A+ {P} C1 {R7 Rork, Reons Rret}

AF {P} C2 {Ra R, Reon, Rret}

SEMAX-UNFOLD-SEQ
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This rule says that we can always reorganize the tree steiofisequential compo-
sition as long as the flattened version is unchanged.

To accomplish the decomposition that we described in thenbay of this sub-
section, the user carapply SEMAX-UNFOLD-SEQandSEMAX-SEQfirst, then apply
two proved Hoare triples for each subtasks.

8.2 Tactical support for flexible framing

VST-Floyd’s proof tactics for function calls, loads, andrsts automatically include
identification of separation logic frames using a weak fofrateduction [9], some-
times exploiting programmer hints such as the instantiatiinesses iforward.call.
Efficiency of these tactics (and of explicit callsdancel or entailer typically found in
the vicinity of these forward steps) depends directly orsibe of thesep clause. This
suggests that proof-checking could be made faster by tesdlibse of the frame rule
(i.e. sSEMAX-FRAME)—aside from the fact that the frame rule enables users teepro
triples with more concise pre/postconditions. Unfort@hgtas commonly phrased,
SEMAX-FRAME does not interact well with the granularity at which forwapkrates.

A {P} c{Q, Qork; Qcon, Qret}  closedwrt_ modvarge, I')
At {F*P} c {F*QaF*QbrkaF*QCOHaF*QI’et}

As an example, consider a proof goal of the foff « Ps « P3} ¢1;¢a;¢3 {7Q}
with derivable triple P;} ¢; {Q;}. In many (but not all) cases, the fifstward-step
through this goal implicitly frames off, « Ps, steps through;, and leaves the proof
goal{Q@1 * Py * Ps} co;c5 {?7Q}. Then, the next twéorwards frame off@, « P; and
Q1 * Q2, respectively.

Matching this behaviour by explicitly wrapping each indival forward step in
a maximally precise application afEMAX-FRAME would rapidly pollute the proof
script with administrative clutter. On the other hand, iifging upfront the number
of forward steps for which each individual clausedep is to be framed off requires
inspection ofvore.commanDs, andSEMAX-FRAME in fact does not allow the speci-
fication of such information.

Our solution to this challenge is to rephrase framing as téwesfer of clauses
between the regulaer compartment of canonical assertions and specialized com-
partments that are inaccessible to tbevard tactics. A user may invoke the tactic
freeze L n to bundle a listL of clauses fronsep (where members are identified po-
sitionally, much as in the tactics described in Section in®)a named entitfR(n)
that is opaque to the symbolic execution tactics, canéatiabnd entailment tac-
tic. Later, she may selectively dissolve sucfreezerusing the tactichaw n. Each
freezer constitutes just anothegp clause, so multiple freezers may coexist or be
nested inside one another. Hence, a flexible programmereatiea framing mecha-
nism is obtained, the use of which can be balanced againgtetiermance of the
remaining automation tactics. In typical cases, we havespced speed-ups of ap-
proximately 30%, depending on the number of unfrozen ckaasel the complexity
of the frozen ones. Future work may seek to improve the datiVeness of freezer
management and explore potential connections to the tted@amification [18].

SEMAX-FRAME
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9 Solving entailments

When verifying a Hoare triple, users need to prove entaibnesth the formAA A -
B in some patrticular circumstances. For example, at the eradl@sic block, the
forward tactic will leave an entailment as a subgoal (86.1). To haaghi | e loop,
one must first prove such an entailment: the preconditioni@gphe loop invariant
(86.4). Users of VST-floyd can useplace.SEP to better organize the precondition
in the proof goal (§7.3); users are required to prove ent@ibmfor the soundness of
such replacement.

We provide two tacticdntros and Exists for manipulating quantifiers and we
(semi)automate the proofs of quantifier-free entailmesitsgian Ltac program called
entailer.

9.1 Intros

If the proof goal is a separation logic entailmentyos moves existential quantifiers
on the left side of entailment to the assumptions of Coq pgoafi—much like the
way it works on a Hoare triple (§7.1). The soundness of thiidas based on the
following proof rules.
— — —
If PthenA APROP P4 LOCALQ 4 SEP R4 - B
— — —
A ANPROP(P; Py) LOCALQA SEP R4 + B
Forallz. AA P(z) FQ
(AN Jz. P(z)) F Q
The contextA specifies types of local variables and specifications ofajlamc-
tions. The propositiotypecheck.environ A p asserts that every local variable in the
environmenp has a value consistent with the type specified\in
Recall that these rules regalifted assertions, that igA A Jz. P(z)) F @
meansvp. ((Ap A Jz. P(x)p) B Qp) and in such a contextdp should be taken
to meantypecheck.environ A p.
Specifications of global functions are irrelevant to entaihts (they are used at

function-call Hoare triples and in a Hoare rule for copyinfuaction address to a
variable). This aspect afl is not tested byypecheck_environ.

EXTRACT-PROPRENTAIL

EXTRACT-EXISTS-ENTAIL

9.2 Exists

Exists is the dual ofintros. It instantiates an existentially quantified variable oe th
right side of an entailment. Fig. 21 shows an examplExidts.
It is sound because of the following proof rule:

PFQa)
Pr3dz. Q)
In short,Intros andExists are very similar to Coq'’s tactidatros andexists, but

they perform transformation in the object language (sejmrdogic entailment) in-
stead of in the metalanguage (Coq).

EXP-RIGHT
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PROP() Ja.PROP()
AN {LOCAL(temp X p)} - { LOCAL (temp x p)}

SEP(p — 4) SEP(p — a?)
In In

PROP() PROP()
AN {LOCAL(temp X p)} - {LOCAL(temp X p)}

SEP(p — 4) SEP(p — 22)
n In

Fig. 21: Example: Exists 2

9.3 Entailer

The tacticentailer does not always prove the entire entailment, but simplifidxy i
proving those parts that can be automated, without turninggble goals into un-
provable goals. It may leave a residual goal.
— — — — — —
From A APROP P4 LOCAL(Q 4 SEP R4 - PROP P LOCAL (g SEP R, entailer
proceeds in the following steps:

1. Clear from “above the line” any hypotheses known to bdduant. For example,
in A the mapping of function names to function specs is neveulgetolving
these entailments (it is only usedfmrward_call), so we prune this mapping from
A. This has a surprisingly good effect on Coq’s execution fimgerforming the
rest of the proof steps.

2. Move the propositions irzﬂ> above the line, by repeatedly applyiBg TRACT-
PROPENTAIL. In the process, apply Verifiable-C-specific lemmas to dachor
example, C-language expression-semantid? inay be simplified to mathemat-
ical propositions such as < y. If Pisz = FE, substituter globally.

3. Go from an entailment in the lifted separation logic (pcates on stacks and
heaps) to the unlifted logic (predicates on heaps). We cahiddecause, unlike
a Hoare triple, botd and B are on the same local-variable state. Thatlis; B
is definitionally equal td/p : stack. Ap F Bp, so simplyintro p.

4. Then the elements @) can be moved above the line one at a time, by lemmas
such as this one:

Lemma lower.one_temp:
— — =
foralltp A Piv @Q R S,
Al )=t —
(tevaltv — [i]p=v — (AAPROP P LOCAL Q) SEP R)p I S) —
— — —
(A A PROP P LOCAL (tempi v; Q) SEP R) p I S.

This matches éfted entailmengoal of the form
A APROP P LOCAL (tempi v; @) S whereS’ =4 Sp; that lifted en-
tailment isg-equivalent to the conclusion of the lemma for some arhjtraihe
entailer applies this lemma, leaving two subgoals. The first subguakd up the
C-language type df in A and solves easily by computation.

The entailer solves the second subgoal by first performinfppas twointros,
puttingtc_val t v and[i]p = v above the line. The former of these says that a
well-typed value for C-language type
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The semantics ifB of LocaL(temp i v; Q)pisjust[i Jp = v ALOCALQ p. SO,
aftercx is processed, all themp conjuncts ir@ are now proved directly from
assumptions above the line. The process is analogolgferandgvars.

At this point we may clear from the proof goal anything depamdnp. But
thetc_val t v hypotheses remain above the line, for use in the remaingépg ¢and
in user proofs of residual goals). For example,ig C's unsigned-char type, this
assumption guarantees thats indeed an integer (not a pointer or float), and is
between 0 and 255.

— — — —
5. What remains takes the forsR4 - A Ps A % Rp, wherePg is a list of pure

propositions, anﬁ, R—B> are lists of spatial predicates. For each elemeift of
deduce certain “standard” pure propositions and put theggogitions above the
line. For examplep — v impliesisptr(p), thatp is a pointer (and natull). More
interestinggdata_at guarantees that the length of each (sub)aromtentsnatches
the size in the declared C-language type. For each kind diaspaedicate that
we might find as a conjunct adR 4, we look for the “standard” proposition in a
“Hint database” calledaturate_local.

6. Now perform various simplifications and rewrites spediiour C type system
and C-language comparison expressions, then generatingypgiich a$ -n = 0.

7. The next step depends on whether the user has invoketittiker tactic, which
guarantees not to turn a provable goal into an unprovable goentailer! which
is a bit more aggressive and efficient.

— entailer eliminates each element &% that is provable with Cog’auto tactic;
then repeats from step 6 as long as progress is made.

— — — —

— entailer! splits the proof-goalR4 - Pg A Rp into two goals,Pg and
E + R_B>. It then tries to prove each of theg by auto, compute, omega,
re exivity, leaving a conjunction of the unproved subgoals as a redaduke
user. It uses theancel tactic (see below) to cancel terms that appear both in
R4 andRp, leaving the residue (if any) as a proof goal for the user.

Our cancel tactic takes a goak, + Rp, where R may contain a unification
variable if the purpose iBame inferencén aforward.call proof. Phase one carefully
avoids unifying the unification variable (if present), andtjwalks through each con-
junct of R 4 finding a corresponding conjunct &fz. The correspondence need not be
exact; there is a Coq “Hint database” of cancellation lemmofthe formR; F R;.
SupposeR 4 is the first conjunct of the left-hand-side of the entailméyiter match-
ing Ry to R4 (instantiating the lemma), we find th&, that matches the instantiated
Rg, and do some directed AC rewriting to puth, to the front of the conjunction.
Then the lemmdR; F Ry) — (Ra - Rp) — (R1 * R4 - Rz x Rp) is used to
cancel, leaving the subgoRly - Rp.

Then, if the remaining goal ismp - emp we are done; or if the remaining goal
is Ry ...x R E?7U, thenU can be instantiated; otherwise the residual goal is left
for the user.

In separation logic, it can happen thiét R, - Rx R is provable wherd?, - R,
is not; so cancellation is not always the right tactic. Butally it is: it simplifies goals
and often solves them entirely.
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9.4 Magic wands and modalities

Our separation logic has the separating implicatieand several modalities such as
“later” > and “in all worlds of the same age”. These are rarely visibleders of VST-
Floyd; mostly they're used in proving the soundness of opasation logic (Hoare
rules). Some specialized proofs—such as defining a comtsaaecursive type us-
ing the Lob fixpoint [3, Chapter 19]—do require the user tonipalate modalities
and magic wand. The tactics most useful in those proofseangte andsep.apply;
we don’t have special modality-handling tactics in euatailer.

On the other hand, there is some automatic modality handiraur forward
tactic. Many of our Hoare logic rules have latemodalities in their preconditions
[3, pp. 96, 160-164]. For example, the ruEBMAX-SET, SEMAX-LOAD, SEMAX-
sTOREshown in 82.3 really have precondition® (instead ofP) and>(P * p — _)
(instead ofP * p — _). We omitted the- in 82.3 to simplify the presentation (though
becauseP P, the rules presented there are still sound). Now supposeskies
“current assertion” i®ROP(. . .)LOCAL(. . .)SEP(A; >B; >C'; D; E). Ourforward tac-
tic automatically applies rules such &+ >P and>P « >Q F >(P x Q) to prove
that the current assertion entaifRopr(. . .)LocAL(. . .)ser(4; B; C; D; E); thenthe
strong form ofSEMAX-LOAD (etc.) can apply.

10 A worked example

Consider this C program:

int sumarray(int a[], int n) {

int i,s,x;

i =0; int four[4] = {1, 2,3, 4};
s=0;

while (i<n) { int main(void) {
x=ali]; int s;
S+=X; s = sumarray(four, 4);
i+, return s;

} }

return s;

}

Verifiable C with VST-Floyd automation proves the corresmef this program
quite straightforwardly, as we will show. Actually, thisggram is so simple, and
its specification is so first-order, that weaker (but moremattic) systems such as
Frama-C and VeriFast can prove its correctness as well.Heuptograms that illus-
trate VST’s higher-order features would be too big to prékere.

A reasonabléunction specificatiofior sumar r ay is,

Definition sumarray.spec :=
DECLARE _sumarray
WITH a: val, sh : share, o :listZ, n: Z
PRE [ _.a OF (tptr tint), .n OF tint]
PROP (readable_share sh; 0 < n < Int.max.signed,;
Forall (fun x = Int.min_signed < x < Int.max_signed) o)
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LOCAL (temp _a a; temp n (Vint (Int.repr n)))
SEP (data.at sh (tarray tint n) (map Vint (map Int.repr o)) a)
POST [ tint ]
PROP () LOCAL(temp ret.temp (Vint (Int.repr (fold_right Z.add 0 0))))
SEP (data.at sh (tarray tint n) (map Vint (map Int.repr o)) a).

The names starting with underscore are C-language idegtiéind the italicized vari-
ables are Coq variables boundWTH (which we wrote adl in earlier sections).

The PrRoPpart of the precondition says, there is some permissionesthathat
grants at least permission to read from memory; there is aegative (mathemati-
cal) integern that is representable as a 32-bit signed integer; there ésjaesicer
of (mathematical) integers, all of which in the range betwt® minimum and max-
imum signed 32-bit integers. ThedCAL part says, the C variable contains the
valuea, and_n contains the 32-bit representationrafThe SEPpart says at address
a there is an array]] of C-language integers, and the contents of this arrayds th
C-integer-value translation of the sequence

ThePRoPpart of the postcondition is empty, as usual, because evepppition
in the precondition is still (necessarily) true. ThecaL part of the postcondition
describes the return value, the C pseudovariable cealte@mp, containing (the 32-
bit representation of) the sum ef Theseppart says that this function has not altered
the data structure in its input.

Now we prove of correctness of the program. We constructglbigal part of)A
from all the function specifications and global-variablpdy in the program and the
standard library:

Definition Gprog : funspecs := ltac:(with _library prog [sumarray_spec; main_spec]).
Definition Vprog : varspecs. mk.varspecs prog. Defined .

Now we must prove that each function satisfies its specifinafihe form of the
theoremiis,

Lemma body_sumarray: semax_body Vprog Gprog f_.sumarray sumarray.spec.
Proof .
start_function.

The semax_body judgment says, in the global contéxtrog+Gprog, the syntac-
tic function-definitiorf_.summary (parsed by the front-end of CompCert) satisfies the
Hoare specificatiosumarray_spec. To prove this, we use the tactitart_function.
This constructgl from Vprog, Gprog, and the local-variable declarations@aumarray;
it introduces the variables bound by tTH clause ofsumarray_spec, and does
other bookkeeping.

Floyd introduces/ore.commanps to stand for the “rest of the block,” and vedb-
breviatethis local definition to avoid clutter. Owbbreviate operator is just a way
of hiding terms, taking advantage of Coq’s “implicit argumiefeature. Its defini-
tion uses braces to indicate that argumetitandx are implicit, and should not be
displayed.

Definition abbreviate {A:Type} {x:A} = x.

Now our proof goal is,
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a :val sh : share

o:listZ n:.:zZ

A := abbreviate : tycontext

SH : readable_share sh

H:0 < n < Int.max.signed

HO : Forall (fun z : Z = Int.min_signed < z < Int.max_signed) o
POSTCONDITION := abbreviate : ret.assert

MORE_COMMANDS := abbreviate : statement

1/1)

semax A
(PROP ()
LOCAL (temp _a a; temp _n (Vint (Int.repr n)))
SEP (data.at sh (tarray tint n) (map Vint (map Int.repr o)) a))
(Ssequence (Sset .i (Econst.int (Int.repr 0) tint)) MORE_.COMMANDS)
POSTCONDITION

The proof goal is a Hoare triple for the entire function baatyd the C command
(written here in AST constructors) is=0; .... Two invocations offorward take
us through the two assignment statementf; s=0 to the proof state (we omit
variable declarations, sh, A, etc. above the line),

SH : readable_share sh

H:0 < n < Int.max_signed

HO : Forall (fun z : Z = Int.min_signed < z < Int.max.signed) o
POSTCONDITION := abbreviate : ret.assert

MORE_COMMANDS := abbreviate : statement

LOOP_BODY := abbreviate : statement

1/1)

semax A
(PROP ()
LOCAL (temp _s (Vint (Int.repr 0)); temp _i (Vint (Int.repr 0));
temp _a a; temp n (Vint (Int.repr n)))
SEP (data.at sh (tarray tint n) (map Vint (map Int.repr o)) a))
(Ssequence (Swhile (Ebinop Olt (Etempvar i tint) (Etempvar _n tint) tint)
LOOP.BODY) MORE.COMMANDS) POSTCONDITION

At the whi | e loop, we applyforward.while, supplying a loop invariant in exis-
tentially quantified canonical form.

forward.while
(EX4:Z, PROP (0 <7 < n)
LOCAL (temp _a a; temp _i (Vint (Int.repr 2)); temp n (Vint (Int.repr n));
temp _s (Vint (Int.repr (fold-right Z.add 0 (sublist 0 7 0)))))
SEP (data.at sh (tarray tint n) (map Vint (map Int.repr o)) a)).

This leaves four subgoals. The firstis to prove that the ctipeecondition entails
the loop invariant. This solves by simpiikists 0; entailer!
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The second subgoal is to prove that the loop-test expressialnates without
getting “stuck” (i.e., doesn’t refer to uninitialized vabiles, divide by zero, overflow,
etc.). In this case, our computational typechecker [3, @ha}b] calculates that the
proof goal isTrue, because it has kept track that all the variablésdn are initialized.

The third subgoal is to prove that the loop body preservekthginvariant.

SH : readable_share sh

H:0 < n < Int.max.signed

HO : Forall (fun x : Z = Int.min_signed < x < Int.max_signed) o
HRE:i <n

H1:0<:<n

(1/1)

semax A

(PROP ()

LOCAL (temp _a a; temp _i (Vint (Int.repr z)); temp 1 (Vint (Int.repr n));
temp _s (Vint (Int.repr (fold-right Z.add 0 (sublist 0 7 0)))))

SEP (data.at sh (tarray tint n) (map Vint (map Int.repr o)) a))

(Ssequence
(Sset .x (Ederef (Ebinop Oadd (Etempvar _a (tptr tint)) (Etempvar .i tint) (tptr tint)) tint))
MORE_COMMANDS)

POSTCONDITION

Before we go forward througk=a[ i ] ; it's helpful to assert thatz| = n; this
allows theLoAD rule to discharge one of its hypotheses. So we might try teewri
assert(Zlength o = n). But this is not provable from what's above the line. Instead
we need to use information from thiata_at predicate in the precondition: that the
contents of an array must be the same length as the arrayebt,efie do this using
the rule of consequence, to prove that the current predonditplies one that also
has apropPclause withjo| = n. This is automated by the tactic,

assert.PROP (Zlength o = n).

which leaves the subgoal,

ENTAIL A,

PROP ()

LOCAL (temp _a a; temp _i (Vint (Int.repr 2)); temp _n (Vint (Int.repr n));
temp _s (Vint (Int.repr (fold.right Z.add 0 (sublist 0 7 0)))))

SEP (data.at sh (tarray tint n) (map Vint (map Int.repr o)) a)

11 (Zlength o = n)

This is easily proved byentailer!; rewrite |Zlength.map; re exivity).

Now, three invocations dbrward take us to the end of the loop body, where we
must prove that the current assertion entails the loop iawar
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H:0 < n < Int.max.signed
HRE:i<n

H1:0<:<n

(1/1)

ENTAIL A,
PROP ()
LOCAL (temp _i (Vint (Int.add (Int.repr ¢) (Int.repr 1)));
temp _s (Vint (Int.add (Int.repr (fold-right Z.add O (sublist 0 7 o))
(Int.repr (Znth 2 o 0))));
temp _x (Vint (Int.repr (Znth ¢ o 0))); temp _a a; temp n (Vint (Int.repr n)))
SEP (data.at sh (tarray tint n) (map Vint (map Int.repr o)) a)
FEXj:Z,
PROP (0 < j < n)
LOCAL (temp _a a; temp _i (Vint (Int.repr j)); temp 1 (Vint (Int.repr n));
temp _s (Vint (Int.repr (fold.right Z.add 0 (sublist 0 j 7)))))
SEP (data.at sh (tarray tint n) (map Vint (map Int.repr o)) a)

We instantiate the existentigf) with i+1, and invokeentailer!, leaving a residual
proof goal of:

H: 0 < Zlength o < Int.max_signed

H1:0 < < Zlength o

HRE : ¢ < Zlength o

(1/1)

Vint (Int.repr (fold_right Z.add 0 (sublist 0 (i + 1) 0))) =

Vint (Int.repr (fold_right Z.add O (sublist 0 7 o) + Znth 7 ¢ 0))

This is proved by manipulations in the theory of sublists:

f_equal. f_equal. rewrite (sublist_split 0 % (i+1)) by omega.
rewrite sum.Z_app. rewrite (sublist.one i) with (d:=0) by omega.
simpl. rewrite Z.add.O_r. re exivity.

The fourth subgoal (oforward_while) is to prove the remainder of the function-
body after the while loop. What remains is just thet ur n statement:

H:0 < n < Int.max.signed
HO : Forall (fun x : Z = Int.min_signed < x < Int.max.signed) o

HRE:i>n
H1:0<:i<n
POSTCONDITION := abbreviate : ret_assert
1/1)
semax A
(PROP ()

LOCAL (temp _a a; temp _i (Vint (Int.repr i)); temp 1 (Vint (Int.repr n));
temp _s (Vint (Int.repr (fold.right Z.add 0 (sublist 0 ¢ 0)))))
SEP (data.at sh (tarray tint n) (map Vint (map Int.repr o)) a))
(Sreturn (Some (Etempvar _s tint)))
POSTCONDITION



56 Qinxiang Cao et al.

Invokingforward through the et ur n s; yields an entailment goal: the current
assertion implies the function’s postcondition. Tdmailer! leaves this residual goal:

H1:0 < i < Zlength (map Vint (map Int.repr o))

HRE : 2 > Zlength (map Vint (map Int.repr o))

(171)

Vint (Int.repr (fold_right Z.add 0 o)) = Vint (Int.repr (fold_right Z.add 0 (sublist 0 ¢ ¢)))

This is easily proved by the theory of sublists:
autorewrite with sublist in «. autorewrite with sublist. re exivity.

This case study can be found in our Coq development: progissgmarray.v.

11 Use cases

Verifiable C with VST-Floyd has been used to prove severallsimat real, C pro-
grams correct with respect to functional specifications:

Queue SHA HMAC HKDF DRBG Sort Salsa AES Mailbox
Lines of C* 82 239 256 100 380 40 280 240 180
Lines of Floyd 530 4956 5432 796 5919 573 5019 1256 2860
Proof-checktimé 84 1120 980 670 4100 253 1730
Years of Coq

experience before begin- 6 7 4 6 0.3 4 5 2 7
ning the proof

Years of VST

experience 1 2 0 2 0 0 1 0.02 0.4
Weeks of effort 298 2078 5 4 3 6 28 10d

2Line counts include blank lines and commeritsany of these lines are quite
long. “Plus 1598 lines of Coq proofs about properties of the funeticpecifica-
tion. 4Includes work to build or improve Floyd itselfTimings measured in seconds
on Intel Core i7 (at 3.7 Ghz), one processor, with plenty ahesand 32GB RAM,
but no proof requires more than 2GB RAM (and in practice, Calelizes well by
make -j and other means)Very rough approximatioDone in an early, primitive
version of VST-Floyd, though the line-counts given are irrent VST-Floyd.

Queue. Linked-list imperative FIFO queue abstract-data-typevpd by Andrew
Appel, 2012. [3, Chapter 28]

SHA-256. The OpenSSL implementation of the SHA-2 cryptographic halglo-
rithm, specialized to the 256-bit case. Proof done by Andkppwel, 2013. [2]

HMAC. The OpenSSL implementation of the HMAC cryptographic antication
algorithm; proof done by Lennart Beringer, 2014. [7] In tbése and the DRBG
case, the proof that the C program implements its functispat is done by the
author we name here; the cited papers also include otherterggroofs, e.g.,
that the functional spec has the appropriate cryptogrgpbigerties.
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HKDF. BoringSSL's implementation of HMAC-based key derivatianétion; proof
done by Lennart Beringer, 2017.

DRBG. The mbedTLS implementation of the HMAC-DRBG random-nunpesm-
erator; proof done by Naphat Sanguansin, 2015.

Sort. In-place merge sort of linked lists, proved by Jean-Mariglldg 2015.

Salsa. Parts of TweetNaCl's implementation of the stream ciphdse&® [8]; par-
tially done by Lennart Beringer, 2016.

AES. The mbedTLS implementation of AES-256 symmetric-key eption; proof
done by Samuel Gruetter, 2017.

Mailbox. A novel concurrent-shared-memory communications prdigcoof done
in Concurrent Verifiable C (with VST-Floyd) by William Mangk2016. [26]

12 Discussion and Related Work

In the development of VST-Floyd, we made some design detsgiifferently from
other verification tools. In this section, we discuss thdssaes.

12.1 Automatic vs. interactive tools

Automatic verification tools such as Dafny [24], Frama-C][3@ip/Sleek [10], and
CBMC [12] achieve great success in their application domBirt in the domain of
functional-correctness verification with higher-ordegitopredicates, fully automatic
decision procedures cannot be effective—some interaitioecessary. VST-Floyd
is an interactive tool, to support application-domain oeéisg (in an expressive de-
pendently typed higher-order logic) that is beyond the soofpa general tool (and
may itself be undecidable).

Automatic tools put restrictions on their application dansaso that they will
not have this undecidability problem. Some tools do onlypghanalysis instead of
functional correctness. In some tools, assertions mustdieofider and the predicates
in assertions are limited.

To enable VST-Floyd to be a general purpose tool for funetieerification, we
build it in Coq, a general purpose proof assistant in whialmaim-specific definitions
and proofs can be formalized—our system allows users toyagpitrary domain-
specific theories.

12.2 Verification condition generation

Formalizing program logics in proof assistants and forynatbving their soundness
has been an active area of research for many years. Howewaljiting mechanized
proofs of metatheoretical aspects—formal soundness atatipe) completeness of
the logic with respect to an operational semantics, as famgte carried out by
Kleymann [20] and Nipkow [28]—with efficient verification gimes has long been
an elusive goal. We are unaware of prior work that also inetua provably sound
connection to a verified compiler.
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Wildmoser [31] presented formal proofs of soundness andpteteness of a
VCG framework in Isabelle/HOL that is parametric in the $afegic, programming
language, and concrete safety policy, and specializef#mswork to typical proof-
carrying-code-style safety policies and theah subset of Java bytecode. Matthews
et al. directly derive verification conditions in the proof asarst ACL2 from the op-
erational semantics, obviating the need to formulate aratp®CG framework [27].
Neither of these works exploit the structuring mechanisfreeparation logics; both
avoid the intricacies of C, particularly concerning the noeyrmodel.

12.3 Canonical forms of separation logic assertions

Berdineet al. [6] first proposed a canonical form of separation logic whdis$tin-
guishes pure facts and spatial facts. Specifically, an tas@f their canonical form
can be represented 88; A --- A P,) A (Q1 % ... x Q) in which P; are pure facts
and@); are spatial facts. They did not isolate program variablegeado.

Charge! [5] is a separation logic tool proved sound in Cofeldurs, their asser-
tions are predicates over stack-heap pairs. In compatiserseparating conjuncts in
their “canonical form” of assertions are not required to h@ependent of program
variables. As a consequence, generating a strongest pdgioo is more compli-
cated.

Iris Proof Mode (discussed below) has an assertion fadth« L. -« R whereP
are the persistent conjuncfsand R are separating conjunctions.

12.4 Systems for machine-checked separation-logic pnograofs

Charge! [5], Bedrock [11], and Iris [19] have very similarsitgn philosophies to
VST-Floyd. All of them are shallowly embedded separatiagide supporting inter-
active proofs in Coq of the functional correctness of paim@nipulating programs.
Bedrock is a program logic and tool for reasoning about level (idealized as-
sembly language) programs. Its assertion language usesléagalculus and directly
refers to stack and heap. To express the following canoags#rtion in VST-Floyd,

PROP()LOCAL(temp X p)SEP(p — 0)

Bedrock users directly write\s : stack. Ah : heap. s(X) = p A h(p) = 0.

Floyd performs better for two reasons. On one hand, theaigin of separating
conjunction enables concise representation of heap disggsser(p — 0;¢ — 0)
implies the fact they £ ¢. On the other hand, Coq’s tactic language does not work
well in a subcontext. In the example above, the expressigh = p A h(p) = 0
is in a subcontext with two extra variablesndh. Pattern matching in Coq’s tactic
language does not work very well in this scenario. Our sdjmerdogic predicates
abstract away this lambda calculus. Our tactic library aliyeoperates in the top
level context and is thus more efficient.

Charge! is a program logic for Java, based on separation.lttgs not linked
to a formally verified Java compiler, which means that onenoaonsider its Java
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semantics fully “debugged.” Charge’s assertion languagaastly written in lifted

separation logic while our canonical form mostly operatethe unlifted language
(seppart). Because of the isolation of C variables in our caralrfiarm, our tactic

library only modifies one conjunct (inoCAL part orsepPpart) in a precondition to
generate a postcondition. Until 2014, assertions in V¥Fiwere written in the
lifted language instead of canonical forms. We found thabprules were very com-
plicated and tactics were very slow. For similar reasonsyr@dl is less efficient than
VST-Floyd.

Iris [19] is a general purpose modal concurrent separatigic] parameterized
over programming languages and program semantics, emthed@ad proved sound
in) Coq. Iris Proof Mode (IPM) [23] provides tactics and lemsrfor separation-logic
proofs in Iris.

IPM has several features lacking in VST-Floyd: the abilitypime the left-hand-
side conjuncts as individual (separating) hypothesesiapleandling of a “persis-
tent” modality, and special tactics for the various modgagitof the Iris logic [22].
Some of these modalities are also in VST's logic (see §9utwithout special sup-
port from Floyd. Particularly interesting in IPM is suppfot deriving Hoare rules
by proofs at the logic level, where VST has such proofs at thdehlevel; IPM’s
modalities make this possible. Because VST’s underlyigicland semantic model
can support these modalities, it would be a worthwhile imgproent to import this
idea from IPM into Floyd.

Unlike Floyd, as of 2017 IPM has no reported support for aggre types (as
in 83 of this paper) or efficient treatment of program vamah{as in §5). IPM can
do forward symbolic execution, but it is less automated thlyd: the user must
apply more per-statement tactics, and the handling of fonatall postconditions,
if-statements, and while-loops (or the recursive-functamuivalent) is less auto-
mated. Because IPM is designed for ML-like languages whosal lvariables are
substitution-based, IPM naturally lacks automation fogd\style (C-style) local
variables (as in §5,89.3).

As Krebberset al. write, “[unlike IPM] all the tools that we are aware of are
primarily focused on program verification.” Indeed, thathie focus of VST-Floyd.
However, it should be possible to include some of our teaesgnto IPM and get
the best of both worlds.

CakeML [15] is now accompanied with a separation Hoare ldgicverifying
functional correctness. Their system is based on a Chaistitd~ormulae frame-
work, which is similar to Hoare logic. The construction ofaEacteristic Formulae is
actually a combination of Hoare rules and the definition o&kédriple validity. The
soundness of such construction corresponds to the soundhEsare rules.

12.5 Dependent types used in separation logic predicates

Affeldt and Marti [1] and Krebbers [21] also have separatiogic “maps-to” opera-
torsp —, v parameterized by a typethat may be an aggregate type suchtasct.
However, where oueptype(7) operator, where for exampte=(struct foo {int x,y;}),
calculates the type af to be simplyval x val, in those systems theieptype (called
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log by Affeldt) is an inductively defined type. The advantageldit approach is a
simpler construction of the metatheory (no need for an eipknking to ensure C
types are acyclic, less manipulation of dependent typds).disadvantage is that—
although in principle there’s a type isomorphism betwiegiir) andval x val—the
user cannot simply apply the familiar operatésssnd and constructorg_, _) for
Cartesian product, but must deconstructltiyggoperator by case analysis.

Our data.at predicate, applied to a C array type, relates the conterttsecdirray
to a sequence. The length of the sequence must, of courdes karhe as the length
of the array. How should this be represented in Coq? We fdeeddsign choice: list,
with a separate proposition about the length of the list;ggresthdently typed “vector,”
which includes the length in the Coq type of the sequence.tWbeapproaches are
equally powerful. We chose the nondependently typed lsause we feel that the
proof theory is simpler and more tractable for users. Ouaibsrts saturate local
phase (89.3) automatically puts the list-length facts atibe line for the user.

13 Conclusion

We have presented VST-Floyd, an extensive collection obfpractics, abstraction
principles and other automation features that turn Veléiabinto a practically use-
ful verification tool for nontrivial C programs. While thegwent description focused
on the verification of sequential code, VST's semantic mad&d supports reason-
ing about multithreaded code, as demonstrated by a recsatstady on a mailbox
communication protocol with fine-grain concurrency priwas [26]. Specifying the
invariants of thread primitives implicitly requires reasng about function pointers,
for which we are developing additional automation suppbptrasent. Further ongo-
ing work includes the support of 64-bit architectures agendly enabled by Comp-
Cert3.0, and the extension of VST's soundness guarantéepracessor models that
exhibit relaxed cache coherence.

In summary, VST-Floyd represents a key component of the @erVST in-
frastructure. For those system components that requitedsgurance (necessitating
the use of formal verification) and also high performancgdgsting the use of C)
the Verified Software Toolchain enables practical, ené+id-modular program veri-
fication.
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