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Computational Thinking from a Disciplinary Perspective: Integrating Computational 

Thinking in K-12 Science, Technology, Engineering, and Mathematics Education. 

ABSTRACT 

This article provides an introduction for the special issue of the Journal of Science 

Education and Technology focused on computational thinking (CT) from a 

disciplinary perspective. The special issue connects earlier research on what K-12 

students can learn and be able to do using CT with the CT skills and habits of mind 

needed to productively participate in professional CT integrated STEM fields. In this 

context, the phrase “disciplinary perspective” simultaneously holds two meanings: it 

refers to and aims to make connections between established K-12 STEM subjects 

areas (science, technology, engineering and mathematics) and newer CT-integrated 

disciplines such as computational sciences. The special issue presents a framework 

for CT integration, and includes articles that illuminate what CT looks like from a 

disciplinary perspective, the challenges inherent in integrating CT into K-12 STEM 

education, and new ways of measuring CT aligned more closely with disciplinary 

practices. The aim of this special issue is to offer research-based and 

practitionergrounded 

insights into recent work in CT integration and provoke new ways of thinking 

about CT integration from researchers, practitioners, and research-practitioner 

partnerships. 
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Computational Thinking (CT)  is the thought process involved in formulating 

problems such that their solutions can be expressed as computational steps or 

algorithms to be carried out by a computer (Cuny, Snyder, & Wing, 2010; Aho, 2012; 

Grover & Pea, 2013; Lee, 2016). As such, CT can be seen as the connective tissue 

(Martin, 2018) that links computer science (CS) to many disciplines. In particular, 

CT has been used as an investigative and problem solving method that utilizes 

computer science concepts, tools and techniques in Science, Technology, 

Engineering and Mathematics (STEM). New integrated fields such as computational 

biology, computational chemistry, computational geometry, and computational 

physics have emerged that capitalize on the power of computation in extending 

discovery and innovation within classical STEM fields. 

 

As computationally enabled scientific innovations and technological advances are 

reshaping the ways we live and the type and scope of problems we can pose and 

solve, there has been increasing interest in engaging K-12 students in CT. It has been 

touted as an essential competence that should be included in every student’s skill 

set (Grover & Pea, 2018) and acknowledged as a key scientific practice in the Next 

Generation Science Standards (NGSS Lead States, 2013). The integration of CT in 

elementary and secondary education has been promoted by both national computer 

science education (Seehorn et al., 2011) and science education associations 

prompting many school districts and States to make wide-sweeping changes based 

on a limited research base (Stanton et al., 2017).  
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The integration of CT into STEM classrooms is relatively new.  It is seen as having 

the potential to deepen STEM learning by positioning students as young scientists 

and innovators through engagement in authentic STEM practices. It has been 

proposed that students who learn to develop computational solutions, and marshall 

computational tools, resources, and methods will advance their understanding of 

subject area content, CT skills, and awareness of modern uses of computation across 

STEM fields. This integration strategy also aims to bypass some of the difficulties 

associated with offering stand-alone courses (focusing on CS and CT) and adding 

additional subjects to an already crowded school day while addressing new 

standards in science, math, and computer science education. Thus researchers and 

educators alike have embarked on projects to engage students in CT as early as 

elementary school as a means to prepare them with the foundational knowledge, 

skills, and practices for future endeavors in STEM fields.  

 

Researchers have made progress in elucidating what CT integration entails. Recent 

attempts to integrate CT into science classrooms fall along a continuum from the 

addition of “coding” activities that provide little if any support of science learning 

(Lye & Koh, 2014; Kazimoglu, Kiernan, Bacon, & MacKinnon, 2012; Maloney, 

Peppler, Kafai, Resnick, & Rusk, 2008; Tarkan et al., 2010; Touretzky, Marghitu, 

Ludi, Bernstein, and Ni, 2013; Grover et al., 2015); to the integration of CT in the 

service of  science content knowledge as it currently exists in science textbooks 

(Sengupta, et al., 2013; Wilkerson & Fenwick, 2016; Benakli, Kostadinov, 

Satyanarayana, & Singh, 2016; Sherin 2001; Sherin, diSessa, & Hammer, 1993; 



      AUTHOR ACCEPTED MANUSCRIPT     

© 2019 Springer Nature B.V. 

diSessa, Sherin, & Hammer 1993; diSessa 2001); and the integration of modern uses 

of computation aligned with the work of STEM professionals (Uzzo & Chen, 2015; 

Wilensky, Brady, & Horn, 2014; Orton et al., 2016). Weintrop et al., (2016) provided 

a well-regarded Computational Thinking in Mathematics and Science Practices 

Taxonomy describing four main categories of practices (data practices, modeling 

and simulation practices, computational problem solving practices, and systems 

thinking practices) that form a definition of CT drawn from literature, interviews 

with mathematicians and scientists, and instructional materials. Yet work in the 

field of CT integration suggests that much more guidance from empirical research is 

still needed to ensure the teaching of CT concepts and practices within STEM 

classrooms sets the foundations for future endeavors leading up to professional CT-

integrated STEM practices.  

 

This special issue proposes to connect earlier research on what K-12 students can 

learn and be able to do using CT with the CT skills and habits of mind needed to 

productively participate in professional CT integrated STEM fields. In this context, 

the phrase “disciplinary perspective” simultaneously holds two meanings: it refers 

to and aims to make connections between established K-12 subjects areas (science, 

technology, engineering and mathematics) and newer CT-integrated disciplines 

such as computational sciences at the core of scientific discovery and innovation in a 

world driven by technology.  
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In the first framing article, Lee and Malyn-Smith (this issue) describe two strands of 

research that informed the formation of a framework for integration of CT in STEM 

classrooms. The first strand is a set of studies on the use of CT by STEM 

professionals (research scientists, product engineers, and data scientists) conducted 

by EDC that illustrates the transition of traditional scientists and engineers to 

computational-thinking STEM professionals. The second strand of research is an 

analysis of a set of K-12 CT integration activities that was collected at the NSF-

funded two-part “Workshop on Developing a Framework for Computational 

Thinking from a Disciplinary Perspective” (Malyn-Smith et al., 2018). They provide 

an overview of recent work in the CT integration domain and identify gaps between 

CT as it is being taught in K12 and what may be needed to prepare students for CT 

integration in professional STEM workplaces. Other articles share interesting and 

productive research themes and compelling classroom grounded strategies that 

address specific aspects of CT integration in K-12 as we explore ways to help 

students develop competence in computational thinking. 

 

The next two articles describe research on the affordances and challenges of 

building representational fluency in the early grades as a foundation to CT. While 

both articles focus on  computing concepts and computer programming into 

elementary classrooms (rather than integrations into specific STEM subjects), they 

offer a glimpse of thought processes of young children that can be further developed 

into a broader spectrum of CT integration into STEM classrooms as well. 
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Moore et al. (this issue) explored how young children in grades K-2 engaged with 

and moved among multiple representations as they managed the cognitive demands 

of various computational tasks. The children in the study were asked to translate 

information encoded in different representations including concrete, symbolic, 

pictorial, motor and language representations. The authors found that students 

translated among representations by constructing intermediary representations 

such as gestures and placing objects in the environment to represent current state, 

an early form of simulation, to manage cognitive load. They contributed to the Lesh 

Translation model, or LTM (Lesh and Doerr, 2003) by adding gesture as a 

representational support. This article points to junctures in student activities where 

concepts of looping, parallelism, and decomposition as well as programming and 

debugging occur naturally and could be explicitly linked to CT used by professionals. 

For instance, when asked to draw a representation of a scene composed of tiles, and 

features such as  barriers and bridges, students were seen to organize the task in 

different ways, one child drew each tile and its associated features; another child 

drew the matrix of tiles first then added features. This is akin to task vs. domain 

decomposition in parallel computing. In another example, upon seeing a repetitive 

pattern of steps (e.g. forward 5 steps) in coding cards, a student transformed the 

sequence into a single movement of 5 steps forward in the physical space hinting at 

looping. The authors contribute to this special issue by positing that understanding 

the strategies children naturally use when translating among representations may 

help educators embed scaffolds to support representational transitions and manage 

cognitive load in CT. They also point to an area for further study - the connection 



      AUTHOR ACCEPTED MANUSCRIPT     

© 2019 Springer Nature B.V. 

between CT and spatial reasoning. The difficulty young children had with spatial 

orientation tasks suggested that their mental rotation ability was not yet sufficiently 

developed but since spatial abilities have been shown to improve with practice and 

support (Feng et al. 2007; Uttal et al, 2013) this need not be a barrier to CT. 

 

Dickes, Farris and Sengupta (this issue) investigated how computer programming 

was integrated in an elementary school 3rd grade classroom through agent based 

modeling in the ViMAP environment. The authors demonstrated how the classroom 

teachers’ emphasis on mathematizing and measurement positioned computing as an 

epistemic tool (tool for knowledge construction) for solving real world problems in 

kinematics (i.e. movement).  Mathematization and measurement were supported by 

classroom norms for defining and designing “mathematically sound” computational 

models of motion. “Mathemization” (Lehrer, Schaubel, Strom and Pligge, 2001) 

involves the highlighting of mathematics as a meaning-making lens through which 

the natural world can be systematized and described. The classroom norm was to 

assess what “counts as” an acceptable mathematical solution. Two forms of 

representations were integrated into classroom activities in the study of animal 

movement through their environment. The animals’ movement within the agent-

based model was compared to movement patterns in the real-world. Drawing 

students’ attention to stride and measuring stride first took place in a participatory 

activity in which students learned to measure and compare stride length when 

running and walking. Next an animal’s stride in the simulated environment, ViMAP, 

was investigated and analyzed for face validity (by comparing it to how students 
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measured stride in the participatory activity.) The authors concluded that curricular 

integration of computing within K-12 STEM contexts is a complex and challenging 

endeavor for both teachers and students.  It involves the adoption of new literacies 

(e.g. programming) as well as disciplinary ideas. They propose connecting STEM 

and computer programming by framing CT and modeling as model eliciting 

activities (Lesh and Doerr, 2003) in the science classroom. Their contribution to this 

issue is elucidating how even young students can be engaged in the practice of 

evaluating computer models on a mathematical basis.  

 

The next three articles highlight computer modeling and simulation as a productive 

approach to integrating CT within STEM classrooms. They demonstrate how 

computer modeling and simulation can be integrated into K-12 science classrooms 

to support student learning of core science concepts and increase exposure to CS 

while preparing students for professional STEM practices. The ability to teach 

computer modeling and simulation in K-12 has been made possible by the 

availability of age-appropriate modeling and simulation tools such as StarLogo Nova 

and NetLogo. Researchers such as Moursand (2009) suggested that the underlying 

idea in CT is formulating and developing models and simulation of phenomena and 

problems that one is trying to study and solve. CT, when defined as a thinking 

process necessary when developing computer models, is a key component of 

modern scientific practice (PITAC, 2005). CT is used by modern scientists as they 

engage in making models and running experiments using computer models for the 

purpose of conducting fundamental research (Gilbert, 1991; Schwarz & White, 



      AUTHOR ACCEPTED MANUSCRIPT     

© 2019 Springer Nature B.V. 

2005). Scientists’ ability to simulate the natural or designed phenomena has 

generated a great expansion of scientific knowledge (Emmott et al, 2006).  

 

Waterman, Goldsmith, and Pascuale (this issue) contribute a practitioner report on 

a CT integration module (iMOD) developed for 3rd grade students. They describe 

developing the module and characterized CT integration within school classes using 

a framework that spans three levels: exist, enhance, extend. A rich account is given 

of a CT-integrated activity in ecosystems science as well as utterances that evidence 

student learning that aligns with Massachusetts Department of Elementary & 

Secondary Education CT concepts and the Computational Thinking integration 

elements described in the first article (Lee and Malyn-Smith, this issue). 

Recommendations on designing extensions to bridge between K-12 disciplinary 

concepts and professional practices are provided as a roadmap for practitioners. 

 

Aksit et al. (this issue) describe a study on exploring force and motion concepts in 

middle grades using computational modeling. This article extends the earlier 

articles by Dickes et al. and Moore et al. to examine representations and 

representational fluency for an older age range. The authors proposed the frame of 

“representational competence” to describe the thinking skills that may prepare 

students for the professional practice of “innovating with representations.” In the 

context of modeling activities, the authors described students constructing, 

modifying and experimenting with a model of force and motion. They identified 

instances of students making key connections between coded mechanisms and 
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physics concepts. For example, they stated that “In order to formulate an algorithm 

[e.g. to position a falling object], students needed to conceptually understand what is 

meant by acceleration”.  Further they described how multiple representations of the 

concepts as conceptual (diagram); algorithmic (mathematized version); code 

(encoded); and simulation run (visualization) assisted students in understanding 

the physics concepts.  While the mathematical sophistication necessary to encode 

the formula to position an object was higher in this study when compared to that in 

Dickes et al. and Moore et al., the fluency needed to shift between different 

representations is similar.   

 

The next article by Hutchins et al. (this issue) presents a comprehensive approach to 

integrating STEM and CT using the affordances of C2STEM, a computer-based 

learning environment that uses the NetBlox extension of Snap! Block-based 

programming. Hutchins et al discussed C2STEM’s negotiation of the competing 

interests in computing and science instruction in high school physics classrooms. 

They investigated “When are students learning or applying concepts or practices of 

physics?”, “ When are students learning or applying CT concepts or practices?”, and 

“When is their learning of physics and CT mutually reinforcing?”  They identified 

three types of synergistic learning moments when the learning of physics and CT 

were mutually reinforcing: (1) using a simulation to test a conceptual issue; (2) 

debating whether the model should capture the mechanism of the phenomenon; 

and (3) debugging a program that is not behaving in the expected/intended way. 

For all three types of synergistic learning, students encountered such moments 
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while pursuing emergent goals as they engaged with model-building challenges 

within the C2STEM environment and curriculum. An example of an emergent goal 

was debugging a model that was not behaving in the intended/expected way.  They 

found debugging often invoked students’ conceptual understanding of physics (e.g., 

object is not accelerating when it should) through engagement in the practices of 

physics (e.g., refining a model based on observational evidence), all while debugging 

the model code, a key computational thinking skill.  

 

These three articles show the breadth and depth of engagement in computer 

modeling and simulation practices in grades 3 through 12. Approaches to 

integrating CT that are productive - in that they lead up to professional modeling 

and simulation practices, are provided. Waterman et al. demonstrated how CT can 

be supported through participatory simulations and data studies without 

interrogating a model’s encoded mechanisms. Aksit et al. described the skill of 

shifting between representations such as diagrams, algorithms, code and 

visualizations, as key to gaining an understanding of physics concepts. Their article 

suggests that further study may be warranted on the connection between 

representational fluency and the innovating with representations seen in 

professional CT-enabled STEM practice. Hutchins et al’s article contributes a clear 

example of when the learning of content area concepts and CT are mutually 

reinforcing in authentic practices (i.e. age-appropriate versions of professional 

practices in computer modeling and simulation). The article suggests a direction for 
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further study: examining whether these three variants of mutually reinforcing 

learning episodes are universally applicable in STEM.  

 

The following article by Pierson (this issue) presages the future in which CT extends 

to encompass dialogic relationships between humans and intelligent agents. It 

considers motivation and identity issues that arise when co-constructing inquiry 

with non-human partners.  Pierson framed interactions with computer models as 

dialogic exchanges with co-participants then identified this type of interaction as a 

productive practice for disciplinary engagement in science and for computational 

thinking (Chandrasekharan and Nersessian, 2015; Dennett, 1989; Latour, 1993; 

Pickering, 1995). She found that computational models have unique affordances for 

dialogic interaction because they are probabilistic and iteratively executable. These 

features of computational models provided an entry point for students to adopt 

stances that treat computational models as conversational peers, co-constructors of 

lines of inquiry, and projections of students’ agency and identity. Pierson argued 

that students’ treatment of models as conversational peers parallels scientists' 

interactions with non-human entities, which often involve treating tools as agentive 

participants in inquiry (Latour 1999; Pickering 1995). Pierson argued that taking a 

computational entity as an interlocutor and co-participant in investigations is an 

important facet of computational thinking. She suggested that since students’ 

enactment of a “dance of agency” acts as a precursor of legitimate disciplinary ways 

of operating with a scientific apparatus in conducting investigations. Thus, 

interactions with non-human collaborators may extend the five computational 
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thinking integration elements in Lee and Malyn- Smith (this issue) as it affords 

students a pathway to practices at the intersection of disciplinary engagement and 

computational thinking. The co-editors of this special issue posit that this type of 

relationship will become ubiquitous in artificial intelligence and machine learning. 

In these fields, humans will interact with machine intelligences in conversational, 

creative and agentive ways at the Human-Technology Frontier.  

 

The next three articles describe studies that involve assessing CT integration from 

various perspectives. When considering “disciplinary” as “referring to K-12 subject 

areas”, assessment of integrated CT addresses the questions “what are students 

learning about X?” and “what are students learning about CT”.  Furthermore, 

researchers ask “does the integration of CT in X improve learning of X?”, “does the 

integration of CT in X improve learning of CS?” Answers to these questions may help 

to make the case for the integration of CT in K-12 subject areas. Since these topics 

and skills are not yet tested in standardized assessments, their value is unknown 

and measurements do not exist to assess student learning or teaching. But when 

considering “disciplinary” to mean newer CT-integrated disciplines such as 

computational sciences, seeking learning gains in traditional science and CS is not 

the point. Instead, the objective is for students to be able to formulate questions in a 

domain then design, develop, and use computational tools to answer those 

questions. Thus, there is a tension within school day integration of CT - the 

“integrated learning goal” (formulating questions then using computational tools 

and techniques to answer those questions) may be in conflict with the goals of a 
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STEM classroom that has to prepare students for traditional assessments in a STEM 

domain (AP exams, state tests); and unless traditional assessment in STEM is 

changed, educators are unlikely to abandon the domain learning view in favor of the 

integrated learning view. 

 

Bortz et al. (this issue) argued that assessing integrated domains in K-12 education 

is problematic and difficult. The authors note intrinsic problems such as relying on 

rubric-based approaches that are insensitive to small movement toward 

incompletely mastered skills, and interactions between domains that may invalidate 

the results of the assessment either because gains in one domain may be easier to 

measure at certain times than the gains in the other, or because interactions 

between the domains may cause measurement interference. Instead, they argue that 

differentiated scoring methods should be employed to detect learning in each 

domain plus the “interplay” of domains. Based on their experience implementing 

and assessing a high school CT integrated chemistry module, the authors suggest 

using assessments that enable students to express multiple ways of knowing and 

doing. Open-ended questions are considered as a form of assessment that may 

capture students’ conceptions via multiple representations and uncover alternative 

conceptions, but the authors note the challenges and impracticality of using this 

type of measurement in regular day classrooms. The authors conclude that 

assessing multiple facets from each domain is necessary until we have a deeper 

understanding of the interplay of elements in a CT-integrated learning experience. 
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In the next article, Arastoopour et al. (this issue) propose an assessment approach 

combining an automated assessment tool, embedded assessments, and a pre-post 

survey. The authors used this assessment approach for a ten-day high school 

biology unit with CT activities. They identified students with both positive and 

negative gains and examined how each group's CT practices developed as they 

engaged with the curricular unit. The automated assessment tool is based on 

Epistemic Network Analysis or ENA (Shaffer, Collier, & Ruis, 2016; Shaffer et al., 

2009; Shaffer & Ruis, 2017). It is a novel discourse analysis tool that creates a 

centroid representation of discourse networks. Discourse elements were identified 

based on a thematic analysis that identified common discourse elements in the 

student data and based on whether such discourse elements related to existing 

practices in the CT-STEM taxonomy (Weintrop et al, 2016). To measure connections 

among cognitive elements, the nodes in the network represent an individual’s 

knowledge and skills identified in discourse and the links represent the individual’s 

associations between knowledge. The links were analytically determined when 

elements co-occur in the discourse. The development of the network representation 

was based on research that shows that co-occurrences of concepts in a given 

segment of discourse data are good indicators of cognitive connections 

(Arastoopour, Shaffer, Swiecki, Ruis, & Chesler, 2016; Lund & Burgess, 1996). ENA 

measures when and how often learners make links between domain-relevant 

elements during their work. Their results showed that (1) students exhibited both 

science and computational learning gains after engaging with a science unit with 

computational models and (2) the use of embedded assessments and discourse 
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analytics tools reveals how students think differently with computational tools 

throughout the unit. The authors suggest that discourse learning analytics might 

help teachers identify a student’s struggles with understanding particular 

mechanisms. Such automated assessments may address some of the concerns raised 

in Bortz et al. (this issue) about the impracticality of using open-ended assessments 

in typical classroom settings.  

 

In the third article on assessment, Hadad et al. (this issue) describe informal 

formative assessment of CT in Makerspaces. Makerspaces are arenas in which 

students practice as active learners working directly with materials as if they were 

professionals in the field. Thus, these spaces have the potential to provide the 

opportunity to assess students’ ability to formulate questions and design solutions 

in a domain then develop and use CT and tools to answer those questions or 

implement their design. The authors found that students used multiple 

representations of their construction: the artifact itself and diagrams were used as 

“objects to think with” (Papert, 1980). In one case, students led by the mentor 

discussed levels of abstraction in the diagram and what needed to be represented in 

the diagram for it to be useful as a thinking tool. Using a framework from Csizmadia 

(citation), the authors describe individual “moments of notice” or instances when 

formative assessment could guide students’ understanding of CT. This played out as 

an incident in which a program mentor finds an opening to query students about 

their project, their intent, and/or their reflections on the project or process.  They 

identified four approaches to formatively assessing students’ project work that 
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surface their CT: using materials and CT terms; drawing or sketching for 

understanding; debugging practice; and fluidity of roles. This article contributes to 

the set by describing how instructors can use formative assessment to uncover 

students' prior knowledge and improve their use of CT in constructionist and 

project-based settings. 

 

The final paper in the special issue focuses on teacher education and professional 

development (PD). Teacher preparation has been noted as a critical factor in the 

integration of CT into K-12 subject areas (Barr & Stephenson, 2011; Voogt et al., 

2015; Yadav et al., 2016; Yadav, Good, Voogt, & Fisser, 2017). Teacher PD programs 

focusing on CT integration often include key features of effective PD known from 

education research literature. To be effective, PD should be grounded in teachers’ 

needs and their work environments, and address core areas of teaching: content, 

curriculum, instruction and assessment. Common features of effective teacher PD 

programs include opportunities to a) gain new knowledge, b) reflect on changes in 

teaching practice, and c) increase abilities and skills. Additionally, effective PD 

focuses on student learning outcomes and models learner-centered instruction such 

that teachers experience and reflect upon learning activities that they will ultimately 

lead for their students (Hassel, 1999; Gaible and Burns, 2005). In addition to what is 

known about PD generally, Yadav et al. (2016) suggested that effective PD in CT 

should be tied to teachers’ curricular needs, explicitly describe overlaps between 

learning objectives in the subject area and CT, promote the development of a 

community of practice among teachers, and be continuous rather than episodic. 
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Ketelhut et al.’s article examined teacher change following a PD experience in 

integrating CT into elementary school science. The authors found that teachers’ 

views of CT developed across personal, domain-specific practice, and outcomes 

dimensions. Teachers communicated their own knowledge, beliefs, and attitudes 

about CT integration (Personal Domain), they designed lessons to integrate CT into 

instruction (Domain of Practice), and they described outcomes of CT-infused 

learning for their students (Domain of Consequence). The authors then synthesized 

across the case studies and general findings, looking for common themes that arose 

out of the relationships between these domains. Across the personal and practice 

domains they found teachers didn’t feel they had adequate knowledge and skills to 

troubleshoot students’ problems or issues in open-ended inquiry based projects, 

and teachers’ developing notions of CT caused them to overestimate their claims of 

integrating CT. Additionally, though, the relevance of computation was questioned, 

teachers found that efforts to integrate CT into their classrooms provided a forum 

for teachers to focus deeply on providing “good” science instruction. In the outcome 

domain, teachers grew to believe that integrating computation engaged student 

learners of all backgrounds. Numerous difficulties were encountered during the 

teacher PD program aimed at supporting 1-2nd grade teachers for integration of CT 

in ES classrooms. The researchers found that teachers struggled with how CT best 

fit within their curricula, how to champion CT in school environments unfamiliar 

with CT, and how to find the resources and support they needed to enact their ideas 

for CT integration. This article brings an important question to the forefront: how 
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deeply do teachers need to understand and master CT in order to help their 

students develop CT capacity and skills?.  

 

Together, this set of articles provides a picture of the current status of CT 

integration in STEM subjects from a disciplinary perspective as educators and 

researchers explore what it takes to prepare today’s students for work at the 

Human-Technology Frontier. We believe that this special issue’s presentation of a 

Framework for Computational Thinking from a Disciplinary Perspective connects 

the interesting and productive research themes and compelling classroom grounded 

strategies described in this issue to the foundational skills, knowledge and 

dispositions needed by computational thinking scientists and engineers. Together 

these advance  our understanding of STEM+CT integration in K-12 learning, and we 

hope that it will provoke new ways of thinking about CT integration and generate 

discussion among the community of scholars, STEM teachers, and other STEM 

professionals.  
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