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Abstract Large-scale infrastructures are prone to simultaneous faults when struck by a nat-
ural or man-made event. The current operating procedure followed by many utilities needs
improvement, both in terms of monitoring performance and time to repair. Motivated by
the recent technological progress on small Unmanned Aerial Systems (sUAS), we propose
a practical framework to integrate the monitoring capabilities of sUAS into standard util-
ity repair operations. A key aspect of our framework is the use of monitoring locations for
sUAS-based inspection of failures within a certain spatial zone (called a localization set).
This set is defined based on the alerts from fixed sensors or customer calls. The position-
ing of monitoring locations is subject to several factors such as sUAS platform, network
topology, and airspace restrictions. We formulate the problem of minimizing the maximum
time to respond to all failures by routing repair vehicles to various localization sets and ex-
ploring these sets using sUAS. The formulation admits a natural decomposition into two
sub-problems: the sUAS Network Exploration Problem (SNEP); and the Repair Vehicle
Routing Problem (RVRP). Standard solvers can be used to solve the RVRP in a scalable
manner; however, solving the SNEP for each localization set can be computationally chal-
lenging. To address this limitation, we propose a set cover based heuristic to approximately
solve the SNEP. We implement the overall framework on a benchmark network.
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1 Introduction

1.1 Motivation

Monitoring and inspection systems for large-scale infrastructures such as water, natural gas,
oil, and electric networks typically rely on pre-installed (fixed) sensors to obtain failure
alerts. Timely response to these alerts is critical for minimizing the impact of disruptions,
which can otherwise lead to significant economic losses and even loss of life. For example,
in the US pipeline industry alone, there were 323 fatalities and 1,337 injuries reported in
the last 20 years with an estimated total cost of over $7 billion in damages [28]. Natural gas
infrastructures are prone to service disruptions due to leaks and pipeline failures (bursts);
these events can be respectively detected by customer call reports and pressure sensors. In
some cases, flow sensors and acoustic sensors are also utilized. However, the technological
limitations of fixed sensors and budget constraints often limit the distribution utility’s ability
to monitor every critical network component. Therefore, the utility’s situational awareness
from fixed sensor alerts cannot be narrowed beyond a certain spatial zone which we call a
localization set. Consequently, additional manual inspections by survey teams are conducted
to isolate and repair the failure(s). The goal of these survey teams is to isolate the leak by
using additional sensors or cues like the smell of gas, appearance of exposed pipes, and
slope failure. Once isolated, a repair crew addresses the failure and restores the system [19].

Thus, one of the main tasks of the operator (i.e., the utility’s command center) is to
inspect the network and localize the actual failure events (or the events of interest that led to
them) in a timely manner, based on the alert and localization set information. There are two
main inefficiencies in the inspection processes that are currently followed by the utilities: (i)
significant time delays in localizing the failures with loss of service due to delayed repair
operations; and (ii) high operational costs due to sub-optimal allocation of inspection and
repair crews [1]. Motivated by these challenges, we focus on the problem of routing repair
vehicles from yards (i.e., staging locations) to the localization sets; in addition, we integrate
the inspection capabilities of small Unmanned Aerial System (sUAS) for the identification
of failure events within the localization sets. Our assertion is that sUAS-based inspection can
contribute to reducing both inefficiencies (i) and (ii) by reducing time to failure isolation and
improving repair operations.

In recent years, utilities have been employing manned aerial systems such as helicopters
to supplement manual surveys for network inspection. While the cost of operating heli-
copters is estimated to be anywhere from $1,000 to $2,000 per hour, sUAS can provide com-
parable or improved services at $200 to $300 per hour while also reducing the safety risks to
the inspection team [24]. The total difference in person-hours of labor between conventional
and sUAS inspections can also be significant [27,4,10]. Table 1 shows the comparison of
person-hours of labor mentioned in these studies. The ongoing improvements in sensor tech-
nology and on-board processing of data are likely to further improve the prospects of using
sUAS for infrastructure inspection over manual surveys. For example, recent advances in
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gas detectors and infrared (IR) sensors [30] can be potentially useful for on-board detection
of leak events.

Table 1: Comparison of conventional and sUAS person-hours of labor

Required Bridge Inspection [27] Census Survey Task [4] Powerline [10]
Manned A/C sUAS Ground Survey sUAS Manual sUAS

# Workers 7 3 12 2 4 6
Avg Hours 3.5 5.4 4 1.5 40 3
Person-Hrs 24.5 17.3 26 3 160 18

To integrate the sUAS into the current monitoring and inspection processes followed by
utilities, we need to address the following questions:

1) How to design an end-to-end operational framework that accounts for the infrastruc-
ture inspection requirements and sUAS platform constraints?

2) How to formulate an sUAS-enabled failure localization problem to isolate the fail-
ure(s) in a timely manner given the operating environment and the sensing requirements?

3) How should the operator route the repair vehicles to the various localization sets
considering the time required for the sUAS to isolate the failure(s)?

This article contributes to the abovementioned questions by building on the existing
literature on Vehicle Routing Problems (VRP) and by proposing new models of sUAS-based
inspection that can be readily integrated into VRP-type formulations. The failure events
considered in our work are typical of emergency situations when the operator is expected to
respond to multiple failure alerts. The localization sets determined from these failure alerts
typically span a few hundred meters in length, which is consistent with the search zones of
conventional ground survey teams. We introduce the operational requirements and specific
features of the infrastructure network, fixed sensors, repair vehicles, and sUAS platform in
Section 2. To model sUAS capabilities and constraints, we consider a rotary-wing sUAS
with a total flight time of less than an hour, which is suitable for proximity and localized
facility inspection. Unlike fixed-wing sUAS that require continuous forward flight, rotary-
wing sUAS can provide a more stable platform to enable extended observation of a particular
area from various angles. For rotary-wing sUAS, we also do not need to consider minimum
turning radii (i.e., the Dubins curve) since a constant forward speed is not required. We
consider that the sUAS platform is small enough to fit in the repair vehicle, because the
current and projected limitations on battery size and line-of-sight will likely require the
sUAS to be transported via repair vehicles to the localization sets.

In Section 3, we discuss the factors governing the positioning and routing of sUAS for
a given localization set. We introduce the concept of a monitoring location, from which
the sUAS can observe some of the network components. The spatial positioning of these
monitoring locations depends on various factors like the sUAS operating range, airspace
restrictions, infrastructure stand-off distance, required image resolution for failure isolation,
and infrastructure network topology. Along with the discussion in Section 2, these factors
motivate key assumptions in our sUAS-enabled infrastructure monitoring framework.

In Section 4 we introduce Mixed Integer Programming (MIP) optimization models for
computing the (i) route plan of repair vehicles (equipped with sUAS operators and repair
personnel) to localization sets, and (ii) the inspection strategies of an sUAS fleet to isolate
all of the failures within each localization set. We refer to the problems addressing (i) and
(ii) as the Repair Vehicle Routing Problem (RVRP) and the sUAS Network Exploration
Problem (SNEP), respectively.
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The SNEP can be summarized as follows: Given a localization set and a number of
homogeneous sUAS, determine the optimal route for each sUAS to monitor every network
component where the objective is to minimize the maximum amount of time to explore the
localization set. Each sUAS starts and ends its route at a common base within the localization
set, either at the end of its mission, or for battery swaps to continue further exploration.
Furthermore, each monitoring location is visited by only one sUAS.

The RVRP considers the following problem: Given a set of yards with a number of
repair vehicles and activated localization sets, determine the optimal route for each repair
vehicle where the objective is to minimize the maximum amount of time elapsed from time
of failure alert to the time to repair, among all localization sets. Each repair vehicle starts
and ends its route at its respective yard location, and each localization set is visited by
only one repair vehicle. Furthermore, in calculating the total time elapsed, we include the
optimal sUAS exploration time for each localization set (obtained from the SNEP) and the
corresponding repair times (which are assumed to be fixed and given). Both the SNEP and
RVRP are constrained by time and vehicle flow conservation constraints.

The overall approach (and our modeling focus) is illustrated in Fig. 1.

Sensor
Alerts

Localization
Sets

Routing of
sUAS-enabled

Patrols

Failure
Location
Isolation

Repair and
Restoration

Our Focus

(RVRP) (SNEP)

Fig. 1: Process Flow for sUAS-enabled infrastructure monitoring framework

1.2 Related Work

SNEP. The SNEP is at its core a routing problem, and could be modeled after several clas-
sical problems found in literature and their variants. The VRP seeks to find the optimal set
of routes for a fleet of vehicles to serve a set of customers [9]. For our problem, the vehicles
(sUAS) would be serving the monitoring locations. One variant of the VRP is the Vehicle
Routing Problem with Time Windows (VRPTW), where each customer can only be visited
within a specified time window. In our case, this would be relevant only if we considered
an upper bound time to repair each localization set. If we considered the criticality of each
monitoring location and a limited time budget, the SNEP could also be modeled after the
Team Orienteering Problem (TOP) [15], which seeks to find the optimal set of routes for a
fleet of vehicles to maximize the total collected value obtained by visiting a subset of cus-
tomers within a given time. For example, the TOP can model emergency response scenarios
where the goal is to identify as many survivors as possible. For our application, the SNEP
is better represented by the VRP than the TOP for two reasons. First, all of the components
within the localization set must be monitored by the sUAS since the number and location of
failures are not known. Second, although criticality could be an important factor, we require
that all of the failures are addressed. Observing only a subset of the monitoring locations
could result in undetected failure events which could worsen over time.

Of the many VRP variants, our SNEP formulation is closely related to the Multi-Trip
Vehicle Routing Problem (MTVRP) [32]. Our formulation shares some features of the Green
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Vehicle Routing Problem (G-VRP) posed by Erdogan et al. [11]. The G-VRP seeks to min-
imize the total distance traveled by a number of alternative fuel vehicles while visiting
a set of important locations that include fueling stations when required. However, in the
SNEP, we need to account for sUAS platform and infrastructure monitoring constraints,
e.g., climb/descent rates, operating restrictions, and required image resolution.

RVRP. The RVRP is closely related to the Multiple Depot Vehicle Routing Problem
(MDVRP) and more specifically, the Multiple Depot Multiple Vehicle Routing Problem
(MDMVRP) [20]. Given a set of bases with a number of vehicles, the MDMVRP’s objective
is to minimize the total travel cost so that each location is visited by a vehicle. Our setting
is somewhat different because we consider a min-max objective function. Furthermore, the
optimal value of the SNEP enters into our RVRP formulation as an input parameter, because
the optimal sUAS exploration time for each localization set impacts the longest time from
failure alert to repair that the RVRP seeks to minimize.

1.3 Contributions

While the existing literature has considered the planning of flight operations for the use of
sUAS in civilian applications, limited emphasis has been placed on detailing how to inte-
grate sUAS into current inspection processes. In this work we detail an operational frame-
work which captures the specific features of sUAS technology (operating range, airspace re-
strictions, cruise speed) as well as the constraints associated with infrastructure inspections
(stand-off distance, image resolution for failure isolation, and network topology constraints).
These features and constraints can be included in the MIP formulations of the SNEP and the
RVRP, which are presented in Section 4.1

Unlike the RVRP which can be solved for realistic problem sizes, solving the SNEP
poses a challenge because of the large number of monitoring locations to consider in a
typical localization set. Therefore, we develop a scalable heuristic approach that exploits the
covering properties of monitoring locations; in particular, the number of components that
can be observed from each location. This heuristic is based on the solution of a weighted
minimum set cover problem and is presented in Section 5.

In Section 6, we show that our heuristic can solve a 5 localization set scenario within an
acceptable time frame for real world implementation (4.15 seconds). Our heuristic achieves
an overall average optimality gap of 0.78% with 10 different localization sets of varying size.
We also demonstrate the interrelationship between the SNEP and the RVRP and discuss the
practical issues that can impact the sUAS exploration time and repair vehicle travel times.

Finally, we evaluate the performance of our deterministic SNEP in situations when
sUAS cruise speeds are stochastic using Monte Carlo simulation. Indeed, the stochastic-
ity of cruise speed (and other factors such as airspace restrictions, obstacles, and visibility)
can significantly impact the times to explore and inspect the localization sets. Following the
exploration plan suggested by our SNEP solution can potentially lead to unobserved network
components, which can significantly increase the time to localize and respond to failures.
Thus, our static (and deterministic) formulation can be viewed only as an initial step toward
the research on more general formulations that account for the stochastic and dynamic na-
ture of sUAS-based inspection processes. In Section 7, we provide some comments in this
regard and conclude our paper.

1 Admittedly, while we do not model the communication aspects of sUAS operation, the framework can
be potentially extended to include them.
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2 Network, Repair Vehicles, and sUAS

In this section, we describe the key requirements and constraints for sUAS-enabled inspec-
tion of infrastructure component failures. We start with a description of how the components
that are likely to have experienced failure events can be grouped into geographical regions
based on the fixed sensor alerts. We then describe the generic requirements to route repair
vehicles (carrying both sUAS operators and repair personnel) to these regions. Finally, we
discuss sUAS characteristics to consider for the exploration of localization sets.

2.1 Infrastructure Network with Fixed Sensors

Consider an infrastructure network with the set of components denoted as E . The network
components are prone to failure events that can be random (e.g., pipe bursts), correlated (e.g.,
earthquake induced failures), or adversarial in nature (e.g., sabotage). The physical network
can either be above ground or underground; nonetheless, in many cases, failure events are
detectable from above ground [26]. For example, hydrocarbon leaks in an underground gas
network can be detected above ground using gas detectors. Other above ground activities that
are often main causes of failures include: the presence of unauthorized digging, excavation
by third parties, or soil erosion. We include such definitive precursors of actual failures in
our definition of failure events.

The infrastructure network is monitored by an operator (i.e., the utility’s command cen-
ter) through a Supervisory Control and Data Acquisition (SCADA) system, which routinely
collects data from remote fixed sensors that are pre-installed at certain network locations.
When a failure event occurs, a sensor is capable of detecting the resulting fluctuations in
its measured state (e.g., local pressure or flow), provided that the event lies in its “detec-
tion range.” The sensors are capable of sending alerts to the SCADA system (either directly
or using hop-to-hop communication). For cases when the fluctuations are not directly de-
tectable by a fixed sensor, we consider that the operator can be still alerted by some other
means, e.g., customer calls or social media data. Thus, for our purpose, any information that
helps the operator to identify the area in which one or more failure events are likely to have
occurred, counts as a sensor alert. Note that the number of sensors is often limited, thus
the sensor alerts cannot be used to identify (i.e., perfectly isolate) the individual failures in
large-scale networks facing correlated failure events. Furthermore, the sensors’ capability to
detect fluctuations is constrained by their detection range. Therefore, in most failure situa-
tions, the operator can only map each failure event to a certain spatial zone, which we call
a localization set [31]. Henceforth, we assume that the alerts from fixed sensors correspond
to a collection of activated localization sets, where each set is comprised of network com-
ponents that are likely to have undergone (or are prone to) failure. Isolating these failures
requires additional inspection; our focus is on sUAS-based inspection. In our framework,
the number and exact location of failures in each localization set is unknown before the in-
spection. The size of a typical localization set is of the order of a few hundreds of meters,
which is consistent with search zones of inspection teams.

Motivated by practical considerations [19], we assume that the operator collects the
sensor alerts for a predetermined time interval denoted [0, t0] and knows the localization
sets that are activated during [0, t0]. The operator assigns the available repair vehicles to the
group of localization sets at time t0. This assumption is motivated by the standard operating
procedure that the operators follow in assigning survey and repair teams based on the alerts
received from multiple areas during the first few hours after a disaster strikes the region. For
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simplicity, we assume that the interval [0, t0] also includes the lead time required to prepare
vehicles and repair teams. Based on the alerts received during [0, t0], let L1, . . . ,LK ⊆ E
denote the K localization sets that need to be further inspected by sUAS. The corresponding
sUAS exploration plans are determined by the SNEP. Therefore, at the start of the inspection
process, each localization set is assigned to a yard (i.e., facility where the repair vehicles and
crews are staged). This assignment and corresponding routing plans are determined by the
RVRP; see Section 4. Let Y denote the set of yards. Due to excessive setup costs, we will
consider that yard sites are immutable. Fig. 2 illustrates a network with a set of 64 fixed
sensors, 2 yards, and 5 localization sets.

(a) Network with fixed sensors (circles) and 2
yards (triangles)

(b) 5 localization sets arising from fixed sensor
alerts

Fig. 2: Illustration of a sensor network and localization sets in an infrastructure network

2.2 Repair Vehicles

For every yard s ∈ Y , we denote ns the number of repair vehicles that are available at yard
s. For simplicity, we assume that the repair vehicles at each yard site have homogeneous
capabilities, including speed, range, and crew (repair personnel and sUAS operators). In
addition, each sUAS operator controls a single sUAS. We let u denote the number of sUAS
in each repair vehicle. Again, for simplicity, we assume that all sUAS have identical sensing
capabilities and technical characteristics (i.e., cruise speed, endurance, etc).

Each repair vehicle, starting from a yard, can visit one or more localization sets prior
to returning to the same yard. To visit a localization set Lk, k ∈ J1,KK, a repair vehicle
needs to set up a temporary base, which we denote as bk. In practice, bk can be chosen as
the centroid of Lk. Let B := {bk, k ∈ J1,KK} denote the set of all temporary bases. Setting
up a temporary base involves unpacking the sUAS and performing pre-flight checks. We
also assume that the repair vehicle remains at its temporary base for the duration of the
sUAS flight over the localization set (to inspect and isolate failures) as well as the time to
repair these failures. In particular, the repair process starts after sUAS-based inspection is
completed, and the repair vehicle can move to another base or yard only after the repair at
the current localization set is completed. This assumption is motivated by the fact that, in
most practical situations, the repair crews gather the information on the type and location of
failures prior to the start of the repair process, since combining repair requirements in close
proximity can save costs and reduce the movement of their equipment [19].

For the purpose of route planning, the pairwise time to travel between yards and tem-
porary bases can be assembled into a travel time matrix which we denote Γ . This consists
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of repair vehicle travel times between every pair of locations (k, l) in the set Y ∪B. We let
γkl denote the time needed by a repair vehicle to travel from k to l. One can obtain γkl by
determining the shortest path between k and l in the transportation network and dividing by
the average vehicle speed. The temporary base set up time can also be included in γkl . For
convenience, we assume that the time to refuel a repair vehicle is negligible.

As mentioned above, once the sUAS complete the inspection of Lk, k ∈ J1,KK, the
repair process can start. In some practical situations, the repair time can be estimated be-
forehand; in our framework, we assume this time can be upper bounded by the ”worst-case”
case repair time, denoted τrepair,k. Historical data on individual repairs can be utilized for
estimating the expected and worst-case number of failures within a typical localization set;
this can be used as a basis to compute τrepair,k. Additionally, data on the average age of the
infrastructure, material type, or criticality of network components can be used to build a
statistical model to estimate τrepair,k [36].

We define a repair vehicle tour as a sequence of visits to a subset of B, that starts
and ends its tour at the same yard s ∈ Y . Note that we do not allow a repair vehicle to
return to another yard due to accountability and unbalanced workload issues that might
arise. Fig. 3 illustrates 3 repair vehicle tours to 5 different temporary bases corresponding to
the localization sets from Fig. 2b.

Fig. 3: Illustration of repair vehicle tours. Starting from a yard, each repair vehicle visits
one or more temporary bases (black dots) and returns to its assigned yard (triangle)

Next, we discuss the sUAS platform characteristics, based on the standard technical
specifications, battery replacement, and communication requirements.

2.3 sUAS Characteristics

A variety of commercially available rotary-wing sUAS platforms can be employed for in-
frastructure network inspection; however, it would be impractical to individually model each
one of them. Using data from the Association for Unmanned Vehicle Systems International
(AUVSI) air platform database, we define four representative classes of sUAS based on
their Maximum Gross Take-Off Weight (MGTOW) similar to [35]. These representative



Leveraging sUAS for Infrastructure Network Exploration and Failure Isolation 9

sUAS sufficiently represent Commercial Off-The-Shelf (COTS) platforms ranging from the
smaller rotary-wing DJI Phantom, to the larger Aeryon Scout. The representative sUAS
classes are described in Table 2 using MGTOW (kg), mean cruise airspeed (knots), max
airspeed (knots), descent and climb rates (meters per second), and endurance (minutes).

Table 2: Representative sUAS

Class ID 1 2 3 4
Notional MGTOW (kg) [0,2) [2,5) [5,9) [9,25]
Mean Cruise Airspeed (kn) 25 20 30 60
Max Airspeed (kn) 40 30 60 100
Descent Rate (m/s) -1.5 -2.5 -2.5 -5.0
Climb Rate (m/s) 2.5 3.5 3.5 5.0
Endurance (min) 30 45 45 60

In our SNEP formulation, the mean cruise airspeed, denoted VC, is assumed to be de-
terministic and defined as the speed at which the sUAS should operate to maintain optimum
performance [35]. Max airspeed, denoted Vmax is the maximum permitted speed. The de-
scent (resp., climb) rate is the vertical speed of the sUAS, or the rate of negative (resp.,
positive) altitude change with respect to time. The endurance, denoted as τmax, is defined
as the maximum length of time that an sUAS spends in flight. For rotary-wing sUAS with
MGTOW under 9 kgs, the advertised endurance values of different sUAS models exhibit
relatively less variability; see Fig. 4. The endurance values shown in Table 2 are based on
the average advertised endurance rate for a given class. In practice, the realized endurance
depends on a variety of factors, including payload (which is affected by sensor weight), bat-
tery age, operating environment, etc. However, we ignore these complications and assume a
deterministic τmax.

When exploring a localization set, we allow the sUAS to return to the temporary base
to replace their batteries before exploring other parts of the localization set. Each sUAS
requires a deterministic time to replace its battery; we denote this as τbatt . This consists of
the time required to swap the battery since many sUAS enable hot-swapping of batteries. All
sUAS are fully charged for the initial dispatch, and if a repair vehicle visits more than one
localization set, we can reasonably assume that sUAS receive fully charged batteries while
enroute to the other locations.

Finally, although communication is an important consideration for safe navigation and
connectivity of sUAS, we do not explicitly consider the impacts of unreliable or insecure
communication links between the sUAS and the operator. Commonly used communication
links for sUAS operations are: the uplink control, downlink telemetry, and downlink payload
communications; these links operate at frequencies dictated by the Federal Communications
Commission (FCC). Loss of communication in any of these three links can occur due to loss
of line-of-sight or interference from the environment or adversary. Indeed, cyber-security
risks have been recently identified as an important barrier to employing sUAS for moni-
toring strategic areas [18]. However, given that our focus in this paper is on establishing a
static framework for joint routing of repair vehicles and sUAS-based inspection of physical
infrastructures, we do not consider (low-level) communication aspects that are inherently
dynamic in nature.
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Fig. 4: The advertised MGTOW and endurance for 404 rotary wing sUAS platforms

3 sUAS-based Inspection of Localization Sets

In this section we discuss the main factors governing the positioning and routing of sUAS
for the purpose of failure isolation. Along with the discussion in Section 2, these factors
motivate the key assumptions in our sUAS-enabled infrastructure monitoring framework.

Once a repair vehicle sets up a temporary base, up to u sUAS are launched to explore
the corresponding localization set. In our framework, the sUAS complete inspection of a
localization set by visiting a number of “vantage points” with a clear and unobstructed view
to one or more network components. The spatial positioning of these vantage points should
account for several factors:

(i) Operating Range
(ii) Airspace Restrictions

(iii) Infrastructure Stand-off Distance
(iv) Required Image Resolution for Failure Isolation
(v) Infrastructure Network Topology

Fig. 5 illustrates the abovementioned factors influencing the spatial positioning of these
vantage points, which we henceforth refer to as monitoring locations. We first briefly discuss
each of the five factors and provide a formal definition of monitoring locations thereafter.

(i) Operating Range. The maximum operating range is the maximum distance from
a temporary base that the sUAS is capable of flying on a round trip mission. We can es-
timate this operating range with VC ·τmax

2 , where VC is the mean cruise speed and τmax is
the endurance of the sUAS. We also need to meet Visual Line-of-Sight (VLOS) require-
ments, which is defined by the FAA as keeping unaided visual contact with the sUAS
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Fig. 5: Illustration of monitoring locations for a localization set. The available monitoring
locations are shown in filled and empty circles and the infrastructure components within

the localization set are highlighted with thick lines

in order to “maintain safe operational control of the aircraft, know its location, and be
able to scan the airspace in which it is operating to see and avoid other air traffic or ob-
jects aloft or on the ground” [12]. The sUAS operating range is therefore expressed as
min(VC ·τmax

2 ,VLOS range). Unfortunately, to the best of our knowledge, the current litera-
ture does not suggest a common quantitative definition of the VLOS range. We came across
conservative VLOS ranges of 930 m [12] to a maximum theoretical range of 1050 m [37].
In practice, VLOS can vary significantly with local weather and other environmental con-
ditions. However, we argue that for the purpose of infrastructure monitoring, the typical
size (maximum radius) of localization sets is smaller than a conservative VLOS estimate.
Thus, we assume that the positioning of monitoring locations are not constrained by the
VLOS requirement. This assumption makes even more sense given the ongoing discussion
about relaxing VLOS restrictions and allowing Beyond VLOS (BVLOS) sUAS operations
in urban areas to support a range of applications, including infrastructure monitoring [18].

(ii) Airspace Restrictions. All monitoring locations are upper bounded at an altitude
restriction, denoted ra, which is typically 122 m AGL (Above Ground Level) to align with
the current FAA Part 107 sUAS regulations [13]. One may also need to consider restricted
airspace, which can either be temporary or permanent. Temporary flight restrictions can be
enforced due to hazardous conditions (e.g., a wildfire) or routine events (e.g., stadium event).
Examples of permanent flight restrictions include airspace in close proximity to population
centers, military operation areas, or airports.

(iii) Infrastructure Stand-off Distance. Each monitoring location must also comply with
the minimum stand-off distance, denoted rs, to the infrastructure network components or
other ground obstacles (e.g., power lines or buildings). Since misjudgment of distance and
speed is a significant flight hazard, stand-off distance provides a safe buffer zone during
inspection. Given environmental uncertainty, wind gusts, and sUAS platform instability, we
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assume that the sUAS will operate outside a 30 m stand-off distance. This can be viewed as
a conservative estimate based on current best practices as described in [24]. Combining the
restriction imposed by the stand-off distance and altitude restriction, we maintain that any
feasible vertical distance between a monitoring location and the infrastructure (at ground
level), denoted R, is constrained as:

rs ≤ R≤ ra (1)

(iv) Required Image Resolution for Failure Isolation. When camera sensors are used for
the identification of failures, the spatial positioning of monitoring locations also depends on
the required image resolution. Image stability of the video feed can be achieved by utilizing
appropriate hardware like a motorized gimbal mount to compensate for turbulence. To get an
idea of the resolution, one can estimate the Ground Sampling Distance (GSD), which is the
distance between two consecutive pixel centers measured on the ground [23]. For example,
a GSD of 10 cm can be interpreted as one image pixel representing 10 cm on the ground.
Thus, a higher GSD corresponds to lower spatial resolution. The GSD can be estimated
using the following equation:

GSD =
xR

f cosα
, (2)

where x is the length of the sensor’s pixel size (mm), f is the focal length of the camera’s
lens (mm), R is the vertical distance (m) between the camera (or monitoring location) and
the infrastructure at ground level, and α is the look angle. Thus, all else equal, a higher
altitude R will correspond to a higher GSD value. A sensor’s ground footprint is defined as
the total projection of a sensor’s pixels onto the ground; see Fig. 6 for an illustration of the
GSD and sensor ground footprint.

Fig. 6: Ground Sampling Distance and Sensor Ground Footprint

It is important to note that different failure types may require different GSDs for identi-
fication. Based on Eq. (1) and the GSD requirement, one can check if the on-board camera



Leveraging sUAS for Infrastructure Network Exploration and Failure Isolation 13

on the sUAS is adequate for the inspection task.2 In the context of gas pipelines, two types
of failure events are of interest based on the type of damage: structural damages and full
component disruptions.

For structural damage (e.g., leaks), it is critical to achieve high resolution images (i.e.,
smaller GSD) in order to identify small hairline fractures (a few mm in length). To identify
such failures, the monitoring locations need to be positioned at lower altitudes. This would
also entail a higher number of monitoring locations to fully explore the localization set. On
the other hand, for disruptions, such as pipeline bursts, major gas leaks, or fire emergencies,
a lower resolution can meet the requirements for failure isolation. In this case, sUAS can
operate at higher altitudes (with higher GSD), and consequently visit a smaller number of
monitoring locations.

(v) Infrastructure Network Topology. Finally, the number of monitoring locations also
depends on the network topology within the localization set. For example, given the same
number of network components and ground footprint size, a tree network topology would
likely require more monitoring locations to explore the entire localization set in comparison
to a grid topology; see Fig. 7.

(a) A network with a tree topology (b) A network with a grid topology

Fig. 7: Possible monitoring locations for 2 different network topologies. For the tree topol-
ogy (left), 6 network components (black line segments) would require 6 monitoring loca-
tions with associated ground footprints (grey). For the grid network (right), only 2 monitor-
ing locations are needed for the same number of network components.

Considering factors (i)-(v), we are now in a position to formally define monitoring loca-
tions and monitoring sets. Each monitoring location provides a vantage point for the sUAS
to observe some of the network components while considering the requirements for each of
the five factors discussed. For every localization set Lk, k ∈ J1,KK, we let Vk denote the set
of monitoring locations that the sUAS can visit. Without loss of generality, we assume that
the temporary base is bk ∈ Vk in this set.

2 As an example, for a Sony QX-10 camera with a 1/2.3 inch sensor (6.2 mm by 4.6 mm) that can take
pictures of up to 4,896 by 3,672 pixels, the size of each pixel would be 0.0012 mm by 0.0012 mm. With a
focal length of 25 mm, determining the altitude to fly the sUAS to resolve a 0.5 cm feature on the ground
would require a simple rearranging of terms in Eq. (2) to solve for R. Assuming a nadir (overhead) aerial
view (α = 0), the sUAS would visit monitoring locations at a height of 100 m which also satisfies Eq. (1).
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Fig. 8: The Monitoring Set corresponding to a particular monitoring location is obtained
from the sensor ground footprint, which in turn is based on the GSD calculation

From each monitoring location i ∈ Vk, we define a monitoring set, C k
i ⊆ Lk, as the

subset of network components that an sUAS is capable of monitoring (and isolating). Corre-
spondingly, for every network component e ∈Lk, let Vk(e) denote the subset of monitoring
locations from where an sUAS can monitor e. We assume that Vk fully “covers” Lk, i.e.,
all components in Lk can be monitored by visiting a subset of Vk. Fig. 8 illustrates how
a monitoring set is obtained from the sensor’s ground footprint.3 We emphasize that our
setup provides us with the flexibility to consider different types of monitoring sets for each
monitoring location, depending on the five factors.

For each localization set Lk, an sUAS tour is then defined as a sequence of visits to a
subset of Vk that starts and ends at the base bk. Upon returning to base, the sUAS will either
replace its battery for additional tours, or complete its mission. Analogous to the travel time
matrix for repair vehicles, we can define another travel time matrix for each localization set
Lk; the elements of this matrix are the pairwise travel times between monitoring locations
within Vk. We denote this matrix as T k. Thus, for every ordered pair of locations (i, j) ∈
V 2

k , let τk
i j denote the sUAS travel time from i to j. One can obtain τk

i j by determining
the shortest path distance from i to j and dividing by the mean sUAS cruise speed, which
also incorporates the climb or descent rate. We do not necessarily impose τk

i j = τk
ji. The

observation time at each monitoring location can also be incorporated into T k.
We consider that by visiting a subset of monitoring locations Vk such that each net-

work component is monitored at least once, the sUAS will be capable of decisively isolating

3 To provide an example of a monitoring set, we turn to the ground footprint from our above GSD calcu-
lation. The sensor ground footprint in this case would be 24.48 m by 18.36 m, acquired by multiplying the
total sensor pixel size (4,896 by 3,672 pixels) by 0.5 cm. Recall that 0.5 cm was the length of the feature
to resolve. Therefore, from a monitoring location i ∈ Vk at a height of 100 m, we can include all network
components within this ground footprint as part of the monitoring set C k

i , given that there are no obstacles.
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the failure(s) in the corresponding localization set. This can be achieved if, for example, a
trained observer is inspecting the live video feed to provide near real time feedback. Al-
ternatively, state-of-the-art software can be employed to provide rapid automated image
processing (i.e., identify failures from the live video feed) with high accuracy. Computer-
vision based methods to extract features from images can achieve accuracy levels of 90-95%
for certain types of failures [25], and the expanding use of unmanned systems in the future
will only increase the amount of training data required to increase accuracy. Any additional
image post-processing times can be incorporated in the repair time.

Before proceeding further, we summarize the key assumptions that we introduced in
Sections 2 and 3:

A1 Each failure alert obtained by the network operator from fixed sensors can be mapped
to a localization set, which contains the set of network components that need to be
inspected in order to isolate failure events. The number and location of failures in each
localization set is unknown.

A2 Based on fixed sensor alerts (and activated localization sets) received in the time interval
[0, t0], the operator allocates and dispatches repair vehicles at time t0.

A3 The size of the localization sets for sUAS-based inspection is no greater than the VLOS
in radius.

A4 The sUAS can monitor all network components in the localization set Lk by visiting a
subset of monitoring locations Vk.

A5 To fix the isolated failure(s) in a given localization set, the worst-case repair time, τrepair,k
for each localization set Lk is known. The repair starts only after the entire localization
set has been inspected for possible failures.

A6 All sUAS have identical sensing and technical capabilities. Likewise, all repair vehicles
have homogeneous capabilities.

A7 The travel times for both the repair vehicles and sUAS are assumed to be deterministic.
A8 The sUAS endurance time as well as the time to replace the on-board battery are as-

sumed to be deterministic.
A9 The communication link between the sUAS and operator is secure and reliable, and does

not impose any constraint on the route planning of repair vehicles and sUAS.

4 Modeling Approach and Formulation

In this section we present the overall infrastructure monitoring framework and provide the
MIP formulations for both the SNEP and RVRP based on assumptions A1–A9.

4.1 Infrastructure Monitoring Framework

Given the localization sets that arise from failure alerts, our focus is to study how joint
optimization of sUAS inspection plans and repair vehicle route plans can create efficiency
and timely detection. To do so, we propose an approach that (i) solves the RVRP, which
consists in optimally dispatching repair vehicles to the localization sets to minimize the
worst-case time to inspect (and repair), and (ii) solves the SNEP which optimally routes the
sUAS to isolate failure locations within a given localization set. These two problems are
nested in that the optimal value of the SNEP is taken as an input in solving the RVRP; see
the illustration in Fig. 9.
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(a) RVRP: Each repair vehicle can visit one or more
localization sets. Following repair, each repair vehicle

returns to its assigned yard.

(b) SNEP: From the temporary base location, the
sUAS isolate the failure(s) by visiting a subset of

monitoring locations.

Fig. 9: Illustration of the RVRP and SNEP

Recall that we model our problems based on failures that arrive during the time period
[0, t0], i.e., the decision for vehicle dispatches is made in a batch. The failure alert data is
processed and mission planning is completed in preparation of repair vehicle dispatch from
each yard at time t0. For each localization set Lk, k ∈ J1,KK, we denote θk the amount
of time during which Lk was activated prior to the dispatch of the repair vehicles. Note
that within a given localization set, there can be several alerts corresponding to the failure
of different components at different times. However, we are only concerned with the largest
such time, i.e., ∀k∈ J1,KK, θk is determined by the first alert that is received in Lk. Note that
high values of θk can occur when the interval [0, t0] is large. This may happen in situations
when the repair vehicles are not readily available or when repair crews are engaged in other
jobs and are not positioned at the yard [1]. The timeline of various phases of inspection and
repair operations is illustrated in Fig. 10. A repair vehicle is dispatched from its yard s at
time t0 and completes the set up of a temporary sUAS base at location bk at time t0+γsk. The
optimal sUAS exploration time for Lk is denoted ξ ∗k . For this example, the total time elapsed
from failure alert to time of repair for Lk, denoted ttotal,k, is equal to θk +γsk +ξ ∗k +τrepair,k.
We can see how the optimal value of the SNEP is embedded within the RVRP, which seeks
to minimize the maximum of ttotal,k over all K localization sets.

4.2 sUAS Network Exploration Problem

Consider a localization set Lk that is activated during the time interval [0, t0]. Recall that the
exact number of failures, and their exact locations in Lk are unknown. Thus, the SNEP con-
siders optimally dispatching sUAS to monitor and isolate every network component in Lk.
The u sUAS leave the base bk, visit a subset of monitoring locations in Vk from where they
can monitor the network components, and return to the base either to complete the mission,
or to replace their batteries for further exploration. The objective is to minimize the time to
explore Lk, which we formulate as the maximum amount of time, among the u sUAS, to
return to the base for mission completion. We choose this min-max objective function for
two main reasons highlighed in [1]. In that work, a min-max objective was widely accepted
by the key stakeholders of a natural gas utility over an alternative objective of minimizing
the overall cost, which was primarily viewed as a symptom of the root problem. Second, the
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time before dispatch

Failure alert
in Lk

t0
Repair
vehicle
dispatch

to Lk

θk

Temp
base set

at bk ,
sUAS

launches

γsk ξ ∗k

sUAS
returns

τrepair,k

ttotal,k

Fig. 10: Timeline from failure alert to repair for the trivial case of a single repair vehicle,
single localization set, and single sUAS

min-max objective achieves a level of fairness, which complies with union regulations for
equal distribution of labor.

For the sake of brevity in presenting our formulation of the SNEP, we use the notation
b to denote the base bk, τi j as the travel time τk

i j, and ξ as the longest sUAS exploration
time ξk. For each pair of monitoring locations i 6= j ∈ Vk we define a binary variable xi j
equal to 1 if an sUAS goes from i to j, and 0 otherwise. We also define two real variables
zi j and ti j. If zi j is nonzero, then it represents the cumulative travel time taken by the sUAS
that visits node j (coming from node i). Note that this quantity is reset every time an sUAS
replaces its battery. If ti j is nonzero, then it represents the time traveled so far by the sUAS
that is currently visiting node j (which comes from i). This quantity is NOT reset when an
sUAS replaces its battery. For every pair of monitoring locations different from the base,
i 6= j ∈ Vk\{b}, let x′i j be another binary variable equal to 1 if an sUAS goes from i to j after
replacing its battery at b, and is equal to 0 otherwise. This is similar to the concept of the
replenishment arc as discussed by Boland et al. in [2]. Our SNEP can be formulated with
constraints (3)-(15).

Constraint (3) ensures that no more than u sUAS are sent for the exploration of the
localization set. Constraint (4) is the flow conservation constraint, taking replenishment arcs
into account. Constraint (5) ensures that each monitoring location is visited at most once.
Constraint (6) ensures that each network component is monitored at least once. Constraint
(7) initializes and resets the time traveled by an sUAS after replacing its battery. Constraint
(8) enforces zi j to be 0 when there is no sUAS that goes from i to j and between 0 and τmax
otherwise. Constraint (9) enforces zib to be 0 when there is no sUAS that goes from i to b or
that goes from i to any other node j after replacing its battery at the base b. Constraint (10)
updates the time traveled so far by each sUAS since the last battery replacement. Constraint
(11) initializes the cumulative time traveled so far by the sUAS. Constraints (12) and (13)
make sure that ti j = 0 when there is no sUAS that goes from i to j (whether directly or by
a replenishment arc). The right hand sides of these constraints constitute a “Big-M”, which
makes the corresponding inequalities non-restricting when an sUAS goes from i to j. We
illustrate the Big-M upper bound for constraint (13) in Appendix C. Constraint (14) updates
the time traveled so far by the sUAS and takes into account the time to replace the batteries,
if required. Since we want to minimize the maximum travel time of the sUAS which is
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minimize
x,x′,z ,t ,ξ

ξ

Subject to

∑
i∈Vk\{b}

xbi ≤ u (3)

∑
i∈Vk\{b , j}

(xi j + x′i j)+ xb j = ∑
i∈Vk\{b , j}

(x ji + x′ji)+ x jb , ∀ j ∈ Vk\{b} (4)

∑
i∈Vk\{b , j}

(xi j + x′i j)+ xb j ≤ 1, ∀ j ∈ Vk\{b} (5)

∑
i∈Vk(e)

(
∑

j∈Vk\{b ,i}
(xi j + x′i j)+ xib

)
≥ 1, ∀e ∈ E \C k

b (6)

zb j = τb j

(
xb j + ∑

i∈Vk\{b , j}
x′i j

)
, ∀ j ∈ Vk\{b} (7)

0≤ zi j ≤ τmaxxi j, ∀(i, j) ∈ (Vk\{b})2 | i 6= j (8)

0≤ zib ≤ τmax

(
xib + ∑

j∈Vk\{b ,i}
x′i j

)
, ∀i ∈ Vk\{b} (9)

∑
j∈Vk\{i}

zi j = ∑
j∈Vk\{i}

z ji + ∑
j∈Vk\{i}

τi jxi j + τib ∑
j∈Vk\{b ,i}

x′i j, ∀i ∈ Vk\{b} (10)

tb j = τb jxb j, ∀ j ∈ Vk\{b} (11)

0≤ ti j ≤ ((|Vk|−1)τmax +(|Vk|−2)τbatt)(xi j + x′i j), ∀(i, j) ∈ (Vk\{b})2 | i 6= j (12)

0≤ tib ≤ ((|Vk|−1)τmax +(|Vk|−2)τbatt)xib , ∀i ∈ Vk\{b} (13)

∑
j∈Vk\{i}

ti j = ∑
j∈Vk\{i}

t ji + ∑
j∈Vk\{i}

τi jxi j + ∑
j∈Vk\{b ,i}

(τib + τbatt + τb j)x′i j, ∀i ∈ Vk\{b} (14)

ξ ≥ tib , ∀i ∈ Vk\{b} (15)

xi j ∈ {0,1}, ∀(i, j) ∈ V 2
k | i 6= j

x′i j ∈ {0,1}, ∀(i, j) ∈ (Vk\{b})2 | i 6= j

given by minmaxi∈Vk\{b} tib , we can reformulate it by using the variable ξ , along with the
constraint (15).

The SNEP solution provides optimal sUAS routes that can be described as simple or
multi-trip routes. Consider a localization set Lk, k ∈ J1,KK. We let p represent an sUAS
simple route, defined as a sequence of n monitoring locations (i1, i2, ..., in) where i1 = in =
bk, each monitoring location in p (not including the base) is visited only once with no interim
base visit, and the feasibility requirement is met, i.e., the cumulative travel time ∑

n−1
m=1 τimim+1

does not exceed τmax. We define a multi-trip route as a route that contains one or more
interim base visits (for replacing the battery), e.g., (bk,1,2,bk,3,bk).

Our formulation differs from the G-VRP in several ways. First, instead of multiple refu-
eling stations available, there is only one refuel location (temporary base) for each localiza-
tion set. Second, our formulation involves the notion of a monitoring set. Therefore, unlike
the traditional VRP formulation, there is no need to visit every monitoring location because
of constraints (5) and (6). Third, instead of using dummy vertices, we use the concept of
replenishment arcs which eliminates the need to set a condition on the number of refueling
visits. Finally, whereas the G-VRP aims to minimize the total distance traveled by the vehi-
cles, our objective is to minimize the maximum time to observe all network components.
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4.3 Repair Vehicle Routing Problem

Given the set of yards Y and the set of temporary base locations B, the RVRP seeks to
find the optimal route for each repair vehicle starting and ending at its corresponding yard
such that (i) each base corresponding to a localization set is visited, and (ii) the maximum
amount of time elapsed from time of failure to time of repair among all localization sets, is
minimized. In calculating (ii) we include the optimal sUAS exploration time, ξ ∗k , required
for each localization set Lk,k ∈ J1,KK.

For each yard s ∈Y , and for every pair of locations k 6= l ∈B∪{s}, we define a binary
variable ys

kl which is equal to 1 if a repair vehicle that originates from yard s goes from
location k to location l, and 0 otherwise. There is no binary variable ys

kl where k or l is a
yard different from s; this ensures that a repair vehicle will return to the yard it originated
from. For every pair of locations k 6= l ∈B∪Y | k /∈ Y or l /∈ Y , we define a real variable
wkl which represents the time at which a repair vehicle arrives at location l (coming from
location k). Note that this quantity takes into account the time to travel between yards and
localization sets, the time to explore the localization sets with the sUAS, and the repair time.
With a slight abuse of notation, for every base bk ∈B, we denote ξ ∗bk

:= ξ ∗k and θbk := θk.
A MIP formulation of the RVRP is given in constraints (16)-(23).

minimize
tworst ,y,w

tworst

Subject to

∑
l∈B

ys
sl ≤ ns, ∀s ∈ Y (16)

∑
l∈B∪{s}\{k}

ys
kl = ∑

l∈B∪{s}\{k}
ys

lk, ∀(k,s) ∈B×Y (17)

∑
s∈Y

∑
l∈B∪{s}\{k}

ys
lk = 1, ∀k ∈B (18)

wsl = γslys
sl , ∀(l,s) ∈B×Y (19)

0≤ wkl ≤M ∑
s∈Y

ys
kl , ∀(k, l) ∈B2 | k 6= l (20)

0≤ wks ≤Mys
ks, ∀(k,s) ∈B×Y (21)

∑
l∈B∪Y \{k}

wkl = ∑
l∈B∪Y \{k}

wlk + ∑
l∈B\{k}

γkl ∑
s∈Y

ys
kl + ∑

s∈Y
γksys

ks +ξ
∗
k + τrepair,k, ∀k ∈B (22)

tworst ≥ ∑
l∈B∪Y \{k}

wlk +ξ
∗
k + τrepair,k +θk, ∀k ∈B (23)

ys
kl ∈ {0,1}, ∀s ∈ Y , ∀(k, l) ∈ (B∪{s})2 | k 6= l

Constraints (16)-(18) define the classic network flow constraints, while constraints (19)-
(22) keep track of the arrival times for each repair vehicle. Specifically, constraint (16) en-
sures that no more than ns repair vehicles leave yard s. Constraint (17) ensures that if a
vehicle from yard s enters a localization set, it also leaves. Constraint (18) ensures that each
localization set is visited by exactly one vehicle. Constraint (19) initializes the time traveled
by the vehicle if it departs from yard s. Constraints (20)-(21) make sure that the arrival time
is 0 when no vehicle travels from one localization set to another localization set or yard.
Otherwise, we use a large constant, M, to ensure that there is no restriction when a location
is visited. Constraint (22) updates the arrival time by taking into account the vehicle travel
time, the repair time, τrepair,k, as well as ξ ∗k . Finally, since we want to minimize the maxi-
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mum amount of time elapsed from time of failure to time of repair among all localization
sets, we add the variable tworst , along with constraint (23).

4.4 Implementation on a Real Pipeline Network

We implement the SNEP and RVRP formulations on a case study based on a Kentucky-
based urban water network. We assume that a set of fixed sensors are placed at some nodes
and monitor the edges in the pipeline network, which form the set of vulnerable components
E [17]. Assuming that a failure in a network component can be detected by a sensor if it is
within a given distance [31], the Floyd Warshall algorithm is applied in order to calculate the
shortest distance between each pair of nodes and deduce the set of components monitored
from each sensor location [14]. The localization sets are then provided by partitioning the
set of components depending on the sensors’ outputs. For this example, we considered the
activation of five localization sets with sizes ranging from 16 to 33 components. We label
these localization sets L1, . . . ,L5.

For each localization set Lk, k ∈ J1,5K, we assume that the sUAS monitoring locations,
Vk, are positioned directly above the nodes of the subnetwork induced by Lk, i.e., the set of
end nodes of the edges in Lk. We consider the scenario where an sUAS, positioned directly
above a given monitoring location i ∈ Vk, can monitor the adjacent edges of i (i.e., the
adjacent pipelines). Without loss of generality, we restrict the sUAS to travel only along the
edges of the given pipeline network and we assume symmetry with respect to travel times τk

i j.
We place the temporary base within each localization set by finding the node that minimizes
the total distance from that node to all other nodes. As a conservative estimate, we assume a
maximum endurance, τmax, of 1 hour, and a battery replacement time, τbatt of 5 minutes. By
solving the SNEP instances, we find that the optimal time required to monitor and isolate all
components for each localization set with 2 sUAS is ξ∗ = (0.88,1.46,0.86,0.87,0.63) (in
hours). The final routes for the 2 sUAS are shown in Table 3. Note that the exploration of
localization set L2 takes longer because it requires a multi-trip route for each sUAS. Also
note that due to the min-max objective function of the SNEP, the final solution can result in
extraneous node visits for route(s) with shorter duration. For example, for L2, the visit to
node 9 for the second sUAS is one such case.

Table 3: SNEP Solutions

Lk Nodes Edges ξ ∗k bk sUAS Routes
L1 31 33 0.88 4 (4,18,24,1,29,13,12,11,26,5,4),

(4,3,7,6,8,9,22,19,28,4)
L2 16 20 1.46 16 (16,10,1,16),(16,5,6,16),

(16,8,9,7,4,16),(16,12,15,16)
L3 15 18 0.86 6 (6,8,3,15,14,1,6),

(6,5,10,11,6)
L4 18 17 0.87 8 (8,10,15,12,14,8),

(8,4,1,5,6,3,8)
L5 16 16 0.63 11 (11,16,5,4,7,10,11),

(11,8,12,14,1,11)
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Next, we consider that two yards, s1 and s2, are located in the network with yard s1
containing one repair vehicle and yard s2 containing two. Each repair vehicle carries two
sUAS. For simplicity, we assume a repair time, τrepair,k, of 10 minutes for each localization
set. We derived the travel time between yards and localization set bases bk by computing the
Euclidean distances between each pair of locations. We assume that the maximum distance
can be covered in 6 hours, and that θ = (1,1,1,1,1) for simplicity (i.e., all failure alerts
occur one hour prior to t0).

Using the formulation for the RVRP, as described in Section 4.3, we obtain the following
optimal solution: The single repair vehicle from yard s1 travels along the route (s1,b4,s1),
and the routes for the two repair vehicles from yard s2 are (s2,b5,b1,s2) and (s2,b2,b3,s2).
Fig. 11 illustrates the optimal solution. The longest time elapsed from time of failure to time
of repair is 5.87 hours.

s1b4

s2

b5

b1

b2

b3

Fig. 11: Optimal RVRP solution where all failures alerts occur one hour prior to t0. The ar-
rows depict the routes for the repair vehicles, which originate from the two yards (triangles)
and visit the temporary bases within each localization set

From this initial computational study, we can make the following observations: First,
we verified that the overall solutions are sensitive to θ. In general, a localization set Lk with
a larger θk will be visited first. Second, we can check that the RVRP solution is affected
by the magnitude of the sUAS optimal exploration times, ξ ∗k . For example, a repair vehicle
can take a longer route if sUAS exploration times for the localization sets in that route are
relatively small. We realize that the computation time to solve the SNEP can be large for
practical instances. Unlike the RVRP which can be solved efficiently given the low number
of localization sets, the SNEP poses a computational bottleneck because of the large number
of monitoring locations to consider for a typical localization set. For example, one SNEP
solution for a localization set consisting of 33 edges, took almost 3 hours to solve to opti-
mality. Utilities that require efficient dispatch of resources in a timely manner cannot afford
to wait this long, and so we propose a heuristic approach that can promptly reach optimal or
near optimal solutions.4

4 As of this writing, we are also exploring path based formulations which can further reduce the computa-
tional times, especially if used in combination with our heuristic approach.
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5 Heuristic Approach

In order to improve the scalability of the SNEP, we propose a heuristic approach that takes
advantage of the monitoring set constraint (6). This heuristic can be described in five main
steps: Solving a weighted set cover problem, initial route construction, improvement proce-
dures, route combination, and relocation with base insertion. The improvement procedures
consist of the relocation, exchange, and 2-opt procedures, which are three well known local
search algorithms to solve the Traveling Salesman Problem (TSP) and other related VRPs
[7]. Our primary contributions in developing this heuristic are the weighted set cover based
initial route construction, and the final route combination and relocation with base insert
steps.

5.1 Heuristic Steps

Weighted
Set Cover

Initial
Route

Construction

Improvement
Procedures

1) Relocation
2) Exchange

3) 2-Opt

Route
Combination

Relocation
Base Insert

Fig. 12: Five steps used in the heuristic to solve the SNEP

Step 1 Weighted Set Cover
Recall that in each localization set Lk, k ∈ J1,KK, the sUAS need to visit a subset

of monitoring locations in order to isolate every network component in Lk. This implies
that, although each monitoring location does not need to be visited, the sUAS need to visit a
subset that forms a set cover. In our context, a set cover is a set of monitoring locations S ⊆
Vk such that each network component in Lk is isolated if each monitoring location in S
is visited by the sUAS. A minimum set cover (MSC) is a set cover of minimum cardinality
that can observe every network component in the localization set Lk. The MSC problem is
known to be NP-hard but many commercial solvers can solve this problem efficiently using
exact or approximation algorithms.

For the SNEP heuristic, we consider a weighted variant of the MSC problem as dis-
cussed in [5] since distance from the base must also be considered due to limited endurance.
For each monitoring location i∈ Vk, we define xi to be a binary variable equal to 1 if i is cho-
sen as part of the set cover and 0 otherwise. Furthermore, we consider the shortest distance
from the base to monitoring location i, or τbk ,i as the “weights” in the objective function. A
set cover S is a weighted MSC if it is an optimal solution of the following problem:

minimize ∑
i∈Vk

τbk ,ixi

subject to ∑
i∈Vk(e)

xi ≥ 1, ∀e ∈ E (24)

xi ∈ {0,1}, ∀i ∈ Vk (25)

Constraint (24) ensures that for each network component, at least one of the monitoring
locations from Vk(e), is part of the set cover. Note that because this is a minimization prob-
lem and the weights are defined as distances from the base, we can always consider the base
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to be part of the set cover (since τbk ,bk = 0). For the remainder of this section, we will refer
to the monitoring locations simply as nodes and bk as b.

The intuition behind the use of the weighted variant of the MSC as opposed to the
unweighted case can be explained using a “pathological” case shown in Fig. 13, where three
nodes are positioned at the specified unit distances from a base. In general we would prefer
to visit a higher number of closer nodes as opposed to a few nodes farther away. Recall that
we consider the base as a monitoring location and the edges in this graph represent network
components. If the sUAS can effectively isolate adjacent components incident to the nodes,
we can verify that the unweighted MSC solution is {b,3} but we would prefer to use the
weighted MSC solution {b,1,2} in order to minimize the maximum travel time. If only one
sUAS is available, the unweighted MSC solution would equate to a total distance of 20, i.e.,
to node 3 and back, whereas the weighted MSC solution only requires a total travel distance
of 4, i.e., to nodes 1 (resp. 2) and back.

b

1 2

3

11

10 1515

Fig. 13: Example network for justifying the use of weighted MSC in the SNEP heuristic

To show that the weighted MSC can lead to a feasible SNEP solution, we highlight
one example from Table 3. Consider the multi-trip routes from the SNEP solution for 2
sUAS exploring L2 from base node 16: sUAS 1→ (16,10,1,16),(16,5,6,16), sUAS 2→
(16,8,9,7, 4,16),(16,12,15,16). Each sUAS requires one interim base visit. The nodes in
bold make up the optimal weighted MSC. Fig. 14 shows the optimal weighted MSC along
with the topology of L2. We observe that the weighted MSC will always provide a subset of
nodes from which to generate feasible routes for the SNEP. We use this insight to construct
the initial routes, as described next.

Step 2 Initial Route Construction
The initial route construction step takes an optimal set cover S from the weighted MSC

problem, the endurance τmax, and the travel times τi j between each pair of nodes (i, j) ∈
V 2

k as its input and provides an initial set of simple routes as its output. To accomplish
this, we apply the well known Clarke & Wright Savings Algorithm. Two versions of the
savings algorithm exist; a sequential version, where only one route is expanded at a time,
and a parallel version, where more than one route may be considered simultaneously [6].
We choose to construct the routes in parallel since it generally provides better results as
described in [21]. For each pair of nodes (i, j) ∈ V 2

k , let Si j be defined as the time “savings”
gained by visiting nodes i and j in succession from the base node b and back, i.e., (b, i, j,b)
as opposed to one at a time, i.e., (b, i,b),(b, j,b). Using notation from Section 4, we let t ′jb



24 Andrew C. Lee et al.

Fig. 14: Weighted Minimum Set Cover embedded within the SNEP Solution for localization
set 2. The topology is shown on the left with weighted MSC nodes in grey. The matrix on
the right shows the associated monitoring sets with the weighted MSC nodes highlighted

denote the total travel time for the route (b, i, j,b) and t jb denote the total travel time for the
route (b, i,b, j,b). Thus the total savings is given by Si j = t jb − t ′jb . For example, suppose
that the two nodes i and j were originally visited using two separate routes as seen in Fig.
15a. The total travel time in this case is given by t jb = (τbi + τib + τb j + τ jb). Alternatively,
if the two nodes are visited successively in the same route as shown in Fig. 15b, the total
travel time is t ′jb = (τbi + τi j + τ jb). The total travel time savings is then given by:

Si j = t jb − t ′jb = (τbi + τib + τb j + τ jb)− (τbi + τi j + τ jb) = τib + τb j− τi j (26)

b

i j

τb jτib
τ jbτbi

t jb = (τbi + τib + τb j + τ jb)

(a) Nodes visited one at a time

b

i jτi j

τ jbτbi

t ′jb = (τbi + τi j + τ jb)

(b) Nodes visited in succession

Fig. 15: Illustration of travel time savings

The intuition behind this savings approach is that pairs of nodes with larger time savings
should be prioritized when constructing the initial routes. It is also important to note that
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this approach works with asymmetric travel times (τi j 6= τ ji) as discussed in [33]. In the
asymmetric case, the routes can be considered to be oriented and so we only calculate the
savings for Si j if i is the last node visited in a route and j is the first of the other. Suppose
we have two oriented routes shown in Fig. 16a. Since i is the last node visited in one route
and j is the first node of the other, Si j = τb j + τib − τi j, which is the difference in the travel
times shown below Figs. 16a and 16b. Respectively, if k is the last node visited in a route
and l is the first of the other, Skl = τkb + τbl− τkl , using the difference in travel times below
Figs. 16a and 16c. Since Skl provides the larger savings, we only select this as a savings pair
and do not consider Si j.

b

j
k l

i

(a) (τb j + τ jk + τkb + τbl + τli + τib )

b

j
k l

i

(b) (τb j + τ jk + τkl + τli + τib )

b

j
k l

i

(c) (τbl + τli + τi j + τ jk + τkb )

Fig. 16: Illustration of savings calculation for asymmetric travel times

We calculate the savings Si j for every pair of nodes in S \{b} and sort them in descend-
ing order of magnitude to create a savings list. Starting from the highest savings pair in the
savings list, we construct one or more simple routes based on the following cases for each
pair (i, j) until the savings list is exhausted [22]. For each case, we check for feasibility, i.e.,
total travel time for each route is less than or equal to τmax. We also keep inventory of the
nodes that have not been assigned to a route.

Case 1: If both nodes in the pair do not already belong to a simple route, create a new
simple route that consists of the pair bookended by the base, i.e., (b, i, j,b), given
that the feasibility requirement is met.

Case 2: If exactly one of the two nodes in the pair (suppose i) belongs to an existing sim-
ple route, then we insert j in that same route only if i is an edge node and the
feasibility requirement is met. If i is preceded by the base, then j is inserted before
i, otherwise, j is inserted after i. We follow this guideline in order to preserve the
integrity of savings pairs.

Case 3: If both i and j already belong to a simple route, then we skip to the next pair in
the savings list.

Once the savings list is exhausted, if there are any nodes that were not included in a
route, we create a new simple route for each omitted node bookended by the base. The
initial route construction is completed once all of the nodes in S are included within the set
of simple routes. Let P denote the set of simple routes resulting from this step. Note that
the Clarke & Wright Savings Algorithm does not allow for the control of |P|. If |P| < u,
we ensure that more simple routes consisting of only two basenodes, i.e., (b,b) are created
until |P| = u. In the case of more than one sUAS, this guarantees an available route to
insert a node into for the upcoming relocation procedure. Otherwise, we risk inequity in
sUAS workload.

Step 3 Improvement Procedures
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The next three procedures attempt to improve P through a sequence of moves, which
we define as a modification of nodes either within a route (intra-route) or between routes
(inter-route) to obtain a neighborhood solution out of an existing one. We only consider
feasible moves based on τmax. We use the relocation, exchange, and 2-Opt procedures in this
order based on computational results on routing problems described in [29] as well as our
own computational tests on the 5 localization sets in Table 3. After each of these procedures,
we do not remove any simple routes; even if a route is or becomes empty, consisting of only
two base nodes, (b,b), we carry them over until Step 4, thus guaranteeing that |P| ≥ u.

1. Relocation. This inter-route procedure takes the initial simple routes obtained from Step
2 as an input and for all possible pairs of routes, completes the following two stages:
a) For each pair of simple routes, choose the route with the maximum travel time as

the “donor” route; the max travel time is set as the incumbent best time to improve
upon.

b) For each node in the donor route not including b, remove and insert it into the other
“recipient” route in all of the possible positions between the base nodes. For each
move, compute the maximum travel time between the two routes. Choose the move
that results in a smallest maximum travel time compared to the incumbent best.

This procedure is shown in Fig. 17a and is similar to the relocation procedure described
in [33]. We extend it to consider both τmax and the min-max objective function of the
SNEP. We apply the relocation procedure first since it often produces the best results of
the three improvement procedures as discussed in [29].

2. Exchange. The exchange inter-route improvement procedure as described in [33] con-
siders every possible pair of routes and attempts to exchange two nodes between the two
routes as shown in Fig. 17b. For each pair of routes, we exchange all pairwise combina-
tions of nodes (not including the base). Like the relocation procedure, we compute the
maximum travel time between the two routes after each move. We choose the move that
results in the smallest maximum travel time compared to the incumbent best.

3. 2-Opt. As a final improvement procedure, we apply the 2-Opt local search algorithm
proposed by [7] for the traveling salesman problem. This is an intra-route improvement
procedure that replaces two edges with new ones so that a single route is maintained.
The example shown in Fig. 17c illustrates a valid 2-opt move. The edges (i− 1, i) and
( j, j+1) are replaced by edges (i−1, j) and (i, j+1), which then reverses the direction
of nodes between i and j [3]. We systematically apply the 2-opt procedure on all pairwise
combinations of edges in each route. For each swap, we accept the new route if it results
in a shorter travel time.

Step 4 Route Combination
This step ensures that the number of final sUAS routes created accounts for the number

of sUAS available and inserts an interim base visit if required. This problem is a variant
of the multi-processor scheduling or load balancing problem [16]. In the multi-processor
scheduling problem, n jobs j1, j2, ..., jn are assigned to m machines, each job ji has a non-
negative processing time, and the goal is to minimize the maximum load over all machines.
In our problem, the jobs are the set of simple routes that we obtain after Step 3, each with
varying durations less than τmax, and the machines are the u homogeneous sUAS. There are
two additional considerations for our problem: first, if an sUAS is assigned n simple routes,
we incur additional time equal to (n−1)τbatt to account for the battery replacement times;
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(a) Relocation (b) Exchange (c) 2-Opt

Fig. 17: Improvement Procedures. For each procedure, the top figure shows the route(s)
prior to implementation and the bottom figure shows the resulting route(s) [29]

and second, we also need to consider merging two simple routes into one simple route (with
no interim base visit) if the total travel time is within τmax.

If |P| > u, our greedy approach is to successively combine the shortest two simple
routes into a larger route until |P| = u. Recall that we will not see a case where |P| < u.
We define an edge node as a node that is adjacent to the base in a route. It follows that
for a simple route there are two edge nodes. If there is more than one simple route created
from the above steps, note that we will have node-disjoint simple routes except with the
terminal base visits. We also define an edge node pair as a combination of two edge nodes
where each node in the pair belongs to a different route. For example, given two simple
routes (bk,1,2,3,bk) and (bk,4,5,6,bk), the edge node pairs would be (1,4),(1,6),(3,4),
and (3,6). It follows that given |P| routes, with 2|P| edge nodes, the number of edge node
pairs is given by:

(2|P|)!
2!(2|P|−2)!

−|P| (27)

We subtract |P| from the number of possible combinations of edge nodes since we do
not include edge node pairs where both nodes belong in the same route. Using the savings
pairs from the initial route construction procedure, we attempt to merge the two shortest
simple routes (with the lowest cumulative travel times) by the highest savings edge node
pair, reversing the order of one of the routes, if necessary, to create a merged simple route.
Note that this approach can also work for the asymmetric travel time case (τi j 6= τ ji) but we
would need to account for the possibility of longer travel times from the reversal of routes.
We choose the merged route that results in the shortest cumulative travel times and that is
feasible. Otherwise, an interim base visit is placed where we would have merged the two
simple routes, resulting in a multi-trip route.

Step 5 Relocation with Base Insert
This final improvement step executes another iteration of the relocation procedure for

all possible pairs of routes (simple or multi-trip) but with the additional consideration of a
base insertion to accompany the inserted node. This could be required in order to validate
what could otherwise be an infeasible route. We follow the same two stages from the re-
location procedure but with routes that can be either simple or multi-trip. Suppose a node
k is removed from a donor route and inserted into a recipient route. If the recipient route
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is a multi-trip route, we need to decompose it into one or more simple routes in order to
determine feasibility. If we determine that a simple route is infeasible due to the insertion
of node i, we insert an additional interim base visit according to a greedy approach. We
represent the simple route that received node k, as a sequence of nodes (i1, . . . , in). We de-
termine the cumulative travel time to a given node iq and back to the base using the equation
τiq,b+ ∑

q−1
m=1 τimim+1 , where q = 2, ...,n−1. If the cumulative travel time exceeds τmax, an in-

terim base visit will be inserted before node iq. Indeed, this will result in an increase in the
cumulative travel time for the recipient route (due to the additional travel time to and from
the new interim base and/or the τbatt ), but it can result in an overall decrease in the maximum
travel time over all routes.

By taking advantage of the special structure of the SNEP, specifically, the monitoring
set constraint (6), our heuristic reduces the number of monitoring locations to consider by
solving the weighted set cover problem. We refine the initial simple routes created using
the Clarke & Wright Savings Algorithm with additional improvement steps that consider
the min-max objective function of the SNEP and ensures that the final simple or multi-trip
routes account for the number of available sUAS. To clarify the steps of our heuristic, we
show how it is applied for one example localization set. We set τmax to 1 hour and u to 2
sUAS.

5.2 Example Problem

Step 1 Weighted Set Cover. In a localization set from the same pipeline network which con-
sists of 36 nodes (monitoring locations) and 37 edges (components), an optimal solution of
the weighted set cover is S = {1,3,5,7,8,12,13,14,18,19,20,22,24,26,30,32}, of which
20 is the base node. This step immediately reduces the overall problem size by limiting the
number of monitoring locations to consider from the original 36 to 16.

Step 2 Initial Route Construction. A portion of the ordered savings list generated from the
Clark & Wright Savings heuristic for this localization set is shown in Table 4. For the pur-
pose of illustration, only the first 9 rows are shown. Each row shows the time in hours that
could be saved by visiting the node pair in succession as opposed to one at a time.

Table 4: Savings List from the Clark and Wright Parallel Savings Algorithm

Pair Savings
(1,8) 0.61

(12,13) 0.55
(1,7) 0.40
(7,8) 0.40

(24,26) 0.35
(22,24) 0.33
(22,26) 0.32
(26,32) 0.31
(19,24) 0.29

The following set P of initial simple routes is created following the three cases de-
scribed earlier: (20,7,1,8,5,3,20),(20,14,12,13,20),(20,22,24,19,18,26,30,32,20).
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Each simple route meets feasibility requirements (the duration of the routes are 0.84, 0.61,
and 0.95 hours respectively). Additionally, note that |P|> u.

Step 3 Improvement Procedures. All three improvement procedures provide incremental
improvements to one or more simple routes. In the relocation procedure, node 19 is deleted
from the third simple route and inserted into the second. The maximum travel time is reduced
from the 0.95 hours associated with the initial route pair (20,14,12,13,20), (20,22,24,19,
18,26,30,32,20) to 0.91 hours associated with the new route pair (20,19,14,12,13,20),
(20,22,24,18,26,30,32,20). The final routes after this procedure are: (20,7,1,8,5,3,20),
(20,19,14,12,13,20), (20,22,24,18,26,30,32,20).

In the exchange procedure, three exchanges take place between the second and third
simple routes. First, nodes 18 and 19 are exchanged, followed by 18 and 26, and then 26
and 30. The final routes after this procedure are: (20,7,1,8,5,3,20), (20,30,14,12,13,20),
(20,22,24,19,18,26,32,20). The duration of the routes are now 0.84, 0.67, and 0.83 hours
respectively.

In the 2-Opt procedure, one valid 2-Opt move for the third simple route results in
a reduction in travel time from 0.83 to 0.67. The final routes after this procedure are:
(20,7,1,8,5,3,20), (20,30,14,12,13,20), and (20,18,19,24,22,26,32,20). The duration
of the routes are now 0.84, 0.67, and 0.67 hours respectively.

Step 4 Route Combination. This step entails trying to combine the shorter duration routes
(20,30,14,12,13,20) and (20,18,19,24,22,26,32,20) with the edge node pairs: (30,18),
(30,32), (13,18), or (13,32). Out of the 4 edge node pairs, (13,18) offers the highest
savings, so we attempt to create a new route (20,30,14,12,13,18,19,24,22,26,32,20).
In this case, this combined route exceeds τmax and therefore we end up with a multi-trip
route. The final routes after this procedure are: sUAS 1→ (20,7,1,8,5,3,20), and sUAS 2
→ (20,30,14,12,13,20),(20,18,19,24,22,26,32,20). The duration of the routes are now
0.84, 1.43 hours respectively.

Step 5 Relocation with Base Insert. In Fig. 18, we show the result of the last step in our
heuristic. In this step, node 30 is relocated. A base visit is inserted due to infeasibility from
endurance limitations. While this results in an increase in the cumulative travel time for
the recipient route from 0.84 to 1.34, it results in an overall decrease in the maximum travel
time over all routes, from 1.43 to 1.37 hours. The final routes are sUAS 1: (20,30,7,1,8,20),
(20,5,3,20), sUAS 2: (20,14,12,13,20),(20,18,19,24,22,26,32,20). This completes the
heuristic; the final maximum duration route is 1.37 hours.

18201312143020 19 24 22 26 32 20

20 5 3 208173020

Fig. 18: Illustration of the Relocation with Base Insert Step. With this pair of routes, the
top route is the donor route with the larger cumulative travel time (which includes an in-
terim base visit). Node 30 is selected to be moved from the donor route into the recipient
route prior to node 7. Since the recipient route’s total travel time was longer than the sUAS
endurance, a base visit is inserted according to a greedy approach.
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6 Computational Study

In this section, we first compare our heuristic solutions against the exact solutions of the
SNEP. Next, we solve the RVRP, considering different assignments of repair vehicles to
yards, and different elapsed times from failure alert to repair vehicle dispatch. Finally, we
evaluate our solution for the case when travel times are stochastic by employing Monte
Carlo simulation on representative network topologies.

6.1 SNEP Results

The MIP formulation for the SNEP described in Section 4 took over 5 hours to achieve the
exact solutions for the 5 localization set scenario referred to in Table 3. Comparatively, our
heuristic was able to obtain the same optimal solutions in only 4.15 seconds. Thus, for this
5 localization set scenario, our heuristic provided the optimal solution within an acceptable
time frame for real world implementation. Using the same Kentucky based pipeline network,
we altogether tested our heuristic on 10 different localization sets consisting of up to 37
edges (i.e., components). The largest of these represents the biggest reasonable size that can
be assigned to a repair vehicle crew given the scale of the network. Computational results
show that high quality solutions can be obtained using the SNEP heuristic for 2 and 3 sUAS.
Table 5 shows our results using 2 sUAS. The results for 3 sUAS are included in Appendix
B. The localization sets are listed in ascending order based on the number of edges with the
5 localization sets used in our scenario highlighted in grey. The overall average optimality
gap was 0.78%. All of our problem instances were solved on a computer with a 2 GHz Intel
Core i7 processor and 8 GB of RAM.

Table 5: Comparison of SNEP exact solutions with heuristic solutions for 2 sUAS

Localization Set MIP Heuristic Optimality
Nodes Edges Obj Time (sec) Obj Time (sec) Gap

5 6 0.209 0.02 0.209 0.013 0%
11 10 0.413 0.41 0.413 0.042 0%
16 16 0.635 33 0.635 0.093 0%
18 17 0.869 10 0.869 1.115 0%
15 18 0.857 94 0.857 0.077 0%
16 20 1.464 7742 1.464 1.208 0%
17 22 0.745∗ 100000 0.745 0.157 0%∗

22 29 1.582∗ 100000 1.611 0.271 2%∗

31 33 0.882 10354 0.882 0.608 0%
36 37 1.291∗ 100000 1.369 0.715 6%∗

∗ Figures based on the best incumbent MIP objective value found in 100000 sec limit.

6.2 RVRP Results

Using the SNEP solutions for our 5 localization set scenario, we also show the results of the
RVRP, using different values for θ and ns. Note that we can use the SNEP solutions as inputs
for the RVRP only because we assumed the same number of homogeneous sUAS for each
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repair vehicle. For each problem instance, we consider two yards, s1 and s2, two sUAS for
each repair vehicle, and a repair time, τrepair,k, of 10 minutes for k = 1, . . . ,5. For simplicity,
we assume the temporary base set up time is negligible. For the repair vehicle travel time,
Γ , we divide Euclidean distances between each pair of locations (k, l) in the set Y ∪B by
the average vehicle speed.

Recall that earlier in Section 4 we considered a simple scenario where we set θ =
(1,1,1,1,1) for L1, . . . ,L5. We now consider an alternative scenario where θ=(1,5,1,1,3)
meaning that localization set L2 (resp. L5) was activated 5 hours (resp. 3 hours) prior to
t0. With all else equal, this results in an increase in priority to visit these localization sets
earlier. Larger values of θ may arise due to the unavailability of repair vehicles or crews as
discussed in Section 4. For each scenario, we also consider the availability of 1 to 2 repair
vehicles at each yard to assess the impacts of initial repair vehicle placement (i.e., spatial
positioning) on the RVRP solution. Table 6 shows the resulting optimal values for tworst and
repair vehicle routes for each scenario.

Table 6: Comparison of RVRP solutions

Time Since Alert Repair Vehicles Obj RVRP
θ Yard 1 Yard 2 tworst Solution

(1,1,1,1,1) 1 2 5.87 (s1,b4,s1),
(s2,b5,b1,s2), (s2,b2,b3,s2)

(1,1,1,1,1) 2 2 5.05 (s1,b4,s1),(s1,b3,s1)
(s2,b5,s2),(s2,b1,b2,s2)

(1,1,1,1,1) 2 1 7.40 (s1,b5,s1),(s1,b4,s1)
(s2,b1,b2,b3,s2)

(1,5,1,1,3) 1 2 7.52 (s1,b4,s1),
(s2,b5,b3,s2),(s2,b2,b1,s2)

(1,5,1,1,3) 2 2 7.52 (s1,b4,s1), (s1,b3,s1)
(s2,b2,s2),(s2,b1,b5,s2)

(1,5,1,1,3) 2 1 8.03 (s1,b5,s1),(s1,b4,s1)
(s2,b2,b1,b3,s2)

Fig. 19 shows the optimal solution for the RVRP considering the scenario θ =(1,5,1,1,3)
with 1 repair vehicle at Yard 1, and 2 vehicles at Yard 2. As anticipated, b2 and b5 are visited
first by the repair vehicles originating from yard s2. Surprisingly, the optimal solution sends
one of these repair vehicles along the longer route (s2,b5,b3,s2). This is due to the longer
sUAS exploration time required for L2. Since the sUAS take more time to explore L2, the
repair vehicle which visits L2 compensates by traveling to the closer localization set L1,
thus resulting in the shorter repair vehicle route (s2,b2,b1,s2). This implies that the other
repair vehicle is left to travel along a longer route. The tworst for this problem, is 7.52 hours.
When allocated an additional repair vehicle at Yard 1 (2 repair vehicles at both yards), tworst
remains at 7.52 hours. This is because for both cases, L2 overwhelmingly takes the longest
time from time of failure alert to repair. Indeed, 7.52 hours in this case represents a tight
lower bound for tworst regardless of repair vehicle allocation since L2 will always be visited
first and take the longest time.

Finally, we investigate the impact of repair vehicle spatial positions prior to dispatch.
Of the 5 localization sets, L4 is located near s1, and is farther from the rest of the local-
ization sets, which are clustered around s2. Therefore, the case where 2 repair vehicles are
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Fig. 19: Optimal RVRP solution for the case where the failure alert for localization set 2
(resp. 5) occurs 5 (resp. 3) hours prior to repair vehicle dispatch

at Yard 1 and only 1 is at Yard 2 represents an “unbalanced” situation. In this case, the
additional distance traveled by the repair vehicles increases tworst to 8.03 hours compared
to 7.53 hours. Although in general, the availability of repair vehicles are subject to numer-
ous factors (e.g., utilization rates), this indicates the importance of proper spatial allocation,
which we consider as part of our future work. In summary, our results provide insights in the
coupling between the SNEP and the RVRP, the interconnection between sUAS exploration
time and repair vehicle travel times, and the overall solution’s sensitivity to repair vehicle
spatial positioning and θ.

6.3 Stochastic Travel Times

Although we solved the SNEP using deterministic values for the travel times, the complexity
of real time navigation for sUAS warrants a stochastic model to account for environmental
factors (e.g., headwind versus tailwind), the need to circumvent restricted airspace (e.g., tem-
porary flight restrictions), and obstacle or terrain avoidance (e.g., manned aircraft or pow-
erlines). Ignoring the stochasticity of travel times could otherwise lead to over-optimistic or
infeasible solutions. This is especially pertinent for smaller UAS that cannot fully compen-
sate for atmospheric disturbances given their slower speeds and lower propulsion capacity
[8]. Obstacle avoidance as well as atmospheric turbulence prevalent at low altitudes could
also cause the sUAS to deviate from the expected travel time between any two locations
[34].

Based on the available a priori information with regards to the environment, we can
assume that the cruise speed, denoted as VC, is a random variable with a known probability
distribution. Specifically, we assume that VC is an independent and normally distributed
random variable. This assumption is relevant for low altitude flights, where unpredictable
winds prevent the use of even the simplest wind models [34]. Due to the lack of available
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sUAS flight data, we use mean cruise airspeed (VC), and the maximum allowable operating
speed (Vmax) from Table 2, resulting in the following model for VC, as described in [35].

VC ∼N (µ,σ2) =
1

σ
√

2π
e
(x−µ)2

2σ2 , µ =VC, σ =
Vmax−VC

3
(28)

Likewise, we also assume that the climb (resp. descent) rates are independent, normally
distributed variables, where the mean value is equal to the climb (resp. descent) rate from
Table 2, and the maximum climb (resp. descent) rate is 5 m/s (resp. -3 m/s), respectively,
based on empirical data from the first class of representative sUAS.

For each simulation, we determine τi j, between any two locations (i, j)∈V 2
k by dividing

the shortest path distance from i to j with VC. Recall that we do not necessarily impose
τi j = τ ji. We also incorporate the climb and descent rates into the stochastic travel time
based on the altitude change from i to j.

We now investigate the impacts of these stochastic travel times with notional topologies;
this allows us to assess the impact of not only the random travel times but also the network
topology in the overall SNEP solution. We focus on the tree and extended star topologies for
our representative localization sets. We select a binary tree with a height of 3, an extended
star consisting of 4 internal nodes with 3 degrees each, an extended star with 10 internal
nodes with 3 degrees each, and an extended star with with 17 internal nodes with 4 degrees
each. Fig. 20 shows the four representative localization sets, in the order of decreasing net-
work density for each localization set Lk, k ∈ J1,KK. We calculate the network density as
follows:

|Lk|
|Vk|(|Vk|−1)/2

(29)

Fig. 20: Representative topologies. Clockwise from top left: extended star (4 internal nodes
with 3 degrees each), binary tree (height of 3), extended star (10 internal nodes with 3 de-
grees each), and extended star (17 internal nodes with 4 degrees each). The network densities
for each are shown on the top right. The lower right has the lowest density measure
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For each chosen topology, we employ 2 of the first class of sUAS shown in Table 2 with
an endurance time of 30 minutes. We assume each edge has a distance of 1 km for simplicity,
and we normalize the distances so that the longest distance can be reached given the mean
cruise airspeed and endurance of the sUAS. Also, the sUAS travel along the edges of the
graph. For simplicity, we set the operating altitude to 120 m, equivalent to the maximum
allowable altitude for each monitoring location and 80 m for the base location, since we
assume that bk ∈ Vk. Finally, we assume that the sUAS can monitor adjacent components
(i.e., edges) incident to a monitoring location (i.e., node).

We employ Monte Carlo simulation to investigate the impacts of the proposed stochastic
travel times on the sUAS optimal exploration time, ξ ∗k . For each selected topology, we first
solve the SNEP using our heuristic, assuming deterministic values for τi j. Using the optimal
routes for each sUAS as a guide, we attempt to follow each prescribed route using the simu-
lated random travel times. This results in some incomplete routes, that is, the sUAS will not
be able to reach some of the monitoring locations towards the end of the route if the cumu-
lative travel times are longer than the endurance. Therefore, there is a likelihood of missing
some components in each localization set Lk, k ∈ J1,KK, depending on the composition of
the monitoring set C k

i for each missed monitoring location i ∈ Vk. We are concerned with
two measures of performance: first, the distribution of the sUAS optimal exploration times,
or ξk, for those sUAS flights that successfully observed all components, and second, the
number of missed components for a given sUAS endurance. Fig. 21 shows the histograms
showing the distribution of exploration times based on 1000 simulations.
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Fig. 21: Histograms showing the distribution of 1000 simulated sUAS exploration times on
select topologies
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We can now make a few key observations. First, we find that each histogram is best
approximated with a log-normal distribution, based on the Akaike Information Criterion
(AIC) compared to other distributions like the Gamma and Weibull. We also note that the
lognormal distribution’s shape parameter decreases as the network density decreases. Fur-
thermore, the histogram mean (respectively the mean of the associated log-normal distribu-
tion) is larger compared to the deterministic SNEP optimal value. The difference between
these two values grows as the network density decreases (with differences of 0.046, 0.018,
0.062, and 0.075). In general, given the same number of nodes (and therefore the same num-
ber of potential connections), a lower network density will lead to higher exploration time
values due to increased travel distances.

Next, we investigate the impact of sUAS endurance on the number of missed compo-
nents as a result of the simulated travel times. A network component e is missed if the sUAS
do not visit any of the monitoring locations in Vk(e). We used a benchmark endurance of
30 minutes to normalize the distances based on the first category of sUAS in Table 2. We
set the maximum distance to a node from the base to half of the endurance. Fig. 22 shows
the probability of missed components from 1000 simulations with different endurance val-
ues ranging from 30 minutes to 1 hour. By using these values, we can represent different
sUAS platforms to some extent. For each of the endurance values, we observe the number
of times a network component is missed. We note that the extended star with 4 internal
nodes resulted in very few missed components. This is a direct result of its topology, which
requires only half of the endurance to travel to the 3 internal nodes adjacent to the base and
back; by visiting the internal nodes, the sUAS can successfully observe all of the compo-
nents. As expected, with higher endurance values we observe a lower probability of missed
components. In general, we observe that topologies with lower network density measures
result in a higher probability of missed components. We also observe that endurance values
higher than 45 minutes result in virtually no missed components for each of the network
topologies shown. This suggests that class 2 and 3 sUAS from Table 2 with capable sensors
(larger monitoring sets) could satisfy mission requirements despite the uncertainty from the
external environment.

In summary, our computational study shows that our heuristic can provide high qual-
ity solutions for the SNEP within a time frame that meets operational requirements. Ac-
counting for stochasticity in travel times can significantly increase the overall sUAS optimal
exploration time. This suggests that the overall RVRP solution will likely incur even fur-
ther delays in practice. Moreover, in some situations, following the prescribed route from
the SNEP output can lead to missed network components depending on the endurance of
the sUAS platform. Thus, in real-world environments, proper choice of sUAS platform and
conservative route planning is needed to avoid costly setbacks from unidentified failures.
Still, sUAS-based inspection can lead to significant cost and time savings in comparison to
conventional, purely ground-based, operations.

7 Summary and Future Work

In this paper we provided an end-to-end operational framework to model an sUAS-based
inspection process in large-scale infrastructure networks. We introduced important features
of the sUAS platform and the operating environment in the development of MIP formu-
lations for the SNEP and RVRP, where the overall objective is to minimize the maximum
time elapsed from time of failure alert to time of repair, over all localization sets. Given
the significant solution time required for larger instances of the SNEP, we developed a scal-
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Fig. 22: Probability of missed network components from 1000 simulations given the
endurance

able heuristic based on the weighted set cover problem to limit the number of monitoring
locations to consider. We showed that our heuristic can achieve quality solutions for 2 and
3 sUAS within seconds. We also studied the effect of stochastic travel times on the SNEP
solution based on performance metrics such as distribution of sUAS exploration times and
probability of missed network components. Further study is required to assess how we might
reformulate our heuristic to provide robust SNEP solutions and to analyze the effects on the
RVRP solution.

One can also consider an adaptive model that can adjust to a dynamic operating en-
vironment. Indeed, unexpected changes in monitoring requirements, airspace restrictions,
communication strength, and obstacles in the operating environment can impact the sUAS
exploration times and performance. One approach could be to formulate the SNEP as a
Markov Decision Process to address dynamic travel times arising from these changes. This
could provide valuable insights to inform and support sUAS policy decisions to reduce sUAS
exploration time.

Another extension to this work could incorporate randomness in repair times for the
RVRP. As mentioned in Section 2, one can use data on the average age of the infrastructure,
or material type of network components in a localization set to build a statistical model to
estimate τrepair,k for each k ∈B. One can also consider using a criticality factor for each
localization set to determine the necessary repair time. This factor could be based on the
proximity to population centers or environmentally sensitive areas that would indicate higher
priority over others for faster repair. Finally, since we assume that repair time includes the
repair vehicle travel time to the exact failure location(s), one can also consider randomness
in this travel time (e.g., due to road obstructions).
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Appendix A Table of Notations

Table 7: Table of Notations.

Notation Definition
E Set of vulnerable network components, e ∈ E
θk Time since failure alert in Lk to t0
t0 Time of dispatch
Y Set of all yards, s ∈ Y
B Set of temporary bases
Lk Localization set
Vk Set of monitoring locations sUAS can visit where k ∈B
C k

i Subset of network components an sUAS can isolate from location i in Vk
bk Temporary base location at Lk
ξk sUAS exploration time of Lk

tworst RVRP objective value, the time elapsed from failure alert to time of repair
τrepair,k Time to repair the failure(s) in Lk

τbatt Time to replace the sUAS battery
R Altitude
u Number of sUAS in each repair vehicle
ns Number of repair vehicles at yard s

τmax sUAS endurance
τk

i j sUAS travel times for every pair of locations (i, j) ∈ V 2
k

T k sUAS Travel Time Matrix for Lk
Γ Repair Vehicle Travel Time Matrix
γkl The repair vehicle travel time from k to l in the set Y ∪B.
P Set of simple routes
p Simple Route
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Appendix B Results for 7 Localization Sets Using 3 sUAS

Table 8: Results of SNEP MIP exact solutions for 3 sUAS compared to heuristic. The as-
terisk indicates figures based on the best incumbent MIP objective value found in the given
time.

3 sUAS

Localization Set MIP Heuristic Optimality
No. Nodes Edges Obj Time (sec) Obj Time (sec) Gap
1 5 6 0.209 0.02 0.209 0.014 0%
2 11 10 0.413 2.04 0.413 0.022 0%
3 16 16 0.586 770 0.586 4.122 0%
4 18 17 0.706 34 0.706 0.187 0%
5 15 18 0.857 14851 0.857 0.099 0%
6 16 20 0.825 54 0.825 0.86 0%
7 17 22 0.745 36545 0.745 0.134 0%

Appendix C Explanation of Big-M Upper Bound for Constraint 13

b

i j

τbatt

τmaxτmax

0≤ tib ≤ ((|Vk|−1)τmax +(|Vk|−2)τbatt)xib

Fig. 23: Here |Vk| = 3. If xib = 0 then tib = 0. If xib = 1, then tib is at most 2 ×τmax and 1
×τbatt after having visited node j first
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