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Abstract Identification and control of transient instabilities only if all the eigenvalues are confined to the stable part
in high-dimensional dynamical systems remain a challengef the complex plane [21]. This approach, referred to as
because transient (non-normal) growth cannot be accyrateinodal stability theory, has led to a number of fundamen-
captured by reduced-order modal analysis. Eigenvalueebastal results in fluid mechanics pertaining to parallel shear
methods classify systems as stable or unstable on the sdlews [27,28], compressible boundary layers [25], ellipti-
basis of the asymptotic behavior of perturbations, andether cal instabilities [6,31], bluff body flows [47,34], and many
fore fail to predict any short-term characteristics of dist more. But it took the scientific community several decades
bances, including transient growth. In this paper, we leverto realize that the modal perspective provides information
age the power of the optimally time-dependent (OTD) modesn stability of a base flow only in the asymptotic limit, and
a set of time-evolving, orthonormal modes that capture ditherefore fails to capture features associated with tegsi
rections in phase space associated with transient anégpersfnon-normal) growth of perturbations. Episodes of tramisie
tent instabilities, to formulate a control law capable gbsu growth are attributable to the non-normality of the linead
pressing transient and asymptotic growth around any fixedperator, and may occur even when the latter has no unsta-
point of the governing equations. The control law is de-ble eigenvalues. For example, in many wall-bounded shear
rived from a reduced-order system resulting from projegtin flows, eigenvalue analysis predicts a critical value of the
the evolving linearized dynamics onto the OTD modes, andReynolds number for transition well above that observed ex-
enforces that the instantaneous growth of perturbations iperimentally [41]. The recognition that short-term ingliab

the OTD-reduced tangent space be nil. We apply the praies play a critical role in fluid dynamical systems [38], but
posed reduced-order control algorithm to several infinitealso in climate dynamics [29,14] and thermoacoustics [5],
dimensional systems, including fluid flows dominated byhas then led to a large number of studies focused on find-
normal and non-normal instabilities, and demonstrate uning disturbances that maximize energy amplification over a
equivocal superiority of OTD control over classical modalfinite-time horizon [17,35]. These “optimal” disturbances
control. which grow the most over a short timescale, differ signif-
icantly from the least stable eigenvectors of the system, so
much so that even in simple situations involving transitimn
turbulence, non-modal stability analysis paints a muchemor
complete picture than conventional modal analysis.

1 Introduction By now, the theory of non-normal instability has ma-
tured to the point where it can be incorporated into control
The concept of instability in dynamical systems is generalgorithms. Flow control is a rapidly expanding field, and
ally associated with the spectrum of the linearized operaone of the challenges it faces is that of dimensionality.-Con
tor: a fixed point of the governing equations is stable if androlling high-dimensional systems such as fluid flows is of-
A. Blanchard &), S. Mowlavi 62) and T. P. Sapsisg) ten prohibiti\{ely expe-nsive as many control strategigscnio n
Department of Mechanical Engineering, Massachusettstutestof ~ Scale well with the dimension of the system [2]. With ma-
Technology, Cambridge, MA 02139 chine learning control still in an embryonic stage [12],erd
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allow construction of low-dimensional subspaces in whichspecify the initial condition at timé as z(-,tg) = 2. We
design and implementation of controllers are computationassume that (2.1) admits at least one fixed point, i.e., the
ally tractable [44]. Some methods have been around for @escset {z € X : % (z) = 0} is not empty. We denote ki any
such as proper orthogonal decomposition (POD) [24], anixed point of (2.1), regardless of how many there are. In-
others have been developed more recently, such as baland@dtesimal perturbations about a trajectory obey the varia
truncation [26], balanced proper orthogonal decompasitiotional equations
(BPOD) [36], the eigensystem realization algorithm (ERA) .
[23], and dynamic mode decomposition (DMD) [39, 33], of- v=2(zv), (2.2)
ten with a view to making the method data-driven. But evenyherev € X, and.2(zv) = d.Z (zV) is the Gateaux deriva-
the most sophisticated reduced-order models struggle witfive of . evaluated az along the direction. We will find it
capturing non-normalinstabilities. POD performs extrgme yseful, and sometimes more intuitive, to consider (2.1) and
poorly for systems exhibiting large transient growth [11],(2.2) in a finite-dimensional setting, that is,
while DMD, BPOD, and ERA, or combinations thereof, of-
ten require subspaces with double-digit dimension to aehie 2= F(2), Z¢€ R (2.3a)
acceptable errors, even in configurations as simple as plang,4
Poiseuille flow [37].

In this work, we elect the optimally time-dependent (OTD) =L (z)v, v e RY, (2.3b)

modes, recently introduced by Babaee & Sapsis [4], to re hereE - RY — RY is a smooth vector field, and(z) —

ducg the_system dimensionality in a dynamically conssteanF(z) c R4 is the Jacobian matrix associated wEh
fashion, i.e., one that preserves features of the fulltorde

. : . : ) .. evaluated az. The finite-dimensional formulation may be
system associated with transient and persistent ingtabili

viewed as the result of projecting the infinite-dimensional
The OTD modes are a set of orthonormal vectors dlaatp- ©SUlt of proj 9 )
) S . ) system onto a finite-dimensional set of complete functions,
tively track directions in phase space responsible for tran-

. ) df d t restrict th fth I-
sient growth and instabilities [4, 3]. The results of Bab&ee a:is Or oUr purposes does ot restrict e scope of the ana
Sapsis [4] showed that a very small number of OTD modeg ' . L . e
. . . - - Here, we consider situations in which infinitesimal per-
is capable of capturing transieariddasymptotic instabilities,

: . . turbations from a fixed point of the governing equations ex-
which led the authors to surmise that the OTD framework is P g geq

particularly appropriate to design reduced-order corstol \F/)vi:fr? c\;\?esi/?/g:: iin;;ranzzgtéan: Spjifjlbtlllygzimrﬁ);%t co; gn t;ol
gorithms toward suppression of transient instabilitielse T bp y y g

: . Igorithm. The challenge is to formulate a control strategy
purpose of the present work is precisely to develop a contr . . . T :
i at is low-dimensional and capable of suppressing inistabi
strategy centered around the OTD modes. To this end, we . )
. : ities resulting from normaand non-normal behavior. The
design a feedback control law that suppresses instantane . o o
; ) irst requirement may be satisfied by projecting the dynam-
growth of perturbations in the OTD-reduced tangent space s :
: . . ) Its onto a carefully selected subspace with dimension much
of the linearized dynamics. The end result is a control al- .
. . . : smaller than that of the phase space, and applying the con-
gorithm that fulfills all of the aforementioned requirement

. . : . trol algorithm in the reduced-order subspace. One carglidat
related to low-dimensionality and non-normality. subspace is the unstable eigenspagef % — £(z:-)
e — v )y

The paper is structured as follows. We present the pro whose eigenvalues dictate linear stabilitgafHowever, the

lem and review the concept of OTD modes in §2, formulate . S . .
: ubspace, provides an indication regarding exponential
an OTD-based control law in 83, apply the proposed contro? . . L
trateayv t ld ical svst in §4. and off rowth of perturbations abos{ only in the asymptotic limit
strategy to several dyhamical systems In 34, and ofier some +o0, and therefore fails to capture any short-term fea-

conclusions in 85. tures of the trajectory. In particular, eigenvaluesff may
predict linear stability foge, even when significant transient

2 Preliminaries growth occurs. A well-known example of such behavior is
found in fluid mechanics with plane Poiseuille flow (parallel
2.1 Formulation of the problem flow between two plates; see §4.2.2). For this flow, a “naive”

eigenvalue calculation around the base state predicts-a cri
We consider a generic dynamical system whose evolutioital value of the Reynolds number (based on the centerline
obeys velocity of the undisturbed flow and the channel half-width)
2= 7(2) 2.1) for transition WeII_ above that observeql experimentallyisTh

’ is because the eigenvalue approach is unable to capture the

wherez belongs to an appropriate function spa¢e.# is  non-normal nature of the linearized operator, which is re-
a nonlinear differential operator, and overdot denotes paisponsible for the significant transient growth seen in exper
tial differentiation with respect to the time varialtleWe  iments and computations. This result is significant, bezaus
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non-normal growth can activate nonlinear mechanisms trigA natural candidate fo® is the zero tensor, but that leads

gering turbulence, and a mere inspection of the spectrum d@b a fully coupled system of OTD equations in which @ll

“Ze cannot explain that outcome. modes appear in each equation of (2.5). In contrast, choos-
Therefore, itis clear that suppression of transient growtling ® such that

and instabilities cannot be achieved by a control algorithm _

solely based on eigenvalue considerationggfData-driven —(ZzZuw),u), k<i

approaches, such as proper orthogonal decomposition [28k = 4 O, k=i (2.6)

43,22] and dynamic mode decomposition [39], may look (Z(zZuw),u), k>i

like attractive alternatives, but the modes produced by suc ) ) )

decompositions are time-independent and intrinsically “b leads to a system in Wh!Ch the equqtlo_n for itfe r_“oo_'e

ased” toward the data that was used to generate them, so th\((}&penqs only_on the previous m_odqasmth mdex l=j=i

cannotadaptto directions associated with transient instabil- ith this choice of®, the equation for théth OTD mode

ities as the trajectory wanders about in the phase space ahefds

experiences various dynamical regimes. On the other hang, — L(zw) — (ZL(zZuw),u)u

the optimally time-dependent (OTD) modes, recently intro- i1

duced by Babaee & Sapsis [4], provide a promising frame-  _— (Z(Zuw),w)+ (ZL(zu),u)]u, 1<i<r,
work for our control problem. We review the reasons why k=1

below. (2.7)

and the system assumes a lower triangular form, readily solv
able by forward substitution. (We note that the summation
index goes ta — 1 in (2.7), rather tham as in (2.5).) In fi-

_ . nite dimension, we introduce the mattixe R9*" whoseith
The concept of OTD modes was first introduced in Babaee

& Sapsis [41in the f f trained minimizat bColumnisui,andWritethefinite-dimensionalcounterpartof
IemapS|s[ ]in the form of a constrained minimization pro " (2.7)in compact form as

2.2 Review of the optimally time-dependent (OTD) modes

. U=L(z)U—-U[UTL(z)U— o], (2.8)
min Zl””‘ — Z(zu)|? subject to(ui, u;) = &, (2.4)

G wheret denotes the Hermitian transpose operator.

Of the numerous properties that have been established
where(-,-) is a suitable inner product afjd || the induced for the OTD modes, we review a few relevant to the present
norm, &;j is the Kronecker delta, ang € X is theith OTD  work. First, the OTD modes span the same flow-invariant
mode. Ther-dimensional subspace spanned by the collecsubspace as the solutiofs(t)}{_, of the variational equa-
tion {u;}{_, is referred to as the OTD subspace. Because afons (2.2), while preserving orthonormality for all times
the orthonormality constraint in (2.4), the set}{_; triv-  [16]. Second, for a hyperbolic fixed poins, the OTD sub-
ially forms an orthonormal basis of the OTD subspace. Wespace is asymptotically equivalent to the most unstabknsigace
note that the optimization in (2.4) is performed with regpec of the linearized operata¥ [4]. Third, for a time-dependent
to U; and notu;, so the OTD modes are by construction thetrajectory, the OTD subspace aligns exponentially rapidly
best approximation of the linearized dynamics in the subwith the eigendirections of the left Cauchy—Green tensor as
space that they span. sociated with transient instabilities [3].

As discussed in Babaee & Sapsis [4], the minimization The above properties imply that ardimentional OTD
problem (2.4) is equivalent to a set of coupled partial diffe subspace continually seeks out thdimensional subspace
ential equations governing the evolution of each OTD modethat is most rapidly growing in the tangent space (i.e., the
For the dynamical system (2.1) and mdimensional OTD  space where perturbations “live”). Therefore, becauskef t
subspace, theh OTD mode obeys orthonormality constraint, the OTD modes provide a numer-

r ically stable and inexpensive tool for computing finite- and
_— " - - infinite-time Lyapunov exponents along a given trajectory.
=2 (zu) - ;K"g(z’ U Ut = P LSTST 16 note that the OTD modes coincide with the back-
(2.5) Wward Lyapunov vectors (also known as Gram-Schmidt vec-
tors) and, hence converge at long times to a well-defined
where® = ((le)ir,k:l € R™" is any skew-symmetric tensor basis that depends only on the state of the system in the
(i.e., such thay, = — @ for all 1 <i,k <r). The choice phase space, and not on the history of the trajectory prior
of @ does not affect the OTD subspace, since any two inito reaching the attractor [8]. But perhaps the most appgalin
tially equivalent subspaces propagated with (2.5), eatih wi property of the OTD modes is their unique ability to cap-
a different choice ofb, remain equivalent for all times [4]. ture transient episodes of intense growth, regardlesseof th

=~
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exponential or non-normal origin of the latter [4]. Because3.2 Order-reduction of the dynamics by OTD modes
of their time-dependent nature, the OTD modes are able to
“track” the most unstable directions in the phase spacegalorAs discussed in §2.2, the OTD modes span flow-invariant
a given trajectory, and therefore are a natural candidate fesubspaces of the tangent space, so they can be used to reduce
the formulation of a reduced-order control algorithm. the dimensionality of the linear operatorin adynamically
consistent fashiofiL6]. To see this, we consider a solution
v € RY of the original variational equation (2.3b), and its

" ; .
3 Formulation of an OTD-based control law projectiom € R' onto the OTD basit),

— T

In this section, we formulate a control law based on the OTD" () =0, vespafu). (3.4)

framework in order to suppress episodes of transient growthere, the OTD basisl evolves according to the OTD equa-

around a fixed point of the governing equations. The analytion (2.8) along the trajectom(t) of the system. (The depen-

ical exposition is done in finite dimension, but carries overdence on time is shown explicitly to emphasize this point.)

to the infinite-dimensional case. The vectom represents the solutionexpressed in the OTD
basis. We also have that= Un as a result of the orthonor-
mality of the OTD modes. Substituting in (2.3b) yields the

3.1 Formulation of the control problem reduced linear equation

We consider the system (2.3a) subject to a control force, "= (UTLU — @)n. (3.5)
Conversely, ifn solves the reduced equation (3.5), thea

Un solves the original equation (2.3b), which is the other
prerequisite for dynamically consistent reduction. Weenot
wherec € RP is the control variable arll € R Pis the con-  that the conditiow e sparfU) implies that any direction or-
trol action matrix. The control forck = Bc may be seen as thogonal taU is left out by the order reduction. This point is

a body force acting on the system. Since we are interested #jscussed in greater detail in §3.4. The linear mapR" —
steering the trajectorgtoward a fixed pointe, we introduce ' defined as

the quantityzZ = z— z describing the deviation of the cur-
rent state from the target state. The controlled pertushati L, =UTLU — @ (3.6)
Z then obeys

z=F(z)+Bc, (3.1)

is referred to as theeduced linear operatorAs discussed
7 =L (2)Z +Bc+O(||Z||?), (3.2) inFarazmand & Sapsis [16], the OTD order reduction car-
ries over to the infinite-dimensional case, since projectio

where we have used the fact thatze) = L (2) + O(||Z]]). of the infinite-dimensiqnal operatdr’ to gnr-dimensional
Assuming that the higher-order terms in (3.2) are suffitjent OTD Subspacgui}i_, yields a reduced linear operator that
small that they may be neglected, we arrive at the controllel$ finite-dimensionai.e., anr x r matrix), whose entries are
variational equation given by

4~ (27 +Bc, 33 |ri=wZ@u))-a;, 1sijsr 3.7)

A great advantage of the OTD order reduction is that it re-
which will be the basis for our analysis. In the majority of tains the information of the full-order solution associhte
industrial applications, the dimension of equation (3s3) i with transient instabilities, irrespective of the modahon-
very large (typically, millions of degrees of freedom), andmodal character of the latter. This is because the OTD modes
designing a controller for a wide range of parameters ofcapture the most unstable directions in phase space, arel sin
ten is a computationally onerous task. A promising approacthey are computed along an evolving trajectory, they are abl
is to proceed to an order-reduction of the dynamics, whicho adapt to the various regions visited by the system. There-
is generally done by a Galerkin projection of the governfore, the OTD modes establish themselves as a natural and
ing equations onto an appropriate basis; for example, PORelevant candidate for the projection basis.
modes computed from a collection of snapshots of the tra- We now return to the control problem (3.3), and apply

jectory, or eigenfunctions of the linear operaliar=L(ze).  the order-reduction ideas described above. We define a re-
In the following, we give arguments in favor of projecting duced control matri, € R™*P as

the dynamics onto OTD modes, rather than any other candi-
date basis. B = UTB, (3.8)



Control of Linear Instabilities by Dynamically Consistédtder Reduction on Optimally Time-Dependent Modes 5

and obtain the reduced controlled variational equation,
n=L(z)n+Bc, (3.9)

where we have lety = UTZ. Equation (3.9) is a set af

ordinary differential equations, making it much cheaper to

compute an appropriate reduced action maBjixWe em-

For the norm of the perturbation to become vanishingly small
we require the yet undetermined feedback mafrjxto be
such that

¥n #£0, (3.13)

s 0
S mli2<o,

S0 S ¢ must be negative definite by virtue of (3.11). Since

phasize that we have thus far made no assumption regardifi§gative-definiteness is a condition on the spectrum of the

the form of the reduced control fordg; = UTfc. To guar-

operator, it is convenient to introduce the eigendecomposi

antee dynamic consistency of the order reduction, we onl§ion & = RA;RT, whereR € R"™" is a unitary rotation ma-

require thaff; € sparfU), i.e.,fc = Uf; ¢, but the choice of

trix containing the eigenvectors &, andA,; = diag\Aj) €

f.c remains arbitrary. So here, the OTD modes have beeR ' is a diagonal matrix containing the real eigenvalues of
used merely to reduce the dimensionality of the system in & ordered from most)) to least @) unstable. We may

consistent fashion (i.e., by preserving instability pnoies

use the eigenbasis &f to define a rotated closed-loop sym-

of the full-order system), and this gives us complete freemetric operator as

dom in the choice of the control scheme inside the OTD_
subspace (e.g., linear quadratic regulator or proportionaSr.c = Ar +
integral-derivative controller). We now explore how the@T

RTB(K;R+RTK[B[R
2 3

(3.14)

modes may be incorporated in a control scheme to suppre¥éiere itis understood th& . = RTS; cR. The control prob-

transient instabilities in the reduced-order system.

3.3 Formulation of a control law

lem may now be formulated as finding a feedback magtix
such thats ¢ is negative definite.

Control problem Given atime-dependentdiagonal reduced
matrix A; € R™*", a reduced control matri8, € R™*P, and
a unitary rotation matrixR € R™*", find a reduced feedback

Inspired by the theory of proportional control, in which the matrix K, € RP*" such that the rotated closed-loop symmet-
controller output is proportional to the error, we seek @etb  (i; operator$, . is negative definite.

loop feedback control law in the form= Kn, whereK, €

RP*" is the reduced feedback gain matrix. We recall that!® minimize the cost of the control scheme, we additionally
n = UTZ = UT(z— z¢) is nothing more than the deviation require that the norm of the matrik; be minimized. We

of the trajectoryz from the fixed pointze expressed in the

OTD basisU, so our goal is to find an appropriatg that
drives the reduced perturbatigrto 0. With this in hand, the
controlled reduced system (3.9) becomes

n=Lrcn, (3.10)

wherelL ;¢ = L + B;K; is the closed-loop reduced linear

operator. (We will sometimes refer th, as theopen-loop
reduced linear operator.) The operalgr. (andL, for that

also note that at this point still, we have used the OTD modes
for nothing other than the order reduction of the linearized
dynamics.

The next step in the analysis is to solve the above con-
trol problem and find an expression for the matix. We
now make two critical assumptions. First, we assume that
the control matrixB is equal to the identity matrix, so the
control vectorc has as many inputs as there are state vari-
ables (i.e.p =d). In words, this means that the control can
act everywhere on the state of the system. With this assump-

matter) depends on time, so its eigenvalues may not be uséidn, we immediately see th& = UT, and the matri>ér,c

to determine growth or decay of the solutigninstead, we

consider the instantaneous growth of the perturbationen th

OTD subspace,

2 (Lrem,n) + (n,Lren)

= = <nasr,c11>a

. (3.11)

1d H
2at!™
whereS ¢ is the symmetric part ok ;. We note thatS; ¢
may be expressed in terms of the symmetric Sarbf L,
because

S.— Lrc+Lic . Lr+L7  BiK;+KJBJ
T2 T2 2
B/K, +K/BJ

becomes

RTUTK,R + RTKJUR
2 )

with K, now in R9*", Second, as discussed in §3.2, we re-

quire that that the control vectarbelong to the OTD sub-

space, meaning that there exists a matrix R"*" such that

K = UA,. The matrixA, € R™*" may be chosen arbitrarily.

Any symmetric matrix is a good choice fér;, because it
considerably simplifies the expression &g,

Sc=NAr+

(3.15)

Sc=A+RTAR, A =A]. (3.16)

Now thatér,C has been expressed as the sum of a diagonal
open-loop compone; and a symmetric rotated feedback
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componenRTAR, the control problem is straightforward Another option is given by Babaee & Sapsis [4], who
to solve. Indeed, sincA; is diagonal, it is easy to design suggested to use theleading right singular vectors of the
RTA(R and, henceK, so thatéf,C is negative definite while propagatoM (tp,tmax). Those vectors are essentially a set
minimizing the cost|K,||. (It should be clear thatK,|| =  of r optimal initial conditions that reach maximum possible
lAf|| = ||IRTA(R||.) The optimal solution is given by amplification at a given timénax This is a good choice be-

) ) cause the right singular vectors Bf(to,tmax) are real and
Ar = Rdiag—(%i + {) 2 (A)IRT, (3.17) orthonormal, and they are associated with maximum ampli-
where# is the Heaviside function, anfic R* is a damp- ~ fication over the finite-time horizojty, tmay-
ing parameter. The Heaviside function guarantees that the Ve note thatin the above two approaches, the OTD modes
control acts only on directions associated with positive in Satisfy the boundary conditionstat to, as well as any con-
stantaneous growth (those with > 0), and the parameter Straint appearing in the linearized equations such as incom
¢ governs the intensity with which each of these directiongressibility. In practice, however, this need not be thecas
is damped. WithA, chosen according to (3.17), the rate of @nd the OTD subspace may be initialized arbitrarily. For ex-

change of the perturbation magnitude in closed loop is sim@mple, we may choqse a Fourier basis, or a set of Legen-
ply dre polynomials, which we are careful to orthonormalize.

The key point with such initialization is to make sure that
%%HHHZZ M,R&R™) =~ Z AZ+ z Aif?, (3.18) the OTD subgp_gce contains_ the dir_ect_ions of instantaneous
NS0 <0 growth of the initial perturbation, which is generally trere-

. cept in pathological cases.
where we have defined the rotated perturbafjona RTn = ptinp g

fie. It should be clear from (3.18) thal{d||?/dt < O for all
1 # 0, ensuring that tends taze at long times.

Collecting the pieces, we arrive at the final expressio
for the control force,

3.4.2 Dimension of the OTD subspace

r]I'o determine what the dimensianof the OTD subspace
should be for the control to be efficient, we first note that

fo = URdiag— (Ai + ) (A)|RTUT (2 — ze), (3.19) r governs how faithful the order reduction of the linear op-
. . . . o eratorL is to the full-order dynamics, or in other words,
which may be substituted in place B¢ in the original full- - how muych information is lost upon projection onto the OTD

order nonlinear system (3.1). The control fofeés defined subspace. Somust be chosen on the basis of the informa-
for all ze RY and all timest > o, i.e., it acts as a body force jon we wish to retain in the reduced-order equation. In the
on every state variable of the system. We address the issygasent context of controlling instabilities, we must sefe

of restricting the range of the OTD controller in [9]. so that the reduced system (3.5) encapsulates all the infor-
mation related to transient and asymptotic growth. Should
be too small, the OTD reduction would leave out directions

3.4 Properties of the OTD control scheme associated with instabilities, which the control law woinld

We now discuss several issues related to the proposed oTH™M be unable tp SUppress. . .
control scheme. Three key questions arise. First, how shoul FOr normal (i.e., modal) operators, itis sufficient to cap-
the OTD subspace be initialized? Second, how should thi¥re directions associated with exponential growth, that i

dimension of the OTD subspace be chosen? Third, what i@e unstable eigendirections of the operaterThis means

the scope of validity of the proposed control algorithm? that we must choogez dim&q. In doing so, we gqarantee
that the unstable eigenspaced.@fandUTL (U coincide, by

3.4.1 Initialization of the OTD subspace virtue of the following theorem.

Theorem 1 LetQ € R9%9, and letnN € R™9 be a projector
For the OTD reductioa’ = Un to be consistent, itis critical gych thaflM™ = I,. Then, the following holds.
that the initial deviatiore'(tp) = z(tp) — ze have a non-zero . ) ) ]
projection on the OTD subspace, i.8(to)™Z (to) #£0. This 1+ If (K, 1) is an eigenpair oflQMT, andrang&MT) is an
can be realized in a number of ways. One option is to let €igenspace d®, then(u, NTy) is an eigenpair oR.
U(to) = {Z (to), Wr, ..., Wr_1}, where? (to) = Z(to) /| Z (to) | 2. If (u,0)is an eigenpair of_Q, and© is in rang€nT),
is the normalized initial perturbation, anid is theith lead- then(u,M0) is an eigenpair of 1QMT.
ing eigenvector ofL e+ L{)/2 orthonormalized against the
set{Z (tp),W1,...,W;_1}. Inthis way, the OTD subspace ini-
tially contains the initial perturbation, as well as theedir 1. Since rangd17) is an eigenspace 6J, we have that for
tions associated with largest instantaneous growth for the anyae R', there existb € R" such thaQMTa=MNTh.
steady operatdre. This means thaflQMTa = b. Suppose now that =1

Proof The proof of the above two items is as follows.
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is an eigenvector dilQMT, and letu be the associated the eigenvalues of the symmetric part of the reduced opera-

eigenvalue. Then, by definitioRlQN™p = pp, and so  tor because it is relatively straightforward, and more impo

b = pp. We thus obtai@QM ™y = uMTp, which com-  tantly because in our quest to suppress non-normal instabil

pletes the proof of item 1. ties such criterion is much more stringent than one based on
2. Sinced € rangéNT), there existd € R" such tha® =  the eigenvalues of the reduced operator, as evidenced by the

MTh. Also, since by definitio®@0 = uo, we haveQM™b = following theorem.

UMTh. Pre-multiplying byf1, we obtainMMQM™b = ub.

Equivalently, we may writd1QMNTMo = uMeo, which

completes the proof of item 2.

Theorem 2 Let Q € R™*" be a steady operator acting in
the reduced space. If all eigenvalues(f+ QT)/2 have
negative real part, then so do all eigenvalue€of

We note thatwhefl™ = U, the assumptions related to ra(lgé)P ‘s h | ble ei lue. F
are trivially satisfied asymptotically when the linearizgs roof SupposeQ has at_ east one unstable eigenvalue. For
erator is steady. We also note that theorem 1 provides an iF red_uced-order dynamlpal systars= Qx, and a Lyapunov
lustration of the fact that the OTD reduction is dynamically unctionxTx, the quadratic form™(Q +- QT)x describes the

consistent, i.e., projection of a steady operator on the o.I.lgenvatwe of the Lyapunov function along trajectories. If

T Ty i : e :
modes does not alter the spectral content of the operator ih @ +fQ I)Ixt IS n(iga?tlve. seml <.jef|n|te,- therjrrt]he Eu(tzlgian
the asymptotic limit. norm of all trajectories is non-increasing. This contréslic

For non-normal (i.e., non-modal) operators, it is not syfthe assumption thap has at least one unstable eigenvalue.

. N
ficient to consider dirf,, because non-normal growth does Thus, at least one eigenvalue(@ +QT)/2is unstable.
not necessarily take place along the unstable eigendirecti

For a simple example, we consider the matrix 3.4.3 Validity of the control strategy
Lo -15 (3.20) As discussed in §3.3, the final form of the control law (3.19)
e 10 -2’ ' was derived on the basis of several key assumptions. We now

discuss the extent to which these assumptions might restric
the scope of the proposed algorithm. First, the control law
was designed to act on the variational equation (3.3), but
we decided to apply it to the original nonlinear equation
I:63.1). This is valid as long as the norm of the perturbation
. Z— z is relatively small, so that the original dynamics may
stable elgenspace_(jte+ Lé)/z._ . : _ be described by the linearized equations. In (3.2), we also
If we now consider the matrix (3.20) in which the signs used the operatdr (z) as a proxy forLe, which likewise
of the diagonal elements have been changed, the eigenv%lt-)ldS only when|z— ze|| is small. This step was taken in

ues of the resu-lting operat.or are positive (1 ‘de ,2)’ but thgn effort to guarantee consistency with the OTD framework,
eigenvalues of its symmetric part have opposite signs Gabo‘éince the OTD modes are computed along an evolving tra-

—2.01 and 801). In this case, there is one direction asso'jectory, rather than at the fixed point. In doing so, we take

ciated with non-normal growth, and two with exponentialf Il advantage of the fact that the OTD modes adaptively
growth. These examples suggest thatto capture both NOTMB4 ek directions of instability, rather than being “statike

and non-normal instabilities, we must choose eigenfunctions.

r > maxdiméy, dimes), (3.21) Second, by lettind3 = I, we assumed that the control
can act on every state variable of the system, and the lin-

where we emphasize th&§ and&; pertain to thdull-order  earized system (3.3) is trivially controllable [45]. This i
operators. The above criterion is necessary and sufficiemiot a bad assumption to make in theory, but it rarely holds
provided that the OTD subspace is not orthogondlfand in experiments because the range and number of actuators
es. are generally limited. Similarly, we have assumed complete

In light of this, it should be clear that the choice of knowledge of the stateof the system at every time instant,
should not be dictated solely by the number of unstable eigaihereby implying full observability. While the assumptioi
values of the symmetric operatdr +L1)/2, despite what full controllability may presumably be relaxed, we notettha
the criterion (3.11) used in the control law might suggest. | there is no avoiding the full observability assumption,-sim
fact, the two issues are not related, since the criteridiil3. ply because complete knowledge of the state is required to
appearsafter the order reduction step, so it operates usingevolve the OTD equations (2.5). There is currently no gen-
information about the reduced-order system only. As diseral framework to compute or approximate the OTD modes
cussed in 8§3.2, we could adopt any scheme of our likingvith limited knowledge of the system state or the associated
to control the reduced system (3.9). We chose to focus olinearized operator.

whose eigenvalues indicate asymptotic stability, whettezse
of its symmetric part reveal significant non-normal growth
along the directior((1 —/26)/5,1)T. So to capture (and
later suppress) transient growth, the dimension of the OT
subspace must be such that dim&g, where€s is the un-
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The other assumptions, namely, that the control vectolocity Uey, for which the Navier—Stokes equations can be
belongs to the OTD subspace and the magixs symmet-  written in dimensionless form as
ric, are deemed to be minor. The former was introduced to 1
arrive at a relatively simple form of the control force with- &W+w- 0w = —[p+ ﬁeDZWa (4.1a)
out having to develop an entirely new theory to solve theD ‘w=0, (4.1b)
control problem, and the latter was made to guarantee dy-
namical consistency of the order reduction. We note that aith no-slip boundary condition
large part of feedback control theory focuses on pole place-
ment for the linearized operator itself, and we are aware o‘fV|"cyl =0
no previous attempt made to find an optimal solution to thg), the cylinder surfacky;, and uniform flow
control problem in which the controller is designed to force
the eigenvalues of theymmetric parof the linearized op-  lim w = & (4.2b)

erator to the stable portion of the complex plane. A rigor- ] o
ous treatment of this problem could allow us to formulate 4" the far field. In the above, velocity, time and length have

control law in which the two assumptions mentioned abov&€€n scaled with cylinder diamet@rand free-stream veloc-

would no longer be needed, but such endeavor is beyond t#® U and the Reynolds numberfie=UD/v. Theith OTD
scope of the present work. mode obeys

(4.2a)

Ui = As(W; Ui) — (Ls(W; Ui ), Ui) Ui
i-1
= > [(Aus(wiui), u) + (Ls(W; U), ui) Uk (4.3a)
k=1
In this section, we present evidence of the efficacy of th =0 (4.3b)
control strategy introduced in §3. We consider examples-dom ' '
inated by normal and non-normal instabilities, and demonwith boundary conditions
strate the superiority of OTD control in situations exHimt

4 Results

significant transient growth. In all that follows, we assumeUi|Fcy| =0 (4.4a)
that the control is activated &t= 0, and remains active for and
allt>0.

rIim uj =0, (4.4b)
4.1 Suppression of normal instability by OTD control where the inner product is chosen to be the usdahner

_ - ) product. The linearized Navier—Stokes operator at the cur-
For normal instability, the main advantage of OTD control ant statav is given by

over modal control is that it eliminates the need for com-

puting the eigenfunctions of the linearized operadtge- Ls(W; Uj) = —w - Ouj — uj - Ow + iDzui —Opi, (4.5)
forehand, since asymptotically the OTD subspace alijyns Re

itself with the most unstable eigenspacd@f As discussed wherep; is the pressure field that guarantees incompress-
in 83.4.2, there is no gain related to the dimension of the praibility of the OTD modeu;. The reduced linear operator is
jection subspace, because the dimension of the OTD contrglven by (3.7), with#\sin place of.Z.

subspace must be at least as large as that of the unstable The computational solution is effected using the open-
eigenspace. So for normal instability, and because we hawsurce, spectral-element Navier—Stokes sale&5000 [18].
assumed that the deviatian- ze remains small, we expect The computational domain extends2dylinder diameters
that a control based on the eigenmodek g6hould be just in the cross-stream direction and.8R in the streamwise

as efficient as one based on OTD modes computed alorjrection, with the cylinder center located4® away from

the trajectory. (This may be viewed as a validation step.}he inlet boundary and equidistantly from the side-walls.
We confirm that that is the case in two classical example®ur production runs use a mesh with 316 spectral elements,
from fluid mechanics, namely, flow past a cylinder and Kol-polynomial degre&l = 9, and time-step siz&1 = 2x 103,

mogorov flow. We specify a no-penetration (“symmetry”) boundary condi-
tion on the side-walls, and a stress-free condition at tle ou
4.1.1 Flow past a cylinder let for the main flow and the OTD modes. At the inlet, we

prescribe a non-homogeneous Dirichlet conditian= &)
We consider the two-dimensional flow of a Newtonian fluidfor the main flow, and a homogeneous Dirichlet condition
with constant densitp and kinematic viscosity pasta cir- for the OTD modes. Here and in what follows, we compute
cular cylinder of diameteb with uniform free-stream ve- the OTD modes witi given by (2.6), rather tha® = 0,
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because the former allows use of the “standard approach” @)
of Benettin et al. [7] and Shimada & Nagashima [42] in 1
the limit of continuous orthonormalization (i.e., when the
Gram-Schmidt procedure is applied at every time step). We
refer the reader to Blanchard & Sapsis [8] for further detalil
Itis well known that for any value dRe (4.1a,b—4.2a,b)
admit a steady solutiomwe symmetric about the midplane 3 0 = .
y = 0. The steady solutiom, loses stability aRe, =~ 47 . .. . = .
through a Hopf bifurcation resulting from a pair of complex
conjugate eigenvalues crossing the imaginary axis. It has
also been shown that in a rangeRxévalues slightly above
Re, there is exactly one pair of unstable complex conjugate -1
eigenvalues [13,20]. Here, we consider the case- 50, -1 -0.5 0 0.5 1
which falls within that range, and for which the long-time (b) Wi
attractor is a limit cycle. We compute the steady (unstable) 4 2
base floww, by a selective-frequency-damping (SFD) ap- q
proach [1], and the spectrum f\se by an Arnoldi algo- 5 0 e 0
rithm [30]. Figures 1a—c show the most unstable eigenvalues , , , ,
of “Nse, along with the vorticity distribution ofve, and a 0 6 12 18 24
snapshot of the vorticity distribution af on the limit cy- (c) z/D
cle (in the absence of any control). Consistent with previou 4 9
studies [30,40], figure 1a shows that there is only one pair of
unstable complex conjugate eigenvalues, so we expect that % o G 0
a control based on two or more OTD modes should stabilize
the steady symmetric solution. 0 6 12 18 o4
We now use the OTD control law introduced in 83 to
suppress linear instability ofie. We initialize the flow on

the steady symmetric solution, to which we superimpose %ig. 1: For flow past a cylinder &e= 50, (a) most unstable
small-amplitude inlet perturbation, so that

x/D

eigenvalues of the linear operator visualized in the comple

Winlet(yt = 0) = (1+ 10 %y)e,. (4.6) plang, (b) spanwise vorticity distribution of the sf[eadynsy _
metric solution, and (c) snapshot of the spanwise vorticity

The condition thafjw — we|| be small is thus satisfied = distribution of the solution on the limit cycle in the absenc

0. To initialize the OTD modes, we apply Gram—-Schmidt or-of control.

thonormalization to the subspagsin(my)e,+cogmxey},_;.

The resulting modes satisfy the divergence-free contraint

That they do not satisfy the boundary conditions is not an isEigure 2b shows that the OTD control rapidly suppresses the

sue, because the OTD Subspace a"gns exponentia”y rapidmposed disturbance. We have verified that OTD SUbSpaceS

with &, regardless of the initial conditions. with dimension larger than two lead to an identical outcome.

We first perform a computation with a single OTD mode.

Figure 2a shows time series for the magnitude of the lift co4.1.2 Kolmogorov flow

efficientC_, and makes it clear that a control law based on

one OTD mode cannot counteract linear instability of theFor a second example of normalinstability, we consider Kol-

steady flow. As discussed in §3, the reason is that order rénogorov flow on the toru® = [0,2m2. The flow obeys the

duction of the linearized dynamics onto a one-dimensionancompressible Navier—Stokes equations subject sinakoid

OTD subspace leaves out the second linearly unstable diretorcing, written in dimensionless form as

tion. In contrast, figure 2b shows that a control law based on 1

two OTD modes is able to stabilize.. In figure 2b, we also  dw+w-Ow = —0Op+ = 02w + sin(ky)ex (4.8a)

introduced a stronger disturbance at 600, in the form of Re

. . O-w=0, (4.8b)
an inlet perturbation,
Wintet(Y;t = 600) = (1+ 10 %y)ex. (4.7y Wherekis a positive integer, and the Reynolds numBer

is the inverse of a dimensionless fluid viscosityThe OTD
The amplitude of the inlet disturbance in (4.7) is small, yetequations are identical to (4.3a,b), wi#fjs given by (4.5).
two orders of magnitude larger than that imposeti-atd0.  (We note that the external forcing does not appear in the
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(@) 16 solutions found by Farazmand [15], provided that the di-
10° mension of the OTD subspace is chosen according to (3.21).
In what follows, we sek = 4 andRe= 40, along the
lines of Farazmand & Sapsis [16]. We first determine the
dimension of the unstable eigenspace for the laminar solu-
tion (4.9). An Arnoldi calculation shows that dify = 38,
consistent with Farazmand [15]. Figures 3a—c shows the 50
most unstable eigenvalueslof, along with vorticity distri-
butions of the laminar solution, and a snapshot of the solu-
tion in the chaotic regime (in the absence of feedback con-
. . . . . trol). The Arnoldi algorithm reveals that among the 19 pairs
0 200 400 600 800 1000 1200 of unstable complex conjugate eigenvalues, only 3 have mul-
(b 4 tiplicity one (figure 3a). There is a possibility that such a
10° high multiplicity might affect the rate at which alignmert o
the OTD subspace with, takes place, as the convergence
result established by Babaee et al. [3] holds when there is
a spectral gap between thén and(r 4+ 1)th most unstable
eigenvalues of_.. Fortunately, criterion (3.21) guarantees
that the spectral gap assumption holds, so multiplicity wil
not be an issue in the cases considered hereinafter.
We perform two computations in which the controlis ac-
tive, one withr = 36 and the other with = 38. For the case
r = 36, we expectto see growth of the solution, as one pair of
0 200 400 600 800 1000 1200 unstable eigenvalues is left out by the OTD order reduction,
¢ and therefore not acted upon by the control. For the case
Fig. 2: For flow past a cylinder &e= 50 with OTD control ~ 38, however, the dimension of the OTD subspace satisfies
(with { =0.1), time series ofC_ | for (a)r =1, and (by =2.  (3.21), so the feedback control should be able to stabfize t
In (b), an inlet perturbation in the form of (4.7) is appligd a laminar solution. In both computations, the initial corutit
t = 600. for the main flow isw(t = 0) = we, so linear instability is
triggered by numerical noise. (A calculation without cahtr
shows that this mechanism is available.) Noise-induced dis
expression for the linearized operai#ks) The main flow turbances may be considered infinitesimal, so the condition
and the OTD modes satisfy periodic conditions. The comthat|w — wg|| be small is trivially satisfied at= 0. To ini-
putational solution is effected usingk5000 with a mesh tialize the OTD modes, we apply Gram—-Schmidt orthonor-
composed of 256 elements (16 elements in each directionalization to the subspag¢eogmx) sin(my)ey — sin(mx) cogmy)ey }r,_;.
polynomial ordeN = 5, and time-step sizAt = 103, The resulting modes thus satisfy the divergence-free con-
The Kolmogorov flow admits a laminar solution, straint and the periodic boundary conditions.
Figure 4 shows time series for the energy dissipation

G 10°

10-1

Inlet perturbation —»

3 10°

10-1

Re
We = — sin(ky)ey, (4.9) _ 1
2 E(0) = map] /Q IOw|2dQ (4.10)

which is asymptotically stable for forcing wave numkes  for the uncontrolled and the two controlled cases. When no
1 and any value oRe[19]. Fork > 1 and large enougRe  control is applied, the trajectory rapidly leaves the viigin
values, the laminar solution is unstable. As discussed in of the laminar solutionve (for which Eq = 1.25) as a result
Platt et al. [32] and Chandler & Kerswell [10], it is believed of linear instability, and after a brief transient regimet-s
that fork = 4 and sufficiently largdRe all fixed points of tles into a chaotic attractor. Figure 4 also shows that with a
the Kolmogorov flow are unstable, and the long-time solu-36-dimensional OTD subspace, the control cannot do better
tion is chaotic. We note that other invariant solutionsthesi  than to delay repeal of the trajectory from. With a 38-
(4.9) are known to exist for this flow. F&r= 4 andRe= 40, dimensional OTD subspace, however, the control is able to
Farazmand [15] reported no fewer than 16 different steadguppress linear instability and stabilize the fixed point.
(unstable) solutions, with di&, ranging from 5 to 38. Here, Figures 5a,b show the eigenvalues of the symmetric part
we use OTD control to stabilize the laminar solution (4.9),0f the open-loop reduced linear operatorfee 36 and 38.

for which an analytical expression is available. We emphain both cases, the OTD subspace aligns with the most unsta-
size that OTD control may be used to stabilemey of the  ble eigenspace df quite rapidly (in about 10 time units),
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(a) (b) (©

2 2 3 2m 3
] '
1 [ " " [
3 0 1 > 7 0 > 7 0
]
-1
-2 0 -3 0 -3
-2 -1 0 1 2 0 2

Wi

Fig. 3: For Kolmogorov flow withRe= 40 andk = 4, (a) 50 most unstable eigenvalues of the linear operasualized
in the complex plane, (b) spanwise vorticity distributidrttte laminar solution, and (c) snapshot of the spanwiseaityrt
distribution of the solution in the chaotic regime in theeatse of control.

(a)

No control
——— OTD control (r = 36)
1.5 } ——— OTD control (r = 38)

0.5}

0 50 100 150 200
t

50 100 150
Fig. 4: Energy dissipation for trajectories with OTD cothtro (b !

(with ¢ = 0.1), and without control. For the case with OTD 4
control andr = 38, the calculation was terminatedtat

2000 to ascertain stability. 9

despite the fact that a large number of eigenvalueshavem < 0
tiplicity greater than one. The plateau beginning aftegrali
ment corresponds to a state in which the solution is infinite 2
imally close to the fixed point, and the OTD subspace |
aligned with the most unstable eigenspacé gf But it is
only forr = 38, when all of the 38 unstable eigendirection:
of L are accounted for in the reduced-order system, that t
control is able to suppress linear instability and expoiaént
growth. Fig. 5: Eigenvalues of the symmetric part of the open-loop
reduced linear operator for the OTD-controlled trajesri
shown in figure 4: (a) = 36 and (b)Y = 38.

50 100 150
t

4.2 Suppression of non-normal instability by OTD control

As discussed in 82, the great value of the OTD frameworleigenfunctions, as the latter are not able to capture non-
has to do with control of instabilities caused by non-normahormal growth. While in 84.1 we took advantage of the asymp-
behavior. The OTD modes have a significant advantage ovéotic behavior of the OTD subspace (it coincides with the
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most unstable eigenspace) to suppress normal instadyilitieenergy-preserving nonlinear mixing) is common in fluid me-
here we wish to leverage their ability to track directions ofchanics, which makes this system a good testbed for our
greater transient growth along a trajectory. So to demoneontrol algorithm. We illustrate the potential of this syst
strate the superiority of OTD control over modal control,in figure 6a, where we show the norm of uncontrolled tra-
we focus primarily on situations in which the fixed point is jectories integrated forward in time with initial conditio
linearly (asymptotically) stable, but significant growfittee  (0,c)T, wherec is a constant. (Integration is performed with
solution occurs as a result of transient non-normal inktabi a third-order Adams—Bashforth method with time-step size
ity. At = 0.1.) Figure 6a makes it clear that large enough non-
Comparison of OTD and modal control is only fair if the normal growth leads to transition to “turbulence” (for this
same control law is used in both approaches. To apply (3.1%jmple 2x 2 system, the long-time “turbulent” attractor is
to modal control, we proceed as follows. From the leadingactually another fixed point).
r eigenvectors of ¢, we construct an orthonormal basfs Here, the mechanism responsible for transient growth
using the Gram-Schmidt algorithm. We then usén lieu  is well understood. The culprit is the principal right singu
of the OTD moded&). Furthermore, we consider the reducedlar vector ofC, as it finds itself on the receiving end of a
linear operatonpTL a1, rather thanpTL1p. Since the con- self-sustained transfer of energy facilitated by the medr
cept of eigenvectors is fundamentally tied to that of a fixederms. Thus, there is only one direction responsible fornon
point, we argue that projectirig. on1p is the only sensible normal growth, and that direction coincides with neither of
option. It makes little sense to consider situations in Wwhic the eigenvectors of. So modal control should work only
L is projected onto an eigenspacelafbecause eigenvec- when all the eigenvectors @ are included in the control
tors of a time-dependent operator are meaningless. The repace, since neither of them can individually track theadire
maining variations (projectingie on an eigenspace df, tion of non-normal growth. On the other hand, OTD control
and vice-versa) are inconsistent for the same reason. i cowith r = 1 should be able to suppress non-normal growth,
trast, the OTD modes are computed along time-dependeand in turn, prevent transition to “turbulence”. This is eon
trajectories, and the projection &f on an OTD subspace firmed in figures 6b—e. (In figures 6b,c, initial conditions fo
is dynamically consistent and meaningful. (For an unconthe OTD modes are selected randomly.)
trolled trajectory exhibiting significant non-normal griby
the OTD subspace significantly departs from the most ung 2 2 plane Poiseuille flow
stable eigenspades.) Finally, we use the same value of the

damping parametef for OTD and modal control. There is no geometry simpler than that of plane Poiseuille
flow to study the effects of non-normality in the Navier—
4.2.1 Unsteady low-dimensional nonlinear system Stokes equations. Plane Poiseuille flow consists of pressur

driven flow confined between two rigid, infinitely long, par-

As discussed in §1, a critical application of OTD control to&llel plates. The Navier-Stokes equations can be written in
non-normal systems is to prevent transition to turbuleSoe. dimensionless form as

we begin with a simple low-dimensional nonlinear problem 1, 2
introduced by Trefethen et al. [46], aw+w-Ow = —[p+ ReO Wt ee (4.12a)
z=Cz+ ||z||Dz, (4.11a) O-w=0, (4.12b)
with boundary conditions

where

1R 1 0_1 w(x,y=+1zt)=0 (4.12c)
C= , D= , (4.11b)

0 -2/R 10 at the rigid walls. Velocity, time and length have been stale

. . with the channel half-widtth and the centerline velocity
andRis a large parameter (herg,= 25). The linear term . !
) . i L U of the undisturbed flow. The Reynolds numbeRe=
involving the non-normal matrixC amplifies energy tran- . ) - . )

. . . : ; . Uh/v, wherev is the kinematic viscosity of the fluid. The
siently, while the nonlinear term involving the skew-synirite .

) o . undisturbed base flow

matrix D redistributes, but neither creates nor destroy, en-
ergy. A remarkable feature of this system is that, despée thy,(x y 7) = W(y)e,, W(y) =1—y? (4.13)
fact that the trivial fixed poinge = 0 is asymptotically sta-
ble (the eigenvalues df are negative), it is possible for a is a fixed point of (4.12a—c), and is known to become linearly
perturbation to be sufficiently amplified that it activateet unstable aRe. ~ 57722. However, experiments suggest an-
nonlinear terms, leading to transition to “turbulence”isTh other value forRe. (on the order of 1000), drastically dif-

particular behavior (non-normal amplification coupledhwit ferent from that predicted by modal stability analysis.sThi
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(a) (b) (c)

10° 10° 10°
10° 10° 10°
10-10 \ 10-10 \ 1010 \
0 100 200 0 100 200 0 100 200
t t t
(d) (e)
10° 10°
10° 10°
10—10 \ 10—10
0 100 200 0 100 200
t t

Fig. 6: For the Z 2 non-normal system (4.11a,b), norm of trajectories suilige@) no control, (b) OTD control with= 1,
(c) OTD control withr = 2, (d) modal control based on the most unstable eigenvettGr and (e) modal control based
on the two eigenvectors . Initial conditions for the trajectory ar@,c)T, wherec = 107, 1076, 1075, 1074, 4x 1074,
5x 1074, 1073, 102, from darker to lighter.

is due to the strongly non-normal nature of the dynamicswith boundary conditions = 2(v) = n = 0 at the rigid
whereby perturbations may experience significant tramsiewallsy = +1, where
growth, even in the spectrally stable regime. For suffityent

small perturbations, this transient growth does not persis Zos 0
at long times, and the system asymptotically returns to theZe = [iﬂc fszj ) (4.16a)
laminar solution. For sufficiently strong perturbationswh
ever, non-normal growth is so large that the path to steadiZpg= — (k2 — 22) 1 [iGW(kZ - 2?)
ness is blocked by nonlinear effects, ultimately leading to
turbulence by triggering secondary three-dimensionahins +ia@2(W) 4 i(kz -~ _@2)2] (4.16b)
bilities. Re

We first consider the linearized dynamics of infinitesi- ¢ — —iB2(W) (4.16¢)
mal perturbations around the base flow (4.13). Because of 1
the infinite extent of the domain in theandz directions, the Zsq= —iaW — ﬁe(kz - 2%, (4.16d)
infinitesimal disturbance is assumed to have the form
q'(xy,zt) = q(y,t)expliax+iBz), (4.14)  andwe have define@ = g, andk = \/a?+ 2. (For further

. . details regarding the derivation of the OS/SQ, we refer the
wherea andf denote the streamwise and spanwise wavenum- 9 9 Q

. ) . reader to Schmid & Brandt [40].) The OTD equations are
bers, respectively, and the vectgrandg’ contain the wall- . . . ) ! .

. . identical to (2.7), withZ substituted for% as defined in
normal velocity ¢ andV/, respectively) and the wall-normal ; . .

- y . o A . (4.16a—d). The natural choice for the inner product is the

vorticity (n andn’, respectively) in lieu of the primitive vari- enerav inner oroduct. defined as
ables [40]. This leads to the classical Orr—Sommerfeldf8qu 24 P '
(OS/SQ) equation

1
&q=%(q), (4.15) (d1,02)E = /7 01 (az)dy. (4.17)
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where (@)
80 :
2 o2 Re = 2000
M= 12 [(k 7) O] . (4.18) Re =5772.2
k 0 1 60 | Re =10000 |

We emphasize that for now, we only consider the evolution —
of perturbations described by (4.15), so the dynamicsareli & 40
ear, and the operatd#; used in the OTD equations is steady.
(The full nonlinear initial-boundary-value problem (4&k2

c¢) will be considered shortly.) Equation (4.15) is disaetl

in space using a spectral method based on Chebyshev poly: , ,
nomials, and integrated forward in time with a third-order 0 20 40 60 80 100
Backward-Differentiation/Extrapolation (BDF/EXT) sahe. t

We use 128 collocation points in space, and a time-step size
of At =0.02.

We pause here to make several comments on the OS/SQ
operator, and the various flow regimes that it may lead to
as a function of the Reynolds number. For two-dimensional
waves propagating in the streamwise directi@n{0), three 0 ..
regimes may be identified. F&e< 49.6, the OS/SQ opera- : S
tor is normal and asymptotically stable, so the amplitude of
perturbations monotonically decays. For@lg& Re< 57722, -0.5
the OS/SQ operator is non-normal and asymptotically sta-
ble, so perturbations experience significant transientrtiro
before dying out. FoRe> 57722, the OS/SQ operator is -1
non-normal and asymptotically unstable, so transient trow 0
of perturbations is followed by exponential growth. To make Wi

this point visually clear, figure 7a shows time series of theFig 7: For linearized plane Poiseuille flow with = 1.02
optimal energy amplification andf = 0, (a) optimal energy amplification, and (b) spec-
trum of the OS/SQ operator Re= 2000.

-----\5'

e
o
—

1.5

e L 16
e (419

G(t) = max
o

The initial condition for (4.15) is taken to be tlgtimal
for 3 =0 anda = 1.02 (the most unstable streamwise waveniiflal condition
ber for 8 = 0). ForRe= 2000, it is clear that substantial
transient growth occurs, with perturbation energy growing la(t)|2
by more than one order of magnitude, despite the fact thajy™ = argmax———- & (4.20)
all the eigenvalues of the OS/SQ operator are confined to the do 150l
stable portion of the complex plane (figure 7b).

We are now in a position to apply the control strategythat leads to maximal transient growth over the time interva
described in §3 to the linear OS/SQ problem (4.15). We conf0,t*], wheret* is the time at which maximum energy am-
sider streamwise and spanwise wavenumbets1.02 and plification over all initial conditions is attained. Figura
B = 0, respectively, and two values of the Reynolds numbershows that* =~ 13.3 for Re= 2000, and* ~ 21.9 for Re=
Re= 2000 and 10000 (cf. figure 7a). The forniRevalue  10000. (In the latter case, we consider only the transient po
is such that in the OS/SQ linearized dynamics, non-normalon of the time series, since exponential growth necdysari
growth is followed by exponential decay, so transition te tu meanst* = +.) As discussed in Schmid & Brandt [40],
bulence would occur in direct numerical simulations (DNS)the optimal initial conditionqgpt is the leading right sin-
of the full nonlinear problem (4.12a—c) only if the energy of gular vector of the propagator eitpt*). The OTD modes
the perturbation is sufficiently amplified. The latRevalue  are initialized against the leadimgight singular vectors of
is such that in the OS/SQ linearized dynamics, non-normaxp(L¢t*). We note that due to the strongly non-normal na-
growth is followed by exponential (asymptotic) growth, soture ofL¢ atRe= 2000 and 10000, a large number of eigen-
transition to turbulence would invariably occur in DNS of vectors is required to accurately represent the optimal con
the nonlinear initial-boundary-value problem. dition.
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Figure 8a,b show time series for the energy amplificatiormodal stability theory predicts asymptotic decay of distur
||q(t)|\é bances. FQr a clear manif_estation of this mechanism,_we
= > (4.21)  must consider the full nonlinear problem (4.12a—c), which
I9bllE we solve numerically usingek5000 in a computational
of g9”" with and without modal and OTD control &= domain extending #/a and 21/B in the streamwise and
2000 and 10000. In all cases, there is only one direction aspanwise directions, respectively. The mesh is composed of
sociated with transient growth (thatq™). Figure 8a shows 96 elements with polynomial ordér= 9, and the time-step
that OTD control with a single OTD mode is able to sup-size isAt = 4 x 103, The main flow and the OTD modes
press non-normal growth tnﬁpt for Re= 2000 and 10000. satisfy no-slip boundary conditions on the rigid walls, and
For Re= 10000, OTD control also suppresses normal inperiodic boundary conditions in theandz directions. The
stability, and prevents exponential growth at long times. O OTD equations are given by (4.3a,b), where the linear op-
the other hand, figures 8a,b show that modal control witlerator is identical to (4.5). We emphasize that the linear op
one eigenvector (here, the most unstable one) does not sugrator appearing in the OTD equations is now unsteady and
press non-normal growth Be= 2000 and 10000, although computed along the evolving trajectory.
for Re= 10000 it is able to eliminate asymptotic exponen-  For three-dimensional turbulence to develop, the span-
tial growth (there is only one unstable eigenvaludRat=  wise wavenumbegB should not be zero, so we chogse- 2,
10000). This result clearly demonstrates the superiofity oalong with a = 0.5 and Re= 7000. For these values of

Ea(t)

OTD control over modal control. the parameters, linear theory predicts significant nomaabr
growth of the optimal initial condition (on the order of 1000
(a) followed by asymptotic decay. However, in the full nonlin-
10° , , ear problem, sufficiently large non-normal growth triggers

transition to turbulence. To confirm that this mechanism is
available in our numerical experiments, we select initiad-c
ditions for the main flow as

W(X, Y,z t = 0) = We(X,, 2) + EWg (X,Y, 2), (4.22)

where the parameter governs the strength of the initial
No control disturbance. (We compute)” by expressing”" in terms
Modal control L . . .
— OTD control of the primitive variables.) Figure 9a shows that transient
: growth occurs for a range &f values, but ultimately leads
to turbulence only whea is large enough. As discussed in
84.2.1, the physical mechanism for transition is that suffi-
ciently large energy amplification activates the nonliitgar
of the Navier—Stokes equations, which in turn redistribute
energy to directions associated with transient growth.

We apply our OTD control strategy to the full nonlinear
system in an attempt to suppress transition to turbulenge. A
in the linearized problem, we consider a control based on a
single OTD mode initialized in the direction of the optimal
disturbancew™. Figure 9b shows that OTD control sup-
presses non-normal growth, and in turn, transition to turbu
lence. In contrast, modal control based on the most unstable
eigenvector ol fails at both. This completes demonstra-
tion of the superiority of OTD control over modal control.

10—10 N
0 50 100 150
(b) t

10°

100

Eu(t)

107°
No control
——— Modal control
———— OTD control

1010

0 50 100 150
t

Fig. 8: For linearized plane Poiseuille flow with= 1.02

andp = 0, energy amplification of the optimal perturbation

with OTD control ¢ = 1 andZ = 0.1), modal control based 5 Conclusions
on the most unstable eigenvector of the OS/SQ operator, and

no control, for (a)Re= 2000, and (bRe= 10000. The purpose of the present work was to develop a reduced-
order control algorithm capable of suppressing transiedt a

long-time linear instabilities of a fixed point for a generic
As discussed earlier, transient growth may have severgigh-dimensional, nonlinear) dynamical system. The chal
repercussions on the long-time dynamics, even in caseewhlenge was to find an appropriate set of complete functions
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(@) cally with the most unstable eigenspace of the linearized op
10° - - - erator. For systems with non-normal instabilities, howgve
we showed that OTD control vastly outperforms modal con-
trol, as the OTD modes are able to track directions of most
107° intense transient growth, which is far beyond the reach of
eigenfunctions. This result was significant because itesta

lished the potential of the OTD framework to prevent regime
1010 transitions caused by non-normal growth, such as transitio
e=10" to turbulence in fluid flows.

Finally, we mention two ways in which the proposed
. . control strategy may be improved. First, it would be de-
0 50 100 150 200 sirable to design a feedback control law that acts only in
® t part of the physical domain, say, a confined area in the near

10° ' ' ' wake for flow past a cylinder, or the immediate vicinity of
SR the rigid walls for Poiseuille flow. This would make the pro-

’ posed approach considerably more attractive from the stand
107 ¢ point of conducting experiments. Second, along the same
lines, it would be valuable to make the OTD control ap-
proach data-driven; e.g., formulate a method for computing
1010 the OTD modes from sparse measurement data, or develop
No control a machine learning algorithm that help identify and control

Modal control transient instabilities in complex flows.
——— OTD control

[w = we||?

10

[w = we||?

10

0 50 100 150 200 Acknowledgements The authors gratefully acknowledge insightful dis-
t cussions with Dr. Mohammad Farazmand.
Fig. 9: For nonlinear plane Poiseuille flow with= 0.5, 8 =
2, andRe= 7000, (a) energy of uncontrolled perturbation for ) ) )
various disturbance amplitudes, and (b)der 103, energy ~ Compliance with Ethical Standards

of perturbation with OTD controk(= 1 and{ = 0.1), modal

control based on the most unstable eigenvector of the OS/SEjmding: This study was supported b_y Army Research O_f'
operator, and no control. fice Grant W911NF-17-1-0306 and Air Force Office of Sci-

entific Research Grant FA9550-16-1-0231.

(i.e., modes) such that projection of the governing equag:onflict of Interest: The authors declare that they have no

tions onto these modes retained the critical features of thgonflict of interest.

full-order dynamics related to transient and asymptotic in

stabilities as the system evolves in phase space. The opti-

mally time-dependent (OTD) modes presented themselveeferences

as a natural candidate_ for order reduction becal_jse t_hey hag Akervik, E., Brandt, L., Henningson, D.S., Hoepffner, J.,rim,
been shown to adaptively capture and track directions in o schiatter, P.: Steady solutions of the Navier-Stokesiuns
phase space associated with transient and persistent insta by selective frequency damping. Physics of Fluids 068,102

bilities. (2006)

. . . 2. Astrém, K.J., Kumar, P.R.: Control: A perspective. Autdita
We used OTD modes to derive a dynamically consistent 50, 3-43 (2014)

reduced order system, and formulated a control law in the3, Babaee, H., Farazmand, M., Haller, G., Sapsis, T.P.: &etiu
reduced space that targets instantaneous growth of parturb  order description of transient instabilities and compatatof
tions in order to suppress transient and asymptotic irlstabi  finite-time Lyapunov exponents. Chaos: An Interdiscipjnour-
ities of a fixed point of the full-order governing equations nal of Nonlinear Sciencg?, 063,103 (2.017) I .

. o ' 4. Babaee, H., Sapsis, T.P.: A minimization principle fa tlescrip-
We derived conditions on the OTD subspace for the control  tjon of modes associated with finite-time instabilitieso@@edings
to be efficient, and applied the proposed strategy to complex of the Royal Society A472 20150,779 (2016)
fluid flows exhibiting normal (exponential) and non-normal 5 Balasubramanian, K., Sujith, R.I.: Thermoacousticahity in a
(transient) growth. For systems featuring normal instabil gé'ljzelggb?é%%r;'”orma“ty and nonlinearity. Physics of k20,
ties, we showed that our control strategy reduces to clasg, gayly, B.J.: Three-dimensional instability of ellipticlow. Phys-

sical modal control, as the OTD subspace aligns asymptoti- ical Review Letter$7, 2160 (1986)



Control of Linear Instabilities by Dynamically Consistédtder Reduction on Optimally Time-Dependent Modes

17

7.

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Benettin, G., Galgani, L., Strelcyn, J.M.: Kolmogorovrepy and
numerical experiments. Physical ReviewlA 2338 (1976)
Blanchard, A., Sapsis, T.P.: Analytical description ptimally
time-dependent modes for reduced-order modeling of eahsi-
stabilities (2018). Submitted.

. Blanchard, A., Sapsis, T.P.: Stabilization of unsteadywdl

by reduced-order control with optimally time-dependentde®
(2018). Submitted.

Chandler, G.J., Kerswell, R.R.: Invariant recurreftisons em-
bedded in a turbulent two-dimensional Kolmogorov flow. dadir
of Fluid Mechanics722 554-595 (2013)

Chomaz, J.M.: Global instabilities in spatially dey@tg flows:
Non-normality and nonlinearity. Annual Review of Fluid Memn-
ics 37, 357-392 (2005)

Duriez, T., Brunton, S.L., Noack, B.R.: Machine Leagni@on-
trol: Taming Nonlinear Dynamics and Turbulence. Springer

(2017)

Dusek, J., Le Gal, P., Fraunié, P.: A numerical and retesal
study of the first Hopf bifurcation in a cylinder wake. Journa
of Fluid Mechanic264, 59-80 (1994)

Eisenman, |.: Non-normal effects on salt finger growtturdal of
Physical Oceanograpt8p, 616—627 (2005)

Farazmand, M.: An adjoint-based approach for findinguiawt
solutions of Navier—Stokes equations. Journal of Fluid hedics
795, 278-312 (2016)

Farazmand, M., Sapsis, T.P.: Dynamical indicatorsHermtredic-
tion of bursting phenomena in high-dimensional systemgsiehl
Review E94, 032,212 (2016)

Farrell, B.: Optimal excitation of neutral Rossby wavésurnal
of the Atmospheric Sciencekb, 163—-172 (1988)

Fischer, P.F., Lottes, J.W., Kerkemeier, S{ek5000 Web page
(2008).http://nek5000.mcs.anl.gov

Foias, C., Manley, O., Rosa, R., Temam, R.: Navier—Stékpia-
tions and Turbulence. Cambridge University Press (2001)
Giannetti, F., Luchini, P.: Structural sensitivity bétfirst instabil-
ity of the cylinder wake. Journal of Fluid Mechanis81, 167-197
(2007)

Guckenheimer, J., Holmes, P.: Nonlinear oscillatiglysamical
systems, and bifurcations of vector fields. Springer, Beald
New York (1983)

Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, cehestruc-
tures, dynamical systems and symmetry. Cambridge Untyersi
Press (1998)

Juang, J.N., Pappa, R.S.: An eigensystem realizatgomitdm for
modal parameter identification and model reduction. Jduwha
Guidance, Control, and Dynami8s620-627 (1985)

Lumley, J.L.: Coherent structures in turbulence. lanBition and
turbulence, pp. 215-242 (1981)

Mack, L.M.: The inviscid stability of the compressibleniinar
boundary layer. Space Programs Sumn®#y297-312 (1963)
Moore, B.: Principal component analysis in linear systeCon-
trollability, observability, and model reduction. IEEEahsactions
on Automatic ControR6, 17-32 (1981)

Orszag, S.A.: Accurate solution of the Orr—Sommerféddbitity
equation. Journal of Fluid Mechanib§, 689-703 (1971)
Orszag, S.A., Patera, A.T.: Secondary instability df-waunded
shear flows. Journal of Fluid Mechanit28 347-385 (1983)
Penland, C., Sardeshmukh, P.D.: The optimal growthogfii¢al
sea surface temperature anomalies. Journal of Cligat699—
2024 (1995)

Peplinski, A., Schlatter, P., Fischer, P.F., Henningéd.S.: Sta-
bility tools for the spectral-element code Nek5000: Apafion to
Jet-in-Crossflow. In: Spectral and High Order Methods fatibla
Differential Equations, pp. 349-359. Springer (2014)
Pierrehumbert, R.T.. Universal short-wave instapilif two-
dimensional eddies in an inviscid fluid. Physical Reviewt&et
57, 2157 (1986)

32.

33.

34.

35.

37.

39.

40.

41.

42.

43.

44,

45,

46.

47.

Platt, N., Sirovich, L., Fitzmaurice, N.: An investigat of chaotic
Kolmogorov flows. Physics of Fluids A: Fluid DynamiB8s681—
696 (1991)

Proctor, J.L., Brunton, S.L., Kutz, J.N.: Dynamic mo@eampo-
sition with control. SIAM Journal on Applied Dynamical Sgsats
15, 142-161 (2016)

Provansal, M., Mathis, C., Boyer, L.: Bénard-von Kaminsta-
bility: transient and forced regimes. Journal of Fluid Macits
182 1-22 (1987)

Reddy, S.C., Henningson, D.S.: Energy growth in visahasnel
flows. Journal of Fluid Mechanic52 209-238 (1993)

. Rowley, C.W.: Model reduction for fluids, using balangedper

orthogonal decomposition. International Journal of Bition
and Chao45, 997-1013 (2005)

Rowley, C.W., Dawson, S.T.M.: Model reduction for flonagn
sis and control. Annual Review of Fluid Mechan#g, 387—417
(2017)

. Schmid, P.J.: Nonmodal stability theory. Annual Revaluid

Mechanics39, 129-162 (2007)

Schmid, P.J.: Dynamic mode decomposition of numericdlex-
perimental data. Journal of Fluid Mechan@56 5-28 (2010)
Schmid, P.J., Brandt, L.: Analysis of fluid systems: Sitgbre-
ceptivity, sensitivity. Applied Mechanics Revievés, 024,803
(2014)

Schmid, P.J., Henningson, D.S.: Stability and tramsitn shear
flows. Springer Science & Business Media (2012)

Shimada, I., Nagashima, T.: A numerical approach to ditgo
problem of dissipative dynamical systems. Progress of fteo
ical Physics61, 1605-1616 (1979)

Sirovich, L.: Turbulence and the dynamics of coheremicsires.
Part I: Coherent structures. Quarterly of Applied Matheosat5,
561-571 (1987)

Skogestad, S., Postlethwaite, I.: Multivariable fesdbcontrol:
Analysis and design. Wiley New York (2007)

Sontag, E.D.: Mathematical control theory: Deterntiaifinite di-
mensional systems. Springer Science & Business Media 2013
Trefethen, L.N., Trefethen, A.E., Reddy, S.C., DrischA.: Hy-
drodynamic stability without eigenvalues. Scierd&d, 578-584
(1993)

Von Karman, T.Uber den Mechanismus des Widerstandes, den
ein bewegter Korper in einer Flissigkeit erfahrt. Naaiten von
der Gesellschaft der Wissenschaften zu Gottingen, Matlisah-
Physikalische Klass&911, 509-517 (1911)



