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Abstract 

Beginning with the discovery of X-rays to the development of three-dimensional (3D) imaging, 

improvements in acquisition, post-processing, and visualization have provided clinicians with 

detailed information for increasingly accurate medical diagnosis and clinical management. This 

paper highlights advances in imaging technologies for congenital heart disease (CHD), medical 

adoption, and future developments required to improve pre-procedural and intra-procedural 

guidance. 

Keywords: 3D imaging, artificial intelligence, congenital heart disease, interactive 3D 

visualization 
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Introduction 

Diagnostic imaging has played a pivotal role in the medical field since 1895 when Wilhelm 

Röntgen discovered X-rays. Technological advances led to fluoroscopy becoming available in 

1920 for radiologists and interventional cardiologists to make improved diagnoses and perform 

interventions of increasing complexity [1]. The introduction of ultrasound in 1956, computed 

tomography (CT) in 1972, and magnetic resonance (MR) imaging in 1977 transformed the 

medical field. Unlike X-ray and CT, MR does not use ionizing radiation for image acquisition, 

and soft tissue sensitivity is found to be greater than that of CT [2]. Subsequent improvements in 

imaging technologies now allow higher resolution, and significant increases in computing power 

enable visualization of both soft tissue and bone as well as faster detection of abnormalities [3-

5]. Fast-forward several decades; we now have CT, MR and ultrasound-based 3D imaging, 3D 

rendering, and full-volume imaging. These technologies are providing clearer image studies of 

congenital heart disease (CHD). Moreover, advanced processing of individual modalities can be 

achieved for virtual visualization and 3D printing of complex CHD. Initially segmentation was 

limited to CT and MR and is now feasible with ultrasound [6]. The integration of multiple 

imaging modalities has been demonstrated to improve the accuracy of hybrid 3D models over 

single modality models [7,8]. The advent of augmented and virtual reality in medical imaging is 

transforming workflows for clinical decision-making as well as enhancing education of 

patients/family members and medical professionals. These new advances and innovations in 

medical imaging are pushing the limits on how physicians and other professionals can utilize the 

various imaging datasets [8], which are particularly important for the care and management of 

children and adults with CHD. 
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Current State of Imaging 

The standard-of-care imaging modalities for congenital heart disease include CT, MR, and 

ultrasound. Post-processing of the imaging datasets can be performed on a picture archiving and 

communication system (PACS). Historically, PACS vendors have provided inconsistent tools to 

functionally allow 3D assessment or simultaneous viewing of multiple imaging modalities, 

thereby limiting full anatomic evaluation [9]. Companies currently supporting PACS that are 

optimized for viewing CT, MR, and other imaging modalities in 3D and 4D include but are not 

limited to: INFINITT Inc. (North America), GE Healthcare (United States), and Philips, 

Koninklijke Philips N.V. (Netherlands). 

Further advances in medical imaging, namely, in multi-energy CT, cardiac magnetic resonance 

(CMR) and 3D echocardiogram (3DE) have made it possible for high quality 3D volumetric 

rendering of dynamic cardiac structures [10,8]. Each imaging modality has different strengths: 

cardiac CT is the modality of choice for visualization of extracardiac and small vascular 

anatomy; CMR is the gold standard for quantification of ventricular volumes and myocardial 

architecture; and 3DE provides the best visualization of valve morphology and intracardiac 

structural anomalies [3-5,8]. As such, these imaging datasets have proven to be advantageous for 

pre-procedural planning of surgical and interventional procedures [8]. However, cumulative 

exposure to radiation is a major concern in patients who have image acquisition using CT or 

diagnostic/interventional catheterization using fluoroscopy [11,12]. In addition, there are 

significant limitations as viewing 3D anatomy on a 2D screen may cause each observer to 

interpret it from different perspectives, leading to misinterpretation and high interobserver 

variability [13]. In other words, the conceptualization of three-dimensionality on a 2D 

visualization platform requires the physician or end user to have advanced knowledge in 3D 
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spatial orientation. The advent of 3D printing and 3D visualization decreases this risk as it leaves 

no aspect of the spatial relationship of the cardiac structures to the imagination [14]. 

3D Printing. 3D printing in surgical and interventional planning in complex CHD is well 

recognized. Prior to 2014, CT and CMR were the only modalities used to derive 3D printing 

cardiac models. Printing of 3D anatomic cardiac models sourced from 3DE was shown to be 

feasible in 2014 [6]. Combining the strengths of each imaging modality has provided the ability 

to print morphologically accurate hybrid 3D models of cardiac structures [8]. The Radiological 

Society of North America 3D Printing Special Interest Group recently established 

appropriateness guidelines for 3D printing cardiac models including various other specific 

medical conditions. These guidelines include the best approach for acquisition of imaging, 

segmentation tools, 3D printing, and post-processing the models for CHD diagnosis and patient 

care [15]. 3D printing of CHD has been shown to be effective in double inlet left ventricle 

(DILV), double outlet left ventricle (DOLV), double outlet right ventricle (DORV), double inlet 

right ventricle (DIRV), congenitally corrected transposition of the great arteries (levo-TGA), 

transposition of the great arteries (dextro-TGA), unbalanced atrioventricular canal, Tetralogy of 

Fallot (ToF), truncus arteriosus, total anomalous pulmonary venous return (TAPVR) and partial 

anomalous pulmonary venous return (PAPVR) [15]. Cardiac models have proven valuable for 

pre-procedural planning, patient education, and training of medical professionals [16-22]. 

Research has provided insight into how valuable 3D printed models are with regards to post-

operative care of CHD patients especially with patient hand-off versus a traditional verbal hand 

off [23]. Considering 3D printed heart models from CT or MRI have been accurate 

representations, yet there remains the unknown of whether the STL file and the 3D printed model 

are true representations in terms of measurements [24].  However, the heart is a dynamic organ 
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and using static 3D models for cardiac visualization provides a limited representation of cardiac 

anatomy and physiology [10,8,25]. Further innovations in medical 3D printing include 

development of materials, which more accurately mimic cardiac tissues [26]. 3D bio-printing is 

another technology which may provide significant innovations in treatment of congenital and 

structural heart disease. The bioengineering of an electromechanically functional miniature 

ventricular heart chamber from human induced pluripotent stem cells has now been 

demonstrated [27,28]. Development of functional artificial chambers that can be safely 

implanted into patients will have a major impact on the treatment of complex CHD. 

Interactive 3D Visualization. Major limitations of 3D imaging are the current display methods, 

i.e. displaying 3D imaging datasets on a 2D screen [8,29]. The introduction of augmented reality 

(AR) and virtual reality (VR) in medicine is another significant advancement with potential to 

significantly improve the care and management of patients. However, there is some skepticism 

with AR/VR systems, specifically the need to wear bulky or uncomfortable glasses/headsets. 

Some users may also experience motion sickness with the potential of compromising patient 

safety during procedures [11,12]. There are several companies working on solutions. One such 

solution is the True 3D Viewer (EchoPixel, Inc., Santa Clara, CA, USA) where imaging datasets 

sourced from CT, MR, and 3DE can be viewed in 3D space with the use of 3D glasses. 

Moreover, the system offers the user an interactive platform with the ability to rotate the images 

in multiple planes, perform dissections, segment the dataset, and perform measurements [30]. 

While the EchoPixel screen displays the image, lightweight 3D glasses with sensors are followed 

by tracking built into the display allowing the image to move with the viewer. This allows the 

now 3D image to be in perspective with the viewer and a stylus allows the user to manipulate the 

image and understand the complexity of the CHD. There are six viewing modes with each 
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providing a different function allowing for images to be differentially analyzed (intuitive 2D, 

True 3D, C-arm Slab, Haptic annotation, radiology, and surgery). For CHD cases, having 

multiple viewing planes is particularly useful allowing for the heart to be evaluated from 

different perspectives. This technology is able to interpret and display CT, MR and XA standard 

DICOM/DICOMDIR files along with certain types of DICOM ultrasounds (GE vivid E90, E95 

and Philips E33, GI, 3DDCM) [31]. EchoPixel has a toolset with several functions which include 

making measurements (including surface and volume), region growing segmentation, region of 

interest (ROI) selection, volume editing, and transfer function presets. These allow for CHD 

defects to be measured and analyzed as well as be prepared as a model for 3D printing within 

EchoPixel. These optimized image datasets can then be saved and referenced for later display for 

surgical or catheterization planning [31]. The segmentation tool allows for parts of the image to 

be transformed, visualized and potentially 3D printed. The C-arm view allows physicians to 

better view a fluoroscopy image by showing the orientation within the patient [32]. The 

bookmark tool helps with planning and actuating of surgeries wherein the surgeon bookmarks 

steps which allows for scrolling through during surgery creating a set of instructions with images 

for the procedure [33]. When paired with a 3D projector, the True 3D Viewer can be used with 

groups for pre-procedural planning, patient/family education, and training in multiple medical 

disciplines with clear resolution and depth perception (Figure 3 & 4; Supplementary Material 2 

& 3). 4D ultrasound datasets can also be viewed on True 3D Viewer with further development 

focused on visualization of 4D MR and integrated multimodality imaging.  

Clinical utilization of EchoPixel has been found to improve surgical procedures in patients with 

CHD. In one study, approximately eighty percent of surgeons who looked at both EchoPixel and 

standard methods of imaging found it to be useful [34]. EchoPixel has been found to alter 
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surgical techniques and repair strategies and offer additional insight in patients with borderline 

intracardiac anatomy for biventricular repair [35]. In a case at Stanford Children’s Health, 

EchoPixel was used in the operating room to decrease the size of the surgical incision, which 

reduced recovery time and risk of infection for post-operative patients [35]. In another study, 

EchoPixel was used to measure the internal carotid artery length [36]. This measurement was 

taken several times on two patients and determined to be reproducible, showing the accuracy of 

the technology. 

Real View Medical Holography (RealView Imaging Ltd., Israel) has designed a system, which 

uses holograph technology to display dynamic images, live holography, without requiring the 

user to wear a headset [37]. This has now been proven to be useful in the catheterization lab to 

show real time medical holograms - https://youtu.be/KLQCbDbljik [10]. In September 2018, the 

U.S. Food and Drug Administration granted NOVARAD (Salt Lake City, UT), 510(k) Clearance 

for use of their OpenSight AR system. This system allows the user to view AR in 2D, 3D and 4D 

simultaneously reducing the risk of disorientation [38]. The system supports preoperative 

planning providing the surgeon or interventionalist the advantage of comprehensively 

understanding the anatomy prior to performing a procedure. This technology has the possibility 

of decreasing procedure time and potential errors while improving outcomes. A recent study in 

eight patients undergoing cardiac catheterization procedures where RealView hologram was 

utilized along with standard imaging demonstrated the value of this product. The observers rated 

the hologram usefulness on a scale of 1-5 and all of them found it to be the most useful. 

Additionally none of them became nauseous, which is a common issue when utilizing augmented 

reality [10]. 
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Artificial Intelligence. Recently, algorithms have been developed wherein computers may aid in 

heart segmentation in preparation for visualization or 3D printing [39]. Efficient segmentation 

methods may make it possible for scaling volumes of patients or urgent cases. Patch based 

interactive segmentation in which an operator manually segments a few anatomic slices while an 

algorithm completes the rest of the dataset. Current algorithms can create accurate models using 

only 14 segmented anatomic slices. This is significantly less than the normal process to create 

segmented models. Improving these algorithms may speed up this process, eventually allow for 

3D printing to be utilized commonly in clinics [39]. Another version of this patch-based 

segmentation is being used for mitral valve visualization. This algorithm uses scans and 

coordinates as well as a moldable model to create a fitted model. This works well for a small 

region of interest, however has not been used for a whole heart or larger anatomic areas [40]. 

Another use of artificial intelligence is to compile patient data to determine what type of imaging 

to order and produce probable diagnoses. AI can also aid in deciding whether patients are 

eligible for a study. These processes are fully realized when large amounts of data are compiled 

and analyzed in one program. AI systems are also able to search the web or cloud-based systems 

and find cases from there. The difficulties of medical adoption of AI  are programs which are fast 

and user friendly enough to be used in clinics [41]. Artificial neural networks (ANN) are the 

most common type of AI that are used in imaging. These systems use pathways which make 

connections and compare data. Along with this they weigh these connections to decide which 

path to go down or outcome to show. This process is developed to operate similarly to a neuron 

[42]. It can be “taught” but also learns from each diagnosis attempt. Through this learning 

process it can become increasingly accurate at choosing appropriate imaging or diagnosing 
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patients. Considering AI and its application with CMR, challenges with AI and CMR with 

regards to CHD have been recognized and therefore need to be addressed moving forward [42].  

Future Advancements 

Future systems need to become more intuitive, allowing users the capability to perform tasks 

quickly, decreasing risks associated with inadequate preparation for procedures, and increase 

patient satisfaction and outcomes. Manufactures have yet to put a system on the market that 

allows for integrated multimodality imaging that can support dynamic 3D datasets. Medical 

imaging companies have been working in isolation with technology that supports AR and VR for 

various uses such as movies, flight simulation and other training systems. Some healthcare 

systems have been evaluating advanced imaging techniques on patients with cancer or other non-

cardiac medical diagnoses. The dynamic nature of the cardiac structures and the complexity of 

anomalies being limited to a vulnerable population of children and adults with CHD, results in 

significant limitations for the field of congenital cardiology. However, as precision medicine and 

corresponding treatment options grow, advanced imaging specialists are going to need this 

enhanced technology to help detect, diagnose, and guide procedures. 

Clinical management of complex CHD patients often involves multiple imaging modalities to 

fully capture the complexity of patient anatomy. Individual imaging modalities are interpreted in 

isolation without integration on a common platform. Researchers and developers need to design 

a system with the ability to integrate the strengths of 3D imaging from CMR, CT, angiogram, 3D 

mapping, and 3DE with the ability to 3D print from them or display them in a dynamic format in 

a single platform. Moreover, developing a PACS capable of handling a large amount of data 

from multiple modalities would also be necessary. Current PACS may be capable; however, 

healthcare systems with PACS may have different software packages for various modalities 
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using appropriate codecs. The next generation of imaging viewers must overcome these 

limitations. Future development of AI in the area of tissue characterization including 

incorporating echocardiogram dropouts with auto filling will improve the visualization of 

ultrasound-based 3D models. 

Live imaging during the procedure could be sent directly to the AR system, and the 

interventionalist could perform the procedure without any fluoroscopy. This level of AR assisted 

procedures could reduce or eliminate radiation exposure and improve procedural outcomes. 

Research and development of an AR system that does not require the user to wear a cumbersome 

headset, while allowing multiple viewers would be ideal for procedures in the operating room or 

catheterization laboratory. If AR imaging advances to this level, the need for pre-procedural tests 

may no longer be routinely required. Moreover, adding hemodynamic data to the integrated 

imaging datasets will improve assessment and interventions. The advantage of AR is its ability to 

integrate aspects of the virtual world with the real world, enhancing the objects that a person can 

feel, see, and hear. This would be an excellent tool for surgeons and interventionalists. Virtual 

interventional or surgical procedure using image fusion technology is within reach. Ultimately, 

this technology has the potential to benefit patients, improve surgical and interventional 

outcomes, reduce procedural errors and risks, and decrease costs associated with medical 

procedures and hospital admissions. 

In addition to this, Artificial Intelligence (AI) is a field which has significant potential to aid 

imaging. Currently there are AI systems in development which may provide significant 

performance and be advantageous to CHD imaging. However, developing a system which can be 

used across a hospital and is very user friendly is not a reality yet. Creating a system which can 

perform the functions of storing and organizing patient data helping with computer aided 
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diagnoses and other AI functions would be ideal. This would allow a smooth process for 

adoption of these new technologies. However, it is anticipated that implementing these systems 

in hospitals would take a significant amount of time. 

Conclusion 

Assessing current imaging systems and how innovative they have become leaves us to wonder 

what the future will hold. Since the beginning of medical imaging, technology has been pushing 

the medical visualization boundaries and enhanced the capabilities and medical professionals. 

Current systems are providing medical professionals with advanced imaging datasets to perform 

what is necessary to improve patient care, reduce surgical errors, and to preplan surgical or 

interventional procedures. These technological advances have made it possible for physicians to 

better appreciate the complexity of CHD and cardiac structures. Advances in integrated 

multimodality imaging is expected to democratize data interpretation from highly trained 

professionals of individual modalities to those directly interacting with patients. Advanced 3D 

imaging, and visualization of dynamic structures, 3D printing, and image manipulation are 

paving the way for research and development of integrated imaging systems utilizing artificial 

intelligence that will be able to perform far beyond what is currently available. 
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Figure legend 

Figure 1. Automated and semi-automated segmentation of CT on Mimics Innovation Suite 

(Materialise, N.V., Leuven, Belgium) depicting the coronal, axial, and sagittal views of the CT, 

and the segmented virtual model. 

Figure 2. The sagittal view of the segmented virtual model shows the compressed pulmonary 

artery conduit (red arrows) between the sternum and the myocardium. 

Supplementary Material 1. 3D segmented virtual model. 

Figure 3A. CT viewed on True 3D Viewer (EchoPixel, Inc., Santa Clara, CA, USA). 

Figure 3B. CT viewed on True 3D Viewer with integration of segmented 3D heart model 

(EchoPixel, Inc., Santa Clara, CA, USA). 

Figure 4A. 3D glasses and stylus are used to interact with the imaging datasets on True 3D 

Viewer (EchoPixel, Inc., Santa Clara, CA, USA). 

Figure 4B. Use of stylus is shown on True 3D Viewer (EchoPixel, Inc., Santa Clara, CA, USA). 

Supplementary Material 2. A 360° visualization in any plane is feasible on True 3D Viewer 

(EchoPixel, Inc., Santa Clara, CA, USA). 

Supplementary Material 3. A 360° visualization in any plane is feasible on True 3D Viewer 

(EchoPixel, Inc., Santa Clara, CA, USA). 
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