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Abstract This work focuses on the definition of satellite constellations6

whose secular relative distributions are invariant under the perturbation pro-7

duced by the Earth gravitational potential. This is done by defining the8

satellite distribution directly in the Earth Centered - Earth Fixed frame of9

reference and using the along-track time distances between satellites to define10

the satellite constellation configuration. In addition, in order to expand the11

possibilities of application of this design methodology, a general transformation12

between the formulations of Flower Constellations, Walker Constellations,13

and a relative to Earth formulation based on along-track and cross-14

track distances between satellites is obtained. This allows not only for15

a relation between these formulations, but also for the obtainment16

of the relative-to-Earth distribution of such constellations. Finally, an17

example of application of these methodologies is presented for a low Earth18

orbit.19

Keywords Satellite Constellation · Perturbed dynamics · Nominal design ·20

Mathematical models21

1 Introduction22

A large number of satellite missions require flying over the same regions of23

the Earth surface periodically for different purposes. One of the most common24
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examples is Earth observation satellites, but there are other uses, such as the25

ability to establish communications periodically with certain ground stations,26

or the study of defined regions of the planet surface that require regional cov-27

erage. All these applications are based on satellites that present a particular28

set of orbital elements related to a feature, the repeating ground-track condi-29

tion. This property can be easily modeled in a Keplerian formulation with a30

closed solution. However, if orbital perturbations are considered, the problem31

becomes more complex and transforms, what once was a simple formulation,32

into a problem that has no analytical solution.33

As a result, several methodologies have appeared over the years to solve this34

problem with different approaches. For instance, in Wagner’s (Wagner, 1991)35

work, a numerical method based on a semi-major axis correction is used to36

achieve the repeating ground-track property under the effect produced by the37

oblateness of the Earth (J2 perturbation). Another example, this time applied38

to satellite constellations, can be seen in the Flower Constellations (Mortari et39

al., 2004; Avendaño et al., 2012) where the repeating ground-track property40

under the effects of J2 is taken into account both in the nominal de-41

sign of the orbits and in their station keeping (Mortari et al., 2014;42

Casanova et al., 2014c; Arnas et al., 2016a).43

In this work, we focus on the nominal definition of repeating ground-44

track constellations, that is, constellations whose satellites have the repeat-45

ing ground-track property and, in addition, are required to share a common46

ground-track, that is, all satellites will describe the same trajectory from the47

Earth Centered - Earth Fixed frame of reference. To that end, we propose48

a constellation design model where the distribution of satellites is performed49

using the along-track distances in time between the satellites of the constel-50

lation. The methodology presented is based on the formulation provided by51

Arnas et al. (2017a, 2016b), a mathematical model to define satellite constel-52

lations that performs the definition of the constellation directly in the ECEF53

(Earth-Centered, Earth-Fixed) frame of reference using as distribution param-54

eters the along-track and cross-track distances between satellites. Using this55

relative to Earth formulation allows for a more natural definition56

of the constellation as related to Earth, and for the inclusion of57

the effects of orbital perturbations in the initial design of the con-58

stellation. In that sense, this formulation presents a different approach to59

satellite constellation design compared with Flower Constellations (Mortari et60

al., 2004) and its variants in Lattice (Avendaño et al., 2013; Davis et al., 2013)61

and Necklace (Arnas, 2018; Casanova et al., 2014a; Arnas et al., 2018, 2017b)62

formulations, Walker Constellations (Walker, 1984), Draim Elliptic Constella-63

tions (Draim, 1987), the Kinematically Regular Satellite Networks (Mozhaev,64

1973), the Streets of Coverage (Luders, 1961), or many others (Ulybyshev,65

2008; Lo, 1999; Beste, 1978; Ballard, 1980; Wook et al., 2018), where this66

definition is done in the inertial frame of reference.67

To that end, this manuscript introduces a modified formulation68

of the design model presented in Arnas et al. (2017a) to account69

for periodic perturbations such as the Earth gravitational poten-70
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tial. This is done by providing a distribution invariant that is used71

to define the nominal orbits of repeating ground-track constella-72

tions under the effect of such perturbations. Additionally, and in73

order to extend this property to other satellite distribution, a gen-74

eral transformation of this formulation with other known satellite75

constellation designs is provided.76

This work is presented as follows. First, we summarize the set of satel-77

lite constellation formulations that are used in this work, namely,78

Walker Constellations, Flower Constellations, 2D Lattice Flower79

Constellations, 2D Necklace Flower Constellations and a relative80

to Earth satellite distribution. Second, we introduce a methodology81

based on the formulation from Arnas et al. (2016b) to define con-82

stellations whose satellites share their relative trajectories under the83

perturbation produced by the Earth gravitational potential. Third,84

we propose a one to one transformation between the formulations defined by85

Flower Constellations and Walker Constellations (the most used satellite86

constellation design to this date), and the ones defined in this work for the87

cases of repeating ground-track constellations. This is done in order to show88

the relation between these formulations and to extend the properties of this89

model to other satellite constellation designs. Fourth, we present an example90

of an application of this constellation design methodology for a low Earth91

orbit and study the maintenance of the defined distribution in the long term92

under the perturbation produced by the Earth gravitational potential.93

2 Preliminaries94

In this section we present a summary of the satellite constellation95

design formulations that are used in this work. In particular, we deal96

with the formulations of Walker Constellations, 2D Lattice Flower97

Constellations, 2D Necklace Flower Constellations and a satellite98

distribution based on the along-track time distance between the99

satellites of the constellation.100

2.1 Walker Constellations101

Walker-Delta Constellations (Walker, 1984) are the most well-known satellite102

constellation design in the literature. They are based on the idea of distribut-103

ing satellites evenly in a set of equally spaced inertial circular orbits. In this104

constellation design, all satellites share the nominal values of semi-major axis105

and inclination. Walker Constellations are defined by the following notation,106

i : t/p/f , being i the inclination of the orbits, t the total number of satellites,107

p the number of orbital planes of the constellation, and f ∈ {0, . . . , p − 1} a108

phase parameter that defines the shifting of the distribution in true anomaly109

from adjacent orbital planes. Particularly, in a Walker Constellation,110
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the right ascension of the ascending node and the mean anomaly111

follow this distribution:112

∆Ωij = 2π
(i − 1)

p
,

∆Mij = 2π
p

t
(j − 1) + 2π

f

t
(i − 1) , (1)

where ∆Ωij and ∆Mij are the right ascension of the ascending node113

and the mean anomaly of the satellites of the constellation with114

respect to a reference satellite, and i and j name the satellite in115

orbit i, and position j in that orbit.116

2.2 Flower Constellations117

Flower Constellations (Mortari et al., 2004) is a constellation design methodol-118

ogy that is based on the idea of distributing satellites over a unique space-track119

in a given reference system. In that sense, they present several similarities with120

Arnas et al. (2017a) since both deal with the same problem. However, there121

are two important differences between them. First, Flower Constellations are122

defined using classical variables (the mean anomaly and the right ascension123

of the ascending node of the satellites) while Arnas et al. (2017a) uses124

along-track and cross-track time distances between satellites. Second, the re-125

sultant distributions generated by Flower Constellations present a set of dis-126

tribution patterns that are repeated through the space-track, while the other127

formulation does not impose any restriction in the definition of the along-track128

distribution.129

In the same way as Walker Constellations, a Flower Constellation is charac-130

terized for having all satellites with the same value of semi-major axis, eccen-131

tricity, inclination and argument of perigee, however, they are not limited132

to only circular orbits as in the case of Walker Constellations. In133

a Flower Constellation, the right ascension of the ascending node and the134

mean anomaly follow this distribution:135

∆Ωg = −2π
Fn

Fd
(g − 1) mod (2π),

∆Mg = 2π
FnNp + FdFh(g)

FdNd
(g − 1) mod (2π), (2)

where g ∈ {1, 2, . . .} with g ≤ FdNdNp names each satellite of the constella-136

tion, Fd is the number of orbits of the constellation, Fn ∈ {0, 1, . . . , Fd − 1}137

with gcd(Fn, Fd) = 1 is an integer parameter that can be freely chosen, and138

Fh(g) ∈ {0, 1, . . . , Nd − 1} is the phasing parameter, which can be changed for139

each satellite of the constellation.140
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2.3 2D Lattice Flower Constellations141

2D Lattice Flower Constellations (Avendaño et al., 2013) is a general method-142

ology to generate completely uniform distributions using as a base the143

Flower Constellation Theory. This means that the constellation configu-144

ration is the same no matter the satellite selected as the reference. In general,145

2D Lattice Flower Constellations distribute satellites in different space-tracks146

(contrary to what happened in the original Flower Constellations where all147

satellites where located in a common space-track) containing an equal148

number of satellites. In a 2D Lattice Flower Constellation, satellites share the149

same semi-major axis, eccentricity, inclination and argument of perigee, while150

their right ascension of the ascending node and mean anomaly follow this151

distribution:152

∆Ωij =
2π

LΩ
(i − 1) mod (2π),

∆Mij =
2π

LM
(j − 1) − 2π

LM

LMΩ

LΩ
(i − 1) mod (2π), (3)

where LΩ is the number of orbits of the constellation, LM is the number of153

satellites per orbit, and i ∈ {1, . . . , LΩ} and j ∈ {1, . . . , LM} name each satel-154

lite of the constellation. Finally, LMΩ ∈ {0, 1, . . . , LΩ − 1} is the combination155

number, an integer parameter that allows to shift the distribution between156

different orbital planes. As it can be seen from Eqs. (1) and (3), Walker Con-157

stellations constitute a particularization for circular orbits of the more general158

2D Lattice Flower Constellations.159

2.4 2D Necklace Flower Constellations160

2D Necklace Flower Constellations (Arnas et al., 2018) are based on the idea161

of generating a fictitious constellation based on the 2D Lattice Flower Con-162

stellations formulation, which is a completely uniform distribution, and then163

select, from the set of available positions already defined, the subset of satel-164

lites that fulfills a series of mission requirements. When dealing with uniform165

distributions, 2D Necklace Flower Constellations are related to 2D Lattice166

Flower Constellations through:167

(i − 1) = GΩ − 1 mod (LΩ),
(j − 1) = GM − 1 + SMΩ(GΩ − 1) mod (LM ), (4)

where GΩ and GM represent the necklaces in the right ascension of the as-168

cending node and the mean anomaly respectively, and SMΩ is the shifting169

parameter that relates the movement of the necklace in the mean anomaly170

with the orbital plane considered. Under this definition, GΩ is a subset from171

GΩ ∈ {1, 2, . . . , LΩ} which represents a subset of orbital planes selected from172

the complete lattice configuration. In a similar manner, GM is a subset of el-173

ements from GM ∈ {1, 2, . . . , LM} and represents a subset of positions from174
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the set of available positions in each orbit. This means that the formulation is175

able to define directly which are the actual occupied positions in the constel-176

lation without requiring to define all the positions from the complete lattice.177

In addition, and if a complete uniform distribution is required, the shifting178

parameter has to fulfill the following relation (Arnas et al., 2018):179

Sym(GM ) | SMΩLΩ − LMΩ , (5)

which reads Sym(GM ) divides (SMΩLΩ −LMΩ); where Sym(GM ) is the sym-180

metry of the necklace in the mean anomaly, that is, the minimum number of181

rotations that the necklace has to perform in the available positions to gener-182

ate the same distribution. For instance, the necklace GM = {1, 3, 5} ∈ N6 has183

Sym(GM ) = 2 since GM = {1, 3, 5} ≡ {3, 5, 7} mod (6).184

2.5 Relative to Earth satellite distribution185

We define repeating ground-track constellations as the constella-186

tions whose satellites share a set of defined repeating ground-tracks.187

In order to achieve this condition, the dynamic of satellites must fulfill a com-188

patibility relation with the rotation of the Earth given by:189

Tc = NpTΩ = NdTΩG, (6)

where Tc is the period of the repeating cycle, TΩ is the nodal period of the190

orbit, TΩG is the nodal period of Greenwich, Np is the number of orbital rev-191

olutions of the satellite to cycle repetition, and Nd is the number of days to192

cycle repetition. Note that Np and Nd are coprime numbers to avoid duplicate193

definitions of the same configurations using Eq. (6) (Avendaño et al., 2012).194

In general, this condition is applied individually for each satellite of the con-195

stellation obtaining a repeating ground-track constellation. However, in this196

work we approach this problem from a different prespective using197

the formulation seen in Arnas et al. (2016b). This new approach198

is based on including the periodic orbital perturbations directly on199

the nominal design of the constellation.200

Arnas et al. (2017a) proposes a satellite constellation design based on the201

idea of defining a series of space-tracks (or relative trajectories) where all the202

satellites of the constellation are located. The particularity of this formulation203

is that the distribution is defined based on the along-track time distances and204

cross-track separation between satellites. That way, and for a non-perturbed205

dynamical model, the distribution of the constellation can be defined by:206

∆Ωkq = ∆Ωk − ω⊕(tkq − t0),
∆Mkq = n(tkq − t0), (7)

where the parameters (k, q) relate to a given spacecraft in the space-track k207

and position q in that space-track; ∆Ωkq and ∆Mkq are the right ascension of208

the ascending node and the mean anomaly of the satellites of the constellation209
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with respect to a given reference; ∆Ωk is the cross-track angular distance of210

the space-tracks with respect to the reference, ω⊕ is the spin rate of the Earth,211

n is the mean motion of the satellites, and (tkq − t0) is the along-track time212

distance of each satellite with respect to a reference. On the other hand, the213

values of the semi-major axis a, eccentricity e, inclination i and argument of214

perigee ω are shared by all the satellites of the constellation.215

Additionally, and when dealing with repeating ground-track orbits, it is216

possible to relate the dynamics of satellites with the movement of the Earth217

using Eq. (6):218

Tc = Np
2π

n
= Nd

2π

ω⊕
, (8)

which can be introduced in Eq. (7) to obtain the following expression:219

∆Ωkq = ∆Ωk − 2πNd
(tkq − t0)

Tc
,

∆Mkq = 2πNp
(tkq − t0)

Tc
, (9)

where (tkq − t0) ∈ [0, Tc). Note that now Tc is the parameter that defines220

the general dynamic of the constellation. This expression can define any con-221

stellation distribution where all satellites have the same repetition cycle Tc.222

Moreover, it is interesting to study also the case where all satellites of the con-223

stellation share the same ground-track, that is, k = 1. For those cases, Eq. (9)224

can be simplified into:225

∆Ωq = −2πNd
(tq − t0)

Tc
,

∆Mq = 2πNp
(tq − t0)

Tc
, (10)

where we have changed the sub-indexes to q in order to make it clear that only226

one ground-track is considered for the distribution. Furthermore, if a uniform227

distribution of satellites is required along the ground-track, we can define the228

constellation by means of a distribution parameter q ∈ {1, . . . , Nst} where229

Nst is the number of satellites of the constellation. That way, and since the230

distribution is uniform, the along-track configuration can be defined by:231

tq − t0 =
(q − 1)

Nst
Tc, (11)

which introduced in Eq. (10) leads to:232

∆Ωq = −2πNd
(q − 1)

Nst
,

∆Mq = 2πNp
(q − 1)

Nst
, (12)

where q names each satellite of the constellation. Note that although233

Eq. (12) is a general formulation that allows to generate satellite dis-234

tributions based on a common ground-track, this kind of distribution235

can be obtained with many other formulations.236
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3 Designing repeating ground-track constellations237

In Section 2 we summarized the formulations of some well known238

satellite constellation design models under a non-perturbed model.239

The idea of this section is to develop a mathematical model which240

includes the Earth gravitational potential in its formulation, iden-241

tifying an invariant in the distribution under such perturbation. In242

order to do that, we first study the evolution of the system under243

the Earth gravitational potential, and from it, we propose a modified244

satellite constellation definition based on the formulation presented245

in Eq. (12) and evaluate its long term dynamic.246

3.1 Perturbed dynamic247

When orbital perturbations are considered, it is useful to take their effects into248

account when performing the nominal distribution of the constellation.249

In particular, Eq. (9) can be written in terms of the nodal periods. Using250

the relations presented in Eqs. (6) and (8) the following expression can be251

obtained:252

∆Ωkq = ∆Ωk − 2π

TΩG
(tkq − t0),

∆Mkq =
2π

TΩ
(tkq − t0), (13)

which relates the distribution to the nodal periods associated with the con-253

stellation. However, due to orbital perturbations, the reference position where254

the mean anomaly is defined, the perigee of the orbit, can change, and thus,255

this effect must be taken into account. In order to overcome this difficulty, the256

constellation is defined related to the Earth Equator, instead of the apogee of257

the orbits, that is:258

∆Ωkq = ∆Ωk − 2π

TΩG
(tkq − t0),

∆χkq = ∆Mkq + ∆ωkq =
2π

TΩ
(tkq − t0) + ∆ωkq, (14)

where we define ∆χkq = ∆Mkq + ∆ωkq as the mean argument of latitude259

of each satellite with respect to a given reference. It is important to note260

that, for a repeating ground-track constellation, if no orbital perturbations are261

considered, every satellite must have the same argument of perigee, and thus,262

∆ωkq = 0. Equation (14) represents a generalization of Eq. (7) for repeating263

ground-track constellations under orbital perturbations since it only depends264

on the resultant dynamic with respect to the movement of the Earth.265

Moreover, the nodal period of the orbit (TΩ) and the nodal period of266

Greenwich (TΩG) are also affected by orbital perturbations, transforming the267
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relation showed in Eq. (8) into:268

Tc = Np
2π

nkq + Ṁo
kq + ω̇kq

= Nd
2π

ω⊕ − Ω̇kq

, (15)

where nkq is the mean motion, Ṁo
kq is the secular variation of the mean ar-269

gument with respect to the mean motion, ω̇kq is the secular variation of the270

argument of perigee, and Ω̇kq is the secular variation of the right ascension of271

the ascending node of each of the satellites of the constellation. By introducing272

the perturbed values of the nodal periods into Eq. (14), we obtain:273

∆Ωkq = ∆Ωk − ω⊕(tkq − t0) + Ω̇kq(tkq − t0),

∆χkq = nkq(tkq − t0) + (Ṁo
kq + ω̇kq)(tkq − t0), (16)

which clearly shows that the distribution must take into account the rotation274

of the orbits in their orbital planes and also the drift that the orbital planes275

experience from the reference time in order to maintain the sharing of the276

ground-tracks of the constellation. Moreover, if the relations from Eq. (15)277

are used in Eq. (16), we can derive the following distribution under orbital278

perturbations:279

∆Ωkq = ∆Ωk − 2πNd
(tkq − t0)

Tc
,

∆χkq = 2πNp
(tkq − t0)

Tc
, (17)

which is equivalent as the one obtained in Eq. (9). This implies that the along-280

track distribution can be maintained from the non-perturbed definition to the281

nominal distribution under orbital perturbations. The same can be said for282

Eq. (10), as it is a particular case of application. Note that the inertial distri-283

bution must change when dealing with a perturbed model since Tc depends284

on the orbital perturbations considered.285

3.2 Constellation definition286

Equation (16) would lead, in general, to a difficult process in order to obtain287

compatible constellations that fulfill the distribution under orbital perturba-288

tions. This is due to the fact that the secular variation of the orbital elements289

depends on the initial position of each satellite. However, there is an alter-290

native approach to solve this problem when dealing with the perturbations291

produced by the Earth gravitational potential, which is the case when defin-292

ing the nominal orbits of a constellation. In particular, we know that from the293

ECEF frame of reference, the gravitational field of the Earth can be approx-294

imated as independent with time. This means that the dynamic of satellites295

only depends on the trajectories that they follow in this reference system,296

and not on the moment when they fly over these trajectories. In other words,297
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Ω̇kq = Ω̇k, nkq = nk, Ṁo
kq = Ṁo

k and ω̇kq = ω̇k. Therefore, Eq. (16) can be298

rewritten in terms of the different space tracks in the ECEF frame of reference:299

∆Ωkq = ∆Ωk − ω⊕(tkq − t0) + Ω̇k(tkq − t0),

∆χkq = nk(tkq − t0) + (Ṁo
k + ω̇k)(tkq − t0), (18)

where the sub-indexes in k relate to each space-track of the constellation. Thus,300

a set of satellites that share a particular space-track from the ECEF frame of301

reference (even if it is not closed), and under the Earth gravitational potential,302

will continue to share their space-track over the course of their orbits. This303

property is used in here in combination with the formulation presented in304

Section 2.5 to perform the nominal definition of the constellation.305

That way, if we focus on a particular space-track of the constellation, we306

can define a leading satellite (which is not required to be a real satellite of the307

constellation) and use it to define a space-track related to the ECEF frame of308

reference for a given time interval. This is done by performing a propagation of309

this satellite under the Earth gravitational potential. Then, taking any point310

defined during this propagation in the ECEF frame of reference and assigning311

it to a satellite of the constellation leads to a distribution whose satellites share312

the same space-track over time. In other words, the distribution of satellites313

in the constellation follow these relations (Arnas et al., 2016b):314

xq(t0) = xls(tq),
vq(t0) = vls(tq), (19)

where xq(t0) and vq(t0) are the position and velocity of satellite q in the315

ECEF frame of reference at the initial time (t0), while xls(tq) and vls(tq)316

are the position and velocity in the ECEF of the leading satellite for that317

space-track at time tq. This process is then continued by defining a leading318

satellite for each space-track of the constellation and generating the satellite319

distribution related to it following the same methodology.320

Thus, the mean evolution of the right ascension of the ascending321

node and the mean argument of latitude for the leading satellite in322

time tkq, when considering repeating ground-track orbits, is provided323

by:324

Ωls(tkq) = Ωls(t0) + Ω̇ls(tkq − t0),

χls(tkq) = χls(t0) + nls(tkq − t0) + (Ṁo
ls + ω̇ls)(tkq − t0), (20)

where the sub-index ls relate to the leading satellite of each space-track. Equa-325

tion (20) represents the same distribution as the one defined in Eq. (18) except326

for a rotation in the right ascension of the ascending node corresponding to327

the difference in the spin rates of the ECEF and inertial frames of reference.328

Therefore, each leading satellite is able to define the positions of all satel-329

lites that share its space-track under the perturbation produced by the Earth330

gravitational potential.331
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3.3 Evolution of the distribution332

Now, we will study the evolution of this kind of distribution under the Earth333

gravitational potential. To that end, we compare the dynamic of a leading334

satellite with one of the satellites of the constellation that is located in the335

same relative to Earth trajectory at an along-track distance of tq. Let tf be336

a given general instant in which the satellite distribution is studied. At that337

time, the leading satellite will have the following secular orbital elements:338

Ωls(tf ) = Ωls(t0) + Ω̇ls(tf − t0),

χls(tf ) = χls(t0) + nls(tf − t0) + (Ṁo
ls + ω̇ls)(tf − t0), (21)

On the other hand, the evolution of the secular values of the orbital elements339

for the second satellite (q) can be obtained through:340

Ωq(tf ) = Ωq(t0) + Ω̇ls(tf − t0),

χq(tf ) = χq(t0) + nls(tf − t0) + (Ṁo
ls + ω̇ls)(tf − t0), (22)

which compared to the evolution of the leading satellite leads to:341

∆Ωq(tf ) = Ωq(tf ) − Ωls(tf ) = Ωq(t0) − Ωls(t0) = ∆Ωq(t0),
∆χq(tf ) = χq(tf ) − χls(tf ) = χq(t0) − χls(t0) = ∆χq(t0). (23)

This means that the distribution of the constellation is maintained regarding342

its secular values.343

Therefore, by following the satellite distribution provided by:344

∆Ωkq = ∆Ωk − 2π

TΩG
(tkq − t0),

∆χkq = ∆ωkq +
2π

TΩ
(tkq − t0), (24)

it is possible to perform the nominal definition of a repeating ground-track345

constellation under the perturbation produced by the Earth gravitational po-346

tential. Moreover, this methodology shows that using a constellation definition347

from the ECEF frame of reference provides important advantages when dealing348

with the nominal design of the orbits under such perturbations. In particu-349

lar, it allows to include the effects of the gravitational potential of the Earth350

directly in the nominal definition of the constellation; and it provides a very351

simple methodology to distribute satellites under this dynamic. Note also that352

the process introduced in this section can be applied to the definition of con-353

stellations around any celestial body that presents a gravitational field that354

can be considered as time invariant in a given reference frame.355
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3.4 Constellation definition by a series expansion356

In previous subsections, we have dealt with a study of the evolution of satellite357

distributions over time by taking into account the secular variations of the358

orbital variables. However, it is also possible to reach the same conclusions359

by taking into account the complete series expansion of the orbital variables360

considered. That way, we can rewrite Eq. (18) by including the complete series361

expansion of the orbital variables of the satellite distribution under the Earth362

gravitational potential:363

∆Ωkq = ∆Ωk − ω⊕(tkq − t0) +
∞∑

i=1

1
i!

diΩk

dti
(tkq − t0)i

∆χkq = nk(tkq − t0) + (Ṁo
k + ω̇k)(tkq − t0) +

+
∞∑

i=2

1
i!

[
di−1nk

dti−1 +
di(Mo

k + ωk)
dti

]
(tkq − t0)i, (25)

and then, relate them with the dynamic of a leading satellite of the constella-364

tion as done in Eq. (20):365

Ωls(tkq) = Ωls(t0) +
∞∑

i=1

1
i!

diΩls

dti
(tkq − t0)i

χls(tkq) = χls(t0) + nls(tkq − t0) + (Ṁo
ls + ω̇ls)(tkq − t0) +

+
∞∑

i=2

1
i!

[
di−1nk

dti−1 +
di(Mo

ls + ωls)
dti

]
(tkq − t0)i, (26)

which leads to the following expressions:366

∆Ωkq + ω⊕(tkq − t0) − ∆Ωk = Ωls(tkq) − Ωls(t0) =
∞∑

i=1

1
i!

diΩls

dti
(tkq − t0)i

∆χkq = χls(tkq) − χls(t0) = nls(tkq − t0) + (Ṁo
ls + ω̇ls)(tkq − t0) +

+
∞∑

i=2

1
i!

[
di−1nk

dti−1 +
di(Mo

ls + ωls)
dti

]
(tkq − t0)i. (27)

This represents an equivalent constellation distribution based solely on the367

trajectory defined by the leading satellite in its dynamic under the Earth368

gravitational potential. In particular, we can reorder the expression to obtain:369

∆Ωkq = ∆Ωk − ω⊕(tkq − t0) +
∞∑

i=1

1
i!

diΩls

dti
(tkq − t0)i

∆χkq = nls(tkq − t0) + (Ṁo
ls + ω̇ls)(tkq − t0) +

+
∞∑

i=2

1
i!

[
di−1nls

dti−1 +
di(Mo

ls + ωls)
dti

]
(tkq − t0)i, (28)
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which is equivalent to Eq. (25) since the perturbation considered only depends370

on the position of satellites in the ECEF frame of reference. This allows also371

to obtain the instantaneous values of the orbital distribution at any instant372

by means of the perturbed orbit of the leading satellite.373

4 From Flower Constellations to relative to Earth distributions374

In this section we deal with the problem of transforming distributions which375

are based on the Flower Constellation Theory (ECI - defined) into the for-376

mulation provided by Eq. (12) (ECEF - defined). This has two objectives.377

First, to provide a one to one correspondence between existing satellite con-378

stellation design formulations and the formulation used in this work for the379

case of repeating ground-track constellations. This allows, for instance, to ob-380

tain the revisiting times of the satellites of a constellation since the relative381

positions of the satellites in the ECEF frame of reference are known. Second,382

this transformation allows extending the properties under the Earth gravita-383

tional potential that the formulation presented in this work provides to other384

constellation definitions. In that sense, we select Flower Constellations as a385

reference design since they represent the generalization of the most common386

satellite constellation designs (Davis et al., 2012), particularly, they are387

a generalization of Walker Constellations (Walker, 1984), Dufour Constella-388

tions (Dufour, 2003) and Draim Constellations (Draim, 1987).389

The satellite constellation designs that are considered in this manuscript390

are the following: the Flower Constellations, the 2D Lattice Flower Constella-391

tions, the 2D Necklace Flower Constellations and the Walker-Delta Constel-392

lations. In that respect, this section focuses on constellations distributed in393

only one ground-track. This is done since the original Flower Constellation394

are limited to this kind of design, and also due to the fact that having all the395

satellites in a common ground-track is a very extended practice that is worth-396

while to study independently. To that end, the transformation and parameter397

conditions that these satellite constellation designs must meet are included.398

Note that Walker-Delta Constellations are a particularization of 2D Lattice399

Flower Constellations for circular orbits. However, we have also included this400

satellite constellation methodology in this work due to its importance in the401

literature.402

4.1 Flower Constellations403

We relate the distribution defined by Eq. (2) with a uniform distribution in404

the ECEF frame of reference, represented by Eq. (12) (note that Flower Con-405

stellations are distributed in only one ground-track). To that end, and since we406

want to consider all possible combinations of Flower Constellations, we define407

a number of possible positions distributed uniformly in a ground-track equal408
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to Nst = FdNdNp. That way, and equating Eqs. (2) and (12) we obtain:409

∆Ωg = ∆Ωq mod (2π),
∆Mg = ∆Mq mod (2π), (29)

which after some elemental operations (multiplying by NpFd/2π) leads to:410

(q − 1) = FnNp(g − 1) mod (NpFd),
(q − 1) = (FnNp + FdFh(g))(g − 1) mod (NpFd), (30)

which due to its modular character can be expressed as:411

(q − 1) = FnNp(g − 1) + AFdNp,

(q − 1) = (FnNp + FdFh(g))(g − 1) + BFdNd, (31)

where A and B are two unknown integers. By subtracting the two equations412

in Eq. (31) and performing some operations, we obtain:413

Fh(g)(g − 1) = ANp − BNd, (32)

which always has a solution for each possible combination of parameters, since414

Np and Nd are always relative prime between them (Mordell, 1969). That way,415

once A and B are determined and substituted them into Eq. (31), the relative416

positions (q) of all the satellites of the constellation are obtained. Then, using417

that result, the along-track distribution of the constellation is provided by418

Eq. (11), which could be used, for instance, to compute the revisiting time of419

the subsatellite points (points of intersection between the radio vector420

of each satellite and the Earth surface) of the constellation by the sole421

use of integer operations.422

4.2 2D Lattice Flower Constellations423

In general, 2D Lattice Flower Constellations generate distributions based on424

one or several different ground-tracks. As a first case of study, we focus on425

designing 2D Lattice Flower Constellations in such a way that all satellites426

share the same ground-track. This requires to impose some conditions in the427

distribution parameters: number of satellites per orbit (LM ), number of or-428

bits (LΩ) and combination number LMΩ. In particular, by equating the right429

ascension of ascending node from Eqs. (12) and (3) we obtain:430

−2πNd
(q − 1)

Nst
= 2π

(i − 1)
LΩ

+ 2πC, (33)

where C is an unknown integer resultant from the modular arithmetic intrinsic431

in the right ascension of the ascending node, and Nst = LΩLM since both432

constellations must present the same number of satellites. Then, after some433

simple operations, Eq. (33) leads to:434

LM (i − 1) + (LΩLM )C = −Nd(q − 1), (34)
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which is a Diophantine equation (Mordell, 1969) where a solution exists if and435

only if gcd(LM , LΩLM )|Nd, which reads gcd(LM , LΩLM ) divides Nd. This436

condition can be expressed in a simpler manner as LM |Nd, that is, the number437

of satellites per orbit LM must be a divisor of Nd. Condition LM |Nd imposes a438

constraint in the selection of the satellites per orbit of the constellation that is439

the result of the different possibilities that uniform configurations can present440

in their distribution over the nodes of an inertial orbit.441

On the other hand, in order for a given constellation to have all its satel-442

lites in the same ground-track, the constellation distribution must fulfill the443

following condition (Avendaño et al., 2013):444

Np∆Ωij + Nd∆Mij = 0 mod (2π) =⇒ Np∆Ωij + Nd∆Mij + 2πD = 0,
(35)

being D an unknown integer. Then, by substituting Eq. (3) into the previous445

expression, we obtain:446

2πNp
(i − 1)

LΩ
+ 2πNd

(
j − 1
LM

− LMΩ(i − 1)
LΩLM

)
+ 2πD = 0, (36)

which after some elemental operations leads to:447

NdLΩ(j − 1) + (LΩLM )D = −(NpLM − NdLMΩ)(i − 1), (37)

where, in order for the solution to exist, gcd(NdLΩ, LΩLM )|(NpLM−NdLMΩ).448

Taking into account that gcd(NdLΩ, LΩLM ) = LΩ gcd(Nd, LM ) and consider-449

ing that LM |Nd as previously stated, we conclude that gcd(NdLΩ, LΩLM ) =450

LΩLM . Consequently, and in order for a solution to exist, LΩLM must di-451

vide (NpLM − NdLMΩ). Thus, the value of the combination number LMΩ is452

a solution of the following Diophantine equation:453

NdLMΩ + (LΩLM )E = NpLM , (38)

being E an unknown integer. The solution of this Diophantine equation exists454

if and only if:455

gcd(Nd, LΩLM )|NpLM ⇐⇒ gcd
(

Nd

LM
, LΩ

)∣∣∣∣Np. (39)

Since gcd(Nd, Np) = 1 and LM |Nd, it can be concluded that gcd
(

Nd

LM
, LΩ

)
=456

1, which means that the number of orbits of the constellation (LΩ) has to457

be coprime with Nd/LM , which also implies that gcd(Nd, LΩLM ) = LM .458

Therefore, the possible values of the combination number LMΩ provided by459

Eq. (38) are:460

LMΩ(λ) = LMΩ(0)+λ
LΩLM

gcd(Nd, LΩLM )
= LMΩ(0)+λ

LΩLM

LM
= LMΩ(0)+λLΩ,

(40)
where λ is any integer number and LMΩ(0) is a particular solution of461

Eq. (38). As it can be seen, the value of LMΩ is unique, since the combination462
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numbers are defined such that LMΩ ∈ {0, 1, . . . , LΩ − 1} to avoid duplicities463

in the formulation (Arnas et al., 2018). Thus, all conditions that 2D Lattice464

Flower Constellations must fulfill in order to generate a repeating ground-track465

constellation are known:466

LM |Nd, gcd
(

Nd

LM
, LΩ

)
= 1, and (NdLMΩ − NpLM ) |LΩLM . (41)

Now, we plan to relate the resultant distribution with the configuration467

generated by Eq. (12). In that sense, since the distributions from both formu-468

lations are completely uniform, the number of available positions in the ECEF469

must be Nst = LΩLM , that is, the number of satellites of the 2D Lattice470

Flower Constellation. Then, by equating Eqs. (3) and (12) we obtain:471

2π

LM
(j − 1) − 2π

LM

LMΩ

LΩ
(i − 1) = 2πNp

(q − 1)
Nst

mod (2π), (42)

which after some elemental operations, and knowing that the number of satel-472

lites is Nst = LΩLM , leads to:473

Np(q − 1) = (j − 1)LΩ − (i − 1)LMΩ mod (LΩLM ), (43)

which can be also expressed as:474

Np(q − 1) + FLΩLM =
[
(j − 1)LΩ − (i − 1)LMΩ

]
, (44)

being F an unknown integer. Equation (44) is a Diophantine equation that475

allows to obtain the relative positions (q) of all the satellites of the constella-476

tion. Once the values of q are computed, it is possible to obtain the along-track477

distribution of the constellation using Eq. (11).478

Moreover, as a second case of study, we deal with constellation that are479

distributed in several ground-tracks. In this situation, there is no limitation in480

the selection of the constellation parameters LΩ, LM and LMΩ since the con-481

stellation is not constrained to a common ground-track, and a direct relation482

can be performed between Eqs. (3) and (7) to obtain:483

tkq − t0 =
Tc

Np

[
j − 1
LM

− LMΩ(i − 1)
LΩLM

]
mod (Tc),

∆Ωk = 2π

[(
1 − Nd

Np

LMΩ

LM

)
i − 1
LΩ

+
Nd

Np

j − 1
LM

]
mod (2π), (45)

which defines a more general transformation between 2D Lattice Flower Con-484

stellations and the formulation provided by Eq. (7).485
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4.3 2D Necklace Flower Constellations486

2D Necklace Flower Constellations are based on admissible locations de-487

fined by the 2D Lattice Flower Constellations formulation. This means488

that we have to apply the same conditions in LΩ, LM and LMΩ in order to ob-489

tain a constellation distributed in the same ground-track. On the other hand,490

the resultant along-track distribution of the constellation can be obtained by491

introducing Eq. (4) into Eq. (44):492

Np(q−1)+E (LΩLM ) =
[
(GM −1+SMΩ(GΩ −1))LΩ − (GΩ −1)LMΩ

]
, (46)

which is also a Diophantine equation where the value of q for each satellite of493

the constellation can be obtained. It is important to note that in this case, and494

since we have introduced necklaces in the formulation, we will only obtain a495

subset of all the possible values of q that could be generated with the fictitious496

constellation. In that sense, the values obtained in the transformation are497

related to the positions where the real satellites of the constellation are located,498

while the rest of the values of q that are not generated, correspond to empty499

locations of the configuration.500

4.4 Walker Constellations501

Since Walker Constellations are a subset of 2D Lattice Flower Constella-502

tions (Davis et al., 2012), we can benefit of that fact by first relating503

both formulations. In that sense, the number of satellites of the constellation504

is t = LΩLM , the number of orbital planes p = LΩ, and the number of satel-505

lites per orbit t/p = LM . Moreover, the distribution in right ascension of the506

ascending node and mean anomaly is obtained as follows:507

∆Ωij = 2π
(i − 1)

p
,

∆Mij = 2π
p

t
(j − 1) + 2π

f

t
(i − 1) , (47)

or if related with the notation from 2D Lattice Flower Constellations:508

∆Ωij =
2π

LΩ
(i − 1) ,

∆Mij =
2π

LM
(j − 1) +

2π

LM

f

LΩ
(i − 1) . (48)

By relating Eqs. (48) and (3), it is derived that LMΩ = −f mod (LΩ). More-509

over, since the limits in definition of the parameter f ∈ {0, . . . , p − 1} and510

LMΩ ∈ {0, . . . , LΩ − 1}, it can be concluded that LMΩ = p− 1− f . Therefore,511

a Walker-Delta Constellation can be defined unequivocally in terms of a 2D512

Lattice Flower Constellation. This also means that the conditions to generate513

a constellation whose satellites are located in the same ground-track is the514
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same as in the case of 2D Lattice Flower Constellations. The same applies to515

the transformation between Walker-Delta Constellations and the proposed516

formulation.517

5 Example of application518

In this section we propose an example of nominal design of a repeating ground-519

track constellation based on four Earth observation satellites in low Earth520

orbits (Nst = 4) that present the properties of repeating ground-track, sun-521

synchrony, and frozen condition in the eccentricity vector. These design522

properties are selected to provide a more stable set of conditions523

for Earth observation. For this example we assume that all the satellites of524

the constellation have the same payload, which is based on an optical sensor.525

This means that satellites will require the same local time at the ascending526

node to maintain the illumination conditions for all the constellation. In addi-527

tion, we consider that, due to payload requirements, each satellite must present528

a repeating ground-track cycle of 59 orbital revolutions (Np = 59) and four529

days (Nd = 4). Finally, and in order to improve the revisiting time of the530

constellation, a uniform distribution over the same ground-track is imposed531

(k = 1). Note that a non uniform distribution can be also chosen532

using the formulation provided by Eq. (24), however, we select a533

uniform distribution to also be able to relate to the different satel-534

lite constellation designs studied in this work.535

Table 1 Non-perturbed satellite distribution.

Sat. (k,q) 1,1 1,2 1,3 1,4
∆Ω [deg] 0.0 0.0 0.0 0.0
∆M [deg] 0.0 270.0 180.0 90.0
tkq [days] 0.0 1.0 2.0 3.0

The distribution sought can be directly achieved by a uniform distribution536

over the ground-track using Eq. (12):537

∆Ωq = −2πNd
(q − 1)

Nst
mod (2π) = −2π(q − 1) mod (2π),

∆Mq = 2πNp
(q − 1)

Nst
mod (2π) =

59
2

π(q − 1) mod (2π), (49)

which generates not only a unique ground-track for the constellation, but also538

a unique inertial orbit since Nd = Nst = 4. Table 1 shows the non-perturbed539

distribution of the constellation in the right ascension of the ascending node,540

the mean anomaly and the along-track time distance, where Sat. (k,q) relates541

to a given spacecraft in the space-track k and position q in that space-track.542

Note that tkq is also providing the revisiting time of each satellite of the543

constellation. On the other hand, the same distribution can be obtained by544
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means of the Flower Constellations formulation. In particular, and regarding545

the original Flower Constellations formulation, an equivalent distribution is546

obtained imposing Fd = Fn = 1, and Fh(g) = 0 ∀ g ∈ N. Using Eq. (2):547

∆Ωg = −2π
Fn

Fd
(g − 1) mod (2π) = −2π(g − 1) mod (2π),

∆Mg = 2π
FnNp + FdFh(g)

FdNd
(g − 1) mod (2π) =

59
2

π(g − 1) mod (2π), (50)

we can observe that both distributions are completely equivalent if we im-548

pose q = g. Additionally, and regarding 2D Lattice Flower Constellations, the549

equivalent distribution is obtained imposing LΩ = 1, LM = 4 and LMΩ = 0.550

That way, using Eq. (3):551

∆Ωij =
2π

LΩ
(i − 1) mod (2π) = 0 mod (2π),

∆Mij =
2π

LM
(j − 1) − 2π

LM

LMΩ

LΩ
(i − 1) mod (2π) =

π

2
(j − 1) mod (2π), (51)

where the relations between j ∈ {1, 2, 3, 4} and q ∈ {1, 2, 3, 4} are provided by552

Eq. (44):553

Np(q−1)+FLΩLM =
[
(j−1)LΩ−(i−1)LMΩ

]
=⇒ 59(q−1)+4F = (j−1),

(52)
obtaining j = 1 → q = 1, j = 2 → q = 4, j = 3 → q = 3 and j = 4 →554

q = 2. The same result is obtained when dealing with 2D Necklace Flower555

Constellations since all the positions of the constellation are occupied.556

Table 2 Initial positions and velocities of the constellation in the ECEF.

Sat. (k,q) x [km] y [km] z [km] vx [km/s] vy [km/s] vz [km/s]
1,1 5239.796 -129.887 4668.592 -4.968 -1.659 5.529
1,2 4607.737 1190.089 -5159.020 5.721 -0.472 5.001
1,3 -5251.862 127.935 -4663.414 4.959 1.658 -5.529
1,4 -4618.759 -1190.801 5156.713 -5.713 0.473 -5.000

However, we are more interested in defining the nominal design of this con-557

stellation under the Earth gravitational potential. In particular, we consider a558

gravitational potential of the Earth (NIMA, 2000) up to 4th order terms (in-559

cluding tesserals). Under these conditions, we first have to define the leading560

satellite of the constellation. In that sense, a numerical algorithm (in partic-561

ular the one proposed in Arnas (2018)) is used for the purpose of finding a562

repeating sun-synchronous frozen orbit under the gravitational model consid-563

ered in this study. Table 2 shows the initial position and velocity in the ECEF564

frame of reference of the leading satellite of the constellation (satellite 1, 1).565

Note that this satellite defines the nominal orbit for the whole constellation566

under the model of gravitational potential of the Earth considered, and also567

serves as a reference for the satellite distribution.568
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After the initial state of leading satellite is completely defined, we perform569

the satellite distribution using Eq. (11) and define the constellation based570

on the propagation of this leading satellite (see also Table 1 for the along-571

track distribution of the constellation). The initial state of the constellation572

is presented in Table 2 where the positions and velocities are defined in the573

ECEF frame of reference. On the other hand, Table 3 shows the distribution of574

the constellation in osculating elements. One important thing to note is that575

the inertial orbits of the satellites of the constellation are not exactly the same576

due to Eq. (16).577

Table 3 Osculating elements of the constellation for epoch (UTC Julian date) 21545.222.

Sat. (k,q) a [km] e [-] i [deg] Ω [deg] ω [deg] ν [deg]
1,1 7171.935 0.021 100.056 7.700 42.498 0.000
1,2 7166.682 0.020 99.678 3.828 311.799 359.987
1,3 7171.967 0.021 100.067 7.672 224.771 357.624
1,4 7166.697 0.020 99.686 3.824 129.712 2.153

Fig. 1 Ground-track of the constellation.

Figure 1 shows the ground-track of the constellation for a propagation of 4578

days. As it can be seen, all four satellites share the same ground-track, which is579

closed, achieving the ground-track property for the whole constellation. This580

state has been achieved even with the perturbation produced by the Earth581

gravitational potential, obtaining a repeating ground-track property that can582

be maintained for months (and for the perturbation considered) without or-583

bital maneuvers. In particular, a propagation of one year was performed using584

this configuration and an adaptable time step. Table 4 shows the position585

and velocity of the constellation after this propagation (column ”computed”).586
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Table 4 Final positions and velocities of the constellation in the ECEF after one year.

Computed
Position [km] Velocity [km/s]

Sat. (k,q) x y z vx vy vz

1,1 4508.88 1189.00 -5259.75 5.82 -0.44 4.88
1,2 -5334.07 111.27 -4560.09 4.85 1.66 -5.64
1,3 -4486.98 -1186.42 5257.85 -5.83 0.44 -4.88
1,4 5361.59 -105.54 4538.63 -4.83 -1.66 5.64

Theoretical
Position [km] Velocity [km/s]

Sat. (k,q) x y z vx vy vz

1,1 4508.88 1189.00 -5259.75 5.82 -0.44 4.88
1,2 -5334.00 111.26 -4560.18 4.85 1.66 -5.64
1,3 -4487.16 -1186.47 5257.68 -5.83 0.44 -4.88
1,4 5361.35 -105.51 4538.92 -4.83 -1.66 5.64

Moreover, in order to show the evolution of the relative distribution itself, an587

additional computation (column ”theoretical”) is done. This computation was588

performed by taking the values of position and velocity from the first satellite589

(1,1) after the one year propagation as the reference for the constellation, and590

performing the constellation distribution from them, that is, the positions and591

velocities of the this ”theoretical” constellation are computed using the dis-592

tribution defined by Eq. (11). As it can be seen, the difference between both593

results is minimal, being these differences a consequence of the error accumu-594

lation after one year of propagation of the constellation. It is important to595

emphasize that if other orbital perturbations are considered, the space-track596

of the constellation will change, and thus, orbital maneuvers will be required597

to be applied to correct that situation.598

6 Conclusion599

This work presents a methodology to perform the nominal design of repeat-600

ing ground-track constellations under the effect of the perturbation produced601

by the Earth gravitational potential. In particular, we provide a new602

mathematical formulation to define these systems, and analyze the603

long term dynamic of the resultant constellations. The general idea of604

this procedure is to define the constellation distribution directly in the ECEF605

frame of reference using the along-track and cross-track time distances between606

satellites. That way, it is possible to include the effects of these perturbations607

directly in the nominal definition of the constellation, being able to maintain608

the along-track distribution of the constellation during the dynamic of the sys-609

tem. This methodology is based on the definition of a set of leading satellites,610

one per each different space-track of the constellation, that are used in order611

to generate the set of perturbed space-tracks in which the satellite distribu-612

tion is defined. Following this procedure, these reference space-tracks allow to613

distribute satellites in such a way that the constellation along-track distribu-614
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tion is maintained under the perturbation produced by the Earth gravitational615

potential. In that sense, we show that some additional considerations616

have to be taken into account. In particular, the satellite distribu-617

tion must consider the combined effect of the mean anomaly and618

the variation of the argument of perigee in order to define a time619

invariant distribution under these orbital perturbations. Moreover,620

the secular variation of the right ascension of the ascending node621

and the mean anomaly of the leading satellite have to be included622

in the nominal distribution of the constellation.623

Additionally, a transformation between Flower Constellations (including624

Lattice and Necklace formulations), Walker Constellations, and and a relative625

to Earth formulation is introduced. This allows, for instance, to obtain the626

relative distribution in along-track and cross-track distances of Flower Con-627

stellations in the ECEF frame of reference. The most important application of628

these transformations is to be able to extend the interesting properties in the629

ECEF frame of reference of the formulation presented in this work to other630

satellite constellation designs. This means that, with these transformations,631

and following the design procedure presented, it is possible to define the nom-632

inal design of any Flower Constellation under the effect of the perturbation633

produced by the Earth gravitational potential. In that sense, Flower Constel-634

lations were selected since they represent a generalization of the most common635

satellite constellation designs currently in use. Moreover, this set of transfor-636

mations can be used to compute the revisiting times between the subsatellite637

points of repeating ground-track constellations by the sole use of integer oper-638

ations, since the along-track distribution is provided directly by the proposed639

mathematical formulation.640

Finally, an example of application for a LEO Earth observation641

constellation is presented, where we show how the distribution can642

be maintained using this methodology for long periods of time (more643

than a year) under a 4x4 model of the Earth gravitational potential.644

In this example we deal with sun-synchronous orbits that have the645

frozen eccentricity condition, since this is a wide-spread design for646

Earth observation missions, and show their relations with all the647

formulations used in this work.648
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