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Abstract We present ProSecCo, an algorithm for the progressive mining of
frequent sequences from large transactional datasets: it processes the dataset
in blocks and it outputs, after having analyzed each block, a high-quality ap-
proximation of the collection of frequent sequences. ProSecCo can be used
for interactive data exploration, as the intermediate results enable the user
to make informed decisions as the computation proceeds. These intermedi-
ate results have strong probabilistic approximation guarantees and the final
output is the exact collection of frequent sequences. Our correctness analysis
uses the Vapnik-Chervonenkis (VC) dimension, a key concept from statistical
learning theory. The results of our experimental evaluation of ProSecCo on
real and artificial datasets show that it produces fast-converging high-quality
results almost immediately. Its practical performance is even better than what
is guaranteed by the theoretical analysis, and ProSecCo can even be faster
than existing state-of-the-art non-progressive algorithms. Additionally, our ex-
perimental results show that ProSecCo uses a constant amount of memory,
and orders of magnitude less than other standard, non-progressive, sequential
pattern mining algorithms.

A preliminary version of this work appeared in the proceedings of IEEE ICDM’18 [28], where
it was deemed the runner-up for the Best Student Paper Award.
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2 Sacha Servan-Schreiber et al.

“Here growes the wine Pucinum, now called Prosecho, much celebrated by Pliny.”
–Fynes Moryson, An Itinerary, 1617

1 Introduction

Data exploration is one of the first steps of data analysis: the user performs a
preliminary study of the dataset to get acquainted with it prior to performing
deeper analysis. To be useful, systems for data explorations must be inter-
active: small (500ms [16]) and large (6–12s [37]) delays between query and
response decrease the rate at which users discover insights.

Data exploration tools, such as Vizdom [7], achieve interactivity by dis-
playing intermediate results as soon as possible after the query has been sub-
mitted, and frequently update them as more data is processed, using online
aggregation [10].

The intermediate results must be trustworthy, i.e., not mislead the user,
otherwise she will not be able to make informed decisions. To be trustworthy,
intermediate results must have two important properties: 1) they must be,
with high probability, high-quality approximations of the exact results; and 2)
they must quickly converge to the exact results, and correspond to them once
all data has been processed.

Online aggregation produces trustworthy intermediate results for relatively
simple SQL queries, but does not currently support more complex knowledge
discovery tasks that are a key part of data exploration.

Existing data mining algorithms are poor candidates for this phase of data
analysis since most such algorithms are resource intensive, incurring delays
between queries and results. “Batch” algorithms that analyze the whole dataset
in one shot can take many minutes to complete, thereby disrupting fluid user
experiences. Streaming algorithms often do not offer sufficient guarantees on
the quality of intermediate results for them to be trustworthy, and are thus
poor candidates for exploratory tasks.

In this work we focus on the important task of frequent sequence mining [3,
21], which requires finding ordered lists of itemsets appearing in a large fraction
of a dataset of transactions. Applications include web log analysis, finance
modeling, and market basket analysis. Our approach can be easily generalized
to other pattern extraction tasks such as frequent itemset mining, which is an
often simpler task compared to sequential pattern mining.

The bottom part of Figure 1 shows the lack of interactivity of existing
frequent sequence mining algorithms. After having selected a dataset and a
minimum frequency threshold to deem a sequence frequent, the user launches a
non-progressive frequent sequence mining algorithm, such as PrefixSpan [21].
No response is given to the user until the algorithm has terminated, which may
take many tens of seconds. Such a delay destroys the productivity of the data
exploration session. New algorithms are needed to ensure that the human is
involved in the loop of data analysis by providing them actionable information
as frequently as possible.
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Fig. 1: Illustration of an interactive data analysis tool where users can gestu-
rally invoke a frequent sequences mining operation (left) by selecting a dataset
and a minimum frequency threshold. The feedback displayed by the tool to the
user varies greatly depending on whether a progressive or a non-progressive
algorithm is used to compute the answer to such a query. In the case of a
non-progressive algorithm (bottom) the tool shows a loading animation until
the exact answer is computed after 40 seconds. With ProSecCo, the tool
can show (top) progressively-refined results to the user immediately and at
various points in time. Data and times for this example are taken from actual
experiments.

Contributions We describe ProSecCo, a progressive frequent sequence min-
ing algorithm with trustworthy intermediate results, suitable for interactive
data exploration.

– ProSecCo periodically returns to the user high-quality approximations
of the collection of interest (see the top part of Figure 1). This progres-
sive behavior is achieved by analyzing the dataset incrementally in blocks
of user-specified size. ProSecCo extracts a set of candidate frequent se-
quences from the first block by mining it at a lowered frequency threshold
that depends on properties of the block. ProSecCo often returns the first
set of results after less than a second, therefore keeping the user engaged
in the data exploration process. The set of candidates is probabilistically
guaranteed to be a superset of the exact collection of frequent sequences. It
is progressively refined as more blocks are processed, with each refinement
output as an intermediate result. Once the last block has been analyzed, the
candidate sets corresponds, with high probability, to the exact collection
of frequent sequences. We also present a variant ProSeK for extracting
the top-k most frequent sequences.

– All the returned sets of candidate sequences come with strong explicit
probabilistic guarantees on their quality. Such guarantees enable the user
to decide whether to continue or stop the processing of additional blocks.
Our analysis uses VC-dimension [33] and fundamental sample-complexity
results from statistical learning theory [15, 32]. We show that the empirical
VC-dimension of the task of frequent sequence mining is tightly bounded
above by a characteristic quantity of the dataset, which we call the s-index
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(Definition 2), that can be computed in a streaming fashion as the blocks
are read (Algorithm 2). A key ingredient of our analysis, that we deem of
independent interest, is a method to efficiently compute an upper bound
to the capacity of a sequence, i.e., to the number of distinct subsequences
it contains. Obtaining this bound is sufficient for our purposes and faster
than computing the exact capacity of a sequence [8].

– We conducted an extensive experimental evaluation of ProSecCo on real
and artificial datasets. Our results show that ProSecCo produces approx-
imations of the actual set of frequent sequences almost immediately, with
even higher quality than our theoretical analysis guarantees: for example,
all the temporary results it produced had the required quality guarantees
every time, not just with probability 1 − δ. We conclude, therefore, that
our theoretical analysis provides a generous upper-bound on the worst case
performance which is not likely to be seen in real-world scenarios. Further-
more, ProSecCo uses a near-constant amount of memory and is, in almost
all cases, up to two times faster when compared to the current state-of-
the-art sequent mining algorithms PrefixSpan [21] and SPAM [5].

Outline In the next section we discuss the relationship of ProSecCo with
related work. We then present preliminary concepts for frequent sequences
mining and VC-dimension in Section 3, introduce ProSecCo (Section 4.2)
and show the guarantees it offers (Section 4.3). After that, we discuss the
variant for mining the top-k frequent sequences, the extension to other kind of
patterns, and additional aspect of ProSecCo. The results of our experimental
evaluation are presented in Section 5.

2 Related work

Online aggregation [10] is a paradigm in DBMS operations where the user
is presented with on-the-fly and constantly-updated results for aggregation
queries. A number of systems [1, 2, 13, 6, 11, 12, 20, 35, 36] have been proposed
over the years, with increasing levels of sophistications and different trade-offs.
One major limitations of most of these systems is their focus on SQL queries,
and they do not cover knowledge discovery tasks that are a major component of
data exploration. We focus on online aggregation for one knowledge discovery
task: frequent sequences mining.

Frequent sequences mining was introduced by Agrawal and Srikant [3]. A
number of exact algorithms for this task have been proposed, ranging from
multi-pass algorithms using the anti-monotonicity property of the frequency
function [30], to prefix-based approaches [21], to works focusing on the closed
frequent sequences [34]. In this work, we consider these algorithms as black-
boxes, and we run them on blocks of the dataset without any modification.
None of them can work in a progressive, interactive setting like the one we
envision (see Figure 1) and in which ProSecCo shines. Additionally, they
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use a very large amount of memory, while ProSecCo uses an essentially
constant amount of memory.

Streaming algorithms for frequent sequences mining [17] process the dataset
in blocks, similarly to ProSecCo. The intermediate results they output are
not trustworthy as they may miss many of the “true” frequent sequences. This
limitation is due to the fact that the algorithms employ a fixed, user-specified
lower frequency threshold to mine the blocks. This quantity is hard for the user
to fix, and may may not be small enough to ensure that all “true” frequent se-
quences are included in each intermediate result. ProSecCo solves this issue
by using a variable, data-dependent lowered frequency threshold, which offers
strong guarantees on the quality of the intermediate and final results.

The use of sampling to speed up the mining phase has been successful
in sequence mining [23] and in other variants of pattern discovery, such as
frequent itemsets mining [24, 25, 31], to obtain approximations of the collection
of interesting patterns. We do not use sampling, but we use techniques based
on empirical VC-dimension to derive the lowered frequency threshold at which
to mine the frequent sequences. Our bound to the empirical VC-dimension
is specific to this task, and differs from bounds to the VC-dimension used to
obtain approximations of other collection of patterns [24, 26]. Also, we analyze
the whole dataset, although in blocks of transactions in random order, to
obtain the exact collection of frequent sequences.

This version of our work differs in many ways from the preliminary one
that appeared in the proceedings of IEEE ICDM’18 [28]. The major changes
are the following, listed approximately in order of importance:

– we present a new variant ProSeK, for the interactive mining of the top-k
most frequent sequences (Section 4.5);

– we optimize the implementation of ProSecCo, and compare its perfor-
mance, in addition to that of PrefixSpan [21], to that of SPAM [5], using
existing optimized implementations. At the same time, we also use more
datasets in the experimental evaluation.

– We show formally that the upper bound to the empirical VC-dimension
that we present is tight, in the sense that there are datasets attaining the
bound (Lemma 4);

– We discuss how to extend the general approach taken by ProSecCo to
other kinds of patterns, specifically itemsets [4] and subgroups [14] (Sec-
tion 4.6);

– We added running examples for all the concepts that we define, in order
to make it easier for the reader to follow our reasoning.

3 Preliminaries

In this section we introduce the concepts and results used throughout the
paper. Table 1 reports the main notation for reference.
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Table 1: Main notation used in this work.

Symbol Notes

I finite set of items
S generic itemset, subset of I
s generic sequence, ordered list of itemsets
|s| number of itemsets in s
‖s‖ item-length of s
c(s) capacity of s
c̃(s) upper bound to the capacity of s
a v b a is a subsequence of b
D dataset
fD(s) frequency of s on D
FS(D, θ) frequent sequences in D w.r.t. θ
H a finite domain
R a collection of subsets from H
W a subset of H
EVC(H,R,W) empirical VC-dimension of (H,R) on W
Bi block of transactions from D
TOPK(D, k) top-k frequenct sequences in D

3.1 Sequence mining

Let I = {i1, . . . , in} be a finite set. The elements of I are called items and
non-empty subsets of I are known as itemsets. A sequence s = 〈S1, S2, . . . , S`〉
is a finite ordered list of itemsets, with Si ⊆ I, 1 ≤ i ≤ `.

The length |s| of s is the number of itemsets in it, i.e., |s| = `. The item-
length ‖s‖ of s is the sum of the sizes of the itemsets in it, i.e.,

‖s‖ =
|s|∑

i=1

|Si|,

where the size |Si| of an itemset Si is the number of items in it (e.g., |{a, b, c}| =
3). For example, ‖〈{a, b}, {a}, {c, d}〉‖ = 5.

A sequence a = 〈A1, A2, . . . , A`〉 is a subsequence of another sequence b =
〈B1, B2, . . . , Bm〉, if and only if there exist integers 1 ≤ j1 < j2 < . . . <
j` ≤ m such that A1 ⊆ Bj1 , A2 ⊆ Bj2 , . . . , A` ⊆ Bj` . We denote that a is a
subsequence of b as a v b. As an example,

〈{a, b}, {a}, {c, d}〉 v 〈{a, b}, {b}, {a, e}, {a, c, d}〉

The capacity c(s) of s is the number of distinct subsequences of s:

c(s) = | {a v s} | . (1)

Egho et al. [8, Sect. 5] present an ingenious method to compute the capacity
of a sequence, that is nevertheless quite expensive. The quantity 2‖s‖ − 1 is
an upper bound to c(s). ProSecCo uses a stronger upper bound which we
introduce in Sect. 4.2.
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A dataset D is a finite bag of sequences. When referring to them as members
of the dataset, the elements of D are known as transactions. A sequence s
belongs to a transaction τ ∈ D iff s is a subsequence of τ .

For any sequence s, the frequency of s in D is the fraction of transactions
of D to which s belongs:

fD(s) =
|{τ ∈ D : s v τ}|

|D| . (2)

For example, the following dataset D has five transactions:

〈{a}, {b, c}, {c, d, e}〉
〈{a}, {d, e}, {c, d}〉
〈{b, d, e}, {a, b}〉 (3)
〈{b}, {c}, {d, e}〉
〈{a}, {a, c}, {b}〉 .

The last transaction τ is a sequence with length |τ | = 3. Its item-length ‖τ‖
is 4. Its capacity c(τ) is 13 (not 24− 1 = 15 because there are two ways to get
〈{a}〉 and 〈{a}, {b}〉). While the sequence 〈{a}〉 occurs twice as a subsequence
of τ , τ is only counted once to compute the frequency of 〈{a}〉 in D, which
is fD(〈{a}〉) = 4/5. The sequence 〈{a}, {b}, {c}〉 is not a subsequence of τ
because the order of the itemsets in the sequence matters.

Frequent sequences mining Let S denote the set of all sequences built with
itemsets containing items from I. Given a minimum frequency threshold θ ∈
(0, 1], the collection FS(D, θ) of frequent sequences in D w.r.t. θ contains all
and only the sequences with frequency at least θ in D:

FS(D, θ) = {s ∈ S : fD(s) ≥ θ} .

ProSecCo computes ε-approximations of FS(D, θ), for ε ∈ (0, 1). For-
mally, they are defined as follows.

Definition 1 Let ε ∈ (0, 1). An ε-approximation to FS(D, θ) is a set B of pairs
(s, fs), where s ∈ S and fs ∈ [0, 1], with the following properties:

1. B contains a pair (s, fs) for every s ∈ FS(D, θ);
2. B contains no pair (s, fs) such that fD(s) < θ − ε;
3. Every (s, fs) ∈ B is such that |fs − fD(s)| ≤ ε/2.

An ε-approximation B is a superset of FS(D, θ) (Property 1) and the “false
positives” it contains, i.e., the sequences appearing in a pair of B but not
appearing in FS(D, θ), are “almost” frequent, in the sense that their frequency
in D cannot be lower than θ − ε (Property 2). Additionally, the estimations
of the frequencies for the sequences in B are all simultaneously up to ε/2 far
from their exact values (Property 3). We focus on the absolute error in the
frequency estimation but an extension to relative error is possible.
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3.2 VC-dimension and sampling

The (empirical) Vapnik-Chervonenkis (VC) dimension [33] is a fundamental
concept from statistical learning theory [32]. We give here the most basic
definitions and results, tailored to our settings, and refer the reader to the
textbook by Shalev-Shwartz and Ben-David [29] for a detailed presentation.

Let H be a finite discrete domain and R ⊆ 2H be a set of subsets of H.
We call the elements of R ranges, and call (H,R) a rangeset. Given W ⊆ H,
we say that A ⊆ W is shattered by R if and only if, for every subset B ⊆ A of
A, there is a range RB ∈ R such that A ∩RB = B, i.e., if and only if

{R ∩A : R ∈ R} = 2A,

where 2A denotes the powerset of A.
The empirical VC-dimension EVC(H,R,W) of (H,R) on W is the size of

the largest subset of W shattered by R.
For example, letH be the integers from 0 to 100, and letR be the collection

of all sets of consecutive integers from 0 to 100, i.e.,

R = {{a, a+ 1, . . . , b} : a, b ∈ H s.t. a ≤ b} .

Let W be the set of integers from 10 to 25. The empirical VC-dimension
EVC(H,R,W) of (H,R) on W is 2. Indeed consider any set A = {a, b, c}
of three distinct integers in W, and assume, w.l.o.g., that a < b < c. It is
impossible to find a range R ∈ R such that R ∩ A = {a, c}, thus no such set
of size three is shattered by R, while it is trivial to shatter a set of size two.

An important application of empirical VC-dimension is estimating the rel-
ative sizes of the ranges, which are in practice unknown. Specifically, one is
interest in estimating all the quantities

{ |R|
|H| : R ∈ R

}

simultaneously and with guaranteed accuracy, from a subset W of ` elements
of the domain H. A setW that allows to estimate all these quantities to within
an additive error φ is called a φ-sample. Formally, let φ ∈ (0, 1). The set W is
a φ-sample if and only if

∣∣∣∣
|R ∩W|
|W| − |R||H|

∣∣∣∣ < φ for every R ∈ R . (4)

The use of the term φ-sample to denote such a set is motivated by the fact
that if

1. W is a uniform random sample of ` elements from H; and
2. we can compute an upper bound to the empirical VC-dimension of (H,R)

on W,

then we can obtain a value φ such that, with high probability over the choice
ofW,W is a φ-sample. It is important to remark that φ is a sample-dependent
quantity, i.e., it is a property of W, and it is not fixed beforehand by the user.
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Theorem 1 ([15]) Let W be a uniform random sample of ` elements from
H, and let d ≥ EVC(H,R,W). Let η ∈ (0, 1) and

φ =

√
d+ ln(1/η)

2`
.

Then with probability at least 1− η (over the choice of W), W is a φ-sample.

We use this theorem in the analysis of ProSecCo (see Section 4.3) to
ensure that the intermediate results it outputs have strong quality guarantees
and converge to FS(D, θ).

4 Algorithms

We now present ProSecCo, our progressive algorithm for computing the set
of frequent sequences in a dataset, and some variants for related problems.

4.1 Intuition and motivation

ProSecCo processes the dataset in blocks B1, . . . , Bd|D|/be of b transactions
each,1 for a user-specified b. After having analyzed the i-th block Bi, it outputs
an intermediate result, which is an εi-approximation for an εi computed by
ProSecCo.

It is the combination of frequently-updated intermediate results and their
trustworthiness that enables interactive data exploration: each intermediate
result must be a high-quality approximation of the collection of frequent se-
quences, otherwise the user is not able to decide whether to continue or inter-
rupt the processing of the data because the intermediate results have already
shown what they were interested in. Achieving this goal is not straightforward.

For example, one may think that a successful strategy could involve re-
turning the collection of frequent sequences w.r.t. the original user-specified
minimum frequency threshold θ in the first block as the first intermediate
result and then augmenting or refining this collection using the frequent se-
quences in each of the successive blocks. This strategy would not achieve the
desired property of trustworthiness for two reasons:

1. there is no guarantee that a sequence that is frequent w.r.t. θ in a single
block or even in a small number of blocks would actually be frequent w.r.t. θ
within the whole dataset; and

2. while the “true” frequent sequences will definitively be frequent w.r.t. θ in
some of the blocks, they may have frequency strictly less than θ in other
blocks, and therefore they may be missing from the intermediate (and final)
results.

1 The last block may have fewer than b transactions.
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A strategy like the one just described may output intermediate results that
include a high number of false positives and also may be missing a large number
of the “true” frequent sequences, thereby misleading the user, who might make
a decision on further steps in the analysis (or stop the current computation)
on the basis of wrong information.

Streaming algorithms for frequent sequence mining [17] use a fixed, user-
specified, lowered frequency threshold ξ < θ to mine all the blocks (the same ξ
is used for all blocks). This strategy is not sufficient to guarantee trustworthy
intermediate results, as they may not contain many of the sequences that are
frequent in the whole dataset, because these sequences may have frequency in
a block lower than ξ, and therefore be missing from the intermediate result
for that block. Such results would mislead the user.

ProSecCo avoids these pitfalls by carefully mining the initial block at a
lowered frequency threshold ξ < θ computed using information obtained from
the block.2 By doing so, the mined collection F of “candidate” frequent se-
quences is a superset of FS(D, θ) (more specifically, it is an ε-approximation,
for an ε computed by ProSecCo). ProSecCo then refines the candidate
set F using the additional information obtained from mining each of the suc-
cessive blocks at a data-dependent, block-specific lowered frequency threshold,
improving the quality of the candidate set (i.e., decreasing ε progressively and
including fewer false positives), and eventually converging exactly to FS(D, θ).
Making the lowered threshold ξ dynamic and dependent on block-specific infor-
mation computed by the algorithm enables ProSecCo to output trustworthy
intermediate results.

Algorithm 1: getCapBound: Compute c̃(τ) ≥ c(τ).
input : transaction τ = 〈A1, . . . , A`〉, with the Ai’s labeled as described in the

text.
output: upper bound c̃(τ) to c(τ).

1 c← 2‖τ‖ − 1
2 L← τ // Linked list
3 while |L| > 1 do
4 A← popFrontElement(L)
5 foreach B ∈ L and s.t. B ⊆ A do
6 c← c− (2|B| − 1)
7 erase B from L

8 return c

4.2 Algorithm description

We first need some preliminary definitions and results.

2 Some additional care is needed when handling the initial block. See Section 4.4.
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4.2.1 Upper bound to the capacity of a sequence

ProSecCo relies on a descriptive property of sets of transactions which is a
function of the distribution of the capacities (see (1)) of the transactions in the
sets. Obtaining the exact capacity c(τ) of a transaction τ is possible thanks
to an ingenious formula by Egho et al. [8, Sect. 5], but expensive. ProSecCo
instead computes an upper bound c̃(τ) ≥ c(τ). The intuition behind our upper
capacity bound is the following. Consider the quantity 2‖τ‖ − 1 ≥ c(τ). This
quantity may be a loose upper bound because it is obtained by considering all
subsets of the bag-union ∪A∈τA of the itemsets in τ as distinct subsequences,
but that may not be the case. For example, when τ contains (among others)
two itemsets A and B s.t. A ⊆ B, sequences of the form s = 〈C〉 with C ⊆ A
are considered twice when obtaining 2‖τ‖− 1, once as “generated” from A and
once from B. For example, the subsequence 〈{a}〉 can be “generated” by both
the first and the second itemset in the last transaction from (3), but it should
not be counted twice.

Our goal in developing a better upper bound to c(τ) is to avoid over-
counting the 2|A|−1 sub-sequences of τ in the form of s above. At an intuitive
level, this goal can be achieved by ensuring that such subsequences are only
counted once, i.e., as “generated” by the longest itemset that can generate
them.

Formally, let τ = 〈Z1, . . . , Z`〉 be a transaction and assume to re-label
the itemsets in τ by decreasing size, ties broken arbitrarily, as A1, . . . , A`,
so that |Ai| ≥ |Ai+1|. We compute the capacity upper bound c̃(τ) as follows
(pseudocode in Algorithm 1). First, a variable c is set to 2‖τ‖ − 1, then we
insert the Ai’s in a list L in the order of labeling. As long as the list L contains
more than one itemset, we pop the first itemset A from the list, and look for
any itemset B still in L such that B ⊆ A. For each such B, we decrease c by
2|B| − 1 and remove B from L. We define the capacity upper bound c̃(τ) for
τ as the value c returned by getCapBound (Algorithm 1) with input τ . The
following result is then straightforward from this description of getCapBound
and the intuition given above.

Lemma 1 For any sequence τ , it holds that c̃(τ) ≥ c(τ).

There are many other types of sub-sequences of τ that may be over-counted,
but we have to strike the right trade-off between the time it takes to identify
the over-counted subsequences and the gain in the upper bound to the capacity.
Investigating better bounds to the capacity of a transaction that can still be
computed efficiently is an interesting direction for future work.

4.2.2 The s-index of a set of transactions

Given a setW of transactions, we use the capacity upper bounds of the trans-
actions inW to define a characteristic quantity ofW, which we call the s-index
of W. This concept is of crucial importance for ProSecCo.
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Definition 2 Given a set W of transactions, the s-index of W is the largest
integer d such that W contains at least d transactions with capacity upper
bounds at least 2d − 1, and such that for any two distinct such transactions,
neither is a subsequence (proper or improper) of the other.

Consider, for example, the set of five transactions from (3). It has s-index
equal to 4 because the first four transactions have capacity upper bounds at
least 24 − 1 = 15 (each τ of the first four has c̃(τ) = 2‖τ‖ − 1), while the last
transaction τ has c̃(τ) = 14.

Because it uses the capacity upper bounds, the s-index is tailored for the
task of frequent sequence mining. It is in particular different from the d-index
of a transactional dataset used for mining approximations of the frequent
itemsets through sampling [24].

Given W, an upper bound to its s-index d can be computed in a streaming
fashion as follows (pseudocode in Algorithm 2). We maintain a min-priority
queue T of transactions where the priority of an element τ is its capacity
upper bound c̃(τ). The priority queue is initially empty. At any point during
the execution of the algorithm, the priority queue contains

– all ` (for some ` ≤ |T |) transactions seen so far with capacity upper bound
strictly greater than 2|T | − 1; and

– |T | − ` of the transactions seen so far with capacity upper bound exactly
2|T | − 1.

This property of T is the invariant maintained by the algorithm. The trans-
actions in W are processed one by one. For each transaction τ , its capacity
upper bound c̃(τ) is computed. If it is larger than 2|T | − 1 and if T does not
contain any transaction of which τ is a subsequence, then τ is inserted in T
with priority c̃(τ). We then peek at the top element in T , and pop it if its
capacity upper bound is less than 2|T | − 1. Once all transactions of W have
been processed, the number |T | of elements in the priority queue T is an upper
bound to the s-index of W.

Algorithm 2: getSIndexBound
input : transaction set W
output: upper bound to the s-index of W.

1 T ← empty min-priority queue
2 foreach τ ∈ W do
3 c̃(τ)← getCapBound(τ) // See Alg. 1
4 if c̃(τ) > 2|T | − 1 and ¬∃ρ ∈ T s.t. τ v ρ then
5 T .insertWithPriority(τ, c̃(τ))
6 if T .peek().priority() < 2|T | − 1 then
7 T .pop()
8 return |T |
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4.2.3 ProSecCo, the algorithm

We are now ready to describe ProSecCo. Its pseudocode is presented in
Algorithm 3. ProSecCo takes in input the following parameters: a dataset
D, a block size b ∈ N, a minimum frequency threshold θ ∈ (0, 1], and a failure
probability δ ∈ (0, 1).

The algorithm processes the dataset D in blocks B1, . . . , Bβ where β =
d|D|/be, of b transactions each,3 analyzing one block at a time. We assume to
form the blocks by reading the transactions in the dataset in an order chosen
uniformly at random, which can be achieved, e.g., using randomized index
traversal [19]. This requirement is crucial for the correctness of the algorithm.

ProSecCo keeps two running quantities:

1. a descriptive quantity d which is an upper bound to the s-index (see Defi-
nition 2) of the set of transactions seen by the algorithm until now;

2. a set F of pairs (s, fs) where s is a sequence and fs ∈ (0, 1].

The quantity d is initialized with an upper bound to the s-index of B1, com-
puted in a streaming fashion using getSIndexBound (Algorithm 2) as B1 is
read (line 2 of Algorithm 3). The second quantity F is populated with the fre-
quent sequences in B1 w.r.t. a lowered minimum frequency threshold ξ = θ− ε

2
and their corresponding frequencies in Bi (lines 4 and 5 of Algorithm 3). Any
frequent sequence mining algorithm, e.g., PrefixSpan [21], can be used to ob-
tain this set. We explain the expression for ε (line 3) in Section 4.3.

After having analyzed B1, ProSecCo processes the remaining blocks
B2, . . . , Bβ . While reading each block Bi, the algorithm updates d appropri-
ately so that d is an upper bound to the s-index of the collection

Wi =
i⋃

j=1

Bj

of transactions in the blocks B1, . . . , Bi. The updating of d is straightforward
thanks to the fact that getSIndexBound (Algorithm 2) is a streaming algo-
rithm, so by keeping in memory the priority queue T (line 1 of Algorithm 2) it
is possible to update d as more transactions are read. At this point, ProSecCo
updates F in two steps (both implemented in the function updateRunningSet,
line 11 of Algorithm 3) as follows:

1. for each pair (s, fs) ∈ F , ProSecCo updates fs as

fs ←
fs · (i− 1) · b+ |{τ ∈ Bi : s v τ}|

i · b , (5)

so that it is equal to the frequency of s in Wi.
2. it removes from F all pairs (s, fs) s.t. fs < θ − ε

2 , where ε is computed
using d as explained in Section 4.3. When processing the last block Bβ ,
ProSecCo uses ε = 0.

3 The last block Bd|D|/be may contain fewer than b transactions. For ease of presentation,
we assume that all blocks have size b.
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No pairs are ever added to F after the initial block B1 has been processed.
The intuition behind removing some pairs from F is that the corresponding
sequences cannot have frequency in D at least θ. We formalize this intuition
in the analysis in Section 4.3.

After each block is processed, ProSecCo outputs an intermediate result
composed by the set F together with ε (line 12 of Algorithm 3).

Algorithm 3: ProSecCo
input : dataset D, block size b, minimum frequency threshold θ, failure

probability δ.
output: a set F which, with probability at least 1− δ, equals FS(D, θ).

1 β ← d|D|/be // Number of blocks
2 (B1, d)← readBlockAndUpdateSIndex(b, 1)

3 ε← 2
√
d−ln(δ)+ln(β−1)

2b
4 ξ ← θ − ε

2 // Computes lowered threshold
5 F ← getFS(B1, ξ) // Computes FS(Bi, ξ)
6 returnIntermediateResult (F , ε)
7 foreach i← 2, . . . , β − 1 do
8 (Bi, d)← readBlockAndUpdateSIndex(b, i)

9 ε← 2
√
d−ln(δ)+ln(β−1)

2i·b
10 ξ ← θ − ε

2
11 F ← updateRunningSet(F , Bi, ξ)
12 returnIntermediateResult (F , ε)
13 (Bβ , d)← readBlockAndUpdateSIndex(b, β)
14 F ← updateRunningSet(F , Bβ , θ)
15 return (F , 0)

4.3 Correctness analysis

We show the following property of ProSecCo’s outputs.

Theorem 2 Let (Fi, εi) be the i-th pair produced in output by ProSecCo,4
1 ≤ i ≤ β. It holds that

Pr(∃i, 1 ≤ i ≤ β, s.t. Fi is not an εi-approximation) < δ .

The theorem says that, with probability at least 1 − δ (over the runs of
the algorithm), for every 1 ≤ i ≤ β, each intermediate result Fi is an εi-
approximation, and since εβ = 0, the last result corresponds to the exact
collection FS(D, θ).

Before proving the theorem we need some definitions and preliminary re-
sults. Consider the range set (D,R), whereR contains, for each sequence s ∈ S,
one set Rs defined as the set of transactions of D that s belongs to:

Rs = {τ ∈ D : s v τ} . (6)
4 I.e., the i-th intermediate result.
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From (2) it is easy to see that for any sequence s ∈ S, the relative size of
the range Rs equals the frequency of s in D:

|Rs|
|D| = fD(s) . (7)

Also, given a subset W of D, it holds that
|Rs ∩W|
|W| = fW(s) . (8)

The following results connects the concepts of φ-sample and ε-approximation.

Lemma 2 Let W be a subset of D that is a φ-sample of (D,R) for some
φ ∈ (0, 1). Then the set

B = {(s, fW(s)) : s ∈ FS(W, θ − φ)}

is a 2φ-approximation for FS(D, θ).

Proof Property 3 from Definition 1 follows immediately from the definition of
φ-sample (see (4)) and from (7) and (8), as for every sequence s in S (not just
those in the first components of the pairs in B) it holds that

|fW(s)− fD(s)| ≤ φ .

Property 1 from Definition 1 follows from the fact that any sequence s ∈
FS(D, θ) has frequency in W greater than θ− φ, so the pair (s, fW(s)) is in B.

Finally, Property 2 from Definition 1 follows from the fact that any se-
quence s with frequency in D strictly smaller than θ− 2φ has frequency in W
strictly smaller than θ − φ, so the pair (s, fW(s)) is not in B. ut

The following lemma connects the task of frequent sequence mining with
the concepts from statistical learning theory.

Lemma 3 For any subset W ⊆ D of transactions of D, the s-index d of
W is an upper bound to the empirical VC-dimension of (D,R) on W: d ≤
EVC(D,R,W).

Proof Assume that there is a subset S ⊆ W of z > d transactions shattered
by R. From the definition of d, S must contain a transaction τ of with c̃(τ) ≤
2d− 1. The transaction τ belongs to 2z−1 subsets of S. We label these subsets
arbitrarily as Ai, 1 ≤ i ≤ 2z−1. Since S is shattered by R, for each Ai there
must be a range Ri ∈ R such that

Ai = S ∩Ri, for each 1 ≤ i ≤ 2z−1 .

Since all the Ai’s are different, so must be the Ri’s. The transaction τ belongs
to every Ai so it must belong to every Ri as well. From the definition of R,
there must be, for every 1 ≤ i ≤ 2z−i, a sequence si such that Ri = Rsi

(see (6)). Thus, all the si’s must be different. From (6) it holds that τ belongs
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to all and only the ranges Rq such that q v τ . Since c̃(τ) ≤ 2d − 1, it follows
from Lemma 1, that there are at most 2d−1 distinct non-empty sequences that
are subsequences of τ . But from the definition of z it holds that 2z−1 > 2d−1,
so τ cannot belong to all the ranges Rsi

, thus we reach a contradiction, and
it is impossible that S is shattered. ut

We can now prove Theorem 2.

Proof (for Theorem 2) Recall thatWi =
⋃i
j=1Bi is the set of transactions seen

by ProSecCo up to the point when (Fi, εi) is sent in output. The number
of transactions in Wi is |Wi| = b · i. For any i, 1 ≤ i ≤ β and for any pair
(s, fs) ∈ Fi, it holds that

fs = fWi(s) (9)

by definition of fs (see (5)). Consider the event

E = “Every Wi, 1 ≤ i < β is an εi/2-sample”

and let Ē be its complementary event. Using the union bound [18, Lemma 1.2],
we can write

Pr
(
Ē
)
≤
β−1∑

i=1

Pr(Wi is not a εi/2-sample) . (10)

By construction, each Wi is an uniform random sample of D of size b · i,
1 ≤ i < β. The fact that Wi ⊂ Wz for z > i is irrelevant, because of the
definition of uniform random sample. Using Lemma 3, Theorem 1 and the
definition of εi (from lines 3 and 9 of Algorithm 3), it holds that

Pr(Wi is not a εi/2-sample) ≤ δ

β − 1
, for 1 ≤ i < β .

Plugging the above in (10), it follows that the event E then happens with
probability at least 1− δ. When E happens, the thesis follows from Lemma 2
for all 1 ≤ i < β and from (9) for i = β. ut

Tightness of the bound The bound to the empirical VC-dimension shown in
Lemma 3 is tight, as shown in the following Lemma, whose proof is similar to
the one for [24, Theorem 4.6].

Lemma 4 Let d be a positive integer. There is a dataset D and a set W ⊆ D
with s-index d such that EVC(D,R,W) = d.

Proof For d = 1, let D be any dataset containing at least two distinct trans-
actions t1 = 〈{a}〉 and t2 = 〈{b}〉, for a 6= b ∈ I. Let W = {t1, t2}. It holds
c̃(t1) = c̃(t2) = 1, so the s-index of W is 1. It is straightforward to shatter the
subset {t1} ⊆ W, so the empirical VC-dimension is at least 1, and the thesis
follows from Lemma 3.

Without loss of generality let I = N. For d > 1, let D be any dataset
containing the set W defined as follows. The set W contains:
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– The set K = {t1, . . . , td} where

ti = 〈{0, 1, 2, . . . , i− 1, i+ 1, . . . , d}〉, 1 ≤ i ≤ d;

– Any number of arbitrary transactions with capacity upper bound less than
2d − 1.

It holds c̃(ti) = c(ti) = 2d − 1 and for no pair ti, tj with i 6= j it holds either
ti v tj or tj v ti, so the s-index of W is d.

We now show that K is shattered by R. For each A ∈ 2K \ {K, ∅}, let YA
be the sequence

YA = 〈{1, . . . , d} \ {i : ti ∈ A}〉 .
Let YK = 〈{0}〉 and Y∅ = 〈{d+ 1}〉. It holds by construction that

RYA ∩ K = A, for each A ⊆ K .

Thus, it holds
A ∈ {R ∩ K, R ∈ R} for each A ⊆ K,

which is equivalent to say that

{R ∩ K, R ∈ R} = 2K,

i.e., that K is shattered. Since |K| = d, it follows that EVC(D,R,W) ≥ d. We
obtain the thesis by combining this fact with Lemma 3. ut

4.4 Handling the initial block

A major goal for ProSecCo is to be interactive. Interactivity requires to
present the first intermediate results to the user as soon as possible. As de-
scribed above, ProSecCo uses an exact, non-progressive algorithm such as
PrefixSpan [21] to mine the first block with a frequency threshold ξ (line 4
of Algorithm 3). Because of the way ξ is computed, it could be very small,
depending on the (upper bound to the) s-index of the first block and on the
user-specified block size b. Mining the first block at a very low frequency
threshold has two undesirable effects:

1. the mining may take a long time due to the very large number of patterns
that are deemed frequent w.r.t. a very low threshold (pattern explosion);

2. all these patterns would be shown to the user, effectively flooding them
with too much information with diminishing return.

To counteract these drawbacks, the algorithm can hold before mining the
first block if the frequency threshold ξ is too low, and instead continue on to
read the second block (without discarding the first) and potentially additional
blocks until the frequency threshold ξ computed using the upper bound to the
s-index and the size of the set of all read transactions is large enough for this
set of transactions to be mined quickly by PrefixSpan at this threshold. Doing
so has no effect on the correctness of the algorithm: the proof of Theorem 2
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can be amended to take this change into consideration. A good starting point
for how large ξ should be before mining is to wait until it is approximately
θ/2. Other heuristics are possible and we are investigating a cost-model-based
optimizer for the mining step to determine when ξ is large enough.

4.5 Top-k Sequences Mining

A variant of the frequent sequence mining task requires to find the top-k most
frequent sequences: instead of specifying the minimum frequency threshold
θ, the user specifies a desired output size k. The collection of sequence to
return is defined as follows. Assume to sort the sequences in S in decreasing
order according to their frequency in D, ties broken arbitrarily. Let f(k)D be the
frequency in D of the k-th sequence in this order. The set of top-k frequent
sequences is the set

TOPK(D, k) =
{
s ∈ S : fD(s) ≥ f(k)D

}
.

This collection may contain more than k sequences. The parameter k is more
intuitive for the user thant the minimum frequency threshold θ, and more
appropriate for interactive visualization tools, where the human user can only
handle a limited number of output sequences.

Since
TOPK(D, k) = FS

(
D, f(k)D

)
,

the concept of ε-approximation (Definition 1) is valid also for this collection.
ProSecCo can be modified as follows to return progressive results for the

top-k frequent sequences. We denote this modified algorithm as ProSeK, and
in the following describe how it differs from ProSecCo by referencing the
pseudocode in Algorithm 3.

First of all, ProSeK takes k as input parameter instead of θ. A major
difference is in the definition of ε on lines 3 and 9 of Algorithm 3. ProSeK
uses a factor 4 (instead of 2) before the square root to compute the values for
this variable:

ε← 4

√
d− ln(δ) + ln(β − 1)

2i · b .

Another difference is in the initialization of ξ (line 4): instead of θ, ProSeK
uses f(k)B1

, the frequency in B1 of the k-th most frequent sequence in B1:

ξ ← f(k)B1
− ε

2
.

The quantity f(k)B1
can be computed using a straightforward variant of Pre-

fixSpan for top-k frequent sequence mining. The last difference between Pro-
SecCo and ProSeK is in the function updateRunningSet: while the second
component of the pairs in F is still updated using (5), ProSeK removes from
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F all pairs with updated second component strictly less than f(k)Wi
− ε

2 , the
frequency of the k-th most frequent sequence in Wi.

The output of ProSeK has the following properties.

Theorem 3 Let (Fi, εi) be the i-th pair sent in output by ProSeK, 1 ≤ i ≤ β.
With probability at least 1−δ, it holds that, for all i, Fi is an εi-approximation
to TOPK(D, k).

The proof follows essentially the same steps as the one for Theorem 2.

4.6 Extension to other patterns

Our presentation of ProSecCo has been focused on sequences, but a similar
approach can be used to enable the interactive mining of other kinds of pat-
terns, provided that it is possible, given a random sample S of transactions
from the dataset and a failure probability λ, to determine a φ ∈ (0, 1) such
that S is a φ-sample, with probability at least 1− λ (over the choice of S).

We are aware of two kinds of patterns for which methods to compute φ
have been developed: itemsets [4] and subgroups [14]. For itemsets, Riondato
and Vandin [26] showed how to use an upper bound to the empirical VC-
dimension of the task of itemsets mining to compute φ. The same authors used
pseudodimension [22], a different concept from statistical learning theory, to
compute φ for subgroups [27].

Developing methods to compute φ for other kinds of patterns is an inter-
esting direction for future research.

4.7 Memory considerations

Many current real-world datasets contain hundreds of millions of transactions.
As a result, such datasets are impractical to store, let alone mine, locally
on a single machine. Most existing algorithms are ill-suited for mining large
datasets as they require enormous amounts of memory (usually ranging in the
GigaBytes, see also Section 5.3), even with relatively small datasets by today’s
standards. Existing workarounds involve expensive disk I/O operations to store
and fetch from disk what does not fit into memory, leading to extreme runtime
inefficiencies far beyond what can be tolerated in an interactive setting.

Thanks to the fact that ProSecCo only mines one block at a time, it
incurs in minimal memory overhead, making it an ideal candidate for mining
very large datasets (see also the results of our experimental evaluation in Sec-
tion 5.3). Furthermore, this small resource footprint means that ProSecCo
can be used in low-memory settings without the need for expensive I/O swap-
ping operations effectively bypassing the runtime increase faced by existing
algorithms. We believe this small memory usage is a major benefit of Pro-
SecCo, given the impracticality of using existing sequence mining algorithms
on huge datasets.
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5 Experimental evaluation

In this section we report the results of our experimental evaluation of Pro-
SecCo on multiple datasets. The goals of the evaluation are the following:

– Assess the accuracy of ProSecCo in terms of:
1. the precision and the recall of the intermediate results, and how these

quantities change over time as more blocks are processed;
2. the error in the estimations of the frequencies of the output sequences,

and its behavior over time. Additionally, we compare the actual maxi-
mum frequency error obtained with its theoretical upper bound εi that
is output after having processed the i-th block.

– Measure the running time of ProSecCo both in terms of the time needed
to produce the first intermediate result, the successive ones, and the last
one. We also compare the latter with the running time of PrefixSpan [21]
and SPAM [5].

– Evaluate the memory usage of ProSecCo over time and compare it with
that of PrefixSpan and SPAM, especially as function of the size of the
dataset and frequency threshold parameter.

Summary Our experimental results show that ProSecCo is is faster than
PrefixSpan and SPAM while simultaneously capable of producing within a
few milliseconds high-quality results that are updated quickly and rapidly
converge to the exact collection of frequent sequences. ProSecCo uses a con-
stant amount of memory (at most 2 GigaBytes in our experiments) which
was consistently far less than the amount of memory used by PrefixSpan and
SPAM, which often required over 10 GigaBytes of memory (SPAM even re-
quiring over 400 GigaBytes at times). Table 2 shows an high-level summary
of the comparison, reporting average runtime and memory usage over all the
datasets and parameter values that we tested. More than for the actual values,
the summary highlights the superiority of ProSecCo and its added flexibility
thanks to the fact that it produces intermediate results. All of these advan-
tages come with a very low price in terms of correctness: while theoretically
there is a small probability that some of ProSecCo’s intermediate outputs
are not ε-approximations, this event never happened in the thousands of runs
that we performed.

Implementation and Environment We implement ProSecCo in Java 11.0.1.
Our implementation of ProSecCo uses PrefixSpan as the black-box non-
progressive algorithm to mine the first set F from the initial block (line 5
of Algorithm 3) and for updating this set when processing the successive
blocks (line 11). We use the PrefixSpan and SPAM implementations from
the SPMF [9] repository, which we adapt and optimize for use in ProSecCo.
Our open-source implementation is included in the SPMF package.

All experiments are conducted on a machine with Intel Xeon E5 v3 @
2.30GHz processors, with 128GB of RAM in total, running Ubuntu 18.04 LTS.
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Table 2: Summary of experimental comparisons to existing algorithms in terms
of average runtime, memory usage, and correctness, over all tested parameter
values and datasets

Algorithm Avg. Runtime Avg. Memory Intermediate Results Correctness

ProSecCo 32 seconds 743 MB Yes ≥ 95%∗

PrefixSpan [21] 46 seconds 10 GB No 100%
SPAM [5] 3 minutes 72 GB No 100%
*as guaranteed by theoretical analysis; 100% in experimental evaluation.

Unless otherwise stated, each reported result is the average over five trial
runs (for each combination of parameters). In most cases the variance across
runs was minimal, but we also report 95%-confidence regions (under a normal
approximation assumption). These regions are shown in the figures as a shaded
areas around the curves.

Datasets We used six sequence mining datasets from the SPMF Data Mining
Repository [9].

– Accidents: Dataset of (anonymized) traffic accidents;

– Bible: Sequence of sentences in the Bible. Each word is an item;

– BMSWebView1: Click-stream dataset from the Gazelle e-commerce web-
site. Each webpage is an item;

– FIFA: Click-stream sequences of the FIFA World Cup ‘98 website. Each
item in a sequence represents a web page;

– Kosarak: Click-stream dataset from a Hungarian on-line news portal;

– MSNBC: Dataset of click-stream data consisting of user browsing pat-
terns on the MSNBC website. Each item represents a web page.

The characteristics of the datasets are reported in Table 3. To make the
datasets more representative of the very large datasets that are frequently
available in company environments (and sadly not publicly available), we repli-
cate each dataset a number of times (between 5 and 100). The replication pre-
serves the original distribution of sequence frequencies and transaction lengths,
so it does not advantage ProSecCo in any way, nor disadvantages any other
sequence mining algorithm.

Parameters We test ProSecCo using a number of different minimum fre-
quency thresholds on each dataset. We report, for each dataset, the results
for two to three selected frequency thresholds. We vary the frequency thresh-
olds across the datasets due to the unique characteristics of each dataset, using
thresholds which produce an amount of frequent sequences likely to be of inter-
est in an interactive setting. While some datasets have only a few sequences
which are common to the majority of transactions, other datasets have se-
quences common to almost all transactions leading to pattern explosion when
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Table 3: Dataset characteristics

Dataset Size (|D|)
Repl.
Factor |I|

Avg. trans.
size

Accidents 3401830 10x 481 34.8
Bible 7273800 200x 14442 22.6
BMS-WebView1 17880001 300x 938 3.5
FIFA 2045000 100x 4153 37.2
Kosarak 6999801 100x 16428 9.0
MSNBC 3179000 100x 17.0 13.33

mining at low thresholds. For example, the Kosarak dataset mined at θ = 0.05
yields 33 frequent sequences, while the Accidents dataset mined at θ = 0.85
produces 71 frequent sequences. This stark variation led us to experiment with
frequency thresholds which produce an amount of frequent sequences likely to
be of interest in an interactive setting (less than 500 sequences in the final
output).

We set δ = 0.05 and do not vary the value of this parameter because the
algorithm has only a limited logarithmic (and under square root) dependency
on it. We also use a constant block size b = 10, 000 transactions unless stated
otherwise. This value was found to guarantee the best interactivity (see also
Section 5.2 for a comparison of different blocks sizes).

5.1 Accuracy

We measure the accuracy of ProSecCo in terms of recall, precision and fre-
quency error of the collection of sequences output in each intermediate result.
Figure 2 shows the results for recall and precision, while Figure 3 and Figure 4
show the ones for the frequency errors.

Recall The first result, which is common to all the experiments conducted,
is that the final output of ProSecCo always contains the exact collection of
frequent sequences, not just with probability 1 − δ which is what our theo-
retical analysis guarantees. In other words, the recall of our algorithm at the
final iteration is always 1.0 in practice. Furthermore, in all our experiments,
the recall of each intermediate result is also 1.0. In summary, we can say
that ProSecCo always produces intermediate results that are supersets of
FS(D, θ). This improvement over the theoretical results can be explained by
the inevitable looseness in the sample complexity bounds.

Precision ProSecCo does not offer guarantees in terms of the precision: it
only guarantees that any sequence much less frequent than the user-specified
minimum threshold θ would never be included in any intermediate result (see
Property 2 of Definition 1). This property is very strong but does not prevent
false positives from occurring. We can see from the results in Figure 2 that the
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(a) Accidents, θ = 0.8
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(b) Accidents, θ = 0.9
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(c) Bible, θ = 0.4
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(e) BMS-WebView1, θ = 0.01
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(f) BMS-WebView1, θ = 0.05
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(g) FIFA, θ = 0.3
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(h) FIFA, θ = 0.4
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(i) Kosarak, θ = 0.05
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(j) Kosarak, θ = 0.1
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(k) MSNBC, θ = 0.2
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Fig. 2: Precision and recall evolution as more blocks are processed.

precision after having processed the first block is around 0.20 for some datasets,
but it can be much higher (0.6–0.8) or even perfect. It rapidly increases in
all cases as more blocks are analyzed. Due to the randomized nature of the
algorithm, different runs of ProSecCo may perform slightly differently but
the absence of a visible shaded region around the precision curve implies that
the difference is insignificant. The precision tends to plateau after a few blocks:
this effect is due to the fact that, before having process the whole dataset, it is
hard for the algorithm to discard from the set F the sequences with a frequency
in D just slightly lower than θ. Only after the last block has been analyzed it
becomes evident that these sequences do not belong to FS(D, θ) and they can
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be safely expunged from F . Indeed the final output is always exactly FS(D, θ),
i.e., the precision of the final output is 1.0.

0 100 200 300
Block

0.00

0.02

0.04

Ab
so

lu
te

 E
rro

r

Mean
Max
Theoretical

(a) Accidents, θ = 0.8

0 100 200 300
Block

0.00

0.02

0.04

Ab
so

lu
te

 E
rro

r

Mean
Max
Theoretical

(b) Accidents, θ = 0.9

0 200 400 600
Block

0.00

0.02

0.04

Ab
so

lu
te

 E
rro

r

Mean
Max
Theoretical

(c) Bible, θ = 0.4

0 200 400 600
Block

0.00

0.02

0.04

Ab
so

lu
te

 E
rro

r

Mean
Max
Theoretical

(d) Bible, θ = 0.6

0 500 1000 1500
Block

0.000

0.002

0.004

Ab
so

lu
te

 E
rro

r

Mean
Max
Theoretical

(e) BMS-WebView1, θ = 0.01

0 500 1000 1500
Block

0.00

0.01

0.02

Ab
so

lu
te

 E
rro

r

Mean
Max
Theoretical

(f) BMS-WebView1, θ = 0.05
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(k) MSNBC, θ = 0.2
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Fig. 3: Absolute error in the frequency estimation and its evolution as more
blocks are processed.

Frequency Error We measure the error in the estimation of the frequencies in
each progressive output in two ways:

– absolute error : the absolute value of the difference between the estimation
and the true frequency in D.



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag London Ltd., part of Springer Nature.

ProSecCo: Progressive Sequence Mining with Convergence Guarantees 25

0 100 200 300
Block

0.0

0.2

0.4

0.6

0.8

Re
la

tiv
e 

Pe
rc

en
ta

ge
 E

rro
r

Mean
Max

(a) Accidents, θ = 0.8
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(b) Accidents, θ = 0.9
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(d) Bible, θ = 0.6
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(e) BMS-WebView1, θ = 0.01
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(f) BMS-WebView1, θ = 0.05
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(j) Kosarak, θ = 0.1
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(k) MSNBC, θ = 0.2
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(l) MSNBC, θ = 0.4

Fig. 4: Relative percentage error in the frequency estimation and its evolution
as more blocks are processed.

– relative percentage error (RPE): we divide the absolute error by the true
frequency in D, and multiply the result by 100 to obtain a percentage.

Results for the absolute error are reported in Figure 3, and those for the
relative percentage error are in Figure 4.

Beginning with the absolute error, we can see from the plots that on average
over the sequences in the intermediate results for each block, the error is very
small (never more than 0.01) and quickly converges to zero. The error goes
to exactly zero after the algorithm has processed the last block. The results



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag London Ltd., part of Springer Nature.

26 Sacha Servan-Schreiber et al.

are very stable across runs (extremely small or absent shaded region). Even
the maximum error is only slightly larger than the mean. We also report the
theoretical upper bound to the maximum error, i.e., the quantity εi that is
output by ProSecCo after each block has been processed. This quantity
is zero after having processed the last block (the single point is not clearly
visible in some of the figures). We can see that this bound is larger than the
actual maximum error observed, which confirms our theoretical analysis. The
fact that at times the bound is significantly larger than the observed error
is due to the looseness of the large-deviation bounds used (Theorem 1) and
that ProSecCo computes an upper-bound to the s-index which in turn is
an upper-bound to the empirical VC-dimension, itself a worst-case quantity.
A good research direction is to explore better bounds for the empirical VC-
dimension and the use of improved results from statistical learning theory to
study the large deviations.

In terms of the RPE, ProSecCo does not give any guarantees on this
quantity (although extensions of ProSecCo that offer guarantees on the RPE
are possible). Nevertheless, Figure 4 shows that the RPE is generally small,
and it converges rapidly to zero. The fact that ProSecCo behaves well even
with respect to a measure which it was not designed to take into consideration
testifies to its great practical usefulness.

5.2 Runtime

We measure the time it takes for ProSecCo to produce each intermediate
result, and compare its completion time with that of PrefixSpan and SPAM.
Our experiments show (Figures 5 and 6) that ProSecCo provides a progres-
sive output every few milliseconds, producing many incrementally converging
and useful results before PrefixSpan and SPAM completes The variability in
the processing time of a block is due to the slightly different thresholds used to
mine different blocks. Processing the last block tends to take much less time
than analyzing the others because this block usually contains many fewer than
b transactions.

We experimented with four different block sizes to analyze the overall effect
that block size has on ProSecCo’s performance. We stress that the block size
only has an effect on the runtime required to produce an incremental output
but does not impact the correctness of ProSecCo. Figure 5 displays the
variation in the time required to produce an incremental output as a function
of θ and the block size b. As expected, our experiments show that larger values
of b increase the time required per progressive output since each block contains
more transactions which need to be processed.

The results suggest that using a “small” block size has the advantage of
producing more incremental results, however, using too small a value for b can
lead to higher values of ε when mining the blocks, which may slow-down overall
performance due to the pattern-explosion phenomena at lowered frequency
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Fig. 5: Per-block runtime for different choices of block size b and different
frequency thresholds θ. Results were common across datasets; we select a set
of representative results from four datasets.

thresholds. A block size of b = 10, 000 seems to be a good choice for interactive
settings and large datasets.

The overall runtime of ProSecCo is almost always smaller than the run-
times of PrefixSpan and SPAM (Figure 6, where we omit plotting the SPAM
runtime for clarity, as this algorithm was consistently 2-10x slower than Pre-
fixSpan). On the Bible dataset, ProSecCo is slightly slower than PrefixSpan,
but we stress that ProSecCo has been producing high-quality trustworthy
results every few milliseconds, regardless of the overall size of the dataset, while
PrefixSpan and SPAM may require several minutes or more to produce any
output. The reason why ProSecCo is slower than PrefixSpan on the Bible
dataset is that each transaction in this dataset consists of words in sentences
and hence contains many repeated items) has a capacity bound c̃(τ) > 2|T |−1,
which causes the bound to be re-computed for each transaction (see line 4 of
Algorithm 2).
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We break down the total runtime into fractions for the major steps of the
algorithm. We report the average percentage of time (relative to the total) for
each step across all six datasets.

– Roughly 20-30% of the overall runtime is spent reading and parsing the
blocks. This step is so expensive because the algorithm must parse each
row of the sequence dataset and convert it into an instance of a sequence
object in our implementation. This step is not specific to ProSecCo and
was equally slow in the PrefixSpan implementation.

– 1-10% of the runtime was dedicated to updating the s-index as well as
sorting and pruning the parsed sequences. After the initial block is pro-
cessed, the algorithm sorts and prunes each sequence based on the items in
the running set F . Doing so allows for a more efficient frequent sequence
extraction (see the next step) since the pruned sequences are guaranteed
to only contain items which are part of a frequent sequence and it avoids
computing the item frequencies from scratch.

– 50-80% of the total runtime involved obtaining the frequent sequences using
PrefixSpan. We note that without the previous pruning step, this process
would incur a much more significant overhead since the individual item
frequencies would need to be computed and the sequences pruned and
sorted accordingly.

– 0-30% of the runtime was dedicated to subsequence matching, i.e., com-
puting the frequency of the sequences which did not appear frequent in
the current block. This step is computationally expensive but onlrequires
y a relatively small percentage of the total runtime since the majority of
the truly frequent sequences are likely to be frequent in the ith block and
therefore found in the previous step.
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Fig. 6: Total runtime comparison for all experiments between PrefixSpan and
ProSecCo including 95% confidence intervals. Numbers on top of bars repre-
sent ProSecCo’s average runtime as a factor of PrefixSpan’s average runtime.
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Fig. 7: Comparison of memory usage between ProSecCo and PrefixSpan.

5.3 Memory Usage

We measure the memory usage over time for ProSecCo, PrefixSpan, and
SPAM. Our results (Figure 7) show that ProSecCo uses a constant amount
of memory, 700 MegaBytes on average, regardless of the size of the dataset,
while PrefixSpan and SPAM require a linear amount of memory (in the size
of the dataset) which, in some experiments, exceeded 30 GigaBytes for Pre-
fixSpan and 400 GigaBytes for SPAM. In fact, we were unable to accurately
compare performance for several huge datasets due to memory constraints.
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For this reason, we omit SPAM from several figures in order to provide a
clearer comparison to ProSecCo. Such difference of many orders of magni-
tude clearly shows the advantage of using ProSecCo over classical sequence
mining algorithms, especially as datasets get larger and more complex.

Although measuring memory usage in Java is not straightforward due
to the JVM and the automatic garbage collection mechanisms involved, the
SPMF code that we use for both PrefixSpan and SPAM, and indirectly for
ProSecCo (which uses PrefixSpan at its core), is smart in explicitly invoking
the garbage collector at key moments in the algorithms’ execution to ensure
accurate memory analysis. The SPMF implementation of these algorithms is
considered to be of state-of-the-art quality and it is widely used in testing pat-
tern mining algorithms (see, e.g., the Citations page on the SPMF webpage).
In the preliminary version of this work [28] we used home-grown C# imple-
mentations of PrefixSpan and ProSecCo, and the memory usage patterns of
the two algorithms were almost identical to those that we report here.

6 Conclusions

We present ProSecCo, an algorithm for progressive mining of frequent se-
quences from large transactional datasets. ProSecCo periodically outputs
intermediate results that are approximations of the collection FS(D, θ) of fre-
quent sequences, with increasingly high quality. Once all the dataset has been
processed, the last result is exactly FS(D, θ).

Each returned approximation comes with strong probabilistic guarantees.
The analysis uses VC-dimension, a key concept from statistical learning theory:
we show an upper bound to the empirical VC-dimension of the task at hand,
which can be easily obtained in a streaming fashion. The bounds allows Pro-
SecCo to compute the quality of the approximations it produces.

Our experimental results show that ProSecCo outputs a high-quality ap-
proximation to the collection of frequent sequences after less than a second,
while non-progressive algorithms would take tens of seconds. This first ap-
proximation is refined as more blocks of the dataset are processed, and the
error quickly decreases. The estimations of the frequencies of the sequences in
output is even better that what is guaranteed by the theoretical analysis.

Among interesting directions for future work, we highlight the need for
progressive algorithms for many other knowledge discovery problems, with
the goal of making interactive data exploration a reality for more and more
complex tasks.
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