
MIT Open Access Articles

VST-Floyd: A Separation Logic Tool
to Verify Correctness of C Programs

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

As Published: https://doi.org/10.1007/s10817-018-9457-5

Publisher: Springer Netherlands

Persistent URL: https://hdl.handle.net/1721.1/131755

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/131755

Noname manuscript No.
(will be inserted by the editor)

VST-Floyd: A separation logic tool to verify
correctness of C programs

Qinxiang Cao · Lennart Beringer
Samuel Gruetter · Josiah Dodds
Andrew W. Appel

Received: date / Accepted: date

Abstract The Verified Software Toolchain builds foundational machine-checked proofs
of the functional correctness of C programs. Its program logic, Verifiable C, is a shal-
lowly embedded higher-order separation Hoare logic which is proved sound in Coq
with respect to the operational semantics of CompCert C light. This paper introduces
VST-Floyd, a verification assistant which offers a set of semiautomatic tactics helping
users build functional correctness proofs for C programs using Verifiable C.

1 Introduction

In our interconnected world, software bugs can seriously compromise our safety and
security. Protection mechanisms such as operating systems, crypto libraries, and lan-
guage runtimes can protect buggy programs from each other—but those protection
mechanisms are also software, often written in low-level programming languages
such as C. To provide adequate safety or protection, these software components in C
must be functionally correct.

To assure functional correctness of C programs, we can use Hoare logic [16] and
its extensions such as separation logic [29]. But such correctness proofs are large
and complex enough that we cannot trust them unless they are machine-checked.
The Verified Software Toolchain (VST) is a set of verified tools that enable users
to formally verify the functional correctness of C programsusing Hoare logic: at
bottom, the CompCert verified C compiler from INRIA; above that, core Verifiable
C, a separation logic proved sound in Coq with respect to the operational semantics
of CompCert C light; above that,Verifiable C, a derived separation logic that supports

Qinxiang Cao
Department of Computer Science, Princeton University, 35 Olden Street, Princeton, NJ, 08540
E-mail: caoqinxiang@gmail.com

Andrew W. Appel
Department of Computer Science, Princeton University, 35 Olden Street, Princeton, NJ, 08540
E-mail: appel@princeton.edu

2 Qinxiang Cao et al.

proof automation; above that, a proof automation system to assist the user in applying
the program logic to the program. The users’ proofs, the soundness of the tools, and
the correspondence of the compiled program to the formal model, are all machine
checked.

In this article we explain VST-Floyd, which includes a proof-automation system
for interactively constructing functional correctness proofs of C programs, along with
the special-purpose derived Hoare rules and predicate operators of Verifiable C that
support this proof automation. Appelet al. [3] describe an early prototype of VST-
Floyd, but in this paper we describe many new techniques, results, and engineering
(every feature described in sections 3–9 is either completely new or substantially im-
proved) since that publication. We design a canonical form of assertion for automatic
generation of strongest postconditions. We offer separation logic predicates to de-
scribe data of C aggregate types stored in memory. The whole system acts as a tactic
library enabling our users to proform forward verification.

This system has been used to construct correctness proofs ofseveral real-world
C programs, including components of various cryptographiclibraries (see §11). Our
Coq development can be found online at,

https://github.com/PrincetonUniversity/VST/releases/tag/v1.9

1.1 Hoare logic

Hoare logic is a formal system for reasoning about program correctness. It uses as-
sertions to describe programs’ behavior: a preconditionP , a programc and a post-
conditionQ form a Hoare triple{P} c {Q}. The triple means that for any initial
states and ending statet, if s � P (“s satisfiesP ”), then runningc from s is safe (in
particular, it cannot result in undefined behavior); and ifc terminates in statet, then
t � Q. Our tools implement a Hoare logic ofpartial correctness, meaning thatc may
loop infinitely.

Hoare logic is compositional, i.e. a Hoare triple of a program can be proved by
the Hoare triples of its components. For example, here is therule for sequential com-
position:

HOARE-SEQ
{P} c1 {Q} {Q} c2 {R}

{P} c1; c2 {R}

Because of this compositionality, the proof of a Hoare triple can be written as a dec-
orated program. Figure 1 shows the decorated program and itsproof tree.

Using assertions and partially decorated programs to illustrate program correct-
ness has already been widely used in software development.

1.2 Machine checkable proofs

Our previous work, core Verifiable C [3, Part III], is a shallowly embedded higher-
order separation Hoare logic formalized in Coq. Coq is an interactive, programmable
proof assistant in the tradition of Edinburgh LCF: users build proofs interactively by
applying tactics, transitioning from a proof goal to zero ormore subgoals that imply
the original proof goal. When all proof goals are solved, aQed command checks the
correctness of the user-constructed proof.

VST-Floyd: A separation logic tool to verify correctness ofC programs 3

{JxK = a ∧ JyK = b}
z = x;

{JxK = a ∧ JyK = b ∧ JzK = a}
x = y;

{JxK = b ∧ JyK = b ∧ JzK = a}
y = z;

{JxK = b ∧ JyK = a ∧ JzK = a}

{JxK = a ∧ JyK = b}
z = x;

{JxK = a ∧ JyK = b ∧ JzK = a}

{JxK = a ∧ ...}
x = y

{JxK = b ∧ ...}

{... ∧ JyK = b ∧ ...}
y = z

{... ∧ JyK = a ∧ ...}

{JxK = a ∧ JyK = b ∧ JzK = a}
x = y; y = z;

{JxK = b ∧ JyK = a ∧ JzK = a}

{JxK = a ∧ JyK = b} z = x; x = y; y = z; {JxK = b ∧ JyK = a ∧ JzK = a}

Fig. 1: Decorated program and proof tree

Verifiable C is used to prove Hoare triples of C programs. First, the front-end of
the CompCert C compiler [25] parses and translates the C program into an abstract
syntax tree inClight, a variant of C in which (for example) side-effects have been
factored out of subexpressions into separate commands. Theuser writes afunction
specificationfor each function, giving the function’s precondition and postcondition.
Then the Hoare triple of each C light function body is a theorem to be proved in Coq;
this proof goal can be broken into Hoare triples of smaller program fragments (Coq
subgoals) by applying structural Hoare rules (such asHOARE-SEQ) using Coq tactics
in Verifiable C. Triples of atomic C commands (such as assignment statements) can be
proved using Verifiable C’s atomic Hoare rules. TheQed commands at the end check
the correctness, i.e. proofs of Hoare triples by Verifiable Cin Coq are all machine
checked.

Moreover, Verifiable C is proved sound [3, Part VI] with respect to the operational
semantics of C light, formalized in Coq. The back end of CompCert translates C light
to assembly language, and is proved correct w.r.t. the operational semantics of C light
and assembly. Thus, the trusted base of functional correctness proofs by Verifiable
C contains only Coq’s kernel (proof checker) and the formalized assembly-language
semantics for a target machine such as x86, ARM, PowerPC, or RISC-V.

Verifiable C is an extremely expressive program logic: it is ahigher-order impred-
icative concurrent separation logic. That means it can reason about function point-
ers, higher-order predicate quantification, data abstraction, object protocols, shared-
memory concurrency [26], and pointer data structures with mutation—all with re-
spect to specifications of functional correctness in a general purpose logic, namely
Coq. No other mechanized program logic for C that we know of has this level of
expressiveness and flexibility.

The basic principles of VST function specifications and the soundness of Verifi-
able C have been described elsewhere [3]. In this paper we focus on how to automate
proofs by forward interactive symbolic execution.

4 Qinxiang Cao et al.

1.3 VST-Floyd

Using Verifiable Cdirectly to verify C programs would be quite inconvenient! There
would be two main problems: (1) Coq’s notion of tactic-directed backward proof,
when applied to Hoare logic, would be like writing a proof tree (such as in Fig. 1)
from the bottom up. This does not correspond well to the programmer’s intuition
of executing the program in statement order. (2) C’s semantics has many subtleties
and corner cases. Verifiable C’s primitive proof rules have many side conditions to ac-
count for these issues. Satisfying all these conditions could be quite tedious, requiring
long proofs in Coq.

In this article, we present VST-Floyd, a lemma and tactic library which solves
these two problems and helps users build Hoare triples in Verifiable C.

The most important feature of VST-Floyd is its forward proofstyle. Fig. 2 demon-
strates a tiny example of it. One step of forward verificationreduces the proof goal
in 2(d) to 2(e) and another step reduces 2(e) to 2(f). The process simulates how one
might write a decorated program: from 2(a) to 2(b) and from 2(b) to 2(c). During this
process, the shaded lines in 2(a-c) represent Hoare tripleswhich are not yet proved.

The VST-Floyd user does not see the decorated program directly, as in Fig. 2(a–
c). Instead, one sees the corresponding proof goals in 2(d-f).

{JxK = a ∧ JyK = b}
z = x;

x = y;

y = z;
{JxK = b ∧ JyK = a}

(a)

a: val

b: val

{JxK = a ∧ JyK = b}
z = x; x = y; y = z;

{JxK = b ∧ JyK = a}

(d)

{JxK = a ∧ JyK = b}
z = x;

{JxK = a ∧ JyK = b ∧ JzK = a}
x = y;

y = z;
{JxK = b ∧ JyK = a}

(b)

a: val

b: val

{JxK = a ∧ JyK = b ∧ JzK = a}
x = y; y = z;

{JxK = b ∧ JyK = a}

(e)

{JxK = a ∧ JyK = b}
z = x;

{JxK = a ∧ JyK = b ∧ JzK = a}
x = y;

{JxK = b ∧ JyK = b ∧ JzK = a}
y = z;

{JxK = b ∧ JyK = a}

(c)

a: val

b: val

{JxK = b ∧ JyK = b ∧ JzK = a}
y = z;

{JxK = b ∧ JyK = a}

(f)

Fig. 2: Forward proof style

VST-Floyd: A separation logic tool to verify correctness ofC programs 5

VST-Floyd helps automate forward verification. In the example above, users need
not write the intermediate assertions in Fig. 2. Previous techniques for generating
strongest postconditions [13] introduced an existential to bind the “old” value of a lo-
cal variable. Ourcanonical formmakes this simpler by making the old value explicit
in the precondition, so that no existential is introduced. We automatically generate
the strongest postconditions of atomic commands—without existentials—along with
proof terms which certify the corresponding Hoare triples.

To enhance the usability of our verification tool, we providea separation logic
predicatep p−→

t
v for writing concise assertions. This predicate says, datav of C type

t is stored at addressp. Here,t can be any C type including integers, floats, pointers,
struct, union, and arrays;struct, union, and arrays can be nested.

Also, we provide useful tactics to manipulate Hoare triplesin VST-Floyd. Rather
than pushing symbolic execution (akin to strongest-postcondition generation) all the
way through a program and then dealing with an intractable proof goal at the end,
one can use the rule of consequence to adjust the assertions between commands:

HOARE-PRE
P ⊢ P ′ {P ′} c {Q}

{P} c {Q}

The side conditionP ⊢ P ′ is a separation logic entailment. VST-Floyd provides tac-
tics to simplify (and sometimes even solve) entailments. Users may apply domain-
specific theorems in these entailment proofs. Besides, VST-Floyd also provides tac-
tics to manipulate quantifiers, separation logic subformulas, etc., in proof goals.

We have engineered Floyd to beefficient.Earlier versions of our tactics were so
slow that it was impractical to verify real programs, so we learned how to reformulate
our Hoare lemmas and tactics for faster verification.

We organize the rest of this article as follows. §2 briefly summarizes Verifiable
C, our previous work. §3 describes VST-Floyd’s data-structure assertions; §4 intro-
duces the canonical form of our Floyd assertion language. §5shows how to generate
strongest postconditions of atomic commands. §6 and §7 introduce the interface and
implementation of the tactics that perform forward verification. §8 introduces the
tactics to perform structural proof rules. §9 presents tactics to manipulate and solve
separation logic entailments. §10 and §11 describe the use of VST-Floyd in practice.

2 Background: Verifiable C

Verifiable C is a separation logic proved sound with respect to the operational seman-
tics of CompCert C light, which is an early-stage intermediate language of the Comp-
Cert verified optimizing C compiler. CompCert offers a program called “clightgen”
to generate corresponding C light programs from a C program.

The syntax of C light is very similar to C. The key differencesthat matter in
this paper are that C light (1) distinguishes addressable variables and nonaddressable
variables, (2) unifies different loop commands, and (3) has no side effects nested
inside subexpressions.

6 Qinxiang Cao et al.

In the C language, one can take the address of variablev by the syntax&v. Any
scalar (int, float, pointer) local variable whose address isnever taken (a property eas-
ily to determine statically) is callednonaddressable. All other variables—globals, ag-
gregates (struct, union, arrays), and those whose address is taken—areaddress-
able. Addressable variables are stored in memory, while nonaddressable variables are
typically kept in machine registers. We pay attention to thedifference because, in a
program logic, nonaddressable variables can often be reasoned about by substitution,
instead of the heavyweight mechanism of separation.

CompCert’s front end unfolds C’s looping constructs (for, while, do-while) into
the loop construct of Clight (and of Verifiable C). In particular, C’sfor loop is not
an instance of itswhile loop, since thecontinue statement jumps to theincrement
rather than to the loop test. In the command “loop(ci) c”, c is the loop body and
ci is the increment command. Specifically, “while (b) c” is defined as

loop(;) {if (b) /*skip*/; else break; c}

and “for (c0; b; ci) c” is defined as

c0; loop(ci) {if (b) /*skip*/; else break; c}

2.1 Verifiable C programs

Almost all C light constructs can be verified by Verifiable C, with four limitations:

A. Verifiable C does not support thegoto statement.
B. Only primary r-value expressions and primary l-value expressions are allowed. A

primary r-value expression does not contain any memory dereferences or func-
tion calls. A primary l-value expression refers to an address in memory and the
computation of the address does not involve any memory dereferences or function
calls. For example, ifx andy are nonaddressable variables of integer type anda
is a variable of integer array type, thenx+y, x*x, x<=y, a+x, &(a[x + 1])
are primary r-value expressions;a[0], a[x], a[x+1], *(a+x) are primary
l-value expressions; anda[x]+a[y], a[x]*2, a[a[x]] are not primary ex-
pressions. When the source-language command has nonprimary expressions, the
clightgen tool automatically factors the command (inserting extra assignments to
temporary variables), so the user does Verifiable C proofs onabstract-syntax trees
that have only primary expressions.

C. Only the following four kinds of assignment commands are allowed:
1. Set command: the left side is a nonaddressable variable and the right side is a

primary r-value expression
2. Load command: the left side is a nonaddressable variable and the right side is

a primary l-value expression
3. Store command: the left side is a primary l-value expression and right side is

a primary r-value expression
4. Function call: the left side (if present) is a nonaddressable variable and the

right side is a function call (perhaps wrapped in a cast).

VST-Floyd: A separation logic tool to verify correctness ofC programs 7

Again, where the source program contains more general assignments, clightgen
factors them into commands of this form before the user does aVerifiable C proof.

D. Test expressions ofif commands, expressions inreturn commands, and argu-
ments in function calls must be primary r-value expressions. The clightgen tool
handles this as well.

Verifiable C imposes these limitations for simplicity of thelogic (seeRemarkat
end of §2.3). And these limitations do not decrease the expressivity of C language:
any nonprimary expression can be split into multiple assignment commands with the
help of auxiliary nonaddressable variables. Program transformations can eliminate
goto commands, although less conveniently.

2.2 Contextual Hoare logic

Verifiable C uses a contextual Hoare triple:∆ ⊢ {P} c {Q, Qbrk, Qcon, Qret}
to describe the behavior of a C commandc. The context∆ contains the types of
all C variables (accessible from the current function) and the specifications of all C
functions (that might be directly called from the current function). Four different post-
conditions are involved in one triple because C (or C light) semantics allows to exit
the execution ofc in four different ways: exit normally, exit by abreak command,
exit by acontinue command and exit by areturn command.

The triple means that for any initial states, if s � P , then runningc under context
∆ from s is safe (i.e., it will not cause a run time error or undefined behavior) and for
any possible ending statet of this execution,t � Q, t � Qbrk, t � Qcon or t � Qret if
the execution ends normally, bybreak, bycontinue or byreturn respectively.

Verifiable C’s program logic is very similar to normal Hoare logic. The structural
Hoare rules are as follows.

SEMAX-SEQ

∆ ⊢ {P} c1 {Q, Rbrk, Rcon, Rret}
∆ ⊢ {Q} c2 {R, Rbrk, Rcon, Rret}

∆ ⊢ {P} c1; c2 {R, Rbrk, Rcon, Rret}

SEMAX-PRE
P ⊢ P ′ ∆ ⊢ {P ′} c {Q, Qbrk, Qcon, Qret}

∆ ⊢ {P} c {Q, Qbrk, Qcon, Qret}

SEMAX-POST

Q′ ⊢ Q Q′
brk ⊢ Qbrk Q′

con ⊢ Qcon Q′
ret ⊢ Qret

∆ ⊢ {P} c {Q′, Q′
brk, Q

′
con, Q

′
ret}

∆ ⊢ {P} c {Q, Qbrk, Qcon, Qret}

SEMAX-IF

∆ ⊢ {P ∧ JbK = true} c1 {Q, Qbrk, Qcon, Qret}
∆ ⊢ {P ∧ JbK = false} c2 {Q, Qbrk, Qcon, Qret}

∆ ⊢ {P ∧ tc expr(∆, b)} if (b) c1 else c2 {Q, Qbrk, Qcon, Qret}

SEMAX-LOOP

∆ ⊢ {P} c {P ′, Q, P ′, Qret}
∆ ⊢ {P ′} ci {P, ⊥, ⊥, Qret}

∆ ⊢ {P} loop (ci) c {Q, Qbrk, Qcon, Qret}

8 Qinxiang Cao et al.

We useJeK to represent the value of expressione in the current local-variable
state; sincee is a primary r-value then it is independent of memory. However, e might
still fail to evaluate if it refers to an uninitialized localvariable or (e.g.,) divides by
zero. The functiontc expr(∆, e) “type-checks” the expressione: if tc expr(∆, e) then
e is a primary r-value expression and the evaluation does not involve undefined behav-
ior. Furthermore,tc expr is efficient: in most cases, what the assertiontc expr(∆, e)
computes to is simply true.

Similarly, whene is a primary l-value expression, we useJ&eK to represent the
address it evaluates to, andtc lvalue(∆, e) typechecks&e.

2.3 Separation logic

Separation Hoare logic is an extension of Hoare logic designed for programming lan-
guages with explicit memory manipulation. To support convenient reasoning about
pointer (and array-slice) manipulation in C, Verifiable C isa separation logic.

Separation logic adds separating conjunction∗ to the assertion language. Suppose
program states can be represented as pairs of stack (a function from local variables to
values) and heap (also called memory, a partial function from addresses to values)1

then the semantics of separating conjunction is defined as follows:

(s, h) � P ∗ Q iff there existh1 andh2 s.t.

h1 ⊕ h2 = h, (s, h1) � P and(s, h2) � Q

where⊕ represents the disjoint union of heaps. Intuitively,P ∗ Q is satisfied on a
piece of memory if it can be split into two parts, one of which satisfiesP and the
other satisfiesQ.

Separation logic has two advantages over normal Hoare logic:
First, separation logic allows for a concise representation of non-aliasing. For

example,P1 ∗ P2 ∗ ... ∗ Pn claims that thesen assertions are satisfied onn disjoint
pieces of memory. In propositional logic, then(n − 1)/2 antialiasing claims might
require a quadratically long formula.

Second, separation Hoare logic has an extra Hoare rule, the frame rule, which
enables one to prove a triple locally and use it globally.

SEMAX-FRAME
∆ ⊢ {P} c {Q, Qbrk, Qcon, Qret} closedwrt modvars(c, F)

∆ ⊢ {F ∗ P} c {F ∗ Q, F ∗ Qbrk, F ∗ Qcon, F ∗ Qret}

The following are Hoare rules for atomic commands in Verifiable C:

SEMAX-SET
P ⊢ (tc expr(∆, e) ∧ JeK = v)

∆ ⊢ {P} x=e {∃x′. JxK = v ∧ P [x′/x], ⊥, ⊥, ⊥}

SEMAX-LOAD
P ⊢ (tc lvalue(∆, e) ∧ J&eK = p ∧ p 7→ v ∗ ⊤)

∆ ⊢ {P} x=e {∃x′. JxK = v ∧ P [x′/x], ⊥, ⊥, ⊥}

1 The “heap” in Verifiable C is actually a step indexed model of CompCert’s memories, following
Hobor et al. [17].

VST-Floyd: A separation logic tool to verify correctness ofC programs 9

SEMAX-STORE
P ⊢ (tc lvalue(∆, e1) ∧ J&e1K = p ∧ tc expr(∆, e2) ∧ Je2K = v)

∆ ⊢ {P ∗ p 7→ } e1=e2 {P ∗ p 7→ v, ⊥, ⊥, ⊥}

Here,p andv range over terms that are independent of program states;p 7→ v
is a separation logic predicate which describes a heap consisting of only one single
addressp, at which the valuev is stored. Remember that “∗” represents separation of
memory access, sop 7→ v ∗ q 7→ u implies thatp andq are different addresses. These
rules can be applied without needing to separately apply theframe rule, because of
the∗⊤ in SEMAX-LOAD and theP∗ in SEMAX-STORE.

Remark.In §2.1, we only allow 4 simple kind of assignment commands and only al-
low primary r-value expression outside assignment commands. Our separation Hoare
logic rules benefit from this setting: evaluations likeJeK andJ&eK are heap indepen-
dent and only one memory block (described byp 7→ v) is critical for every load/store
command.

2.4 Shallowly embedded logic

Verifiable C is a program logic shallowly embedded into Coq. In other words, every
assertionP is a predicate on stack-heap pairs.2 The satisfaction relation is defined
straightforwardly:

(s, h) � P ::= P (s, h)

Shallow embedding enables Verifiable C to represent quantifiers. In the assertion

∀x : A. P (x)

P has type(A → assertion) and the universal quantifier in the object language can
be directly defined as follows:

∀x : A. P (x) ::= λs : stack. λh : heap. for anyx : A, P (x, s, h)

Notation Distinction: In order to distinguish connectives in object language and
metalanguage, we will always use symbols (∀, ∧, ∗) in object language (separation
logic assertions) in this paper, while English words (“and”, “or”, “for all”) will rep-
resent metalanguage (Coq) connectives.

It is easy to do natural deduction with quantifiers in a shallowly embedded logic.
For example, the following is the generalization rule for the universal quantifier for-
malized in Coq.

Lemma allp-right: forall A P Q, (forall a: A, P ⊢ (Q a)) → P ⊢ ∀ a: A, Q a.

In a Coq proof scenario as below,(apply allp-right; intro a), a tactic in Coq, will turn
the proof goal on the left into the proof goal on the right.

2 Readers can understand the type ofP as stack→ heap→ Prop. But actually, this predicate must be
monotonic w.r.t. the step indexing, i.e. we define it Coq as a dependent pair of a predicate and a proof of
monotonicity [3, Part V].

10 Qinxiang Cao et al.

P ⊢ ∀ a: A, Q a.

a: A

P ⊢ Q a.

It is particularly convenient to use variables of the metalogic to represent variables
of the object language. In comparison, in a fully deeply embedded logic one might
have to write the generalization rule for universal quantifiers as,

Γ, a : A | P ⊢ Q[a/x] v 6∈ Γ

Γ | P ⊢ ∀x : A. Q

in which a and all other variables in Coq’s proof context (Γ) are symbols of object
language. But the variablea in allp right is a Coq variable, i.e. a metalogic variable
and object logic constant.

Using this design, the only object logic variables in Verifiable C are C program
variables. All other variables in paper proofs are formalized in Coq as metalogic
variables. For example, ourSEMAX SET rule is formalized as follows:

Theorem semax-set:

forall ∆ (P: assertion) x e (v: val),

P ⊢ tc-expr(e) ∧ JeK = v → ∆ ⊢ {P} x := e {EX x’: val, JxK = v ∧ P[x’/x]}.

Here, the termv is formalized as a Coq variable since it represents values independent
of program states. The termP[x’/x] is semantic substitution, i.e.

P [x′/x] = λ(s, h).P (s[x′/x], h)

2.5 Unlifted logic: stack-independent heap predicates

In the separation logic of Verifiable C, assertions independent of stacks are widely
used in verification. For example, ifp andv are values, thenp 7→ v is a predicate
independent of stacks. In comparison,JxK 7→ 0 is not independent of stacks, since it
relies on the current value of the local variablex.

In a shallowly embedded logic, these assertions independent of stacks are just
predicates over heaps. These predicates also form a separation logic, i.e.

h � P ∗ Q iff there existh1 andh2 s.t.h1 ⊕ h2 = h, h1 � P and h2 � Q

We call this separation logic unlifted and we call the previous one lifted. The
lifted separation logic and unlifted separation logic havethe following connection.

P ∧ Q = λs : stack. P (s) ∧ Q(s)

P ∗ Q = λs : stack. P (s) ∗ Q(s)

∃x : A. P (x) = λs : stack. ∃x : A. P (x, s)

∀x : A. P (x) = λs : stack. ∀x : A. P (x, s)

VST-Floyd: A separation logic tool to verify correctness ofC programs 11

Here, all connectives on the left side are logical connectives of the lifted logic while
the connectives on the right side belong to the unlifted logic. The situation with other
connectives is similar; we omit them here.

It is particularly useful to describe data structures usingheap-only (unlifted) pred-
icates. The list or tree you build now, in this function with these local-variable values,
will still be the same list or tree in some other function witha different stack context.
Our canonical forms in Section 4 facilitate this decomposition of assertions into a
stack-relevant part and a heap-relevant part.

2.6 Function specifications and the function call rule

Because of the shallow embedding, function specifications in Verifiable C are not
only pre/postconditions but parameterized pre/postconditions. For example, suppose
swapint has the following signature in C:

void swapint(int * x; int * y);

when we informally write3

swapint(x, y) : {JxK 7→ a ∗ JyK 7→ b}{JxK 7→ b ∗ JyK 7→ a}

we mean that this specification is valid no matter what valuesa andb are instantiated
(the same pair(a, b) should be used to instantiate the precondition and the postcon-
dition). In Verifiable C, its pre/postconditions are actually

λ(a, b). JxK 7→ a ∗ JyK 7→ b and λ(a, b). JxK 7→ b ∗ JyK 7→ a

whose types are “val × val → assertion”.
To indicate that the specification is parameterized, we willwrite them in the fol-

lowing way:

swapint(x, y) : Π(a, b). {JxK 7→ a ∗ JyK 7→ b}{JxK 7→ b ∗ JyK 7→ a}

In VST-Floyd, in Coq notation rather than math notation, we would write this as4,

DECLARE swapint
WITH a: val, b: val

PRE [x OF int , y OF int] JxK 7→ a ∗ JyK 7→ b
POST [void] JxK 7→ b ∗ JyK 7→ a

3 This specification ofswapint is not strong enough, because it does not say whether the values of
JxK andJyK change or not after running the function. In actual verification, we will use:

swapint(x, y) : {JxK = p ∧ JyK = q ∧ p 7→ a ∗ q 7→ b}{p 7→ b ∗ q 7→ a}

4 In actual Coq code, C light uses identifiers to represent C variable names and C function names. So,
when we writeswapint, the real Coq code is “swapint” which is an identifier, i.e. a positive number,
in Coq. Similarly, the real Coq code forint is “tint” whose type isClight.type, a Coq inductive type
representing the syntax tree of C types.

12 Qinxiang Cao et al.

Here,[x OF int , y OF int] represent the argument list of the function and[void]

is the return type.
Generally, a specification can be parameterized by variables of any type, so a

Verifiable C’s function specification has type
∑

A∈Type

(A → assertion) × (A → assertion)

where, in our swap example,A = val × val.
Verifiable C has a rule for each kind of C command; here is the rule for function

calls.

SEMAX-CALL

R ∗ P (a)[−→v /−→y] ⊢ tc lvalue(∆, −→e) ∧ J−→e K = −→v
f(−→y) : Πa : A.{P (a)}{Q(a)} ∈ ∆

∆ ⊢ {R ∗ P (a)[−→v /−→y]} x =f(−→e) {R ∗ Q(a)[x/ret val], ⊥, ⊥, ⊥}

2.7 From C command verification to program verification

In Verifiable C, a function specification is verified if the corresponding Hoare triple
of its implementation is proved. Formally,

∆ ⊢ f(−→x) : Πa : A. {P (a)}{Q(a)} ::=

for anya ∈ A,

∆ ⊢ {P (a) ∗ LocalVar(f)} body off {⊥, ⊥, ⊥, Q(a) ∗ LocalVar(f)}

Here,LocalVar(f) is the spatial assertion forf ’s addressable local variables. For ex-
ample, if this functionf has one local addressable variablep of typeint (suppose it
is addressable because its address is requested in the function body), thenLocalVar(f)
is ∃v.J&pK 7→ v.

The correctness of a C program is composed from the correctness of all its func-
tions. Specifically, the main process of verifying a C program with n functionsf1,
f2, ...,fn is as follows.

1. Use parameterized pre/postconditions to specify all functions. Assume these spec-
ifications are:

fi(
−→xi) : Πa : Ai. {Pi(a)}{Qi(a)}

Here,−→xi is the list of the parameter names of functionfi.
2. Verify every function, i.e. prove∆i ⊢ fi(

−→xi) : Πa : Ai. {Pi(a)}{Qi(a)} for all
i. Here, each∆i includesall the function specifications of all thefj, plus type
specifications for the local variables offi and type specifications for all global
variables.

Since function specifications appear both as assumptions (in contexts) and as
conclusion in the steps above, we have to worry about the wellfoundedness of the
self-reference in this verification process. Verifiable C solves this problem by using
step-indexing [4]; details are hidden from users (the step indexes are in the model by
which the Hoare logic is proved sound, not in the Hoare logic itself). Verifiable C
allows recursive and even mutually recursive C functions.

VST-Floyd: A separation logic tool to verify correctness ofC programs 13

3 Concise Separation Logic Predicates For C Aggregate Types

In Reynolds’s original version of separation logic, he [29]used abbreviations like
p 7→ a, b for conciseness, to meanp 7→ a ∗ p + 1 7→ b. To improve the usability
of Verifiable C beyond atomic maps-to predicatesp 7→ v, VST-Floyd provides sep-
aration logic predicates for structured data. Specifically, p p−→

t
v or (data at t v p)

in Coq5, says that a datumv of C typet is stored at addressp. Here,t is the AST
(syntactic description) of any C-language type expression, including integers, floats,
pointers,struct, union and array.

The assertionp p−→
t

v is dependently typed: the type ofv depends on the value of

t. Whent is astruct, v is a tuple. For example

struct IntPair { int fst; int snd; };

p p−−−−−−→
IntPair

a, b ⊢ p 7→ a ∗ p + 4 7→ b

An integer occupies 4 bytes, so the second field is stored atp + 4. (The reader
might findp + 4 insufficiently abstract; later we describe an addressing abstraction,
field-address.) The entailment shown is not an equation! The left side is stronger than
the right side. The left side, our new predicatedata at, also enforces alignment and
end-of-memory constraints for C structured data. In this example, alignment enforces
that addressp is a multiple of4 (sizeof(int)) andp+8 is not beyond the end of memory.

Similarly, whent is aunion, v’s type is a sum type. Whent is an array,v is a
list. For example,

p p−−−−−→
int[3]

[a; b; c] ⊢ p 7→ a ∗ p + 4 7→ b ∗ p + 8 7→ c

It’s no coincidence that the length of[a; b; c] matches the declared array size 3; this is
enforced bydata at, else the predicate is equivalent to false.

Struct, union and array can be nested. For example, the following predicate de-
scribes an array ofstruct type.

p p−−−−−−−−→
IntPair[3]

[(a1, a2); (b1, b2); (c1, c2)]

In principle, there is no need for the abbreviationp 7→ a, b; one could write a
separation conjunction of primary mapsto predicates. But without this abbreviation,
when verifying ann-statement basic block that manipulates ann-field structure, each
assertion (precondition of each statement) will haven spatial conjuncts on which to
do operations that are linear-time (or often quadratic) inn, leading to quadratic (or
cubic) time for the whole block. Many-field structures are sufficiently common in real
programs that this inefficiency is a significant problem—in addition to the notational
inconvenience.

5 Our 7→ anddata at predicates take another argument that we omit in this article: a permission-share
indicating read-only, read-write, or various other levelsof access to the data.

14 Qinxiang Cao et al.

3.1 Proof theory of dataat and fieldat.

Besidesp p−→
t

v, VST-Floyd provides another predicatep p

−→
f

−−→
t

v, or (field at t
−→
f v p)

in Coq. It says, starting from addressp, follow the path
−→
f of field-selection/array-

indexing to arrive at a memory datumv of typet. For example,

p p−−−−−−→
IntPair

a, b = p p
[fst]

−−−−−−→
IntPair

a ∗ p p
[snd]

−−−−−−→
IntPair

b

p p
[1]

−−−−−−−−→
IntPair[3]

b1, b2 = p p
[1;fst]

−−−−−−−−→
IntPair[3]

b1 ∗ p p
[1;snd]

−−−−−−−−→
IntPair[3]

b2

Thenested field
−→
f is a path of general fields (astruct field, aunion field or an

array subscript).
The proof theory ofdata at andfield at has unfolding rules and a reroot lemma,

shown in Figure 3. The unfolding rules composed transformdata at into separat-

p p−→
t

v = p p

[]
−−→

t
v (1)

p p

−→
f

−−→
t

v = p ⊲
−→
f 7→ v if t.

−→
f is an elementary type (2)

p p

−→
f

−−→
t

v = ⋆

f∈t.
−→
f

(

p p

−→
f f

−−−→
t

v.f ∗ Space(
−→
f f, p)

)

if t.
−→
f is a nonempty struct (3)

p p

−→
f

−−→
t

{f : v} = p p

−→
f f

−−−→
t

v ∗ Space(
−→
f f, p) if t.

−→
f is a union (4)

p p

−→
f

−−→
t

v = ⋆
0≤i<n

p p

−→
f i

−−−→
t

vi if t.
−→
f is an array of positive lengthn (5)

p p

−→
f

−−→
t

v = p ⊲
−→
f p−−−→

t.
−→
f

v (6)

Fig. 3: Unfolding rules and reroot lemma

ing conjunctions of ordinary maps-to predicates. In Figure3, equation (1) says that
data at is field at with empty field path. Equation (2) says thatfield at on elementary
types (integers, floating point numbers, pointers) is equivalent to an ordinary maps-to
predicate with an offset. Equations (3), (4), and (5) are single-layer unfolding rules.
Here, we uset.

−→
f to represent the type of field

−→
f in t and we use the Space predicate

to implement C’s alignment rules forstruct fields andunion fields.
Equation (6) is the reroot equation: its left side is a predicate on an internal node

of a “tree” and the right side treats the internal node as a root. For example,

p p
[fst]

−−−−−−→
IntPair

a = p ⊲ [fst] p−−−→
int

a

We use p ⊲
−→
f to represent an address with an offset (in Coq, written

(field address t
−→
f p), wheret is the type ofp). Specifically, we definep ⊲

−→
f as

VST-Floyd: A separation logic tool to verify correctness ofC programs 15

the starting address of nested field
−→
f when the base address of the entire aggregate

is atp. If

1. p is a legal starting address for typet, i.e. (1a) there is enough space in heap from
p to store a data of typet and (1b)p is a multiple of the alignment of typet

2.
−→
f is a legal nested field oft, i.e. (2a)struct or union fields in the path are fields
in structure definition and (2b) array subscripts are in range

thenp ⊲
−→
f is equivalent top + δ(

−→
f), whereδ(

−→
f) represents the offset of

−→
f . In

VST-Floyd, we usefield compatible to represent conditions (1) and (2) above. Thus,
the meaning ofp ⊲

−→
f is,

p ⊲
−→
f = p + δ(

−→
f) if field compatible(t,

−→
f , p)

p ⊲
−→
f = Vundef otherwise

3.2 Coq implementation of dataat and fieldat.

In Coq, the predicatep p−→
t

v (or data at) is typed as follows.

reptype : Clight.type → Type

data-at : forall t : Clight.type, reptype t → val → pred heap

The functionreptype means “representation type”; it translates from a syntactic de-
scription of a C type to a CoqType. A C array is represented as a Coq list, astruct
is represented as a tuple, and aunion is represented as a sum. By (pred heap) in
Coq , we mean predicates over heaps.

Using this concept,p p

−→
f

−−→
t

v (or field at) is typed as follows.

nested-field-type: Clight.type → list gfield → Clight.type

field-at : forall (t : Clight.type) (path: list gfield),

reptype (nested-field-type t path) → val → pred heap

Here, gfield means “general field” and a general field can be astruct field, a
union field or an array subscript. Thus a list ofgfields represents a path from a root
type to a field type. The functionnested field type computes that field type from the
given root type and the given path of general fields. We writet.

−→
f as an abbreviation

of (nested field type t
−→
f).

We first define an auxiliary predicatep p999999
t

K v, or (data at rec t v p), as a

recursive function in Coq. Then we definefield at as an instance ofdata at rec and

16 Qinxiang Cao et al.

definedata at asfield at with empty field path. Specifically:

p p999
t

K v ::= p 7→ v if t is integer, float, a pointer

p p999999999
struct t

K v ::= ⋆
f∈t

(

p + δ(f) p9999
t.f

K v.f ∗ Space([f], p)

)

p p99999999
union t

K {f : v} ::= p p9999
t.f

K v ∗ Space([f], p)

p p99999
t[n]

K v ::= ⋆
0≤i<n

(

p + i · sizeof(t) p999
t

K vi

)

p p

−→
f

−−→
t

v ::= p + δ(
−→
f) p99999

t.
−→
f

K v ∧ field compatiblet(
−→
f , p)

p p−→
t

v ::= p p
[]

−−→
t

v

Here,v.f represents the element indexed byf whenv is a tuple. Whenv is a list,vi

represents the element indexed byi.
Wecouldlet data at be defined as a conjunction ofdata at rec andfield compatible

directly and let the reroot equation be the definition offield at. However, treating
data at asfield at with empty path enables us to handle both constructions uniformly
in our tactics.

Reptype anddata at rec are implemented as Coq functions recursive on C light
type6. Nested field type andnested field o� set (δ(f)) are implemented as Coq func-
tions recursive on the path.

4 Canonical Form

In this section, we introduce the canonical form of assertions which plays an impor-
tant role in strongest postcondition generation and our implementation of forward
verification tactics.

Our canonical form segregates a separation-logic assertion (a predicate over stack-
heap pairs) into three parts:

PROP: pure propositions that are independent of stack and heaps
LOCAL : values of nonaddressable variables and addresses of addressable variables
SEP: spatial separation-logic predicates that are independent of stacks

6 In CompCert 2.4 and earlier versions, the C light type definition is a Coq inductive type. However,
from CompCert 2.5,struct andunion types are represented by name instead of by structure. Specifically,
every C light program is associated with acomposite env. A composite env is a dictionary mapping every
struct/union name to a list of all its fields. The meaning of astruct or aunion needs to be interpreted
by looking it up in the dictionary. From then on,reptype and data at rec are no longer Coq functions
recursive on Coq inductive structure. The CompCert developers accepted our suggestion that every type
should be tagged with a rank, which is a natural number. The ranking system ensures that the rank of a
struct type is the max rank of its fields plus one; the rank of a union type is the max rank of its fields
plus one; the rank of an array type is the rank of its element type plus one. The rank of elementary types
(including pointers) is zero. Our current definition ofreptype anddata at rec are recursive functions on
this rank.

VST-Floyd: A separation logic tool to verify correctness ofC programs 17

Formally, a canonical assertion has the form

PROP(P1; P2; ..)LOCAL(Q1; Q2; ..)SEP(R1; R2; ..)

ThePi have typeProp in Coq. TheQi are fully syntactic (deeply embedded), and
have denotations in typestack→ Prop; and theRi are predicates over heaps (i.e.
assertions in the unlifted separation logic).7 Every conjunct in theLOCAL part is one
of the following:

temp x v, meaning thatx is a nonaddressable variable andJxK = v
var x v, meaning thatx is a local addressable variable andJ&xK = v
gvar x v, meaningx is a global variable andJ&xK = v.

For example, this assertion in canonical form

PROP(a ≥ 0; b ≥ 0) LOCAL(temp x p) SEP(p 7→ a; (p + 4) 7→ b)

represents a ≥ 0 ∧ b ≥ 0 ∧ JxK = p ∧ p 7→ a ∗ (p + 4) 7→ b.
A useful property of this canonical form is that thePROPandSEP parts are in-

dependent of the stack. Their conjuncts cannot test the value of nonaddressable vari-
ables or the address of addressable variables directly; they must do so indirectly,
using auxiliary variables (i.e. Coq variables) shared withthe LOCAL part. In the ex-
ample above, all communication between the C variablex and its properties is done
by means of Coq variablep.

Other than this restriction, the canonical form is flexible in its PROP and SEP

parts. In the rest of this section, we demonstrate some examples of triples (subsection
4.1) and function specifications (subsection 4.2) in canonical form. At the end of this
section, we discuss the expressiveness of canonical assertions in subsection 4.3.

4.1 Examples: triples of atomic C commands

Fig. 4 shows a program fragment, to demonstrate Hoare triples of set, load and store
commands. The assertions in this decorated program are all written in canonical form,
and the postconditions are strongest postconditions.

4.2 Examples: function specifications

Suppose we have a C function with the following signature:

void swapIntpair(struct IntPair * x);

whereIntPair the struct from Section 3. Then the following specification says that the
numbers stored in the two fields will be swapped:

swapIntpair : Π a b p.

{PROP()LOCAL(temp x p)SEP(p p−−−−−−→
IntPair

a, b)}

{PROP()LOCAL()SEP(p p−−−−−−→
IntPair

b, a)}

7 In the Coq development, we use the nameenviron for what we call “stack” in the paper.

18 Qinxiang Cao et al.

int *x; int y, z;

{PROP() LOCAL(temp x p; temp y a) SEP(p p−−−−→
int

b; p + 4 p−−−−→
int

0)}

z = * x;

{PROP() LOCAL(temp x p; temp y a; temp z b) SEP(p p−−−−→
int

b; p + 4 p

int
−−−−→
int

0)}

y = y + z;

{PROP() LOCAL(temp x p; temp y (a + b); temp z b) SEP(p p−−−−→
int

b; p + 4 p

int
−−−−→

int
0)}

{PROP() LOCAL(temp x p; temp y (a + b)) SEP(p p−−−−→
int

b; p + 4 p

int
−−−−→
int

0)}

x = x + 1;

{PROP() LOCAL(temp x (p + 4); temp y (a + b)) SEP(p p−−−−→
int

b; p + 4 p

int
−−−−→

int
0)}

* x = y;

{PROP() LOCAL(temp x (p + 4); temp y (a + b)) SEP(p p−−−−→
int

b; p + 4 p

int
−−−−→

int
a + b)}

Fig. 4: Program annotated with Hoare assertions

Sometimes it is useful to wrap an existential quantifier around a canonical-form
assertion.

void sort(int * bg; int * ed);
sort : Π l p n.

{PROP()LOCAL(temp bg p; temp ed (p + 4n))SEP(p p−−−−−→
int[n]

l)}

{∃l′.PROP(Permutation(l, l′); ordered(l′))LOCAL()SEP(p p−−−−−→
int[n]

l′)}

User-defined predicatesin the unlifted separation logiccan describe data structures
in memory. For example, the following Cstruct is a C structure for linked lists of
integers.

struct IntList { int num; struct IntList * link };

Users can define a separation logic predicate for this data structure:

list(p, l) ::=

{

if l = nil, p = null ∧ emp

if l = hd :: tl , ∃q. p p−−−−−−→
IntList

hd , q ∗ list(q, tl)

Such definitions can be easily formalized in Coq:
Fixpoint list (p: val) (l: list int): pred heap :=

match l with
| nil ⇒ (fun -⇒ p = null) ∧ emp

| hd :: tl ⇒ ∃ q. data-at IntPair (hd, q) p * list q tl

end .

A C function to reverse linked lists can be specified using this predicate:
struct IntList * reverse(struct IntList * hd);
reverse : Π l p.

{PROP()LOCAL(temp hd p)SEP(list(p, l)}

{∃p′.PROP()LOCAL(temp ret temp p′)SEP(list(p′, rev(l)))}

whererev denotes list-reversal function from Coq’s standard library

VST-Floyd: A separation logic tool to verify correctness ofC programs 19

4.3 Discussion: expressiveness

In the examples that we presented above, we have seen the convenience achieved by
limiting the use of C variables in canonical assertions. Specifically, the postcondition
of a set command or a load command only modifies or adds one conjunct in the
LOCAL clauses. With a store command, the postcondition’sSEPclause differs only
in one term from the precondition’s. It is natural to ask whether this setting restricts
the expressiveness of the assertion language. We answer this question here.

Observation one: any assertion can be decomposed into existentially quantified
canonical form. LetP be any assertion about (nonaddressable) local variables
x1,x2, · · · ,xn. ThenP can be decomposed into,

∃x1x2 . . . xn.

PROP() LOCAL(temp x1 x1; . . . temp xn xn) SEP(P [x1/Jx1K, . . . , xn/JxnK])

Addressable local and global variables can be substituted using lvar, gvar andsgvar.
Observation two: existential quantifiers in preconditionscan be eliminated using

the Hoare rule,

EXTRACT-EXISTS
∀x : A. (∆ ⊢ {P (x)} c {Q})

∆ ⊢ {∃x : A. P (x)} c {Q}

When doing proof by forward symbolic execution, one appliesthis rule and exposes
the underlying canonical-form preconditionP for further manipulation.

To conclude, VST-Floyd requires all preconditions in function specifications to
be in canonical form and requires all postconditions to be existentially quantified
canonical assertions. This setting does not decrease expressiveness and it is actually
very practical for describing the behavior of C functions.

5 Sound and Efficient Postcondition Generation

In Fig. 4, we illustrated how atomic commands can be concisely characterized by
Hoare triples with canonical assertions. Now we demonstrate how those postcondi-
tions in triples can be generated. VST-Floyd produces strongest postconditions, with
soundness proofs for the corresponding triples. The property of beingstrongestpost-
conditions is not proved in Coq; it is only a meta-property ensuring that any sound
Hoare triple can be proved by Floyd.

Formally speaking, when the commandc is a set, load, store, or function call, our
tactics in Coq prove the following proposition, instantiating the unification variable
?Post with a strongest postcondition.

∆ ⊢
{

PROP() LOCAL
−→
Q SEP

−→
R
}

c {?Post, ⊥, ⊥, ⊥}

Because an assignment statement or function call does notbreak, continue, or
return, those three postconditions can be false. Only the postcondition for normal
termination is nontrivial. We assume that every C variable appears at most once in

−→
Q .

20 Qinxiang Cao et al.

Otherwise, e.g. if
−→
Q were[temp x x1; temp x x2], we could remove a conjunct and

addx1 = x2 into thePROPpart. During symbolic execution, canonical preconditions
have emptyPROPclauses because they can all be moved “above the line” into Coq
assumptions of the whole triple. Still,PROPpart is useful in other assertions like ex-
istentially quantified canonical assertions and precondition in parameterized function
specifications.

For handling these atomic commands, there are two common issues. One is de-
riving C expression evaluation. For example, ifc is a set commandx = e then in
order to generate the strongest postcondition, we need to find a valuev such that

PROP() LOCAL
−→
Q SEP

−→
R ⊢ JeK = v

If c is a store commande1 = e2 then we need to find valuesp andv satisfying both
of the following criteria

PROP() LOCAL
−→
Q SEP

−→
R ⊢ J&e1K = p

PROP() LOCAL
−→
Q SEP

−→
R ⊢ Je2K = v

The other common issue is eliminating C variable substitution and its existential
quantifier (there may be other existential quantifiers). Forexample, this rule for load
commands was presented in §2.

SEMAX LOAD
P ⊢ tc lvalue(e) ∧ J&eK = p ∧ p 7→ v ∗ ⊤

∆ ⊢ {P} x=e {∃x′. JxK = v ∧ P [x′/x], ⊥, ⊥, ⊥}

These quantifiers and variable substitutions make proofs inconvenient, especially in-
teractive proofs. Actually, this is one of the most important drawbacks of forward
verification, compared to backward verification. To solve this problem, we must elim-
inate them in our strongest postconditions.

In §5.1 and §5.2 we present our solutions to these two common issues. Both of
our solutions greatly benefit from using canonical form. Then, we will introduce our
tactics that generate strongest postconditions of set commands, load commands, store
commands, and function calls.

5.1 Computational derivation of expression evaluation

As motivated above, we want to derive the value of a C expression: given a primary
r-value expressione and a canonical preconditionPROP() LOCAL

−→
Q SEP

−→
R , we need

to find a valuev such that

PROP() LOCAL
−→
Q SEP

−→
R ⊢ JeK = v

Similarly, whene is a primary l-value expression, we need to find av such that

PROP() LOCAL
−→
Q SEP

−→
R ⊢ J&eK = v

VST-Floyd: A separation logic tool to verify correctness ofC programs 21

Without the canonical form, this task is complicated, even if the precondition is
as simple as in the following example:

JxK = 1 ∧ JyK = 1 ∧ JzK = 0 ⊢ Jx + yK = v

In this example, we can reduce this task to the following Coq proof goal:

ρ: stack

H: JxK ρ = 1

H0: JyK ρ = 1

H1: JzK ρ = 0

JxK ρ + JyK ρ = ?v

Then, we can look for useful assumptions and rewrite them in the conclusion, i.e.
rewrite H, H0. However, searching useful assumptions needs careful tactic program-
ming. Moreover, both proof searching and rewriting are slowin Coq.

We define two mutually recursive functionsmsubst eval expr (for primary r-value
expression) andmsubst eval lvalue (for primary l-value expression) which do sym-
bolic evaluation independent of stack8:

msubst-eval -expr: Clight.expr → list localdef → option val

msubst-eval -lvalue: Clight.expr → list localdef → option val

Their definitions are almost the same asJeK andJ&eK. The only difference is thatJeK
andJ&eK look up values of nonaddressable variables and addresses ofaddressable
variables in stacks butmsubst eval expr andmsubst-eval -lvalue look them up inLO-
CAL clauses. We prove the following lemmas and use them to construct expression
evaluation directly.

MSUBST-EXPR
msubst eval expr e

−→
Q = Some v

PROP() LOCAL
−→
Q SEP

−→
R ⊢ JeK = v

MSUBST-LVALUE
msubst eval lvalue e

−→
Q = Some v

PROP() LOCAL
−→
Q SEP

−→
R ⊢ J&eK = v

The valuev will then be generated by computation which is much faster than proof
search and rewriting in Coq.

5.2 Symbolic variable substitution

If an atomic command modifies a nonaddressable variable (e.g. a set command or a
load command), its forward rule (Robert W. Floyd’s assignment rule, to distinguish
from C. A. R. Hoare’s “backward” assignment rule) contains an existential quantifier
and variable substitution (seesemax set in §2.4).

8 In our Coq development, we actually turn the symbolicLOCAL clauses into binary trees first. Then
we look up in these trees during symbolic evaluation. We omitthe technical details here.

22 Qinxiang Cao et al.

Floyd
{P} x := E {∃y. x = E[y/x] ∧ P [y/x]}

Hoare
{Q[E/x]} x := E {Q}

Having variable substitutions in assertions is very inconvenient for later proofs.
Fortunately, variable substitution on canonical assertions can be reduced away. Specif-
ically, if x is a nonaddressable variable, then:

(temp x v) ∈
−→
Q

(PROP
−→
P LOCAL

−→
Q SEP

−→
R)[x0/x] ⊢

PROP(x0 = v;
−→
P)LOCAL(remove temp(x,

−→
Q))SEP

−→
R

(temp x) does not appear in
−→
Q

(PROP
−→
P LOCAL

−→
Q SEP

−→
R)[x0/x] ⊣⊢ PROP

−→
P LOCAL

−→
Q SEP

−→
R

Here,remove temp is a Coq function which deletes conjuncts about a specific nonad-
dressable from the local clauses (if there exists one). Thisrule is sound because: (1)
Both PROPandSEPparts are independent of stacks; thus variable substitutions have
no effect on them. (2) AllLOCAL conjuncts other than “temp x” are not affected by
substitutingx.

Actually, in the first lemma above, the left side and the rightare also equivalent,
instead of left implies right, ifx does not appear multiple times in theLOCAL part.
Later in this section, we will use the direction from left to right to prove soundness
of Hoare triples while the direction from right to left ensures that the generated post-
conditions are strongest postconditions. We do not prove this “strongest” property in
Coq. Thus, we do not need to prove right-to-left in Coq either.

As an immediate consequence of two lemmas above, existentially quantified old
values can be eliminated together with substitution, i.e.

∃x0.(PROP
−→
P LOCAL

−→
Q SEP

−→
R)[x0/x] ⊢ PROP

−→
P LOCAL(remove temp(x,

−→
Q))SEP

−→
R

5.3 Strongest postcondition of set commands

Based on previous theorems of C expression evaluation and symbolic variable sub-
stitution, we prove the following derived rule:

Lemma SEMAX-SET-CANON: forall ∆
−→
Q

−→
R x e v,

PROP() LOCAL
−→
Q SEP

−→
R ⊢ tc-expr ∆ e →

msubst-eval -expr e
−→
Q = Some v →

∆ ⊢ { PROP() LOCAL
−→
Q SEP

−→
R }

x = e

{ PROP() LOCAL(temp x v; remove-temp x
−→
Q) SEP

−→
R , ⊥, ⊥, ⊥ }

To solve the following proof goal (e is a primary r-value expression):
{

PROP() LOCAL
−→
Q SEP

−→
R
}

x = e {?Post, ⊥, ⊥, ⊥}

VST-Floyd: A separation logic tool to verify correctness ofC programs 23

we run “eapply semax-set-canon” in Coq. Two proof goals will be left. One proof
goal is the typechecking requirement. Most of times, it can be solved automatically,
i.e. the right side is just true. Whene is an expression likey/z, thentc expr(∆, e)
computes to the assertionJzK 6= 0, which the user must prove manually (if the tactic
automation does not solve it automatically).

The other proof goal is:

msubst-eval -expr e
−→
Q = Some ?v

We use “re
 exivity” in Coq to solve this proof goal. Then the unification variable ?v
will be filled by the computation of left side.

By all these steps above, together with the derived Hoare rule for set commands,
we have already generated a (strongest) postcondition of the required set command
and a soundness proof of corresponding triple. The generated postcondition is in
canonical form. ItsPROPpart is empty; itsSEPpart is the same as in the precondition;
the LOCAL part replaces the conjunct of “temp x” with the expression evaluation
result.

5.4 Strongest postcondition of load and store commands

In the previous section, we focused on heap-independent C assignment commands,
but Verifiable C also provides proof rules for assignments that do loads or stores. A
load is an assignmentx = e in whichx is a nonaddressable variable,e is a primary
l-value and (therefore) computing the address ofe is heap-independent. Astore is
an assignmente1 = e2 in which e1 is a primary l-value,e2 is a primary r-value
and (therefore) computing the address ofe1 and the value ofe2 is heap-independent.
C-language assignments wheree, e1, or e2 are nonprimary can be refactored into a
series of loads perhaps followed by a store.

5.4.1 Store command examples

We illustrate with an example taken from a case study, verifying the mbedTLS imple-
mentation of AES encryption [14]. The program uses a contextstruct which is passed
to all functions and is defined as follows (simplified):

struct aes-context {
int nr; // number of rounds
int rk[60]; // round keys

};

In the following examples, assume that a pointer namedctx of type
struct aes-context* is in scope. We will now consider different ways of ini-
tializing (parts of) the round key array of this context struct:

The most straightforward way is to write out in the assignment command the
whole access path to the data:

for (i = 0; i < 8; i++) {
(*ctx).rk[i] = ...

}
(a)

That is, both.rk and[i] are on the left-hand side of the assignment statement.

24 Qinxiang Cao et al.

In C, one usually would writectx→rk instead of(*ctx).rk. VST supports
both notations and treats them identically. Here we write(*ctx).rk to illustrate
thepath.rk[i] more clearly. Although(*ctx) looks like a memory dereference,
when treated as an l-value it is effectively(&*ctx), which is like(ctx); there is no
load or store in the computation of the l-value on the left-hand-side of the assignment.

The actual AES implementation optimizes by precomputing the.rk part of the
path before the loop:

int *p = (*ctx).rk;
for (i = 0; i < 8; i++) {

p[i] = ...
}

(b)

As we can see, only part of the access path (namely[i]) is visible in the as-
signment command, while the first part of the access path is above the loop. Another
common pattern is to increment a pointer in each loop iteration:

int *p = (*ctx).rk;
for (i = 0; i < 8; i++) {

*p = ...
p++;

}

(c)

Here, the array index is not written explicitly in the sourcecode. But C code can
be even more intricate than that: In the next example, adapted from a case study on a
garbage collector, we have a memory access with a seemingly negative array index:

int *p = (*ctx).rk + 1;
for(i = 0; i < 8; i++) {

p[-1] = ...
p++;

}

(d)

Given a precondition and a C store command, the goal of strongest postcondition
generation is to find theSEPclause affected by the store, and to update the modified
substructure of its value with the assigned value. For instance, for the store command
in example (b), it should identify the (only)SEPclause fora and update theith entry
of its valueℓ (which is achieved byupd Znth) with the resultv of evaluating the
right-hand side of the store command:

{PROP (0 ≤ i < 8)
LOCAL (temp ctx a; temp p (a ⊲ [rk]); temp i i)

SEP (a p
[rk]

−−−−−−−−→
aes context

ℓ)}

p[i] = e2

{PROP (0 ≤ i < 8)
LOCAL (temp ctx a; temp p (a ⊲ [rk]); temp i i)

SEP (a p
[rk]

−−−−−−−−→
aes context

(upd Znth i ℓ v))}

For load commands, on the other hand, theSEP clauses remain unchanged, but
the LOCAL clause for the modified variable has to be updated. For instance, if we
assignp[i] to the variabley, strongest postcondition generation should figure out

VST-Floyd: A separation logic tool to verify correctness ofC programs 25

that the value ofp[i] is defined by theSEPclause fora, and that it can be selected
from the valueℓ by taking theith elementℓi, and it should update theLOCAL clause
for y to this calculated valueℓi:

{PROP (0 ≤ i < 8)
LOCAL (temp ctx a; temp p (a ⊲ [rk]); temp i i; temp y 0)

SEP (a p
[rk]

−−−−−−−−→
aes context

ℓ)}

y = p[i]

{PROP (0 ≤ i < 8)
LOCAL (temp ctx a; temp p (a ⊲ [rk]); temp i i; temp y ℓi))

SEP (a p
[rk]

−−−−−−−−→
aes context

ℓ)}

5.4.2 General load and store rules defined in terms offield at

The foundational separation logic of Verifiable C provides two basic rules,SEMAX-
LOAD andSEMAX-STORE(§2.3), to reason about memory loads and stores. However,
their pre- and postconditions are not in canonical form, andthey are defined in terms
of themapsto operator, which talks only about primitive values, but not about (pos-
sibly nested) structs and arrays likefield at anddata at.

One way to solve this would be to unfold thefield at or data at into manymapsto

assertions, applySEMAX-LOAD or SEMAX-STORE, respectively, and then fold them
back intofield at or data at. One could automate these steps with tactics, but this
would be very slow to run and generate huge proof terms, whichtake a long time to
typecheck duringQed.

So instead, we design (and prove) higher-level versions of theSEMAX-LOAD and
SEMAX-STORErules defined in terms offield at, and using canonical assertions; and
we program tactics to infer all parameters needed to apply them; so that weefficiently
obtain strongest postconditions for load and store commands together with a proof
for the claim.

Consider the following load and store rules:9

LOAD-1

PROP
−→
P LOCAL

−→
Q SEP

−→
R ⊢ J&eK = q

q = a ⊲
−→
f

−→
f =

−→
f0++

−→
f1 Ri = (a p

−→
f0

−−→
t

v′)

(the component inv′ denoted by
−→
f1) = v

(
−→
Q with the value forx updated tov) =

−→
Q′

∆ ⊢
{

PROP
−→
P LOCAL

−→
Q SEP

−→
R
}

x = e
{

PROP
−→
P LOCAL

−→
Q′

SEP
−→
R
}

9 All the load and store rules of this section also need typechecking side conditions, i.e.,tc expr(∆, e)
for each involved C expressione. We omit them for brevity.

26 Qinxiang Cao et al.

STORE-1

PROP
−→
P LOCAL

−→
Q SEP

−→
R ⊢ J&e1K = q ∧ Je2K = v

q = a ⊲
−→
f

−→
f =

−→
f0++

−→
f1 Ri = (a p

−→
f0

−−→
t

vold)

(vold with the substructure denoted by
−→
f1 updated tov) = vnew

(
−→
R with Ri replaced by(a p

−→
f0

−−→
t

vnew)) =
−→
R′

∆ ⊢
{

PROP
−→
P LOCAL

−→
Q SEP

−→
R
}

e1 = e2

{

PROP
−→
P LOCAL

−→
Q SEP

−→
R′
}

The notation
−→
f0++

−→
f1 stands for concatenation of paths (i.e. lists of field names

or array indices). In Coq, it is written the same, except thatthe lists are read back-
wards. Remember from §3.1 that ifa is a pointer value of typet, thena ⊲

−→
f de-

notes the address obtained by following the path
−→
f starting froma. Note that it is

only well-defined if
−→
f is compatible witha’s typet, as determined by the assertion

field compatible(t,
−→
f , a) (see §3.1).

STORE-1 can be used to prove the Hoare triple for example (a):

· · · ⊢ J&(*ctx).rk[i]K = a + 4 + 4i ∧ Je2K = v

a + 4 + 4i = a ⊲ [rk, i] [rk, i] = [rk]++[i]
−→
R 0 = (a p

[rk]
−−−−−−−→
aes context

ℓ)

(ℓ with the substructure denoted by[i] updated tov) = (upd Znth i ℓ v)

{PROP(0 ≤ i ≤ 8) LOCAL(temp ctx a; temp i i) SEP(a p
[rk]

−−−−−−−→
aes context

ℓ)}

(*ctx).rk[i] = e2

{PROP(0 ≤ i ≤ 8) LOCAL(temp ctx a; temp i i) SEP(a p
[rk]

−−−−−−−→
aes context

(upd Znth i ℓ v))}

where((upd Znth i ℓ v) updates theith entry of the listℓ with the new valuev.
Note that the expression evaluationJ&(*ctx).rk[i]K returns a pointer-arithmetic
expression. That’s why we need another equality to turn thisresult into the field
addressa ⊲ [rk, i].10

5.4.3 More automation-friendly specialized load/store rules

Equalities such asa + 4 + 4i = a ⊲ [rk, i] from the previous examples are not
easy to prove automatically, because we need allfield compatible side conditions of
the field-address operator, and such reasoning results in slow tactics and large proof
terms.

We prefer to do this kind of reasoning once and for all, insidea lemma that the
tactics can use, instead of doing it every time we apply the rule. The idea is to exploit

10 One might wonder why the expression evaluation function does not directly return a field address.
Forstruct andunion fields, this could work, but for array indices, it wouldn’t, because the field-address
operator is only well-defined if the array index is within thearray bounds, but adding an integer to a pointer
is always defined in CompCert C light, even if dereferencing it might be undefined. So the evaluation
function could only use the field-address operator if the array index is within bounds, but it cannot know
whether this is the case, because it does not have access to the array size.

VST-Floyd: A separation logic tool to verify correctness ofC programs 27

the knowledge about the access path that we get by looking at the syntax of the C
command. For instance, in example (a) the whole path is visible in the C command.

To do so, we derive special versions of the load and store rules:

LOAD-2

PROP
−→
P LOCAL

−→
Q SEP

−→
R ⊢ J&eK = a ∧ J

−→
F K =

−→
f

−→
f =

−→
f0++

−→
f1 Ri = (a p

−→
f0

−−→
t

v′) legal nested field t
−→
f

(the component inv′ denoted by
−→
f1) = v

(
−→
Q with the value forx updated tov) =

−→
Q′

∆ ⊢
{

PROP
−→
P LOCAL

−→
Q SEP

−→
R
}

x = e.
−→
F

{

PROP
−→
P LOCAL

−→
Q′

SEP
−→
R
}

STORE-2

PROP
−→
P LOCAL

−→
Q SEP

−→
R ⊢ J&e1K = a ∧ Je2K = v ∧ J

−→
F K =

−→
f

−→
f =

−→
f0++

−→
f1 Ri = (a p

−→
f0

−−→
t

vold) legal nested field t
−→
f

(vold with the substructure denoted by
−→
f1 updated tov) = vnew

Je2K = v (
−→
R with Ri replaced by(a p

−→
f0

−−→
t

vnew)) =
−→
R′

∆ ⊢
{

PROP
−→
P LOCAL

−→
Q SEP

−→
R
}

e1.
−→
F = e2

{

PROP
−→
P LOCAL

−→
Q SEP

−→
R′
}

We distinguish
−→
F from

−→
f : they represent a nested field in a C command and its

denotation respectively. Astruct/union field in a C expression is the same as its
denotation but an array subscript is an int expression in C while its denotation is a
Coq value of typeZ. We write this correspondence asJ

−→
F K =

−→
f .

Moreover, the assertionlegal nested field t
−→
f ensures that the path

−→
f exists

within the typet. In particular, it checks that array indices are within the bounds.
These rules work very well to automate strongest postcondition generation for

examples like snippet (a): First, the left-hand side of the assignment is split into a
root expressione1 and a path

−→
F , i.e. into*ctx and[rk, i] in our example. Next,

&e1 ande2 are evaluated, and
−→
f is inferred from a

−→
F such thatJ

−→
F K =

−→
f holds.

In our example, this results inJ&(*ctx)K = a andJ[rk, i]K = [rk, i]. Next,

all SEPclauses are searched to find one abouta whose path is a prefix of
−→
f . Note

that this must be unique, because theSEPclauses talk about disjoint memory areas,
and no two distinct memory areas can be accessed by the same path. Once theSEP

clause is found, it’s clear how to split
−→
f into

−→
f0++

−→
f1 ; in our case we have

−→
f0 = [rk]

and
−→
f1 = [i]. The SEP clause also gives the value forvold, which is ℓ in our case,

and now one has to select the substructure ofvold according to the remainder of the
path,

−→
f1 , to obtain the part ofvold to be updated. Now, all parameters needed to apply

STORE-2 are known, so we obtain a strongest postcondition together with a proof for
our claim. Occasionally, some typechecking or array boundsside conditions might
not be solved automatically and left open as subgoals to be proven by the user, but
this never prevents the tactics from applying theSTORE-2 rule, so most of the work
is always done automatically.

However, the tactic described above usingSTORE-2 does not work for the exam-
ples (b), (c) and (d): In example (b), the root expressione1 that it picks isp, which

28 Qinxiang Cao et al.

evaluates toa + 4, where 4 is the offset of the fieldrk within the structaes-context.
So, theSEPclauses will be searched for a clause of the form((a + 4) 7→), which
will not be found, because we have only aSEPclause of the form(a 7→).

As we can see, the problem is that theLOAD-2 andSTORE-2 rules assume that the
whole access path appears in the source code of the load or store instruction, which
is not always the case.

We could resolve this by applyingSTORE-1 instead (which works for all four
examples), but as described before, the proof of the equation a + 4 + 4i = a ⊲ [rk, i]
would be hard to automate.

So we design yet another pair of load and store rules:

LOAD-3

PROP
−→
P LOCAL

−→
Q SEP

−→
R ⊢ J&eK = q ∧ J

−→
F K =

−→
fb

q = a ⊲
−→
fa

−→
fa++

−→
fb =

−→
f0++

−→
f1 Ri = (a p

−→
f0

−−→
t

v′)

legal nested field t (
−→
f0++

−→
f1)

(the component inv′ denoted by
−→
f1) = v

(
−→
Q with the value forx updated tov) =

−→
Q′

∆ ⊢
{

PROP
−→
P LOCAL

−→
Q SEP

−→
R
}

x=e.
−→
F

{

PROP
−→
P LOCAL

−→
Q′

SEP
−→
R
}

STORE-3

PROP
−→
P LOCAL

−→
Q SEP

−→
R ⊢ J&e1K = q ∧ Je2K = v ∧ J

−→
F K =

−→
fb

q = a ⊲
−→
fa

−→
fa++

−→
fb =

−→
f0++

−→
f1 Ri = (a p

−→
f0

−−→
t

vold)

legal nested field t (
−→
f0++

−→
f1)

(vold with the substructure denoted by
−→
f1 updated tov) = vnew

Je2K = v (
−→
R with Ri replaced by(a p

−→
f0

−−→
t

vnew)) =
−→
R′

∆ ⊢
{

PROP
−→
P LOCAL

−→
Q SEP

−→
R
}

e1.
−→
F = e2

{

PROP
−→
P LOCAL

−→
Q SEP

−→
R′
}

The key insight here is that there are two ways of splitting the access path
−→
f : The

first,
−→
f =

−→
f0++

−→
f1, is imposed by theSEPclause, and the second,

−→
f =

−→
fa++

−→
fb , is

given by how much of the path is contained in the value ofq vs how much of the path
is written out as

−→
F in the C command.

Applying LOAD-3 andSTORE-3 can be automated in the same way asLOAD-2
andSTORE-2, provided that the root expressione (or e1, respectively) evaluates to a
local variableq for which theLOCAL clauses of the precondition contain an entry of the
form (temp q (a ⊲

−→
fa)). For situations when this is not the case, we designed a “hint”

interaction system:11 If the tactics fail to prove an equality of the formq = a⊲
−→
fa, they

display an error message asking the user to prove an equalityof the formq = ?a ⊲?f,
whereq is obtained by computationally evaluatinge, and?a and?f are Coq evars to
be instantiated by the user. That is, the user has to provide awitness that the pointer
arithmetic expression can be turned into a field address expression. After proving

11 The kind of hints we are talking about here arenot related to Coq’s hint databases.

VST-Floyd: A separation logic tool to verify correctness ofC programs 29

such a hint, the user can retry invokingforward, which invokes the tactics for loads or
stores, respectively, and they will use the hint and thus succeed.

So, areLOAD-3 andSTORE-3 the ultimate solution which works always? No, for
the following two reasons:

First, when
−→
fa is the empty path[], we still have to proveq = a ⊲ [], which is

not trivially true, because it requiresfield compatiblet [] a to be proven. Automating
this would be possible, but it is easier to do it once and for all in a specialized lemma,
and it turns out that we already proved such specialized lemmas: They are exactly the
LOAD-2 andSTORE-2 rules.

And second, there are cases such as example (d) where we should not blindly
trust and use the access path written in the C command: If the tactics matchp[-1]

with e1.
−→
F , they obtain the path[-1], which is never a valid path, because all arrays

in C start with index0. So, proving thelegal nested field assertion will fail, because
this assertion checks that all array indices are within bounds. In those cases, we have
to useLOAD-1 andSTORE-1, which do not infer any path fragments from the C
code. But their downside is that they are bad at automating the proof of the equation
q = a ⊲

−→
f . In fact, it only works automatically if the whole&e (or &e1, in the store

case) evaluates to just a nonaddressable variableq for which we have aLOCAL clause
of the form(temp q (a ⊲

−→
fa)), such as example (c). In all other cases, we have to resort

to the the hint system, and compared to theLOAD-3 andSTORE-3 rules, where the
required hint is only about the first part of the path, the hintis about the full path here,
which is a bit more work for users.

The following table summarizes the advantages and disadvantages of the three
store rules with respect to the four examples:

(a) (b) (c) (d)
p=(*ctx).rk; p=(*ctx).rk; p=(*ctx).rk+1;

(*ctx).rk[i]= p[i]= p++; *p= p++; p[-1]=

STORE-1 requires full-path
hint

requires full-path
hint

requires suitable
precondition or
full-path hint

requires full-path
hint

STORE-2 works
automatically

not applicable not applicable not applicable

STORE-3 requiresq = a ⊲ []
proof

requires suitable
precondition or
root-path hint

requires suitable
precondition or
root-path hint

not applicable

5.4.4 The final tactic for memory loads/stores

So overall, our final tactic for a memory store of the forme1.
−→
F = e2 now works as

shown in Figure 5 (the tactic for memory loads is similar).
Note that it uses all threeSTORErules, even thoughSTORE-1 would be general

enough to be applicable in all cases. The only reason to use the other store rules is
to overcome the proof automation difficulties. In fact, instead of attempting to use
tactics to perform the tricky task of bringing the result of evaluating an expression
into the forma ⊲

−→
f , we prefer to do this work with lemmas, by having three special-

30 Qinxiang Cao et al.

- Evaluate the whole expressione1.
−→
F and check if the context contains a user-

defined hint on how to bring it into the forma ⊲
−→
f .

- If yes, find aSEP clause abouta whose path is a prefix of
−→
f , and apply

STORE-1 and solve its side conditions.
- Otherwise, evaluate the root expressione1 and check if the result already has

the forma ⊲
−→
fa or if the context contains a user-defined hint on how to bring it

into the forma ⊲
−→
fa.

- If yes, find
−→
fb such thatJ

−→
F K =

−→
fb , and find aSEPclause abouta whose

path is a prefix of
−→
fa++

−→
fb , and applySTORE-3 and solve its side condi-

tions.
- Otherwise, find

−→
f such thatJ

−→
F K =

−→
f , and check if there is aSEPclause

abouta whose path is a prefix of
−→
f .

- If yes, applySTORE-2 and solve its side conditions.
- Otherwise, fail with an error message containing the form of hints

which were not found before.

Fig. 5: Tactic for calculating the strongest postconditionof store commands together with a proof

ized lemmas, and depending on the case, picking the one whichis easiest to apply
automatically.

Now, one might wonder if this is the end, or whether at some time in the future,
we might come across another C code example where these tactics fail. We believe
that, except for the deliberately chosen restrictions described in §2.1, there will be
no further such C code examples, becauseLOAD-1 andSTORE-1 do not impose any
restriction on the form of the expression which denotes the memory location, and
if evaluating this expression cannot turn it into somethingof the forma ⊲

−→
f auto-

matically, the tactics can fall back to the user hint mechanism, allowing to request
that the user proves the tricky part in such a way that all the rest can still be solved
automatically.

However, the tactics for loads and stores do have one limitation: They only work
if the requiredSEP clause is written as adata at or field at assertion. If users cre-
ate custom separation logic assertions, they will have to unfold them intodata at or
field at form. Automating this would be difficult, because the reasonwhy users create
custom separation-logic predicates tend to be domain-specific, so the right strategy to
unfold the custom assertions requires domain-specific knowledge as well; this should
be left to the user, who may choose to achieve this task by additional domain-specific
automation.

5.5 Strongest postcondition of function calls

The effects of C function calls are more complicated than set, load, or store com-
mands. A function call may assign its result to a nonaddressable variable and may

VST-Floyd: A separation logic tool to verify correctness ofC programs 31

modify the data stored in heap. Fortunately, separation logic allows us to reason about
the behaviors of calls and the canonical form allows us to present it concisely.

Consider a functionvoid swapint(int *x, int *y); with this spec-
ification:

swapint(x, y) :

Π(a, b, p, q).

{PROP() LOCAL(temp x p; temp y q) SEP(p p−−−→
int

a; q p−−−→
int

b)}

{PROP() LOCAL() SEP(p p−−−→
int

b; q p−−−→
int

a)}

Assume this specification is in∆ (that is, the fun-spec part of∆ associates this spec-
ification with the nameswapint).

Then consider this function call:swapint(x, x+2), in a context wherex is a
pointer into an array of at least three consecutive integers. We would have this proof
goal:

∆ ⊢ {PROP() LOCAL(temp x x) SEP(x p−−−→
int

u; x + 4 p−−−→
int

v; x + 8 p−−−→
int

w)}

swapint(x, x + 2)

{?Post, ⊥, ⊥, ⊥}

The strongest postcondition is,

PROP() LOCAL(temp x x) SEP(x + 4 p−−−→
int

v; x p−−−→
int

w; x + 8 p−−−→
int

u)

How this can be generated? First, the user instantiates the parameter(a, b, p, q) with
the value(u, w, x, x + 8). Then the instantiated specification is:

swapint(x, y) :

{PROP() LOCAL(temp x x; temp y (x + 8)) SEP(x p−−−→
int

u; x + 8 p−−−→
int

w)}

{PROP() LOCAL() SEP(x p−−−→
int

w; x + 8 p−−−→
int

u)}

Second, theLOCAL part of the precondition in this specification is verified automati-
cally (and computationally) by C expression evaluation, i.e.

msubst-eval -expr [temp x x] (x) = x
msubst-eval -expr [temp x x] (x + 2) = x + 8

(Sincex+2 in C is a pointer-integer add, the semantics of C gives the addressx + 8.)
Third, for theSEPpart, we pick out the precondition of the instantiated specifi-

cation in the precondition of the proof goal, replace it withthe postcondition of the
instantiated specification and use the replacement result as the generated postcon-
dition in the proof goal. This “picking out” is a form of “frame inference,” and is
accomplished by a cancellation tactic.

Fourth, this function call has no return value, so the LOCAL part of the generated
postcondition is the same as the precondition.

32 Qinxiang Cao et al.

We mostly automate this process in VST-Floyd, but require our users to manually
instantiate the parameters in the specification. The soundness of this process is en-
sured by the following Hoare rule,SEMAX-CALL -00. We prove it in Coq as a derived
rule of Verifiable C.

Lemma semax-call -00

forall ∆
−→
Q

−→
R

−→
F −→e a Pre Post

−−→
Ppre

−−→
Rpre

−−−→
Ppost

−−−→
Rpost f ,

(f (
−→
x): Πa : A. {Pre(a)}{Post(a)}) ∈ ∆ →

Pre a = PROP(
−−→
PPre) LOCAL(temp-list

−→
x

−→v) SEP(
−−→
Rpre) →

Post a = ∃ b: B, PROP(
−−−−−→
PPost(b)) LOCAL() SEP(

−−−−−→
RPost(b)) →

−−→
PPre →

PROP() LOCAL(
−→
Q) SEP(

−→
R) ⊢ tc-expr-list

−→e →

msubst-eval -expr-list
−→e

−→
Q = Some

−→v →

Permutation
−→
R (

−−→
RPre ++

−→
F) →

∆ ⊢ { PROP () LOCAL (
−→
Q) SEP (

−→
R) }

f(−→e)

{ ∃ b: B, PROP(
−−−−−→
PPost(b)) LOCAL(

−→
Q) SEP(

−−−−−→
RPost(b) ++

−→
F), ⊥, ⊥, ⊥ }

A C function may or may not return a value. If it does return a value, the call site
may or may not assign that value to a variable. Therefore, we have three cases:

11 The function returns a value, and the call site assigns it to a variable.
01 The function returns a value, but the call site throws it away.
00 The function does not return a value, and (therefore in a well typed C program)

the call site does not expect a value.

The example above (withsemax call 00) is of the third kind. The derived lemmas for
the other two kinds are similar, and have names ending with 11and 01.

In theswapint example above, the PROP part of the precondition in the speci-
fication is empty. If it were not empty, our postcondition generator would check these
pure facts.

The postconditions in specifications can be existentially quantified (which does
not happen in our example above). Our postcondition generator and the derived Hoare
rules do cover those cases. Generally speaking, the generated postcondition is an ex-
istentially quantified canonical assertion. When the postcondition in a specification is
not quantified, we treat it as quantified over unit type. When the generated postcon-
dition is quantified over unit type, our generator removes the quantifier and presents
a quantifier-free version.

Comparing to the cases for set, load or store, the generator for function calls
imposes more restrictions on the user. Besides the fact the users need to manually
provide values to instantiate specification, users also need to ensure an exact match
between specification SEP clauses and part of SEP clauses in the proof goal. Specif-

ically, when handling load or store commands, we do detectp p
[fst]

−−−−−−→
IntPair

a inside

p p−−−−−−→
IntPair

a, b. But we choose not to support a similar feature when handling

function call because the situation here is much more complicated. For example, the

VST-Floyd: A separation logic tool to verify correctness ofC programs 33

correspondence between the specification and the precondition in the proof goal may
be many-to-one. It is very hard to detect

SEP(p ⊲ [fst] p−−−→
int

a; p ⊲ [snd] p−−−→
int

b)

insidep p−−−−−−→
IntPair

a, b. We require users to apply related transformations in precon-

ditions first. We provide tactics for these transformation (see §7).

6 Automatic Tactics for Forward-Style Proof

The most important feature of VST-Floyd is its forward proofstyle. We provide a
set of tactics in VST-Floyd to perform forward verification.From one point of view,
these tactics help users build proof trees of Hoare triples and automate the routine
work. From another point of view, building proofs of Hoare triples using forward
tactics is like demonstrating a decorated program from the top down—for example,
each call to the tacticforward (see §6.1) is like demonstrating one more C assignment
command and one more assertion in a decorated program.

In this section, we introduce the forward tactics which are mostly automatic. They
areforward, forward-call, forward-if andforward-while. We will introduce the interac-
tive tactics in the next section.

Remark.Both automatic and interactive tactics are essential in VST-Floyd. On one
hand, some proof strategies in verifying a Hoare triple are routine. For example, when
the C command in the triple is an sequential composition of multiple commands, we
should applySEMAX-SEQfirst. Automatic tactics can easily handle this and let VST-
Floyd be more convenient for users. On the other hand, it is helpful for our users
to manually manipulate Hoare triples as well. For example, users can apply domain-
specific mathematics to simplify the precondition. It is sometimes necessary to unfold
some user-defined separation logic predicates to perform later automic tactics. It is
also helpful sometimes, to fold some user-defined predicates and get more concise
preconditions.

6.1 Forward on set, load or store commands

VST-Floyd offers two tactics,forward andforward-call, to perform forward verifica-
tion on singleton commands. Specifically, when the first command is a set command,
load command or a store command,forward should be applied. When the first com-
mand is a function call (with or without return value),forward-call should be applied.

The tacticforward analyzes the first command in a triple and proceeds by for-
ward reasoning to shrink the proof goal. Fig. 6 and 7 shows oneexample of applying
forward. The Coq proof goal on the right side of Fig. 6 is the proof goalbefore ex-
ecutingforward. The one on the right side of Fig. 7 is the proof goal after executing
forward. The decorated programs on the left correspond to the verification process on
the right; the shaded lines correspond to the Coq proof goals.

34 Qinxiang Cao et al.



















PROP()
LOCAL(temp x p; temp y a)

SEP

(

p p−−−−→
int

b;

p + 4 p−−−−→
int

0

)



















z = * x;
y = y + z;
x = x + 1;

* x = y;


























PROP()
LOCAL(temp x (p + 4))

SEP

(

p p−−−−→
int

b;

p + 4 p−−−−→
int

a + b

)

,

⊥, ⊥, ⊥



























∆ ⊢


















PROP()
LOCAL(temp x p; temp y a)

SEP

(

p p−−−→
int

b;

p + 4 p−−−→
int

0

)



















z = * x;
y = y + z;
x = x + 1;

* x = y;


























PROP()
LOCAL(temp x (p + 4))

SEP

(

p p−−−→
int

b;

p + 4 p−−−→
int

a + b

)

,

⊥, ⊥, ⊥



























Fig. 6: Before executingforward



















PROP()
LOCAL(temp x p; temp y a)

SEP

(

p p−−−−→
int

b;

p + 4 p−−−−→
int

0

)



















z = * x;


























PROP()

LOCAL

(

temp x p; temp y a;
temp z b

)

SEP

(

p p−−−−→
int

b;

p + 4 p−−−−→
int

0

)



























y = y + z;
x = x + 1;

* x = y;


























PROP()
LOCAL(temp x (p + 4))

SEP

(

p p−−−−→
int

b;

p + 4 p−−−−→
int

a + b

)

,

⊥, ⊥, ⊥



























MORE COMMANDS :=

x = x + 1; *x = y;

∆ ⊢


























PROP()

LOCAL

(

temp x p; temp y a;
temp z b

)

SEP

(

p p−−−→
int

b;

p + 4 p−−−→
int

0

)



























y = y + z; MORE COMMANDS


























PROP()
LOCAL(temp x (p + 4))

SEP

(

p p−−−→
int

b;

p + 4 p−−−→
int

a + b

)

,

⊥, ⊥, ⊥



























Fig. 7: After executingforward. Floyd has made a local definitionMORE COMMANDS so that the proof
goal below the line is not cluttered with the entire remainder of the block.

Generally speaking, if the first command in the proof goal is an assignment (set,
load or store command)c and the precondition isP , forward will eliminate c and
replace the precondition with the strongest postconditionof P andc. Fig. 8 and Fig.
9 demonstrate this process. In Fig. 8, there is more than one command in the original
proof goal. Applyingforward reduces the proof goal to a new triple in which the new
preconditionQ is the strongest postcondition ofP and c. In Fig. 9, c is the only
command in the original proof goal. Applyingforward reduces the proof goal to a
separation logic entailment,∆ ∧ Q ⊢ R.

VST-Floyd: A separation logic tool to verify correctness ofC programs 35

{P}
c;
c2

{R, Rbrk, Rcon, Rret}

∆ ⊢
{P}

c; c2
{R, Rbrk, Rcon, Rret}

{P}
c;

{Q}
c2

{R, Rbrk, Rcon, Rret}

∆ ⊢
{Q}

c2
{R, Rbrk, Rcon, Rret}

Fig. 8: More than one command

{P}
c;

{R, Rbrk, Rcon, Rret}

∆ ⊢
{P}

c;

{R, Rbrk, Rcon, Rret}

{P}
c;

{Q}
{R, Rbrk, Rcon, Rret}

∆ ∧ Q ⊢ R

Fig. 9: Only one command

6.1.1 Implementation.

The implementation offorward contains the following steps:
First, forward analyzes the C command in the proof goal. If it has form(c1; c2)

andc1 is an assignment, thenforward will do

eapply semax-seq’

If it has is a single assignment commandc, thenforward will do

eapply semax-post’

Here,SEMAX SEQ’ and SEMAX POST’ are derived Hoare rules. Coq’seapply tactic
creates a unification variable for “floating” variables, in this case the intermediate
assertionQ.

SEMAX-SEQ’

∆ ⊢ {P} c1 {Q, ⊥, ⊥, ⊥}
∆ ⊢ {Q} c2 {R, Rbrk, Rcon, Rret}

∆ ⊢ {P} c1; c2 {R, Rbrk, Rcon, Rret}

SEMAX-POST’
∆ ⊢ {P} c {Q, ⊥, ⊥, ⊥} Q ⊢ R

∆ ⊢ {P} c {R, Rbrk, Rcon, Rret}

Either way, two proof goals will be generated. The first one has form:

∆ ⊢ {P} c {?Q, ⊥, ⊥, ⊥}

36 Qinxiang Cao et al.

and the second one is either∆ ⊢ {?Q} c2 {R, Rbrk, Rcon, Rret} or ?Q ⊢ R, respec-
tively. The unification variable?Q is to be filled in later.

In §5, we described our Ltac programs which can generate the strongest post-
condition for an assignment and solve the first proof goal.forward calls these Ltac
programs and instantiates?Q. As a result, the second proof goal, fully instantiated, is
presented to users.

Forward requires the original precondition to be in canonical form and ensures
that the new precondition is also canonical.

Forward is mostly automatic: most premises and side conditions of rules such as
STORE-2 are proved automatically. But sometimes users must provea side condition
(e.g., that some expression evaluation is defined) or to offer some hint (like which
data at or field at is loaded from or stored to).

6.1.2 Reassociating sequences

The first step inforward is find first command in a sequence of commands. C light
formalizes sequential composition as a (deeply embedded) binary syntactic operator.
If the proof goal is{P} c1 · (c2 · c3) {Q} wherec1 is an assignment statement,
forward can use thesemax-seq’ rule (like HOARE-SEQ in §1.1) to produce the proof
goals{P} c1 {?U} and{?U} c2 · c3 {Q}, where?U is a unification variable to be
filled in.

But if the goal is{P} (c1 ·c2)·c3{Q}, thenforward first reorganizes the sequential
composition using this rule:

SEQ-ASSOC
∆ ⊢ {P} c0 · (c1 · c2) {Q, Qbrk, Qcon, Qret}

∆ ⊢ {P} (c0 · c1) · c2 {Q, Qbrk, Qcon, Qret}

6.2 Forward on function calls

Forward-call verifies a function call. Its interface and implementation are very similar
to forward, except that it takes an argument: the instantiation of the universally quan-
tified parameter of the function specification. We have automated the instantiation of
specification parameters.

The following is a specification forswapint, which swaps the numbers stored
in two different addresses.

void swapint(int * x; int * y);

swapint(x, y) :

Π(a, b, p, q).

{PROP() LOCAL(temp x p; temp y q) SEP(p p−−−→
int

a; q p−−−→
int

b)}

{PROP() LOCAL() SEP(p p−−−→
int

b; q p−−−→
int

a)}

Figures 10 and 11 illustrate the effect of running
“forward-call (2a, a2 + 1, p, p + 4)”.

VST-Floyd: A separation logic tool to verify correctness ofC programs 37



















PROP()
LOCAL(temp x p)

SEP

(

p p−−−−→
int

2a;

p + 4 p−−−−→
int

a2 + 1

)



















swap (x, x + 1);
MORE COMMANDS

{POSTCONDITION}

MORE COMMANDS := ...

∆ ⊢


















PROP()
LOCAL(temp x p)

SEP

(

p p−−−→
int

2a;

p + 4 p−−−→
int

a2 + 1

)



















swap (x, x + 1);
MORE COMMANDS

{POSTCONDITION}

Fig. 10: Before executingforward call (Fig. 7 explainsMORE COMMANDS).



















PROP()
LOCAL(temp x p)

SEP

(

p p−−−−→
int

2a;

p + 4 p−−−−→
int

a2 + 1

)



















swap (x, x + 1);


















PROP()
LOCAL(temp x p)

SEP

(

p p−−−−→
int

a2 + 1;

p + 4 p−−−−→
int

2a

)



















MORE COMMANDS

{POSTCONDITION}

MORE COMMANDS := ...

∆ ⊢


















PROP()
LOCAL(temp x p)

SEP

(

p p−−−→
int

a2 + 1;

p + 4 p−−−→
int

2a

)



















MORE COMMANDS

{POSTCONDITION}

Fig. 11: After executingforward call

VST-Floyd only requires the postconditions in function specifications to be in
existentially quantified canonical form. Thus, the new precondition may have such
existentials. We useIntros (see §7.1.2) at the end offorward-call so that the triple left
for users has a canonical precondition.

6.3 Forward on if commands

When the first C command in the proof goal is anif command,forward-if should be
applied to perform forward verification.

In general, after forward proof through two branches of anif, one needs to merge
the postconditions together. One could say the postcondition is just a disjunction in
separation logic, but that just reduces to the problem of eliminating disjunctions and
returning to canonical form. So we require the user to provide the joined postcondi-
tion as an argument toforward-if; exceptwhen theif command is the only command
in the proof goal (e.g., the last command in a block), in whichcase the postcondition
is already concrete (not a unification variable), and is therefore already provided.

Consider the following sample program and specification:

{ PROP() LOCAL(temp x x; temp s s) SEP(s p−−−−→
int

σ) }

if (x >= 0) then y = x; else y = -x;

38 Qinxiang Cao et al.

t = * s; * s = t + y;
{ PROP() LOCAL(temp x x; temp s s) SEP(s p−−−−→

int
σ + |x|), ⊥, ⊥, ⊥ }

Theif command in this example stores the absolute value ofJxK into y. We can
applyforward-if PROP() LOCAL(temp x x; temp s s; temp y |x|) SEP(s p−−−→

int
σ).

Then three subgoals are left for us to prove (see Fig. 12): onefor the if-then branch,
one for the if-else branch and one for the C commands afterwards.

H: x ≥ 0
--

∆ ⊢















PROP()

LOCAL

(

temp x x;
temp s s

)

SEP(s p−−−→
int

σ)















y = x;






























PROP()

LOCAL





temp x x;
temp s s;
temp y |x|





SEP(s p−−−→
int

σ),

⊥, ⊥, ⊥































H: x 6≥ 0
--

∆ ⊢















PROP()

LOCAL

(

temp x x;
temp s s

)

SEP(s p−−−→
int

σ)















y = -x;






























PROP()

LOCAL





temp x x;
temp s s;
temp y |x|





SEP(s p−−−→
int

σ),

⊥, ⊥, ⊥































--

∆ ⊢























PROP()

LOCAL





temp x x;
temp s s;
temp y |x|





SEP(s p−−−→
int

σ)























t = * s;

* s = t + y;






















PROP()

LOCAL

(

temp x x;
temp s s

)

SEP(s p−−−→
int

σ + |x|),

⊥, ⊥, ⊥























Fig. 12: Subgoals afterforward if

Fig. 13 and 14 is a sketch of the effect offorward-if Q in general. One important
detail in this tactic interface is how we handle the predicate that “the denotation ofb
is true/false”. Traditionally,JbK = true will be a conjunct of the precondition in the
if-then branch. In VST-Floyd, it does not show up in the precondition but appears
above the line as an assumption of the whole if-then triple. In our example above, if
the precondition of the conditional is

PROP() LOCAL(temp x x; temp s s) SEP(s p−−−→
int

σ)

andb is x >= 0. Thusx ≥ 0 will an assumption of the if-then triple. Similarly,
x 6≥ 0 will be an assumption of the if-else triple. Treating this testing result as a Coq
assumption about values, instead of a Hoare logic precondition about expressions, is
very convenient in verifying real C programs.

Implementation.In “ forward-if Q”, we first applySEMAX-SEQto split the proof goal
into two. The first one will be handled byforward-if and the second one, a triple for
the rest of program is directly left to the users.

The implementation offorward-if is based on the following auxiliary Hoare rule.

SEMAX-IF ’

P ⊢ tc expr(∆, b)
P ⊢ JbK = v

If v = true, then∆ ⊢ {P} c1 {Q, Qbrk, Qcon, Qret}
If v = false, then∆ ⊢ {P} c2 {Q, Qbrk, Qcon, Qret}

∆ ⊢ {P} if (b) c1 else c2 {Q, Qbrk, Qcon, Qret}

VST-Floyd: A separation logic tool to verify correctness ofC programs 39

{P}
if (b)

THEN BRANCH;
else

ELSE BRANCH;
MORE COMMANDS

{R, Rbrk, Rcon, Rret}

∆ ⊢ {P} if (b) THEN BRANCH;

else ELSE BRANCH;

MORE COMMANDS

{R, Rbrk, Rcon, Rret}

Fig. 13: More than one if command—beforeforward if

{P}
if (b)
// extra context:
// JbK = true
{P}

THEN BRANCH;
{Q, Rbrk, Rcon, Rret}

else
// extra context:
// JbK = false
{P}

ELSE BRANCH;
{Q, Rbrk, Rcon, Rret}

{Q}
MORE COMMANDS

{R, Rbrk, Rcon, Rret}

H : The denotation of b is true

∆ ⊢ {P} THEN BRANCH {Q, Rbrk, Rcon, Rret}

H : The denotation of b is false

∆ ⊢ {P} ELSE BRANCH {Q, Rbrk, Rcon, Rret}

∆ ⊢ {Q} MORE COMMANDS {R, Rbrk, Rcon, Rret}

Fig. 14: More than one if command—beforeforward if

We doeapply semax-if’ first in forward-if. Four subgoals are generated. The first one
is typechecking; it will usually be solved automatically. The second is C expression
evaluation, which solves by computation andv will be instantiated (see §5.1) if the
precondition is in the canonical form. The last two proof goals (then-clause Hoare
triple, else-clause Hoare triple) will be presented to users.

6.4 Forward proof on loops

Recall that C light unifies different loops in C into the formloop(ci) c. In this gen-
eral loop command,c is the loop body andci is the increment command. Specifically,
“while (b) c” is defined as

loop(;) {if (b) /*skip*/; else break; c}
and “for (c0; b; ci) c” is defined as

c0; loop(ci) {if (b) /*skip*/; else break; c}.
Verifiable C offers a primary Hoare rule for general loops.

SEMAX-LOOP

∆ ⊢ {P} c {P ′, Q, P ′, Qret}
∆ ⊢ {P ′} ci {P, ⊥, ⊥, Qret}

∆ ⊢ {P} loop (ci) c {Q, Qbrk, Qcon, Qret}

40 Qinxiang Cao et al.

This rule is already pretty easy to use, compared to other primary Hoare rules in
Verifiable C. There is no expression evaluation or typechecking criterion involved.
So we do not provide forward tactics for general loops. Userscan apply this rule
directly. To apply this rule in forward verification, users need to provide two loop
invariants, one before incremental step (P ′) and one after incremental step (P), and
one postcondition (Q).

However, it’s inconvenient to provide three assertionsP ′, P, Q when there are
common special cases where only one is needed. Forwhile loops, the two loop
invariants are identical. Forwhile loops withoutbreak command inside, the post-
condition is just a conjunction of the loop invariant and a side condition that the loop
condition is false. Therefore, we provide a tacticforward-while for simple while loops
without break statements.

We also have a special-purpose for-loop tactic,forward-for-simple-bound, to han-
dle loops of the formfor(. . .; i<E; i++).

7 Interactive Tactics for Forward-Style Proof

In the previous section, we introduced forward tactics in VST-Floyd which perform
forward verification. But sometimes those tactics do not connect well to each other.
All forward tactics assume that the precondition in the proof goal is in canonical
form, but some tactics’ postconditions (e.g.,forward-call), and typical loop invariants,
are in existentially quantified canonical form.

Another problem isSEP clause reorganization. Theforward for load and store

commands only detects predicates with formp p−→
t

v andp p

−→
f

−−→
t

v in SEPclauses but

cannot handle user-defined predicates. Theforward-call tactic requires an exact match
between specificationSEPclauses and a subset of theSEPclauses in the proof goal.
Users must sometimes rewrite the precondition of the proof goal so thatforward can
work.

In this section, we introduce the interactive tactics in VST-Floyd to manipulate
assertions and triples. These tactics are the glue code of forward tactics.

7.1 Intros

Intros is the basic tactic to extractPROPclauses in preconditions, to pull out existen-
tially quantified variables and to improve the arrangement of canonical preconditions.

7.1.1 ExtractPROPclauses

The first effect ofIntros is extractingPROPclauses. Fig. 15 is such an example. The
right side of it shows the Coq proof goals before and after applying Intros: two propo-
sitionsa ≥ 0 andb ≥ 0 are dragged above the line and become assumptions of the
whole triple. The corresponding decorated program says intuitively: “from this point

VST-Floyd: A separation logic tool to verify correctness ofC programs 41



















PROP(a ≥ 0; b ≥ 0)
LOCAL(temp x p)

SEP

(

p p−−−−→
int

a;

p + 4 p−−−−→
int

b

)



















COMMANDS
{POSTCONDITION}

a: Z

b: Z

∆ ⊢


















PROP(a ≥ 0; b ≥ 0)
LOCAL(temp x p)

SEP

(

p p−−−→
int

a;

p + 4 p−−−→
int

b

)



















COMMANDS

{POSTCONDITIONS}


















PROP()
LOCAL(temp x p)

SEP

(

p p−−−−→
int

a;

p + 4 p−−−−→
int

b

)



















ց \\ Suppose a ≥ 0, b ≥ 0


















PROP()
LOCAL(temp x p)

SEP

(

p p−−−−→
int

a;

p + 4 p−−−−→
int

b

)



















COMMANDS
ւ {POSTCONDITION}
{POSTCONDITION}

a: Z

b: Z

H: a ≥ 0
H1: b ≥ 0

∆ ⊢


















PROP()
LOCAL(temp x p)

SEP

(

p p−−−→
int

a;

p + 4 p−−−→
int

b

)



















COMMANDS

{POSTCONDITIONS}

Fig. 15: Example: Intros

to the end of current block, let’s assumea ≥ 0 andb ≥ 0”. Such transformations are
sound because of the following proof rule.

EXTRACT-PROP

If P then∆ ⊢
{

PROP
−→
PA LOCAL

−→
QA SEP

−→
RA

}

c {Post}

∆ ⊢
{

PROP (P ;
−→
PA) LOCAL

−→
QA SEP

−→
RA

}

c {Post}

It is a very practical proof strategy in VST-Floyd to pull propositions from the
precondition into Coq assumptions. It enables users to apply domain-specific mathe-
matics in a more flexible environment, i.e. the Coq’s proof mode. For example,a ≥ 0,
b ≥ 0 anda + b = 0 together tell usa = b = 0. This can be proved directly by Coq’s
default solver for linear programmingomega. Moreover, if assumptions likea = 0
is above the line, Coq tactics likesubst can be applied to further simplify the proof
goal.

7.1.2 Extract existentials

Intros also extracts existentially quantified variables. If the proof goal is a Hoare
triple, Intros x y moves existential quantifiers in the precondition above theline, in-
troducing Coq variablesx, y.

One or more arguments afterIntros indicate the name of the new Coq variables.
Fig. 16 is a tiny example.Intros i will transform the proof goal on the top to the one

42 Qinxiang Cao et al.

on the bottom.Intros also finds existential quantifiers inside aSEP clause (see Fig.
17).

Intros works (soundly) by applyingEXTRACT-EXISTS, proved in Coq:

EXTRACT-EXISTS
Forallx. (∆ ⊢ {P (x)} c {Q})

∆ ⊢ {∃x : A. P (x)} c {Q}

Moving existential quantifiers out of oneSEPconjunct is sound due to the commu-
tativity between existential quantifier and separating conjunction:(∃a.P (a)) ∗ Q ⊣⊢
∃a.P (a) ∗ Q. We prove the following derived rule for canonical assertions. More
specifically, our Ltac program always moves an existentially quantifiedSEPconjunct
to the beginning first, then apply this rule.

PROP
−→
P LOCAL

−→
Q SEP(∃x.R0(x);

−→
R) ⊣⊢ ∃x. PROP

−→
P LOCAL

−→
Q SEP(R0(x);

−→
R)

7.1.3 Flatten theSEPclauses

The other effect ofIntros is flattening theSEPclauses. In the original precondition,
there is only oneSEPclause, but the clause itself is a separating conjunction.Intros

splits it into twoSEPclauses. This transformation is sound because of the commuta-
tivity and associativity of separating conjunction. Fig. 18 shows an example.

7.2 Introduce more propositions in the context

We have shown thatIntros can extract propositions inPROPclauses. Besides that,
VST-Floyd provides another tacticassert-PROP which adds an propositionP0 into
the Coq assumption if it is derivable from the precondition.

Fig. 19 shows an example ofassert-PROP. Here,(isptr p) saysp is a pointer value
and it is notnull. Applying assert-PROP (isptr p) adds this proposition to the Coq
assumption list (see the change from the proof goal on the topright to the one on the
bottom right). Users are responsible for the soundness of this operation. In this case,
we need to prove a separation logic entailerment: precondition implies(isptr p). We
know this is true because some data is store at addressp. VST-Floyd offers tactics to
solve entailments (semi)automatically (see §9). Here, we can applyentailer! to solve
this sidecondition.

7.3 Manipulating separating conjunctions in SEP clauses

We providegather-SEP andreplace-SEP to manipulateSEP clauses in preconditions
or in the left sides of entailments.

For example, suppose the proof goal is a triple (or an entailment, resp.) whose
precondition (or left side, resp) is

PROP() LOCAL
−→
Q SEP(a; b; c; d; e; f ; g; h; i; j)

VST-Floyd: A separation logic tool to verify correctness ofC programs 43



























∃ a b.

PROP()
LOCAL(temp x p)

SEP

(

p p−−−−→
int

a;

p + 4 p−−−−→
int

b

)



























COMMANDS
{POSTCONDITION}

∆ ⊢


























∃ a b.

PROP()
LOCAL(temp x p)

SEP

(

p p−−−→
int

a;

p + 4 p−−−→
int

b

)



























COMMANDS

{POSTCONDITIONS}



























∃ a b.

PROP()
LOCAL(temp x p)

SEP

(

p p−−−−→
int

a;

p + 4 p−−−−→
int

b

)



























ց \\ Given a b


















PROP()
LOCAL(temp x p)

SEP

(

p p−−−−→
int

a;

p + 4 p−−−−→
int

b

)



















COMMANDS
ւ {POSTCONDITION}
{POSTCONDITION}

a: Z

b: Z

∆ ⊢


















PROP()
LOCAL(temp x p)

SEP

(

p p−−−→
int

a;

p + 4 p−−−→
int

b

)



















COMMANDS

{POSTCONDITIONS}

Fig. 16: Example: Introsa b



















PROP()
LOCAL(temp x p)

SEP

(

p p−−−−→
int

a;

∃b. p + 4 p−−−−→
int

b

)



















COMMANDS
{POSTCONDITION}

a: Z

∆ ⊢


















PROP()
LOCAL(temp x p)

SEP

(

p p−−−→
int

a;

∃b. p + 4 p−−−→
int

b

)



















COMMANDS

{POSTCONDITIONS}


















PROP()
LOCAL(temp x p)

SEP

(

p p−−−−→
int

a;

∃b. p + 4 p−−−−→
int

b

)



















ց \\ Given b


















PROP()
LOCAL(temp x p)

SEP

(

p p−−−−→
int

a;

p + 4 p−−−−→
int

b

)



















COMMANDS
ւ {POSTCONDITION}
{POSTCONDITION}

a: Z

b: Z

∆ ⊢


















PROP()
LOCAL(temp x p)

SEP

(

p p−−−→
int

a;

p + 4 p−−−→
int

b

)



















COMMANDS

{POSTCONDITIONS}

Fig. 17: Example: Introsb

44 Qinxiang Cao et al.







PROP()
LOCAL(temp x p; temp y q)
SEP(p p−−−−→

int
a ∗ q p−−−−→

int
b)







COMMANDS
{POSTCONDITION}

∆ ⊢






PROP()
LOCAL(temp x p; temp y q)
SEP(p p−−−→

int
a ∗ q p−−−→

int
b)







COMMANDS

{POSTCONDITIONS}







PROP()
LOCAL(temp x p; temp y q)
SEP(p p−−−−→

int
a ∗ q p−−−−→

int
b)













PROP()
LOCAL(temp x p; temp y q)
SEP(p p−−−−→

int
a; q p−−−−→

int
b)







COMMANDS
{POSTCONDITION}

∆ ⊢






PROP()
LOCAL(temp x p; temp y q)
SEP(p p−−−→

int
a; q p−−−→

int
b)







COMMANDS

{POSTCONDITIONS}

Fig. 18: Example: Intros

gather-SEP i j k will bring the ith, jth, andkth items to the front of theSEPlist and
conjoin them into a single element.

gather-SEP 5 results inPROP() LOCAL
−→
Q SEP(f ; a; b; c; d; e; g; h; i; j).

gather-SEP 1 3 results inPROP() LOCAL
−→
Q SEP(b ∗ d; a; c; e; f ; g; h; i; j).

gather-SEP 3 1 results inPROP() LOCAL
−→
Q SEP(d ∗ b; a; c; e; f ; g; h; i; j).

replace-SEP i R will replace item #i with predicateR.
replace-SEP 5 R results inPROP() LOCAL

−→
Q SEP(a; b; c; d; e; R; g; h; i; j) and

a proof subgoal:
∆ ∧ PROP() LOCAL

−→
Q SEP(f) ⊢ R

These tactics are very useful to handle user-defined predicates. In §4, we showed
a user-defined predicatelist which describes integer linked lists. Here, we use a simple
version of it to demonstrate how the tactics above can be used.

list2(p, a, b) ::= ∃q. p p−−−−→
IntList

a, q ∗ q p−−−−→
IntList

b, null

This predicatelist2 describes a 2-element linked list.
Now, suppose we start from the following proof goal:

∆ ⊢ {PROP()LOCAL(temp x p)SEP(list2(p, a, b))} ... {...}

To unfold this user defined predicate, we can do “unfold list2; Intros q”:

q: val

∆ ⊢ {PROP()LOCAL(temp x p)SEP(p p−−−−−−→
IntList

a, q; q p−−−−−−→
IntList

b, null)} ... {...}

If we want to refold this definition, we can first apply “gather-SEP 0 1”:

VST-Floyd: A separation logic tool to verify correctness ofC programs 45







PROP()
LOCAL(temp x p)
SEP(p p−−−−→

int
a)







COMMANDS
{POSTCONDITION}

∆ ⊢






PROP()
LOCAL(temp x p)
SEP(p p−−−→

int
a)







COMMANDS

{POSTCONDITIONS}







PROP()
LOCAL(temp x p)
SEP(p p−−−−→

int
a)







ց \\ Assume isptr(p)






PROP()
LOCAL(temp x p)
SEP(p p−−−−→

int
a)







COMMANDS
ւ {POSTCONDITION}
{POSTCONDITION}

∆ ∧







PROP()
LOCAL(temp x p)
SEP(p p−−−→

int
a)







⊢!!(isptr p)

H : isptr p

∆ ⊢






PROP()
LOCAL(temp x p)
SEP(p p−−−→

int
a)







COMMANDS

{POSTCONDITIONS}

Fig. 19: Example: assertPROP(isptr p)

q: val

∆ ⊢ {PROP()LOCAL(temp x p)SEP(p p−−−−−−→
IntList

a, q ∗ q p−−−−−−→
IntList

b, null)} ... {...}

then tactic “replace-SEP 1 (list2(p, a, b))’’ can change the proof goal back to the orig-
inal one. Here, we will be left to prove a subgoal:

q: val

∆ ∧ PROP()LOCAL(temp x p)SEP(p p−−−−−→
IntList

a, q ∗ q p−−−−−→
IntList

b, null) ⊢ list2(p, a, b)

To solve this proof goal, we can do “unfold list2; Exists q; entailer!”. We will introduce
the tactics for solving entailments in §9.

A more convenient tactic, in place ofgather-SEP/replace-SEP is sep-apply f ,
wheref is any lemma of the formP1 ∗ · · · ∗Pn ⊢ Q; it gathers thePi from wherever
they appear in the left-hand side of the entailment, and replaces them withQ.

8 Structural Proof Rule in Forward-Style Proof

We have shown our tactic library for forward style proof in the previous sections (§6
and §7). Besides that, VST-Floyd also provides support for some structural proofs.

46 Qinxiang Cao et al.

The most useful structural rules are the sequence rule and the frame rule. We intro-
duce their corresponding proof rules and tactics in VST.

8.1 Reorganizing Sequential Composition and Applying Sequence Rule

Suppose the user writes a program,

c1; c2; c3; c4; * blank line *\ c5; c6; c7;

Here, the blank line in the middle means thatc1, c2, c3 andc4 are for one subtask
andc5, c6 andc7 are for another subtask. It is natural for our user to verify these two
segments of code separately and then achieve the correctness of the whole program
by SEMAX-SEQ. In other words, we want to prove the triple on the top right ofFig.
20 by decomposing it into two triples on the bottom right. Theleft column of Fig. 20
shows the corresponding decorated program.

{P}
c1; c2; c3; c4
c5; c6; c7;

{R, ⊥, ⊥, ⊥}

∆ ⊢ {P} c1; c2; c3; c4; c5; c6; c7; {R, ⊥, ⊥, ⊥}

{P}
c1; c2; c3; c4

{Q}
c5; c6; c7;

{R, ⊥, ⊥, ⊥}

∆ ⊢ {P} c1; c2; c3; c4; {Q, ⊥, ⊥, ⊥}

∆ ⊢ {Q} c5; c6; c7; {R, ⊥, ⊥, ⊥}

Fig. 20: Proof by subtask decomposition

Recall that the sequential composition of C commands is formalized as a bi-
nary oparator in CompCert Clight (see §6.1.2). That means:SEMAX-SEQ cannot
be applied directly and we must refactorc1 · (c2 · (c3 · (c4 · (c5 · (c6 · c7))))) into
(c1 · (c2 · (c3 · c4))) · (c5 · (c6 · c7)). TheSEQ-ASSOCrule (§sec:id-1st-cmd) cannot
do it, since it does not come with a congruence rule (for complicated reasons related
to step-indexing of our underlying model).

To reassociate a block, we define a Coq functionunfold Ssequence to turn a C
command into a list of commands; it flattens the syntax tree ofsequential composi-
tion:

unfold Ssequence(c) ::= [c] if c is not a sequential composition

unfold Ssequence{c1; c2} ::= unfold Ssequence(c1)++unfold Ssequence(c2)

where++ is list concatenation. We prove the Hoare rule,

SEMAX-UNFOLD-SEQ

unfold Ssequence(c1) = unfold Ssequence(c2)
∆ ⊢ {P} c1 {R, Rbrk, Rcon, Rret}

∆ ⊢ {P} c2 {R, Rbrk, Rcon, Rret}

VST-Floyd: A separation logic tool to verify correctness ofC programs 47

This rule says that we can always reorganize the tree structure of sequential compo-
sition as long as the flattened version is unchanged.

To accomplish the decomposition that we described in the beginning of this sub-
section, the user caneapply SEMAX-UNFOLD-SEQandSEMAX-SEQfirst, then apply
two proved Hoare triples for each subtasks.

8.2 Tactical support for flexible framing

VST-Floyd’s proof tactics for function calls, loads, and stores automatically include
identification of separation logic frames using a weak form of abduction [9], some-
times exploiting programmer hints such as the instantiation witnesses inforward-call.
Efficiency of these tactics (and of explicit calls tocancel or entailer typically found in
the vicinity of these forward steps) depends directly on thesize of theSEP clause. This
suggests that proof-checking could be made faster by the liberal use of the frame rule
(i.e. SEMAX-FRAME)—aside from the fact that the frame rule enables users to prove
triples with more concise pre/postconditions. Unfortunately, as commonly phrased,
SEMAX-FRAME does not interact well with the granularity at which forwardoperates.

SEMAX-FRAME
∆ ⊢ {P} c {Q, Qbrk, Qcon, Qret} closedwrt modvars(c, F)

∆ ⊢ {F ∗ P} c {F ∗ Q, F ∗ Qbrk, F ∗ Qcon, F ∗ Qret}

As an example, consider a proof goal of the form{P1 ∗ P2 ∗ P3} c1; c2; c3 {?Q}
with derivable triples{Pi} ci {Qi}. In many (but not all) cases, the firstforward-step
through this goal implicitly frames offP2 ∗P3, steps throughc1, and leaves the proof
goal{Q1 ∗ P2 ∗ P3} c2; c3 {?Q}. Then, the next twoforwards frame offQ1 ∗P3 and
Q1 ∗ Q2, respectively.

Matching this behaviour by explicitly wrapping each individual forward step in
a maximally precise application ofSEMAX-FRAME would rapidly pollute the proof
script with administrative clutter. On the other hand, identifying upfront the number
of forward steps for which each individual clause inSEP is to be framed off requires
inspection ofMORE COMMANDS, andSEMAX-FRAME in fact does not allow the speci-
fication of such information.

Our solution to this challenge is to rephrase framing as the transfer of clauses
between the regularSEP compartment of canonical assertions and specialized com-
partments that are inaccessible to theforward tactics. A user may invoke the tactic
freeze L n to bundle a listL of clauses fromSEP (where members are identified po-
sitionally, much as in the tactics described in Section 7.3)into a named entityFR(n)
that is opaque to the symbolic execution tactics, cancellation, and entailment tac-
tic. Later, she may selectively dissolve such afreezerusing the tacticthaw n. Each
freezer constitutes just anotherSEP clause, so multiple freezers may coexist or be
nested inside one another. Hence, a flexible programmer-controlled framing mecha-
nism is obtained, the use of which can be balanced against theperformance of the
remaining automation tactics. In typical cases, we have experienced speed-ups of ap-
proximately 30%, depending on the number of unfrozen clauses and the complexity
of the frozen ones. Future work may seek to improve the declarativeness of freezer
management and explore potential connections to the theoryof ramification [18].

48 Qinxiang Cao et al.

9 Solving entailments

When verifying a Hoare triple, users need to prove entailments with the form∆∧A ⊢
B in some particular circumstances. For example, at the end ofa basic block, the
forward tactic will leave an entailment as a subgoal (§6.1). To handle awhile loop,
one must first prove such an entailment: the precondition implies the loop invariant
(§6.4). Users of VST-floyd can usereplace-SEP to better organize the precondition
in the proof goal (§7.3); users are required to prove entailments for the soundness of
such replacement.

We provide two tacticsIntros and Exists for manipulating quantifiers and we
(semi)automate the proofs of quantifier-free entailments using an Ltac program called
entailer.

9.1 Intros

If the proof goal is a separation logic entailment,Intros moves existential quantifiers
on the left side of entailment to the assumptions of Coq proofgoal—much like the
way it works on a Hoare triple (§7.1). The soundness of this tactic is based on the
following proof rules.

EXTRACT-PROP-ENTAIL
If P then∆ ∧ PROP

−→
PA LOCAL

−→
QA SEP

−→
RA ⊢ B

∆ ∧ PROP (P ;
−→
PA) LOCAL

−→
QA SEP

−→
RA ⊢ B

EXTRACT-EXISTS-ENTAIL
Forallx. ∆ ∧ P (x) ⊢ Q

(∆ ∧ ∃x. P (x)) ⊢ Q
The context∆ specifies types of local variables and specifications of global func-

tions. The propositiontypecheck-environ ∆ ρ asserts that every local variable in the
environmentρ has a value consistent with the type specified in∆.

Recall that these rules regardlifted assertions, that is,(∆ ∧ ∃x. P (x)) ⊢ Q
means∀ρ. ((∆ρ ∧ ∃x. P (x)ρ) ⊢ Qρ) and in such a context,∆ρ should be taken
to mean,typecheck-environ ∆ ρ.

Specifications of global functions are irrelevant to entailments (they are used at
function-call Hoare triples and in a Hoare rule for copying afunction address to a
variable). This aspect of∆ is not tested bytypecheck-environ.

9.2 Exists

Exists is the dual ofIntros. It instantiates an existentially quantified variable on the
right side of an entailment. Fig. 21 shows an example ofExists.

It is sound because of the following proof rule:

EXP-RIGHT
P ⊢ Q(a)

P ⊢ ∃x. Q(x)

In short,Intros andExists are very similar to Coq’s tacticsintros andexists, but
they perform transformation in the object language (separation logic entailment) in-
stead of in the metalanguage (Coq).

VST-Floyd: A separation logic tool to verify correctness ofC programs 49

∆ ∧







PROP()
LOCAL(temp x p)
SEP(p p−−−→

int
4)







⊢







∃a.PROP()
LOCAL(temp x p)
SEP(p p−−−→

int
a2)







∆ ∧







PROP()
LOCAL(temp x p)
SEP(p p−−−→

int
4)







⊢







PROP()
LOCAL(temp x p)
SEP(p p−−−→

int
22)







Fig. 21: Example: Exists 2

9.3 Entailer

The tacticentailer does not always prove the entire entailment, but simplifies it by
proving those parts that can be automated, without turning provable goals into un-
provable goals. It may leave a residual goal.

From ∆ ∧ PROP
−→
PA LOCAL

−→
QA SEP

−→
RA ⊢ PROP

−→
PB LOCAL

−→
QB SEP

−→
RB, entailer

proceeds in the following steps:

1. Clear from “above the line” any hypotheses known to be irrelevant. For example,
in ∆ the mapping of function names to function specs is never useful in solving
these entailments (it is only used inforward-call), so we prune this mapping from
∆. This has a surprisingly good effect on Coq’s execution timein performing the
rest of the proof steps.

2. Move the propositions in
−→
PA above the line, by repeatedly applyingEXTRACT-

PROP-ENTAIL . In the process, apply Verifiable-C-specific lemmas to eachP . For
example, C-language expression-semantics inP may be simplified to mathemat-
ical propositions such asx < y. If P is x = E, substitutex globally.

3. Go from an entailment in the lifted separation logic (predicates on stacks and
heaps) to the unlifted logic (predicates on heaps). We can dothis because, unlike
a Hoare triple, bothA andB are on the same local-variable state. That is,A ⊢ B
is definitionally equal to∀ρ : stack . Aρ ⊢ Bρ, so simplyintro ρ.

4. Then the elements of
−→
QA can be moved above the line one at a time, by lemmas

such as this one:

Lemma lower-one-temp:

forall t ρ ∆
−→
P i v

−→
Q

−→
R S,

∆(i) = t →

(tc-val t v → JiKρ = v → (∆ ∧ PROP
−→
P LOCAL

−→
Q SEP

−→
R) ρ ⊢ S) →

(∆ ∧ PROP
−→
P LOCAL (temp i v;

−→
Q) SEP

−→
R) ρ ⊢S.

This matches alifted entailmentgoal of the form
∆ ∧ PROP

−→
P LOCAL (temp i v;

−→
Q) ⊢S′ whereS′ =β Sρ; that lifted en-

tailment isβ-equivalent to the conclusion of the lemma for some arbitrary ρ. The
entailer applies this lemma, leaving two subgoals. The first subgoal looks up the
C-language type ofi in ∆ and solves easily by computation.

The entailer solves the second subgoal by first performing performs twointros,
puttingtc val t v andJiKρ = v above the line. The former of these says thatv is a
well-typed value for C-language typet.

50 Qinxiang Cao et al.

The semantics inB of LOCAL(temp i v; Q)ρ is justJiKρ = v ∧ LOCAL Q ρ. So,

after
−→
QA is processed, all thetemp conjuncts in

−→
QB are now proved directly from

assumptions above the line. The process is analogous forlvars andgvars.
At this point we may clear from the proof goal anything dependent onρ. But

thetc val t v hypotheses remain above the line, for use in the remaining steps (and
in user proofs of residual goals). For example, ift is C’s unsigned-char type, this
assumption guarantees thatv is indeed an integer (not a pointer or float), and is
between 0 and 255.

5. What remains takes the form,⋆
−→
RA ⊢

∧−→
PB ∧ ⋆

−→
RB, where

−→
PB is a list of pure

propositions, and
−→
RA,

−→
RB are lists of spatial predicates. For each element ofRA,

deduce certain “standard” pure propositions and put these propositions above the
line. For example,p 7→ v implies isptr(p), thatp is a pointer (and notnull). More
interesting,data-at guarantees that the length of each (sub)arraycontentsmatches
the size in the declared C-language type. For each kind of spatial predicate that
we might find as a conjunct ofRA, we look for the “standard” proposition in a
“Hint database” calledsaturate-local.

6. Now perform various simplifications and rewrites specificto our C type system
and C-language comparison expressions, then general rewriting such as0 ·n = 0.

7. The next step depends on whether the user has invoked theentailer tactic, which
guarantees not to turn a provable goal into an unprovable goal; or entailer! which
is a bit more aggressive and efficient.
– entailer eliminates each element ofPB that is provable with Coq’sauto tactic;

then repeats from step 6 as long as progress is made.
– entailer! splits the proof-goal

−→
RA ⊢

−→
PB ∧

−→
RB into two goals,

−→
PB and

−→
RA ⊢

−→
RB . It then tries to prove each of thePB by auto, compute, omega,

re
 exivity, leaving a conjunction of the unproved subgoals as a residuefor the
user. It uses thecancel tactic (see below) to cancel terms that appear both in
RA andRB, leaving the residue (if any) as a proof goal for the user.

Our cancel tactic takes a goalRA ⊢ RB, whereRB may contain a unification
variable if the purpose isframe inferencein a forward-call proof. Phase one carefully
avoids unifying the unification variable (if present), and just walks through each con-
junct ofRA finding a corresponding conjunct ofRB. The correspondence need not be
exact; there is a Coq “Hint database” of cancellation lemmas, of the formR1 ⊢ R2.
SupposeRA is the first conjunct of the left-hand-side of the entailment. After match-
ing R1 to RA (instantiating the lemma), we find theR2 that matches the instantiated
RB, and do some directed AC rewriting to pullR2 to the front of the conjunction.
Then the lemma(R1 ⊢ R2) → (RA ⊢ RB) → (R1 ∗ RA ⊢ R2 ∗ RB) is used to
cancel, leaving the subgoalRA ⊢ RB.

Then, if the remaining goal isemp ⊢ emp we are done; or if the remaining goal
is R1 ∗ . . . ∗ Rk ⊢?U , thenU can be instantiated; otherwise the residual goal is left
for the user.

In separation logic, it can happen thatR∗R1 ⊢ R∗R2 is provable whereR1 ⊢ R2

is not; so cancellation is not always the right tactic. But usually it is: it simplifies goals
and often solves them entirely.

VST-Floyd: A separation logic tool to verify correctness ofC programs 51

9.4 Magic wands and modalities

Our separation logic has the separating implication−∗ and several modalities such as
“later” ⊲ and “in all worlds of the same age”. These are rarely visible to users of VST-
Floyd; mostly they’re used in proving the soundness of our separation logic (Hoare
rules). Some specialized proofs—such as defining a contravariant recursive type us-
ing the Löb fixpoint [3, Chapter 19]—do require the user to manipulate modalities
and magic wand. The tactics most useful in those proofs arerewrite andsep-apply;
we don’t have special modality-handling tactics in ourentailer.

On the other hand, there is some automatic modality handlingin our forward

tactic. Many of our Hoare logic rules have later⊲ modalities in their preconditions
[3, pp. 96, 160–164]. For example, the rulesSEMAX-SET, SEMAX-LOAD, SEMAX-
STOREshown in §2.3 really have preconditions⊲P (instead ofP) and⊲(P ∗ p 7→)
(instead ofP ∗ p 7→). We omitted the⊲ in §2.3 to simplify the presentation (though
becauseP ⊢ ⊲P , the rules presented there are still sound). Now suppose theuser’s
“current assertion” isPROP(. . .)LOCAL(. . .)SEP(A; ⊲B; ⊲C; D; E). Our forward tac-
tic automatically applies rules such asP ⊢ ⊲P and⊲P ∗ ⊲Q ⊢ ⊲(P ∗ Q) to prove
that the current assertion entails⊲PROP(. . .)LOCAL(. . .)SEP(A; B; C; D; E); then the
strong form ofSEMAX-LOAD (etc.) can apply.

10 A worked example

Consider this C program:

int sumarray(int a[], int n) {
int i,s,x;
i=0;
s=0;
while (i<n) {
x=a[i];
s+=x;
i++;

}
return s;

}

int four[4] = {1,2,3,4};

int main(void) {
int s;
s = sumarray(four,4);
return s;

}

Verifiable C with VST-Floyd automation proves the correctness of this program
quite straightforwardly, as we will show. Actually, this program is so simple, and
its specification is so first-order, that weaker (but more automatic) systems such as
Frama-C and VeriFast can prove its correctness as well. But the programs that illus-
trate VST’s higher-order features would be too big to present here.

A reasonablefunction specificationfor sumarray is,

Definition sumarray-spec :=

DECLARE sumarray

WITH a: val, sh : share, σ : list Z, n: Z

PRE [a OF (tptr tint), n OF tint]

PROP (readable-share sh ; 0 ≤ n ≤ Int.max-signed;

Forall (fun x ⇒ Int.min-signed ≤ x ≤ Int.max-signed) σ)

52 Qinxiang Cao et al.

LOCAL (temp a a; temp n (Vint (Int.repr n)))

SEP (data-at sh (tarray tint n) (map Vint (map Int.repr σ)) a)

POST [tint]

PROP () LOCAL(temp ret-temp (Vint (Int.repr (fold-right Z.add 0 σ))))

SEP (data-at sh (tarray tint n) (map Vint (map Int.repr σ)) a).

The names starting with underscore are C-language identifiers, and the italicized vari-
ables are Coq variables bound byWITH (which we wrote asΠ in earlier sections).

The PROPpart of the precondition says, there is some permission-share sh that
grants at least permission to read from memory; there is a nonnegative (mathemati-
cal) integern that is representable as a 32-bit signed integer; there is a sequenceσ
of (mathematical) integers, all of which in the range between the minimum and max-
imum signed 32-bit integers. TheLOCAL part says, the C variablea contains the
valuea, and n contains the 32-bit representation ofn. TheSEPpart says at address
a there is an array[n] of C-language integers, and the contents of this array is the
C-integer-value translation of the sequenceσ.

ThePROPpart of the postcondition is empty, as usual, because every proposition
in the precondition is still (necessarily) true. TheLOCAL part of the postcondition
describes the return value, the C pseudovariable calledret temp, containing (the 32-
bit representation of) the sum ofσ. TheSEPpart says that this function has not altered
the data structure in its input.

Now we prove of correctness of the program. We construct (theglobal part of)∆
from all the function specifications and global-variable types in the program and the
standard library:

Definition Gprog : funspecs := ltac:(with -library prog [sumarray-spec; main-spec]).

Definition Vprog : varspecs. mk-varspecs prog. Defined .

Now we must prove that each function satisfies its specification. The form of the
theorem is,

Lemma body-sumarray: semax-body Vprog Gprog f-sumarray sumarray-spec.

Proof .

start-function.

Thesemax-body judgment says, in the global contextVprog+Gprog, the syntac-
tic function-definitionf-summary (parsed by the front-end of CompCert) satisfies the
Hoare specificationsumarray-spec. To prove this, we use the tacticstart-function.
This constructs∆ fromVprog, Gprog, and the local-variable declarations off-sumarray;
it introduces the variables bound by theWITH clause ofsumarray-spec, and does
other bookkeeping.

Floyd introducesMORE COMMANDS to stand for the “rest of the block,” and weab-
breviatethis local definition to avoid clutter. Ourabbreviate operator is just a way
of hiding terms, taking advantage of Coq’s “implicit argument” feature. Its defini-
tion uses braces to indicate that argumentsA andx are implicit, and should not be
displayed.

Definition abbreviate {A:Type} {x:A} := x.

Now our proof goal is,

VST-Floyd: A separation logic tool to verify correctness ofC programs 53

a : val sh : share

σ : list Z n : Z

∆ := abbreviate : tycontext

SH : readable-share sh

H : 0 ≤ n ≤ Int.max-signed

H0 : Forall (fun x : Z ⇒ Int.min-signed ≤ x ≤ Int.max-signed) σ
POSTCONDITION := abbreviate : ret-assert

MORE COMMANDS := abbreviate : statement

--------------------------------------(1/1)

semax ∆
(PROP ()

LOCAL (temp a a; temp n (Vint (Int.repr n)))

SEP (data-at sh (tarray tint n) (map Vint (map Int.repr σ)) a))

(Ssequence (Sset -i (Econst-int (Int.repr 0) tint)) MORE COMMANDS)

POSTCONDITION

The proof goal is a Hoare triple for the entire function body,and the C command
(written here in AST constructors) isi=0; Two invocations offorward take
us through the two assignment statementsi=0; s=0 to the proof state (we omit
variable declarationsa, sh, ∆, etc. above the line),

SH : readable-share sh

H : 0 ≤ n ≤ Int.max-signed

H0 : Forall (fun x : Z ⇒ Int.min-signed ≤ x ≤ Int.max-signed) σ
POSTCONDITION := abbreviate : ret-assert

MORE COMMANDS := abbreviate : statement

LOOP BODY := abbreviate : statement

--------------------------------------(1/1)

semax ∆
(PROP ()

LOCAL (temp s (Vint (Int.repr 0)); temp i (Vint (Int.repr 0));

temp a a ; temp n (Vint (Int.repr n)))

SEP (data-at sh (tarray tint n) (map Vint (map Int.repr σ)) a))

(Ssequence (Swhile (Ebinop Olt (Etempvar -i tint) (Etempvar -n tint) tint)

LOOP BODY) MORE COMMANDS) POSTCONDITION

At the while loop, we applyforward-while, supplying a loop invariant in exis-
tentially quantified canonical form.

forward-while

(EX i : Z, PROP (0 ≤ i ≤ n)

LOCAL (temp a a ; temp i (Vint (Int.repr i)); temp n (Vint (Int.repr n));

temp s (Vint (Int.repr (fold-right Z.add 0 (sublist 0 i σ)))))

SEP (data-at sh (tarray tint n) (map Vint (map Int.repr σ)) a)).

This leaves four subgoals. The first is to prove that the current precondition entails
the loop invariant. This solves by simplyExists 0; entailer!

54 Qinxiang Cao et al.

The second subgoal is to prove that the loop-test expressionevaluates without
getting “stuck” (i.e., doesn’t refer to uninitialized variables, divide by zero, overflow,
etc.). In this case, our computational typechecker [3, Chapter 25] calculates that the
proof goal isTrue, because it has kept track that all the variables ini<n are initialized.

The third subgoal is to prove that the loop body preserves theloop invariant.

SH : readable-share sh

H : 0 ≤ n ≤ Int.max-signed

H0 : Forall (fun x : Z ⇒ Int.min-signed ≤ x ≤ Int.max-signed) σ
HRE : i < n
H1 : 0 ≤ i ≤ n

--------------------------------------(1/1)

semax ∆
(PROP ()

LOCAL (temp a a; temp i (Vint (Int.repr i)); temp n (Vint (Int.repr n));

temp s (Vint (Int.repr (fold-right Z.add 0 (sublist 0 i σ)))))

SEP (data-at sh (tarray tint n) (map Vint (map Int.repr σ)) a))

(Ssequence

(Sset -x (Ederef (Ebinop Oadd (Etempvar -a (tptr tint)) (Etempvar -i tint) (tptr tint)) tint))

MORE COMMANDS)

POSTCONDITION

Before we go forward throughx=a[i]; it’s helpful to assert that|σ| = n; this
allows theLOAD rule to discharge one of its hypotheses. So we might try to write,
assert(Zlength σ = n). But this is not provable from what’s above the line. Instead,
we need to use information from thedata at predicate in the precondition: that the
contents of an array must be the same length as the array. In effect, we do this using
the rule of consequence, to prove that the current precondition implies one that also
has aPROPclause with|σ| = n. This is automated by the tactic,

assert-PROP (Zlength σ = n).

which leaves the subgoal,

ENTAIL ∆,

PROP ()

LOCAL (temp a a; temp i (Vint (Int.repr i)); temp n (Vint (Int.repr n));

temp s (Vint (Int.repr (fold-right Z.add 0 (sublist 0 i σ)))))

SEP (data-at sh (tarray tint n) (map Vint (map Int.repr σ)) a)

⊢ !! (Zlength σ = n)

This is easily proved by(entailer!; rewrite !Zlength-map; re
 exivity).

Now, three invocations offorward take us to the end of the loop body, where we
must prove that the current assertion entails the loop invariant:

VST-Floyd: A separation logic tool to verify correctness ofC programs 55

H : 0 ≤ n ≤ Int.max-signed

HRE : i < n
H1 : 0 ≤ i ≤ n

--------------------------------------(1/1)

ENTAIL ∆,

PROP ()

LOCAL (temp i (Vint (Int.add (Int.repr i) (Int.repr 1)));

temp s (Vint (Int.add (Int.repr (fold-right Z.add 0 (sublist 0 i σ)))

(Int.repr (Znth i σ 0))));

temp x (Vint (Int.repr (Znth i σ 0))); temp a a; temp n (Vint (Int.repr n)))

SEP (data-at sh (tarray tint n) (map Vint (map Int.repr σ)) a)

⊢ EX j : Z,

PROP (0 ≤ j ≤ n)

LOCAL (temp a a; temp i (Vint (Int.repr j)); temp n (Vint (Int.repr n));

temp s (Vint (Int.repr (fold-right Z.add 0 (sublist 0 j σ)))))

SEP (data-at sh (tarray tint n) (map Vint (map Int.repr σ)) a)

We instantiate the existential(j) with i+1, and invokeentailer!, leaving a residual
proof goal of:

H : 0 ≤ Zlength σ ≤ Int.max-signed

H1 : 0 ≤ i ≤ Zlength σ
HRE : i < Zlength σ

--------------------------------------(1/1)

Vint (Int.repr (fold-right Z.add 0 (sublist 0 (i + 1) σ))) =

Vint (Int.repr (fold-right Z.add 0 (sublist 0 i σ) + Znth i σ 0))

This is proved by manipulations in the theory of sublists:

f-equal. f-equal. rewrite (sublist-split 0 i (i+1)) by omega.

rewrite sum-Z-app. rewrite (sublist-one i) with (d:=0) by omega.

simpl. rewrite Z.add-0-r. re
 exivity.

The fourth subgoal (offorward-while) is to prove the remainder of the function-
body after the while loop. What remains is just thereturn statement:

H : 0 ≤ n ≤ Int.max-signed

H0 : Forall (fun x : Z ⇒ Int.min-signed ≤ x ≤ Int.max-signed) σ
HRE : i≥n
H1 : 0 ≤ i ≤ n
POSTCONDITION := abbreviate : ret-assert

--------------------------------------(1/1)

semax ∆
(PROP ()

LOCAL (temp a a; temp i (Vint (Int.repr i)); temp n (Vint (Int.repr n));

temp s (Vint (Int.repr (fold-right Z.add 0 (sublist 0 i σ)))))

SEP (data-at sh (tarray tint n) (map Vint (map Int.repr σ)) a))

(Sreturn (Some (Etempvar -s tint)))

POSTCONDITION

56 Qinxiang Cao et al.

Invoking forward through thereturn s; yields an entailment goal: the current
assertion implies the function’s postcondition. Theentailer! leaves this residual goal:

H1 : 0 ≤ i ≤ Zlength (map Vint (map Int.repr σ))

HRE : i≥ Zlength (map Vint (map Int.repr σ))

--------------------------------------(1/1)

Vint (Int.repr (fold-right Z.add 0 σ)) = Vint (Int.repr (fold-right Z.add 0 (sublist 0 i σ)))

This is easily proved by the theory of sublists:

autorewrite with sublist in *. autorewrite with sublist. re
 exivity.

This case study can be found in our Coq development: progs/verif sumarray.v.

11 Use cases

Verifiable C with VST-Floyd has been used to prove several small, but real, C pro-
grams correct with respect to functional specifications:

Queue SHA HMAC HKDF DRBG Sort Salsa AES Mailbox
Lines of Ca 82 239 256 100 380 40 280 240 180
Lines of Floyda 530 4956c 5432 796 5919 573 5019 1256 2860
Proof-check timee 84 1120 980 670 4100 253 1730
Years of Coq
experience before begin-
ning the proof

6 7 4 6 0.3 4 5 2 7

Years of VST
experience 1 2 0 2 0 0 1 0.02 0.4
Weeks of effortf 2dg 20dg 5 4 3 6 25d 10d

aLine counts include blank lines and comments.bMany of these lines are quite
long. cPlus 1598 lines of Coq proofs about properties of the functional specifica-
tion. dIncludes work to build or improve Floyd itself.eTimings measured in seconds
on Intel Core i7 (at 3.7 Ghz), one processor, with plenty of cache and 32GB RAM,
but no proof requires more than 2GB RAM (and in practice, Coq parallelizes well by
make -j and other means).fVery rough approximation.gDone in an early, primitive
version of VST-Floyd, though the line-counts given are in current VST-Floyd.

Queue. Linked-list imperative FIFO queue abstract-data-type, proved by Andrew
Appel, 2012. [3, Chapter 28]

SHA-256. The OpenSSL implementation of the SHA-2 cryptographic hashalgo-
rithm, specialized to the 256-bit case. Proof done by AndrewAppel, 2013. [2]

HMAC. The OpenSSL implementation of the HMAC cryptographic authentication
algorithm; proof done by Lennart Beringer, 2014. [7] In thiscase and the DRBG
case, the proof that the C program implements its functionalspec is done by the
author we name here; the cited papers also include other important proofs, e.g.,
that the functional spec has the appropriate cryptographicproperties.

VST-Floyd: A separation logic tool to verify correctness ofC programs 57

HKDF. BoringSSL’s implementation of HMAC-based key derivation function; proof
done by Lennart Beringer, 2017.

DRBG. The mbedTLS implementation of the HMAC-DRBG random-numbergen-
erator; proof done by Naphat Sanguansin, 2015.

Sort. In-place merge sort of linked lists, proved by Jean-Marie Madiot, 2015.
Salsa. Parts of TweetNaCl’s implementation of the stream cipher Salsa20 [8]; par-

tially done by Lennart Beringer, 2016.
AES. The mbedTLS implementation of AES-256 symmetric-key encryption; proof

done by Samuel Gruetter, 2017.
Mailbox. A novel concurrent-shared-memory communications protocol, proof done

in Concurrent Verifiable C (with VST-Floyd) by William Mansky, 2016. [26]

12 Discussion and Related Work

In the development of VST-Floyd, we made some design decisions differently from
other verification tools. In this section, we discuss these choices.

12.1 Automatic vs. interactive tools

Automatic verification tools such as Dafny [24], Frama-C [30], Hip/Sleek [10], and
CBMC [12] achieve great success in their application domain. But in the domain of
functional-correctness verification with higher-order logic predicates, fully automatic
decision procedures cannot be effective—some interactionis necessary. VST-Floyd
is an interactive tool, to support application-domain reasoning (in an expressive de-
pendently typed higher-order logic) that is beyond the scope of a general tool (and
may itself be undecidable).

Automatic tools put restrictions on their application domains so that they will
not have this undecidability problem. Some tools do only shape analysis instead of
functional correctness. In some tools, assertions must be first-order and the predicates
in assertions are limited.

To enable VST-Floyd to be a general purpose tool for functional verification, we
build it in Coq, a general purpose proof assistant in which domain-specific definitions
and proofs can be formalized—our system allows users to apply arbitrary domain-
specific theories.

12.2 Verification condition generation

Formalizing program logics in proof assistants and formally proving their soundness
has been an active area of research for many years. However, combining mechanized
proofs of metatheoretical aspects—formal soundness and (relative) completeness of
the logic with respect to an operational semantics, as for example carried out by
Kleymann [20] and Nipkow [28]—with efficient verification engines has long been
an elusive goal. We are unaware of prior work that also includes a provably sound
connection to a verified compiler.

58 Qinxiang Cao et al.

Wildmoser [31] presented formal proofs of soundness and completeness of a
VCG framework in Isabelle/HOL that is parametric in the safety logic, programming
language, and concrete safety policy, and specializes thisframework to typical proof-
carrying-code-style safety policies and the JINJA subset of Java bytecode. Matthews
et al.directly derive verification conditions in the proof assistant ACL2 from the op-
erational semantics, obviating the need to formulate a separate VCG framework [27].
Neither of these works exploit the structuring mechanisms of separation logics; both
avoid the intricacies of C, particularly concerning the memory model.

12.3 Canonical forms of separation logic assertions

Berdineet al. [6] first proposed a canonical form of separation logic whichdistin-
guishes pure facts and spatial facts. Specifically, an assertion of their canonical form
can be represented as(P1 ∧ · · · ∧ Pn) ∧ (Q1 ∗ . . . ∗ Qm) in whichPi are pure facts
andQi are spatial facts. They did not isolate program variables aswe do.

Charge! [5] is a separation logic tool proved sound in Coq. Like ours, their asser-
tions are predicates over stack-heap pairs. In comparison,the separating conjuncts in
their “canonical form” of assertions are not required to be independent of program
variables. As a consequence, generating a strongest postcondition is more compli-
cated.

Iris Proof Mode (discussed below) has an assertion form✷P ∗ L −∗ R whereP
are the persistent conjuncts,L andR are separating conjunctions.

12.4 Systems for machine-checked separation-logic program proofs

Charge! [5], Bedrock [11], and Iris [19] have very similar design philosophies to
VST-Floyd. All of them are shallowly embedded separation logics supporting inter-
active proofs in Coq of the functional correctness of pointer-manipulating programs.

Bedrock is a program logic and tool for reasoning about low-level (idealized as-
sembly language) programs. Its assertion language uses lambda calculus and directly
refers to stack and heap. To express the following canonicalassertion in VST-Floyd,

PROP()LOCAL(temp x p)SEP(p 7→ 0)

Bedrock users directly write:λs : stack. λh : heap. s(x) = p ∧ h(p) = 0.
Floyd performs better for two reasons. On one hand, the abstraction of separating

conjunction enables concise representation of heap disjointness.SEP(p 7→ 0; q 7→ 0)
implies the fact thep 6= q. On the other hand, Coq’s tactic language does not work
well in a subcontext. In the example above, the expressions(x) = p ∧ h(p) = 0
is in a subcontext with two extra variabless andh. Pattern matching in Coq’s tactic
language does not work very well in this scenario. Our separation logic predicates
abstract away this lambda calculus. Our tactic library directly operates in the top
level context and is thus more efficient.

Charge! is a program logic for Java, based on separation logic. It is not linked
to a formally verified Java compiler, which means that one cannot consider its Java

VST-Floyd: A separation logic tool to verify correctness ofC programs 59

semantics fully “debugged.” Charge’s assertion language is mostly written in lifted
separation logic while our canonical form mostly operates in the unlifted language
(SEPpart). Because of the isolation of C variables in our canonical form, our tactic
library only modifies one conjunct (inLOCAL part orSEPpart) in a precondition to
generate a postcondition. Until 2014, assertions in VST-Floyd were written in the
lifted language instead of canonical forms. We found that proof rules were very com-
plicated and tactics were very slow. For similar reasons, Charge! is less efficient than
VST-Floyd.

Iris [19] is a general purpose modal concurrent separation logic, parameterized
over programming languages and program semantics, embedded in (and proved sound
in) Coq. Iris Proof Mode (IPM) [23] provides tactics and lemmas for separation-logic
proofs in Iris.

IPM has several features lacking in VST-Floyd: the ability to name the left-hand-
side conjuncts as individual (separating) hypotheses, special handling of a “persis-
tent” modality, and special tactics for the various modalities of the Iris logic [22].
Some of these modalities are also in VST’s logic (see §9.4), but without special sup-
port from Floyd. Particularly interesting in IPM is supportfor deriving Hoare rules
by proofs at the logic level, where VST has such proofs at the model level; IPM’s
modalities make this possible. Because VST’s underlying logic and semantic model
can support these modalities, it would be a worthwhile improvement to import this
idea from IPM into Floyd.

Unlike Floyd, as of 2017 IPM has no reported support for aggregate types (as
in §3 of this paper) or efficient treatment of program variables (as in §5). IPM can
do forward symbolic execution, but it is less automated thanFloyd: the user must
apply more per-statement tactics, and the handling of function-call postconditions,
if-statements, and while-loops (or the recursive-function equivalent) is less auto-
mated. Because IPM is designed for ML-like languages whose local variables are
substitution-based, IPM naturally lacks automation for Algol-style (C-style) local
variables (as in §5,§9.3).

As Krebberset al. write, “[unlike IPM] all the tools that we are aware of are
primarily focused on program verification.” Indeed, that isthe focus of VST-Floyd.
However, it should be possible to include some of our techniques into IPM and get
the best of both worlds.

CakeML [15] is now accompanied with a separation Hoare logicfor verifying
functional correctness. Their system is based on a Characteristic Formulae frame-
work, which is similar to Hoare logic. The construction of Characteristic Formulae is
actually a combination of Hoare rules and the definition of Hoare triple validity. The
soundness of such construction corresponds to the soundness of Hoare rules.

12.5 Dependent types used in separation logic predicates

Affeldt and Marti [1] and Krebbers [21] also have separation-logic “maps-to” opera-
torsp 7→τ v parameterized by a typeτ that may be an aggregate type such asstruct.
However, where ourreptype(τ) operator, where for exampleτ =(struct foo {int x,y;}),
calculates the type ofv to be simplyval × val, in those systems theirreptype (called

60 Qinxiang Cao et al.

log by Affeldt) is an inductively defined type. The advantage of their approach is a
simpler construction of the metatheory (no need for an explicit ranking to ensure C
types are acyclic, less manipulation of dependent types). The disadvantage is that—
although in principle there’s a type isomorphism betweenlog(τ) andval × val—the
user cannot simply apply the familiar operatorsfst,snd and constructors(,) for
Cartesian product, but must deconstruct thelog operator by case analysis.

Our data-at predicate, applied to a C array type, relates the contents ofthe array
to a sequence. The length of the sequence must, of course, be the same as the length
of the array. How should this be represented in Coq? We faced the design choice: list,
with a separate proposition about the length of the list; or dependently typed “vector,”
which includes the length in the Coq type of the sequence. Thetwo approaches are
equally powerful. We chose the nondependently typed lists,because we feel that the
proof theory is simpler and more tractable for users. Our entailer’s saturate local
phase (§9.3) automatically puts the list-length facts above the line for the user.

13 Conclusion

We have presented VST-Floyd, an extensive collection of proof tactics, abstraction
principles and other automation features that turn Verifiable C into a practically use-
ful verification tool for nontrivial C programs. While the present description focused
on the verification of sequential code, VST’s semantic modelalso supports reason-
ing about multithreaded code, as demonstrated by a recent case study on a mailbox
communication protocol with fine-grain concurrency primitives [26]. Specifying the
invariants of thread primitives implicitly requires reasoning about function pointers,
for which we are developing additional automation support at present. Further ongo-
ing work includes the support of 64-bit architectures as recently enabled by Comp-
Cert3.0, and the extension of VST’s soundness guarantee w.r.t. processor models that
exhibit relaxed cache coherence.

In summary, VST-Floyd represents a key component of the CompCert/VST in-
frastructure. For those system components that require high assurance (necessitating
the use of formal verification) and also high performance (suggesting the use of C)
the Verified Software Toolchain enables practical, end-to-end modular program veri-
fication.

References

1. Reynald Affeldt and Nicolas Marti. Towards formal verification of TLS network packet processing
written in C. In Matthew Might, David Van Horn, Andreas Abel,and Tim Sheard, editors,Proceedings
of the 7th Workshop on Programming languages meets program verification, pages 35–46. ACM,
2013.

2. Andrew W. Appel. Verification of a cryptographic primitive: SHA-256.ACM Trans. on Programming
Languages and Systems, 37(2):7:1–7:31, April 2015.

3. Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds, Gordon Stewart,
Sandrine Blazy, and Xavier Leroy.Program Logics for Certified Compilers. Cambridge, 2014.

4. Andrew W. Appel and David McAllester. An indexed model of recursive types for foundational proof-
carrying code. ACM Trans. on Programming Languages and Systems, 23(5):657–683, September
2001.

VST-Floyd: A separation logic tool to verify correctness ofC programs 61

5. Jesper Bengtson, Jonas Braband Jensen, and Lars Birkedal. Charge! - a framework for higher-order
separation logic in Coq. InITP, pages 315–331, 2012.

6. Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Symbolic execution with separation logic.
In Kwangkeun Yi, editor,Programming Languages and Systems, Third Asian Symposium,APLAS
2005, Tsukuba, Japan, November 2-5, 2005, Proceedings, volume 3780 ofLecture Notes in Computer
Science, pages 52–68. Springer, 2005.

7. Lennart Beringer, Adam Petcher, Katherine Q. Ye, and Andrew W. Appel. Verified correctness and
security of OpenSSL HMAC. In24th USENIX Security Symposium, pages 207–221. USENIX Asso-
cation, August 2015.

8. Daniel J. Bernstein, Bernard van Gastel, Wesley Janssen,Tanja Lange, Peter Schwabe, and Sjaak
Smetsers. Tweetnacl: A crypto library in 100 tweets. In Diego F. Aranha and Alfred Menezes,
editors,Progress in Cryptology - LATINCRYPT 2014 - Third International Conference on Cryptology
and Information Security in Latin America, Florianópolis, Brazil, September 17-19, 2014, Revised
Selected Papers, volume 8895 ofLecture Notes in Computer Science, pages 64–83. Springer, 2014.

9. Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and Hongseok Yang. Compositional shape anal-
ysis by means of bi-abduction.SIGPLAN Not., 44:289–300, January 2009.

10. Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin. Automated verification of
shape, size and bag properties via user-defined predicates in separation logic.Sci. Comput. Program.,
77(9):1006–1036, 2012.

11. Adam Chlipala. The Bedrock structured programming system: Combining generative metaprogram-
ming and Hoare logic in an extensible program verifier. InICFP’13: Proceedings of the 18th ACM
SIGPLAN International Conference on Functional Programming, September 2013.

12. Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C programs. In
Kurt Jensen and Andreas Podelski, editors,Tools and Algorithms for the Construction and Analysis
of Systems, 10th International Conference, TACAS 2004, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2004, Barcelona, Spain, March 29 - April 2, 2004,
Proceedings, volume 2988 ofLecture Notes in Computer Science, pages 168–176. Springer, 2004.

13. Robert W. Floyd. Assigning meanings to programs. InProceedings of Symposium in Applied Mathe-
matics, pages 19–32, Providence, Rhode Island, 1967.

14. Samuel Gruetter. Improving the Coq proof automation tactics of the Verified Software Toolchain,
based on a case study on verifying a C implementation of the AES encryption algorithm. Master
thesis. Ecole Polytechnique Fédérale de Lausanne, 2017.

15. Armaël Guéneau, Magnus O. Myreen, Ramana Kumar, and Michael Norrish. Verified characteristic
formulae for CakeML. InProgramming Languages and Systems: 26th European Symposium on
Programming, ESOP 2017, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2017, Uppsala, Sweden, April 22–29, 2017, Proceedings, pages 584–610, Berlin,
Heidelberg, 2017. Springer Berlin Heidelberg.

16. C A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12(10):578–580, October 1969.

17. Aquinas Hobor, Robert Dockins, and Andrew W. Appel. A theory of indirection via approximation.
In Proc. 37th Annual ACM Symposium on Principles of Programming Languages (POPL’10), pages
171–185, January 2010.

18. Aquinas Hobor and Jules Villard. The ramifications of sharing in data structures. In Roberto Gia-
cobazzi and Radhia Cousot, editors,The 40th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013, pages 523–536.
ACM, 2013.

19. Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and
Derek Dreyer. Iris: Monoids and invariants as an orthogonalbasis for concurrent reasoning. In
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 2015.

20. Thomas Kleymann.Hoare logic and VDM : machine-checked soundness and completeness proofs.
PhD thesis, University of Edinburgh, UK, 1998.

21. Robbert Krebbers.The C standard formalized in Coq. PhD thesis, Radboud University, December
2015.

22. Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars Birkedal.
The essence of higher-order concurrent separation logic. In European Symposium on Programming,
pages 696–723. Springer, 2017.

62 Qinxiang Cao et al.

23. Robbert Krebbers, Amin Timany, and Lars Birkedal. Interactive proofs in higher-order concurrent
separation logic. In Giuseppe Castagna and Andrew D. Gordon, editors,Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France,
January 18-20, 2017, pages 205–217. ACM, 2017.

24. K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In Edmund M.
Clarke and Andrei Voronkov, editors,Logic for Programming, Artificial Intelligence, and Reasoning
- 16th International Conference, LPAR-16, Dakar, Senegal,April 25-May 1, 2010, Revised Selected
Papers, volume 6355 ofLecture Notes in Computer Science, pages 348–370. Springer, 2010.

25. Xavier Leroy. Formal verification of a realistic compiler. Communications of the ACM, 52(7):107–
115, 2009.

26. William Mansky, Andrew W. Appel, and Aleksey Nogin. A verified messaging system. InProceed-
ings of the 2017 ACM International Conference on Object Oriented Programming Systems Languages
& Applications, OOPSLA ’17. ACM, 2017.

27. John Matthews, J. Strother Moore, Sandip Ray, and Daron Vroon. Verification condition generation
via theorem proving. In Miki Hermann and Andrei Voronkov, editors, Logic for Programming, Arti-
ficial Intelligence, and Reasoning, 13th International Conference, LPAR 2006, Phnom Penh, Cambo-
dia, November 13-17, 2006, Proceedings, volume 4246 ofLecture Notes in Computer Science, pages
362–376. Springer, 2006.

28. Tobias Nipkow. Hoare logics for recursive procedures and unbounded nondeterminism. In Julian C.
Bradfield, editor,Computer Science Logic, 16th International Workshop, CSL 2002, 11th Annual
Conference of the EACSL, Edinburgh, Scotland, UK, September 22-25, 2002, Proceedings, volume
2471 ofLecture Notes in Computer Science, pages 103–119. Springer, 2002.

29. John Reynolds. Separation logic: A logic for shared mutable data structures. InLICS 2002: IEEE
Symposium on Logic in Computer Science, pages 55–74, July 2002.

30. Julien Signoles. Foncteurs impératifs et composés: la notion de projets dans Frama-C. In Alan
Schmitt, editor,JFLA 2009, Vingtièmes Journées Francophones des Langages Applicatifs, Saint
Quentin sur Isère, France, January 31 - February 3, 2009. Proceedings, volume 7.2 ofStudia In-
formatica Universalis, pages 245–280, 2009.

31. Martin Wildmoser.Verified Proof Carrying Code. PhD thesis, Technical University Munich, Novem-
ber 2005.

