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Abstract At the present time, Wi-Fi networks are everywhere. They operate in
unlicensed radio-frequency spectrum bands (divided in channels), which are highly
congested. The purpose of this paper is to tackle the problem of channel assignment
in Wi-Fi networks. To this end, we have modeled the networks as multilayer graphs,
in a way that frequency channel assignment becomes a graph coloring problem.
For a high number and variety of scenarios, we have solved the problem with two
different automated negotiation techniques: a hill-climbing mediated negotiation
and a simulated annealing mediated negotiation. As an upper bound reference for
the performance of these two techniques, we have also solved the problem using
a particle swarm optimizer. Results show that the annealer negotiator behaves as
the best choice because it is able to obtain even better results than the particle
swarm optimizer in the most complex scenarios under study, with running times
one order of magnitude below. Moreover, we study how different properties of the
network layout affect to the performance gain that the annealer is able to obtain
with respect to the particle swarm optimizer. Finally, we show how the different
strategic behavior of the participants affects the results.

1 Introduction

In our current society everything is interconnected, with the Internet network
as the prime example. Internet ubiquity and popularity have grown impressively
in the last decades. Because of this, many of the current research problems can
be modeled as interconnected nodes, i.e. as networks. We can find real-world
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problems that can be modeled by networks in key strategic fields like trans-
portation (Ghavidelsyooki et al 2017), energy (Valori et al 2016), industrial pro-
cesses (Bernini et al 2016), medical disciplines like neurology (Fornito 2016) and
communication networks. This last domain is the one this paper focuses on.

More specifically, we are focused in communication networks where nodes have
an important feature: they are self-interested. We will compare two different fam-
ilies of methods to address this kind of problems: optimization techniques and
automated negotiation. The first family, optimization techniques, are well suited
to large-scale problems, as networked systems use to be. However, these techniques
fail when there are self-interested nodes that ignore the optimal solution taking
a decision that improves their performance or utility, but severely decreases the
total network performance. Thus, there is a number of works that are focused on
detecting self-interested nodes (Kumar et al 2016; Banchs et al 2016). The second
family, automated negotiation techniques, can reach solutions in a timely manner
and consider selfish nodes in their intrinsic behavior (Ren et al 2009) so nodes will
be less predisposed to deviate from the solutions given (in fact, they are usually
called agreements). Although automated negotiation techniques could be worth
to solve the type of problems we deal with in this paper, they have been barely
used to solve complex networked problems (De Jonge and Sierra 2015), as their
applications have been focused on designing tools for collaboration, e-commerce
or decision-making support (Fujita et al 2017). In this paper we show that auto-
mated negotiation also behaves as a very interesting tool to solve complex network
optimization problems where there are conflicts of interest.

The specific problem we tackle in this paper is channel assignment in Wireless
Local Area Networks (WLAN) operating in infrastructure mode, i.e. consisting in
access points (APs) and clients attached to those APs. This is a complex network
problem that includes selfish behavior as nodes are only interested in their per-
formance, not in the global performance of the whole network. Thus, the problem
consists of assigning the frequency channel to each AP of the network that mini-
mizes interferences and, therefore, maximizes the performance of their clients. As
there are interferences between channels and the number of APs to be assigned
with a channel is usually much higher than the total number of available channels,
this becomes a very complex problem.

This problem fits within other generic well-known research problems like FAP
(Frequency Assignment Problem) (Aardal et al 2007; FAP 2017) and the more
generic graph coloring problem (Jensen and Toft 2011; Tuza et al 2003), as fre-
quencies can be considered as colors. Regarding the graph coloring problem we
can emphasize the work (Malaguti and Toth 2010) where there is a survey of
the generic vertex coloring problem (VCP), whose objective is to assign a color
to each vertex using different colors on adjacent vertices and minimizing the to-
tal number of colors required (Orden et al 2018). In addition to this problem, in
(Malaguti and Toth 2010) it is also included a survey on other generalizations of
the VCP, like the Bandwidth Coloring Problem (BCP), where distance between
colors is taken into account forbidding those colorings where distance between two
connected vertices is below a certain value. Other works that consider distances
between colors are (Griggs et al 2009; Sharp 2007; Bodlaender et al 2000). All
these works considering distances between colors, i.e. including hard restrictions
in the graph coloring process, are different from our problem because they are
focused on minimizing the largest color assigned to the vertices, while in our prob-
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lem we have a predefined number of colors (the available spectrum band where
the technology is able to operate in) and we want to minimize interferences. The
main works in FAP can be found in the survey (Aardal et al 2007). Although
this survey is mainly devoted to channel assignment in cellular networks, military
applications or satellite communications, it also includes a brief mapping of the
channel assignment problem to WLAN networks. IEEE 802.11 networks (commer-
cially known as Wi-Fi networks) are the most widespread (and, from a practical
point of view, unique) WLAN networks. Although these networks can operate in
different unlicensed frequency bands, the most widely used is the 2.4 GHz band,
that contains 11 possible and partially overlapped channels (Gimenez-Guzman
et al in press). As they are partially overlapped, only three frequencies (the first,
the sixth and the eleventh channels) do not collide among them. For that reason
it is often considered a three-colors problem (Aardal et al 2007), although in this
work we consider the whole set of possible channels.

More closely related to our specific research are the works directly address-
ing channel assignment in Wi-Fi networks. It is interesting to highlight that the
number of works in this field is quite limited if we consider Wi-Fi impact in our
daily lives, as we are surrounded by a large and increasing number of Wi-Fi net-
works. This scarcity is probably due to the high complexity of the problem, being
NP-hard, as stated in (Chieochan et al 2010). It is precisely in (Chieochan et al
2010) where we can find a survey of channel assignment in Wi-Fi networks. It is
interesting to emphasize the works (Mishra et al 2005, 2006) as they are probably
the most similar works to ours, not only in terms of their scope (channel assign-
ment for Wi-Fi networks) but also in terms of the problem modelling (the Wi-Fi
network is modeled as a graph), although we focus on the use of nonlinear nego-
tiation techniques to solve this type of problems. In (McDiarmid and Reed 2000;
Narayanan 2002) authors also use graphs for channel assignment, but not specifi-
cally in Wi-Fi. Finally, in (Abusubaih et al 2007) authors propose a coordination
protocol for dynamic channel assignment in Wi-Fi networks.

In spite of all the above-mentioned works, the objective and contributions of
our proposal are different from them. Our first contribution is to model the Wi-
Fi infrastructure network as a multilayer graph composed by three layers. Our
second contribution, and probably the most prominent, is to show that nonlinear
negotiation techniques are powerful tools to assign channels to APs in comparison
to well-known centralized optimization techniques like a particle swarm optimizer.
Our third contribution consists of analyzing how graph properties, or network
layout in terms of topology, contribute to the performance gains that nonlinear
negotiation approaches offer. Our fourth contribution is the study of how the
different strategic behavior of the participants affects the results. A preliminary
and shorter version of this work was presented in (de La Hoz et al 2017), but
in this paper we make not only a more in-depth study of the problem, including
a more accurate multilayer model, but also a much more detailed experimental
evaluation and analysis section.

The rest of this paper is organized as follows. In Section 2 we describe the
graph-based problem model. Section 3 describes the negotiation scenario and ap-
proach. Section 4 includes the description of the performed experiments and a
discussion of the obtained results. Finally, the last section concludes the paper
summarizing our main contributions.
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2 System modelling

2.1 Wi-Fi networks

Wi-Fi technology is the most widespread technology to deploy wireless local area
networks. It is based on the family of IEEE 802.11 standards and it operates in
unlicensed frequency bands, with the 2.4 GHz frequency band as the most popular.
This band is divided into 11 partially overlapped channels (Ng and Szymanski
2012), although this number is dependent on the world region where the network
operates. Our focus is to choose the channel where each access point (AP) will
operate, and therefore, the channel where each wireless device (WD) will work, as
the channel used by a WD is the same than the one used by its associated AP.
This type of Wi-Fi architecture, the most widely deployed, is called infrastructure
mode, where we have two different types of nodes: APs and WDs/clients, being
examples in this last category devices like laptops, smartphones, TVs... From a
user’s point of view, the access point is usually a wireless router. Note that WDs
are able to communicate to each other only through their associated APs. The
decision of the channel used must aim to minimize interferences, and, therefore,
optimize network throughput.

In this paper we have chosen centrally managed Wi-Fi networks, i.e. we con-
sider that there is a wireless controller that is responsible of selecting the frequency
channel of the APs it has in charge, and also to collect information related to the
utility they are achieving. This type of networks, whose number is increasing (Baid
and Raychaudhuri 2015), represents not only the typical enterprise Wi-Fi environ-
ment, but also the increasing number of centrally managed home Wi-Fi networks,
where the Internet Service Provider (ISP) manages the APs remotely. In this set-
ting, the role of the mediator is assigned to an external device where the wireless
controllers are attached, typically using a wired network. Regarding the imple-
mentation of centrally managed schemes, in (Cisco 2007) Cisco presents a network
architecture that is able to perform it. Another prominent trend in networks is
their virtualization. In this sense, Software-Defined Networking (SDN) is a flexi-
ble alternative for the management of networks, including Wi-Fi networks. Using
SDN, the implementation of centrally managed techniques, once the channel as-
signment is known, is rather straightforward, as the SDN controller applies this
assignment through its Open Flow southbound API (Seyedebrahimi et al 2016).
In summary, all these facts will contribute to make centralized techniques even
more applicable in a near future.

2.2 Multilayer graph model

As it is stated in Section 1, FAP is a specific instance of the more generic graph
coloring problem, a widely studied field, some of which main results are summa-
rized in (Jensen and Toft 2011; Tuza et al 2003). For that reason, it is natural
to model the problem of assigning channels as a graph. A frequency assignment
graph is composed by a set of vertices, that represents the devices, and by edges
connecting them. This way, channel assignment is reduced to a vertex coloring
problem (Orden et al in press). With this model and the typical vertex coloring
problem (VCP), as described in Section 1, we are not able to capture all the pe-
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culiarities of our Wi-Fi channel assignment problem due to the following reasons.
First, in Wi-Fi networks we have two different types of vertices, APs and WDs.
Therefore, we do not have to color all the vertices, only the ones that represent
APs. Note that WDs will take the same color of their AP. We could be tempted
to not include WDs in the graph, but this would neglect their effect in terms of
interferences. Second, the meaning of the edges in the graph would not be clear, as
it could mean interferences or wireless connections or the provider to which an ac-
cess point belongs to. Third, we do not intend to only avoid monochromatic edges,
because, at is has been shown, the distance between colors (or channels) is crucial
in Wi-Fi networks in terms of interferences. In conclusion, a plain graph along
with the VCP is not accurate enough to capture all the peculiarities of wireless
networks (E. Z. Tragos et al 2013).

Once defined the lack of information that a plain graph leads to, we next
show the model we propose to more accurately capture the features of Wi-Fi
deployments. We use a multilayer network graph (Kivelä et al 2014) in which each
layer models a given relation between network elements. More specifically, the
graph is composed by three layers. For each layer we differentiate two different
types of vertices: APs and WDs. The information that each layer captures is as
follows:

– Layer a shows the relation between WDs and APs, i.e. in layer a edges repre-
sent the attachment between each WD and the AP it is associated to. Although
a different assumption could be done, we have linked each WD with its clos-
est AP. Remember that when we assign a color to an AP, all the WDs it has
associated will also receive the same color, i.e. all the nodes linked in layer a
will receive the same color.

– Layer b models the interference between neighboring nodes, so two nodes are
linked provided the distance between them is lower than a value R, that is
obtained from the sensitivity of the reception antennas. Note that two WDs
do not collide if they are associated to the same AP, as these communications
are coordinated by the AP. The same applies for an AP and all the WDs it
has associated. The interference model used is discussed in Section 2.4.

– Finally, layer c links the access points that are controlled by a network provider
or ISP. This is a common situation, as it is usual to have a small number of
network providers coexisting in the same place. It is very interesting to include
this layer, as each provider is able to control their own APs. Of course, this is
a general situation, as we could consider that there is only a network provider
for the case of the management of the wireless network in a corporation, for
example. Moreover, the inclusion of this layer is essential for the negotiation
point of view, because an ISP could sacrifice the performance of a node for
the sake of improving the performance of others, what enables trade-offs in
negotiations.

Note that this model does not restrict the communication between WDs asso-
ciated to different APs, as in the most cases APs are connected to the rest of the
network (including the rest of APs and to the Internet in general) through wired
links. As these wired links do not affect at all the wireless communications, they
do not appear in the multilayer graph.
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Fig. 1 Relation between utility and SINR.

2.3 Utility of a channel assignment

The performance of a certain channel assignment (network coloring) will be shown
in terms of its utility. We define by Ui the utility of node i (either an AP or a
WD) as a measure ranging from 0 to 1 that depends on the throughput perceived
by the user. When the throughput is equal to its maximum value we will have
Ui = 1 and when the throughput decreases the utility will also monotonically
decrease. When the node cannot keep connected to the network, and therefore
its throughput equals 0, then Ui = 0. In other words, the utility of a node can
be considered as a normalized throughput. A parallel reasoning can be done in
terms of the signal to noise ratio of terminal i, defined by SINRi. As it is shown
in (A. Bazzi 2011), when SINR is above a certain value SINRmax, the network
throughput reaches its maximum value for a node, so higher SINR values will
not lead to better throughputs. Additionally, when SINR is below a certain value
SINRmin the wireless node cannot keep connected, so its throughput (and utility)
equals to 0. Note that the values for SINRmax and SINRmin thresholds have
been taken from a realistic point of view (Geier 2017). A graphical representation
that shows the relation between SINR and Ui is shown in Fig. 1.

For the moment, we have only defined the utility for a certain node. However,
as we are interested in the whole utility of a particular channel assignment, we
will sum the utility for all the nodes in the graph, i.e.

U =
∑
∀i

Ui.

Moreover, and for the right operation of the nonlinear negotiation techniques,
we have also to define the utility for a provider pi, defined by Upi . This value Upi

is defined as the sum of the utilities for all its APs and the WDs attached to those
APs

Upi =
∑
∀i∈pi

Ui.

2.4 Interference model

As seen in Section 2.3, the utility of a particular channel assignment depends on
the SINR value of each node (SINRi). As usual, SINRi is computed as the ratio
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between the received power of the desired signal (Pi) and the sum of the received
unsought interferences (Ij→i):

SINRi =
Pi∑

∀j∈J Ij→i
,

being J the set of wireless nodes (either WDs or APs) that produce interferences
to node i. Note that, as APs will have so many SINR values as the number of
WDs they have associated, we will take as SINR for each AP the worst case, i.e.
the minimum SINR value.

Finally, to be able to compute the signal strengths required for computing
SINR we have to take into account interfering signals. In fact, the weight of the
edges of the graph layer b, as described in Section 2.2, represent these interferences.
Three are the main elements that affect the signal strength: distance (d), co-
channel interference (Wxy) and activity index (ψ). In the following, we describe
the impact of these three elements.

Distance is probably the most evident factor that affects signal strength. We
have made use of the propagation model defined in (Green and Obaidat 2002), so
we compute the power loss (Ploss), expressed in dB, for a 2.4 GHz signal as

Ploss = 7.6 + 40log10d− 20log10(hthr) + Lobs,

being ht and hr the heights where transmission and reception antennas are located
and Lobs the power losses due to obstacles in the propagation as walls or windows
(expressed in dB). As a result of considering the distance between network nodes,
the weight assigned to an edge ij will depend on the distance d between nodes i
and j, so our graph is geometrical and no longer abstract, as it is usually the case
for the VCP.

Probably, the most peculiar feature of Wi-Fi networks is the partial overlap
between channels. This behavior is captured by adding the co-channel interference
index to the signal propagation. In this way, a transmission in channel i will affect
another transmission in channel j with a fraction of its nominal power depending
on the “distance” between channels in the spectrum, represented with matrix Wxy.
The values for this co-channel interference have been taken from the empirical
study conducted in (Ng and Szymanski 2012). Note again that the VCP does not
consider the distance between colors, so our model is more general.

Finally, we have considered that data flows do not occupy the frequency chan-
nels permanently, but they use the spectrum a certain ratio of time. It is obvious
that when a node emits with a higher ratio, the interferences it causes to other
nodes are more harmful. This fact is represented by the activity index, (ψ). From all
the above, the interference signal from node i to j (Ij→i) that operate in channels
x and y respectively can be computed as:

Ij→i = Wxy + ψ + Pt +Gt +Gr − Ploss,

where every value is expressed in logarithmic scale and Pt represents the transmis-
sion power and Gt (resp. Gr) represents the transmission (resp. reception) antenna
gain.
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3 Wi-Fi frequency assignment as a negotiation process

As stated above, the problem we want to tackle in this paper is the coordination
between APs to select the most appropriate frequencies (channels) in order to
reduce interference. We want to address this problem by means of automated
negotiation (Fatima et al 2014). In this section, we describe the problem as a
negotiation process, using the key elements traditionally used to characterize this
kind of processes (Fatima et al 2001): the negotiation domain, the interaction
protocol and the decision mechanisms.

3.1 Negotiation domain

The negotiation domain defines the scope of the negotiation (basically what is
negotiated and among whom). In this paper, we propose to see the channel as-
signment problem as a multiattribute negotiation, where an agreement would be
to collectively assign a value to the channel assigned to each of the access points,
being these channels the attributes (or issues) under negotiation. That is we will
consider solutions or contracts S of the form S = {si|i ∈ 1, ..., nAP }, where nAP

is the number of access points. Here, si ∈ {1, . . . , 11} stands for the channel which
has been assigned to the corresponding access point i.

As stated in the previous sections, we will assume a bilateral negotiation sce-
nario, with two negotiating agents p1, p2, corresponding to two network providers
(commonly ISPs), each of which has jurisdiction over a subset of the APs. This
has the advantage that there are more works in the literature to compare with
than for the three or more agents instance. Each agent will have a utility model
based on the interference model described in Section 2. With these assumptions,
the resulting utility spaces will be non-monotonic and highly rugged, with many
local optima (Hattori et al 2007).

3.2 Interaction protocol

The interaction protocol defines the rules of the negotiation process. There is a
wide variety of protocol proposals in the literature for bilateral and multilateral
negotiations (Rubinstein 1982; Hattori et al 2007). Since we expect the utility
spaces to be highly rugged, and in a similar way as we did in (Marsa-Maestre et al
2009), we will use here a simple text mediation protocol (Klein et al 2003). In the
following we briefly describe the protocol:

1. The mediator generates a random candidate contract (Sc
0), thus effectively

selecting a random channel for each AP as the initial solution.
2. At time t (starting in t = 0), the mediator sends contract Sc

t as a proposal for
the negotiating agents (i.e., p1, p2).

3. The negotiating agents then vote on the contract Sc
t , either accepting or re-

jecting it.
4. For t = t+ 1, the mediator builds a new contract Sc

t+1 taking into account the
received feedback and goes back to step 2.

5. After a fixed number of iterations, the process ends and a final agreement is
declared.
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This protocol definition has to be augmented with the appropriate decision
mechanisms (or strategies) for the negotiating agents and the mediator. In the
following, we define these decision mechanisms.

3.3 Decision mechanisms

The decision mechanisms or strategies define how agents behave when facing the
different situations that may occur during the negotiation. In our case, we have
to define decision mechanisms for the negotiating agents and for the mediator.
Negotiating agents have to decide which votes to cast when confronted with a
proposal Sc from the mediator. We have considered two different strategies:

– Hill-climber (HC): This is a greedy utility maximization approach, where agents
accept a proposal when it yields at least the same utility that the previous com-
monly accepted proposal.

– Annealer (SA): Simulated annealing (Klein et al 2003) is a widely used method
to avoid getting stuck in local optima during optimization processes. Contrary
to greedy utility maximization, there will be a finite probability Pa for the
acceptance of a proposal even when it makes the agent to lose utility. Pa is

defined as Pa = e
−∆u
τ , where ∆u is the utility loss for the new proposal,

and τ is an annealing temperature parameter, which linearly decreases to zero
during the course of the negotiation according to τ = τ0(1− t

T ), being τ0 = 1
the initial temperature and T = 3000 the maximum number of iterations of
the algorithm. In this way, agents are more flexible at the beginning of the
negotiation and become more greedy as the deadline approaches.

The mediator, on the other hand, has to decide which new contract to propose
to the negotiating agents at each iteration. We have considered here a single-text
mediation mechanism (Klein et al 2003) :

1. The new proposed contract Sc
t+1 is built from a base contract Sb, which is the

last contract upon which all negotiating agents have voted accept.
2. Sc

t+1 is obtained by random, single-issue mutation from the base contract Sb.
That is, the mediator randomly varies the assigned frequency for a randomly
chosen AP.

3. When the deadline expires, the last contract upon which all negotiating agents
have voted accept is assumed to be the final agreement.

This protocol has a number of desirable properties for our problem. First,
it does not require revelation of agent preference information (agents just vote
in favor or against proposed contracts), which makes it adequate for competitive
settings. In addition, its computation and time cost is adjustable via the number of
iterations, which makes it adequate for scenarios where performance is important
(as it is the case of wireless networks applications). Finally, the protocol has been
proven successful in academic nonlinear negotiation scenarios (Klein et al 2003;
Lang and Fink 2015).
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4 Experimental settings

4.1 Scenarios under study

For the scope of this work, we consider a typical, realistic Wi-Fi configuration,
similar to the one used in (de la Hoz et al 2015). Readers are referred to this
paper for the specifics of the Wi-Fi configuration parameters. From an intuitive
point of view, these scenarios could represent a realistic situation in residential or
commercial managed buildings, where there are a number of different households
or small businesses which get their internet access from an AP belonging to one
of the available ISPs, and where there is an entity in charge of the building which
is interested in social welfare (i.e. that all households/businesses are satisfied with
their experience in the building). In this setting, the different ISPs will play the role
of negotiating agents, while the managing entity would play the role of mediator.

Furthermore, we assume that APs and WDs do not move during the experi-
ments. Regarding WDs, we have placed them randomly throughout the scenario,
while for the APs we have considered two different types of scenarios. In the first
case, APs are distributed randomly, as in (Marsa-Maestre et al 2016). In the sec-
ond one, APs are located in the junctions of a square grid. According to these
positions of the deployed APs, we will call the first type of scenarios random, and
the second one square.

We have considered scenarios with different number of APs and WDs per AP.
More specifically, we have considered scenarios with 15, 50 and 100 APs and for
each of these values, we have considered two different settings, with 1 and 5 WDs
per AP. For simplicity, we use the nomenclature (i, j), being i the number of
APs and j the number of WDs, having the following combinations: (15, 15), (15,
75), (50, 50), (50, 250), (100, 100) and (100, 500). For each one, we consider 50
distinct settings, resulting in 600 scenarios (300 for random scenarios and 300 for
square scenarios). These scenarios, which are an extended version of the ones in
(Marsa-Maestre et al 2016), represent very different types of scenarios in terms
not only of the problem size (we consider scenarios from a few tens to several
hundreds of devices) but also in terms of variability, due to the random generation
that produces the graphs. Moreover, the variability is higher if we consider that
we have taken away from the scenarios those wirelessly unconnected nodes. As
we consider a bilateral negotiation, we have evenly divided APs into two random
groups, one for each agent. An example of one of the scenarios under study is the
one shown in Figure 2, that corresponds to a square scenario of the category (100,
500).

4.2 Reference techniques

We have compared our results with the next approaches:

– Random Reference: the simplest possible technique, where each AP is assigned
a channel in a random, uniform manner.

– Augmented Lagrangian Particle Swarm Optimization (ALPSO): this is a par-
allel particle swarm optimizer, which solves nonlinear non-smooth constrained
problems using an augmented Lagrange multiplier approach to handle con-
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(a) Layer a. (b) Layer b.

Fig. 2 (100, 500) square scenario example.

straints (Jansen and Perez 2011). This provides the perspective of centralized,
complete-information optimization.

4.3 Graph metrics under consideration

An interesting question we intend to give answer in this research is what is the
effect of the network-related features of a problem on the adequacy of the differ-
ent techniques to tackle the problem. With this long-tern goal in mind, we have
analyzed our set of scenarios according to a set of metrics taken from the graph
theory literature. Some of these metrics are directly or indirectly related to graph
size, such as the order (number of vertices), or the diameter (higher number of
hops between any two vertices) (Newman 2010). The other metrics give us an
idea of the structural properties of the graph regardless of its size. The Wiener in-
dex (Wiener 1947), for instance, assesses complexity considering distances between

nodes, yielding a metric W (G) = 1
2

∑|N|
i=0

∑|N|
j=0 d(ni, nj), with d(ni, nj) being the

lowest number of hops of the path linking ni and nj . Graph density is the global
relative connectedness of the graph (i.e. number of edges) when compared to a
graph that is fully-connected. Clustering coefficient is a similar metric but with a
local meaning, computing the density for each node’s local cluster (i.e. its neigh-
bors and itself) and then averaged. Finally, from the diverse centrality metrics
used to rank the importance of vertices in a graph, we have chosen the between-
ness centrality, which gives more importance to those nodes which are part of a
bigger proportion of the shortest paths in the graph (Koschützki et al 2005).

5 Performance evaluation

Now we show the main results of the evaluation. The first results (Tables 1 and 2)
show the performance obtained for each of the studied techniques for each of the
scenario categories. Note that a scenario category is given in terms of the number
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Fig. 3 Two-dimensional projection of the utility function for a (15,15) scenario.

of APs and WDs. Also note that performance is given as the sum of utilities for
both providers, i.e. Up1 + Up2 . Moreover, each category comprehends 50 different
graphs and for each graph we have performed 10 different repetitions. Results show
that, for the simplest scenarios all the techniques, with the exception of random,
perform fairly similar. However, as the scenarios get more complex the annealer SA
becomes the best choice, followed by the hill climber HC and the particle swarm
optimizer ALPSO. Furthermore, random becomes worse as the complexity of the
scenarios increase. The difference in performance between HC and SA means that
the scenarios under study are highly nonlinear (Klein et al 2003; Marsa-Maestre
et al 2009), since one of the strengths of the annealer is its ability to escape from
local optima. As an illustration of this high ruggedness of the utility function, in
Figure 3 we show a two-dimensional projection of the utility function for one of the
simplest scenarios, with 15 access points and 15 wireless devices, over two random
dimensions (remember there is one issue per AP, so the utility function is, in this
case, 15-dimensional).

If we compare the utility of the random scenarios and their counterpart square
scenarios, we perceive that the utility in random scenarios is lower. This is due
to the fact that in the square scenarios, as the APs are evenly distributed, the
number of APs that have no nearby clients, and therefore are removed from the
graph, is lower than in the random setting. Finally, it is important to note that the
results of the annealer SA are achieved 8 to 10 times faster than with the particle
swarm ALPSO. The results in terms of the running time needed to obtain the
previous performance results are summarized in Tables 3 and 4. The experiments
have been run in an Intel c© CoreTM i7-2600 machine with 8 CPUs@3.40GHz and
8GB RAM, running Ubuntu 14.04.4 LTS.
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Table 1 Utility for different techniques in random scenarios (Marsa-Maestre et al 2016).

(APs,WDs)
Random HC SA ALPSO

avg std avg std avg std avg std

(15, 15) 12.45 1.90 15.88 0.02 15.86 0.04 15.86 0.03

(15, 75) 30.57 5.18 52.53 1.35 53.85 0.50 52.95 0.93

(50, 50) 29.17 4.15 50.40 0.89 51.08 0.52 50.06 0.98

(50, 250) 60.28 9.44 125.24 4.71 134.96 2.34 125.51 3.80

(100, 100) 45.37 5.48 84.90 2.39 88.33 1.52 83.53 2.25

(100, 500) 86.21 11.68 188.13 7.93 208.23 4.33 191.43 6.25

Table 2 Utility for different techniques in square scenarios.

(APs,WDs)
Random HC SA ALPSO

avg std avg std avg std avg std

(15, 15) 16.57 2.67 24.18 0.05 24.15 0.06 24.15 0.06

(15, 75) 42.11 7.01 74.59 1.91 76.91 0.69 74.77 1.68

(50, 50) 32.96 4.43 60.26 1.34 61.80 0.82 59.48 1.45

(50, 250) 68.86 9.69 145.28 5.21 157.19 2.63 144.12 4.32

(100, 100) 49.36 4.55 91.05 2.40 94.64 1.63 89.11 2.38

(100, 500) 102.00 10.44 205.90 7.10 221.68 4.20 201.91 5.12

Table 3 Run time (in seconds) for different techniques in random scenarios (Marsa-Maestre
et al 2016).

(APs,WDs)
HC SA ALPSO

avg std avg std avg std

(15, 15) 0.53 0.21 0.64 0.22 0.25 0.19

(15, 75) 5.79 1.22 5.96 1.23 5.86 2.00

(50, 50) 5.22 1.16 5.40 1.17 11.91 5.02

(50, 250) 69.39 6.44 69.32 6.36 285.89 74.37

(100, 100) 22.01 2.96 22.15 2.99 108.14 31.39

(100, 500) 330.38 17.23 326.90 16.61 3225.63 817.93

Table 4 Run time (in seconds) for different techniques in square scenarios.

(APs,WDs)
HC SA ALPSO

avg std avg std avg std

(15, 15) 1.35 0.12 1.55 0.13 0.65 0.10

(15, 75) 17.30 1.41 13.64 0.99 13.25 2.81

(50, 50) 13.05 1.07 13.64 1.23 23.53 4.42

(50, 250) 115.12 4.74 122.93 4.54 362.52 65.05

(100, 100) 47.97 3.23 47.02 3.22 187.34 33.32

(100, 500) 433.16 12.02 463.59 14.75 3985.70 797.10

Tables 1 and 2 offer us a first and clear comparison between the different
techniques under study. However, Figs. 4 and 5 show us a more profound insight
for some specific selected scenarios (for the sake of space), although the same
conclusions can be given for the rest. Note that, also for the sake of brevity, we
have focused on the larger scenarios, omitting the categories (15, 15) and (15, 75).
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Figures on the left show the cumulative distribution function (cdf) of the utility
experienced by the different nodes in the network, so a point (x, y) represents
that a fraction of y nodes have a utility below x. For that reason, lower curves
are better. As an example, if we focus on Fig. 4a, and for Utility = 0.8, we can
observe that for SA, around 45% of the nodes have utilities below 0.8. However,
this percentage grows up to 50%, 52% and 90% for ALPSO, HC and Random,
respectively. Obviously, as this percentage is lower, it means that there are less
nodes with utility under 0.8, i.e. more nodes are above this utility. In all cases,
we can conclude that the worst technique is clearly Random, while the best one
is SA. Moreover, the performance of HC and ALPSO is fairly similar. Finally, to
compare the performance of SA and ALPSO, in the figures on the right we show
heat maps of the difference in the utility achieved by each node for SA and ALPSO,
i.e. USA

i − UALPSO
i , ∀i, being i the i-th node. For that reason, red colorings

represent situations where SA outperforms ALPSO, while blue colorings represent
the opposite situation. Note also that each heat map in the right corresponds to
the same scenario whose results are shown in the cdf on the left. From those heat
maps, as the color of most of the dots is very similar to white, we can conclude
that the utilities given by SA and ALPSO are not very differently distributed,
and that the differences between both techniques are distributed among a high
number of nodes, i.e. many of the nodes are light red colored. Note that in some
few cases, we have noted the situation given in Figure 4(c), where there are three
nodes in dark red, so SA greatly improves ALPSO for them. It is also important
to point out that we have not found any point in dark blue for any of the 600
scenarios under study. Finally, heat maps also show in their lower part the mean
utility achieved by SA (USA

n ) and ALPSO (UALPSO
n ).

Next, we study how the different graph metrics described in Section 4.3 influ-
ence the gain that the annealer SA is able to obtain with respect to the particle
swarm optimizer ALPSO. In Figure 6 it is shown the quotient between the mean
utility reached by SA in the 10 runs for each graph and the same value reached
by ALPSO for the same graph (the dashed line with value 1 represents the values
where the performance of SA and ALPSO coincide). Note also that blue squares
correspond to random scenarios while red crosses correspond to square ones.

Attending to the graph order (Figure 6a) we note an almost linear increasing
trend with this metric, reaching performance gains up to 10% for the largest
graphs. This behavior was also glimpsed in Tables 1 and 2. A similar behavior
is shown for the Wiener index in Figure 6f. Figure 6b shows the opposite behavior
when dealing with the average betweenness centrality. The best performance for
SA is obtained for low values of centrality and this behavior can be explained by
the fact that the negotiations of the annealer are expected to be easier as there are
less interfering nodes, and therefore, more interfering vertices. A similar argument
can be given for graph density where SA performs better for low density graphs,
i.e. with less interferences, as shown in Figure 6c. In Figures 6d and 6e we show
that there are optimal values for the diameter and cluster coefficient that make
that SA performs better than ALPSO. In this last figure we have obtained an
expected and interesting result, as the improvement achieved by SA in almost
complete graphs (i.e. with high clustering coefficient) cannot be very high, as the
room for improvement is more limited.

Finally, we now briefly discuss the strategic implications of the Wi-Fi negotia-
tion setting. So far, we have just considered both agents playing the same strategy
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Fig. 4 cdf of the utility and comparison of the utility achieved by SA and ALPSO in random
scenarios.
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Fig. 5 cdf of the utility and comparison of the utility achieved by SA and ALPSO in square
scenarios.
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(a) Order. (b) Average betweenness centrality.

(c) Density. (d) Diameter.

(e) Cluster coefficient. (f) Wiener index.

Fig. 6 Utility of SA relative to ALPSO for different graph metrics.

(i.e., hill-climbing or annealing) in the negotiation. Now we will see what happens
if the agents may choose one or the other strategy freely. Table 5 shows the pay-
off matrices for both agents in all strategy combinations for the different random
scenario categories. Note that, since the mechanisms are randomized, these are
expected payoffs obtained as the average of all negotiations conducted. Payoffs are
normalized to the maximum expected utility, to allow for easier interpretation.
Each tuple in the table cells contains, therefore, the normalized expected utility
for both agents, as (ŪProvider1

n , ŪProvider2
n ). We can see that, for the smaller sce-

narios (Tables 5 (a) and (b)), SA is a best-response strategy in all cases, that is,
regardless of the other agent’s strategy, the best “move” for an agent is to use sim-
ulated annealing. Thus, we have an equilibrium in the (SA, SA) strategy profile,
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(a) (15,15)

Provider 2

SA HC

Provider 1 SA (0.98, 0.98) (1.00, 0.85)

HC (0.85, 1.00) (0.95, 0.95)

(b) (15,75)

Provider 2

SA HC

Provider 1 SA (1.00, 1.00) (0.98, 0.92)

HC (0.92, 0.98) (0.94, 0.94)

(c) (50,50)

Provider 2

SA HC

Provider 1 SA (0.95, 0.95) (0.95, 1.00)

HC (1.00, 0.95) (0.91, 0.91)

(d) (50,250)

Provider 2

SA HC

Provider 1 SA (0.80, 0.80) (0.48, 1.00)

HC (1.00, 0.48) (0.78, 0.78)

(e) (100,100)

Provider 2

SA HC

Provider 1 SA (0.86, 0.86) (0.69, 1.00)

HC (1.00, 0.69) (0.84, 0.84)

(f) (100,500)

Provider 2

SA HC

Provider 1 SA (0.84, 0.84) (0.57, 1.00)

HC (1.00, 0.57) (0.72, 0.72)

Table 5 Normalized payoff matrices for the different random scenario categories.

which is also the situation with the highest expected social welfare. This can be
interpreted as having incentives for cooperation in these scenarios, since the SA
strategy is more cooperative than the HC one (i.e., an annealer agents can accept
a contract even when there is no immediate gain). However, for more complex
scenarios (Tables 5 (c) to (f)), the dominant strategy is HC, which leads to an
equilibrium in the (HC, HC) strategy profile. This is also the strategy profile with
the lowest expected social welfare. The problem is especially relevant in the more
complex scenarios (which are also the more realistic ones), where the social welfare
loss, also known as Price of Anarchy (Koutsoupias and Papadimitriou 1999), is
above 14%. This can be interpreted as these scenarios having strong incentives for
competition which hamper the social welfare.

6 Discussion and conclusions

In this work we study the problem of coordinating frequency assignment for Wi-Fi
access points. We consider an approach inspired in the well-known graph coloring
problem. In contrast with the traditional viewpoint from discrete optimization,
we provide a negotiation approach based on a simple-text mediation protocol and
agent strategies based on simulated annealing. After experimental evaluation, our
results are significantly better than the reference approaches. This is especially
significant, because 1) it is the first time (to our knowledge) that nonlinear nego-
tiation is used for complex network optimization in a realistic setting, and 2) the
approach effectively addresses complex negotiation scalability, which has been a
challenge to apply this kind of techniques to real settings. The advantage of us-
ing our negotiation approach is especially relevant in the more complex scenarios.
In addition, there is a clear influence of the graph structural properties on the
performance of the approach, which could be used to derive insights to guide the
design of wireless coverage maps in settings where there are coexisting, competing
networks.

There are a number of issues that are left outside the scope of this work.
Probably the most important is the fact that we consider a static environment,
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where wireless clients do not appear or disappear (or move) during the course of the
negotiation. This imposes a performance constraint on the approaches considered,
since the response time must be short enough to allow to provide a solution before
the network has changed too much for the solution to be useful. Also, since we have
used uniform distributions for provider AP placements, client placements, activity
indexes and the like, the generated scenarios result in “symmetric” negotiations,
in the sense that there are no fundamental “inequalities” that make one or the
other provider to have more “negotiating power” in the negotiation. Scenarios
more “biased”, where a provider has more APs or more clients than the other, or
where clients have non-uniformly distributed activity indexes, will likely result in
asymmetric negotiation settings where fairness would be an issue and should be
studied.

There are a different future lines of research which emerge from this work. We
are studying the creation of negotiation-based hyper-heuristics, to dynamically
adapt the approaches to the metrics that characterize the scenarios. We are also
working on distributed belief propagation as a way to conduct the negotiation,
which raises some challenges in itself. Furthermore, we are enlarging the family
of negotiation approaches under evaluation, and we are working on generalizing
the approach to other network-structured real-world problems. Finally, we want
to address the outlined strategic implications of the negotiation setting and intro-
duce mechanisms to mitigate the detected incentives and their effects, applying
a generalization of the work we did in this line for other nonlinear negotiation
domains (Lopez-Carmona et al 2012).
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