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ABSTRACT

The control of linear and nonlinear systems with time—vurying parameters is formally
addressed with derivation of the correct gain scheduling control laws for guaranteed
stability. Successful adaptive control of systems with uncertain friction nonlinearities
is also discussed with application to compensation of destabilizing friction in a
unicycle robot. The work is focused by a case study on the autonomous unicycle
robot.

The effect of the nonlinear friction is to negate the stabilizing efforts of the unicycie
lateral controllers. Artificial neural network friction modeling, as well as Model
Reference Adaptive Control strategies are employed to cancel the friction. The
MRAC methods, since these are stability based and offer structured methods of
controller synthesis and tuning, prove the better approach to achieving suitable
friction compensation with the important secondary effect of good stiffness in roll
modes. Many alterations on the original MRAC system design are required for
successful implementation. These include: Bounding of friction model parameters;
Tracking error resetting; Adaptive dither signals for overpowering friction; Adding
structure to the friction parameter estimation for stability under fast parameter
variation.

Gain scheduling is addressed in the setting of feedback linearization, extended to
feedback LTI’zation. This defines the corrcect gain scheduling procedure and control
law for guaranteed stability with arbitrary parameter values and rates of change.
Stability conditions for slowly varying closed loop dynamics, as well as conditions %or
dropping parameter rate of change dependent terms in the control law, are
dctermined for parameters varying as fast as the system is capable. For output
feedback, a single point observer, which runs in transformed coordinates, is used in an
LQG controller setting. The gain scheduled controller requires only a single point
design, which yields stable control of the parameter dependent system over the full
operating envelope with arbitrary parameter variation.

All of the techniques are successfully implemented on the unicycle robot and
demonstrated in simulation and/or experiment.

Thesis Supervisor: Professor Andreas H. von Flotow
Title: Associate Professor in Aeronautics and Astronautics
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CHAPTER 1. LITFRATURE SURVEY AND INTRODUCTION

INTRODUCTION

The unicycle robot offers an example of applied contro! theory with which people can
identify: most having at some stage in their lives contemplated cr attempted the art
of unicycling. Whether successful or not, appreciation of the difficulty of the task

very quickly becomes well established.

To the best knowledge of the author, the first unicycle robot was constructed at
Stanford University [Schoonwinkel] circa 1986 and initial efforts at computer
stabilizing the unstable, non minimum phase system were demonstrated. Due to,
amongst other reasons, unsuitable sensors and time constraints on completion of the
work, limited success was achieved, in fact only the longitudinal control, which is the
inverted pendulum problem, was successfully implemented. The unusual and highly
challenging nature of the project served as motivation for the design, construction
and testing of a similar unicycle robot at MIT, which lead to the body of work
presented in this thesis. The work attempts to balance two important aspects of
control research: namely, theoretical development (the gain scheduling problem), as
well as practical development (modifying the MRAC friction cancellation strategies

for successful implementation).

How Useful is a Unicycle Robot?

At first sight, the unicycle robot does not appear to have any practical use other than

being an extremely good educational project for learning the details of interfacing



hardware with theoretical issues in dynamics and control. A closer look, however,
reveals the (fortunate) point of view that the unicycle robot is a dynamic system
which exhibits many of the control issues that both practicing control engineers and
researchers have to overcome in the process of realizing a workable control strategy
for many varied applications (not the least of which is a unicycle robot). For
example, the system is characterized by unstable, non minimum phase behavior in
both lateral and longitudinal axes. Lateral dynamics and specifically, controllability
of the roll dynamics, are a strong function of wheelspeed (the roll dynamics are
uncontrollable at zero wheelspeed). Nonlinear friction yaw torques, present between
the wheel and surface, are important and dependent on both wheelspeed and other
exogenous parameters (e.g. tire pressure, surface friction characteristics). Addressing
these issues in the light of the real world limitations on theoretical solutions together
with all the hardware details, presents an exciting and invigorating research
environment and yields many interesting solutions which may be difficult to conceive

of without such an application.

Possibly one of the leading advantages of such application oriented research, is the
elimination of all doubt as to the validity of the "simulation" upon which the various
control strategies are tested. Nature does not err in modeling the unicycle perfectly

and in highlighting any shortcomings of the controllers.
The Unicycle: Exemplifying Specific Problems in Control of Many Systems

Many systems to be controlled exhibit dynamics which are well captured by linear
time invariant (LTI) models for fixed operating conditions. Dependence of the
dynamics on some time—varying parameter(s) broadens the class of systems

considerably. Aircraft dynamics usually depend significantly on dynamic pressure and
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angle of attack; bicycles, motor vehicles, boats and unicycles are all examples of
forward speed dependent dynamic systems; the perturbational behavior of a robotic
manipulaior depeuds cn both configuration and payload properties; and the list is

endless.

The dynamic behaviour of the unicycle is surprisingly similar to the high frequency
dynamic behaviour of an aircraft unstable in both longitudinal (short period mode)
and lateral (dutch roll mode) axes. A forward swept wing aircraft such as the X—29,
with only elevator and rudder actuators (as may arise in the case of aileron failure),
and with friction present in the rudder actuator is one such example: the non
minimum phaseness in the roll dynamics manifesiing in requiring e.g. right rudder to
induce roll to the left. In addition, the dynamics of an aircraft are strongly dependent
on dynamic pressure and angle of attack [McRuer, Ashkenas, Grakam), prescribing
that a stabilizing controller usually needs to be scheduled according to operating
condition in order to maintain good performance throughout the flight envelope; not
unlike the requirement for the forward speed dependent dynamics of the unicycle.
The scheduling technique may be in the form of fixed gain scheduling, fully adaptive
control or a hybrid combination employing elements of both fixed point scheduling

and adaptation.

The unicycle dynamics are well described by a model linearized in roll, pitch and yaw
about the vertical (balanced) position [Vos — S.M., Schoonwinkel] facilitating
application of the control engineer’s favorite linear control design technique to a
difficult system. The forward speed dependence of the lateral dynamics require some
form of adaptation or gain scheduling [Vos]. Furthermore, nonlinear friction present
between the tire and surface negaie the efforts of the linear (gain scheduled) control

system and, if not accounted for, lead to unsuccessful control of the lateral dynamics.
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Combining control authority limitations with these interesting characteristics, yields

a system with many of the ingredients constituting a challenging control problem.

The linear control theory literature is substantial and many synthesis techniques exist
for designing linear contrcl systems for suitable linear systems. Control synthesis
techniques are not as abundant in the nonlinear control literature, although a number
of extremely useful methods have been developed [e.g. feedback and input—output
linearization; sliding mode control; adaptive control. See e.g.: Isidori, Nijmeijer and

van der Schaft, Astrom and Wittenmark, Slotine and Li).

Much insight to the problem of control of linear parameter dependent systems,
traditionally solved by gain scheduling, is gained by viewing the problem in the
framework of feedback linearization, with extension to account for the parameter
variation. This thesis defines a gain scheduling design approach, which requires only a
single design and which guarantees stability for arbitrary parameter values and
variation of parameters. A second aspect of this thesis addresses ,by example of the
unicycle robot, some of the issues necessary to yield a satisfactorily functional

adaptive friction compensation strategy.

Techniques Demonstrated

A baseline controller [chapter 2], based on the LQR optimal control design
methodology [e.g. Bryson] forms the backbone of the unicycle controllers. The
longitudinal controller is a fixed gain LQ servo controller yielding integral servo
control action on wheelspeed with inner loop stabilization of the unstable pitch
dynamics. Lateral control is via a continuously gain scheduled LQ servo controller

with nonlinear compensation of the yaw friction nonlinearity, with the friction
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compensation parameters, in the case of the baseline controller, well tuned to a given

range of wheel speeds and floor surfaces. These controllers allow commanding of

heading and forward speed with full stability augmentation.

Since the baseline controller is only well tuned to specific operating conditions,
adaptive control is used to overcome this limitation [chapter 8]. Many friction models
[e.g. Canudas, Maron, Papadopoulos, Radcliffe] exist for various systems, such that
the friction nonmlinearity may be viewed in the setting of a parameter dependent
nonlinearity with the parameters unknown and dependent on the operating condition.
This structure is very amenable to applying Model Reference Adaptive Conirol
(MRAC) techniques to, since the linear control design plant (ignoring the friction
nonlinearity) is a natural and obvious choice for a reference model which is both
achievable, and representative of the behavior expected by the controllers designed
for the linear wheelspeed dependent system. Both more traditional parameter
estimation laws as determined through Lyapunov analysis, and Neural Network

techniques are applied to the Model Reference Adaptive Control strategy.

On occasion, use has been made of learning techniques (non—parametric regression
techniques) to obtain a full forward or inverse model of the system for control [e.g.
Atkeson, Nguyen, Guez]. In the case of the unstable, non minimum phase unicycle
robot, this is not regarded a practical proposition and the MRAC and Neural network
compensation in hybrid adaptive/linear gain scheduled settings are implemented as
two possible friction compensation strategies. The difference being that the network is
used to learn only the friction model (not the entire plant) which is invertible and
static (in the sense of the functional dependence on the operating condition easily
iepresented on a graph independent of time), thus suitable for learning by a neural

network.
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In the MRAC implementations, direct application of the controller as designed yields
instability. A number of implementation issues thus need to be addressed for
successful application. Bounding of the adaptation parameters is enforced to ensure
that stability is maintained by not allowing large (physically meaningless) deviations
of these parameters. In order to prevent propagation of model errcrs and sensor
biases, the reference medel state is periodically reset (such that the tracking error=0
at time of reset) in order to mairtain a meaningful process. Without this strategy,
instability occurs remarkably quickly. In addition, the typical performance of the
friction compensating MRAC system, was determined to be erring on the low side,
i.e. the friction compensating term is usually slightly smaller than the required
(actual) value. The result is poor performance in roll, as these dynamics depend
criticaily on the friction effect being overpowered. Use of (classical) dithering of the

signals by suitable switching strategies dramatically improves the situation. Finally,

for fast parameter changes, the condition 0(pa32t1meter)zo assumed in the MRAC
parameter update law, is violated. The resulting instability is prevented by defining a

nominal parameter model and then only adapting on the parameter error, since

6(6pa3?meter)z0 is a much more valid assumption. These are simply means of
enforcing knowledge of the system onto the adaptation process, which makes good

physical sense and yields much improved performance and stability.

The second major area of work of this thesis is the problem of gain scheduled control
of parameter dependent systems [chapter 4]. As mentioned previously, many systems
exhibit known parameter dependence with the parameter variation also well known or
measured. The classical example is an aircraft operating at various dynamic
pressures. The unicycle is another such system, with obvious favor in this work. The
gain scheduling problem has traditionally been approached very much on a rule of

thumb basis, and very little work has been done to define more formal strategies in
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the design of such controllers. The work of [Shamma] is the only major contribution
in this field, where extensive studying of the conditions for stability of such systems is
made. The work is essentially an analysis of the traditional design approach, with the
conclusions that, as assumed by rule of thumb in practice, the system may be slowly
time varying and the dependence of the system on the parameter must be reflected in

the conirol law to guarantee stability.

Some attempt at defining a framework of gain scheduling analysis is given by [Rugh],
and the literature abounds with application of input—output or feedback linearizing
techniques to obtaining adaptive control laws [e.g. Kokotovic, Kanellakopoulos, Teel,
Marino, Praly] for the parameter dependent system, but to the best of the author’s
knowledge, no connection with the gain scheduling problem is made. This section of
work shows that for suitable systems (feedback LTI'able), with the correct gair
scheduling strategy, stability may be maintained independent of the rate of change of
the parameters upon which the system dynamics depend. The control law is
determined from the feedback linearizing control law, with added terms which enforce
the transformed (feedback linearized) system to be both linear and time invariant (in
transformed space). The gain scheduled control design strategy is extended to the
case where slowly varying closed loop system dynamics are desired and a simple test is

given (evaluated in transformed space) for evaluating stability in this case.

In addition, the case of output feedback is discussed, with application of LQG control
of the system in fransformed space. The resulting control laws are implemented in
system space, with an observer which runs in transformed space. The essence of this
section is the need for only a single design point observer which runs in transformed
coordinates and which is driven directly by the system space sensor signals to yield

estimates of the unknown states for use in the control law. This controller, designed
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at only one operating parameter value is valid for operation over the entire envelope

for arbitrary parameter variation.



CHAPTER 2. UNICYCLE DYNAMICS, BASELINE CONTROLLERS AND
EXPERIMENTAL SETUP

UNICYCLE DYNAMICS

Introduction

The autonomous unicycle presents a novel example in the study of multibody
dynamics and ccutrol. Autonomy is achieved by replacing the human unicyclist with
a turnta;tale reaction mass for lateral control and a wheel torque actuator for
longitudinal control. The system consists of three connected rigid bodies; the wheel,
frame and turntable (see figure 2.1). Actuation is via two DC motors which are used
as torque actuators. The pitch actuator drives the unicycle wheel through a belt drive
of gear ratio 72:1 and the yaw motor, driving the turntable thiough a spur gear drive

of ratio 25:1, facilitates yaw actuation.

The linearized equations of motion are readily determined asing Kane’s formalism
[Vos]. These equations, for nominal turntable velocity set to zero, yield decoupled
lateral and longitndinal dynamics, hence a model well suited to linear control design
techniques. The linearized longitudinal dynamics are time invariant, while the lateral
dynamics depend on wheelspeed, thus requiring a gain scheduled lateral controller.
Sensors are available for measuring all seven states: yaw, roll and pitch rates; roil and

pitch angles as well as turntable and wheel angular velocities.

16
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Figure 2.1. Autonomous unicycle robot. Pitch actuator drives wheel through a belt
drive of gear ratio 72:1 and yaw actuator drives turntable reaction mass through spur

gear of ratio 25:1.

The presence of nonlinear friction between the wheel and the surface, which is
implicitly assumed a perfect non—slip condition in the rolling constraint of the wheel,
contributes the non—holonomic nature of the system. Of course, the longitudinal
controller depends on this for actuation, but the lateral controller is heavily
handicapped by the resulting friction between the wheel and surface in yaw. This is

exacerbated since the yaw friction is poorly known and stiction or breakaway friction
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compounds the problem into a highly nonlinear effect, which is also dependent on
wheelspeed. The proposed means of solving this problem is implementation of an
adaptive friction controller which complements the lateral gain scheduled controller.
Compensation of the friction problem in the lateral dynamics is the focus of chapter

3.

From the control point of view, these dynamics present a particularly challenging
problem in that all of the following adjectives apply: unstable, non minimum phase,

time varying and nonlinear.

Open Loop Longitudinal Dynamics

The longitudinal dynamics may be viewed as the inverted pendulum dynamics
imposed upon a moving base, which arises as an integrator (or a slow, stable, real
pole in the case of frame/wheel viscous friction included) representing the wheel
rolling mode. These linearized dynamics are LTI, and well suited to linear control
design techniques. Figure 2.2 illustrates the s—plane plot of the open lop dynamics,
where the unstable/stable pole pair represent the inverted pendulum mode. Note the
non minimum phase zero at the mirror image (about the imaginary axis) of the
minimum phase zero. These zeros arise in the loop transfer function from wheel
torque input to wheelspeed output, with the frequency on the same order of
magnitude as the pole frequencies, thus placing fundamental limits on achievable

closed loop bandwidth of the wheelspeed servo loop.
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Imaginary (rad/s)
A
7 & > O—< >
371 -2.93 -0.1 293 3.55 Real (rad/s)

LONGITUDINAL. Zeros in torque-wheelspeed Transfer Function

Figure 2.2. Open loop longitudinal dynamics. The zeros arise in the loop transfer

function from wheel torque to wheelspeed.

The longitudinal inverted pendnlum poles (ignoring viscous rolling friction) are given

by the expression

. 1
- { «mw+mf+mt)r3+13)(mfrf+mtlt>g] & ()
ladg — Along
with

A long= (mfrf2+mtlt2+lg+lg)v

and
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v=((m,+me+m)ri+ I~ mertm ) e

with
g Acceleration due to gravity

o Nominal wheelspeed (rad/s)

I¥ Inertia of element k, about j'th axis
m;  Mass of element i
subscript t refers to turntable
f refers to unicycle frame
w refers to wheel

Note that the longitudinal dynamics are independent of wheelspeed ().

T.ateral Dynamics

For the lateral case (ignoring viscous friction in yaw, for this simplified analysis), the

inverted pendulum modal frequency is given by the expression

P —I¥Q2((myIw+me(rw+ I £)+me(rw+le))1e+IY)
Bt A

+ (mwrw+mf(rw+ff)+th(rw+1t))g(lg+lg) ]1/2 (2)

with

A=(myrd+me(re+rs) A+ my(re+1e) 4 I+ T+ (T5+])
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and

Ty Wheel radius
If Reference frame mass center location

1 Reference turntable mass center location

The presence of the product with wheelspeed (o) in the first term, which represents
gyroscopic contribution to the eigenvalue, indicates the dependence of the inverted
pendulum mode on this parameter. The second term represents the contribution due
to gravity in the eigenvalue. Clearly there exists a speed for which the gyroscopic
(negative) term is the more significant and the poles become oscillatory, which
loosely speaking, occurs when the gyroscopic moments generated by the wheel are at
least equal to the gravitational "inverted pendulum" moments. This speed depends

on the relative magnitudes of the wheel and turntable—frame inertias.

Figure 2.3 shows how the open loop eigenvalues of the lateral system vary with
wheelspeed. In this root locus vs wheelspeed, viscous friction between the tire and
surface in yaw is modeled, resulting in the yawing mode arising as a stable real pole

and not an integrator as in the frictionless case.



22

Imaginary (rad/s)
/

- Omega=0 \
¥ COmega=10rad/s
O Zeros
-2.985 /e 2.985
& (e & >
Increasing Omega \\ - Increasing Omega Real (l‘ad/s)
N\
Dependent on Wheelspeed
Increasing Omega v

Figure 2.3. Lateral dynamics vs wheelspeed. At zero wheelspeed, the slow real pole
represents the yaw dynamics and the roll dynamics are represented by the
stable/unstable real pair. The zeros arise in the loop transfer function from turntable
torque command to yaw rate ouput. At zero wheelspeed, the roll mode poles are
canceled by the zeros, an artifact of the uncontrollability of the roll dynamics in this

condition.

Since the pendulum moment arm in lorgitudinal motion is smaller than in lateral
motion and the wheel rolls from under the frame as it falls longitudinally, this
inverted pendulum modal instability is slightly faster than for the lateral case, for

small wheel speeds (2 less than speed for which modes are oscillatory).
Friction in the Unicycle Robot
Friction effects include wheel—surface friction in both forward and yawing motion and

friction in the drive trains of the pitch and yaw actuators. The forward rolling friction

(at the tire—surface interface) is modeled in the sense of the rolling constraint
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(forward speed=Qry). Drive train friction is modeled as a viscous effect proportional
to angular velocity of the wheel or turntable. The surface friction in yaw is strongly
nonlinear and is modeled as such. Chapter 8 concentrates on this problem and
discusses the various models which may be assumed and that which was found to be

most representative.

BASELINE CONTROLLERS

The baseline lateral and longitudinal controllers which are well tuned to a specific set
of operating conditions, namely testing in the laboratory environment, are given here.
Note that the longitudinal and lateral gain scheduled controllers may be operated in
various conditions, but the friction compensation strategy given for the baseline
controllers is tuned to operation at nominal forward speed of 4=4 rad/s, tire pressure
of 55psi and the tiled laboratory floor. Chapter 3 successfully deals with the problem
of designing and implementing adaptive friction compensation, thus allowing

operation over a large range of surface conditions, wheelspeeds and tire pressures.

Longitudinal Controller

The longitudinal control system is a standard LQ servo structure including a lead
network to improve the loop shape, with servo control on the wheelspeed. The open
loop dynamics with wheelspeed error integrator (e) and lead network (v=lead
network state) appended, are given as (discrete time model for sample rate of 18.2

Hz)



24

v f90.64 0 0 0 01 v 0.0445
0 —6.16 0.99 —0.002 -0.44 0 | 1.2317
0 = | 3.50 0.006 1.014 .72 0| |0| + |-0.7008 |y (3)
] 9.63 0.0002 0.055 1.02 0| @ -0.0193 | *
e |k+1 0 0.055 0 0 1] |elk 0
with feedback control law
\'4
0
F“'k = — [-5.5183 —0.0904 —1.0170 —3.5493 —0.0051] g (4)
lelk

The system block diagram and Bode plots for the loop transfer function of the closed
loop system from commanded wheelspeed to achieved wheelspeed, are given in figure

24.
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—>‘ l/s—er,eml
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Figure 2.4. Longitudinal controller block diagram and Bode plots for wheelspeed
control loop. Lead network is used to achieve desired frequency response loop transfer

function shape.
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Lateral Controller

The lateral dynamics are dependent on wheelspeed and the model is derived in [Vos,
S.M.]. Chapter 4 includes the wheelspeed dependent lateral dynamics mcdel, which is
not repeated here. The controller structure is a gain scheduled LQ servo, with block
diagram similar to the longitudinal controller, but with heading as an outer lcop

servo function and no lead network.

Due to the wheelspeed dependence of the system, it is not possible to design a
suitable LTI controller which maintains both good performance and stability over the
operating range of wheelspeeds. For example, applying the feedback gains for the
lateral controller designed at wheelspeed 1=0.6rad/s, to the system at wheelspeed

1=0.4rad/s, yields the unstable system of closed loop eigenvalues

Ay =—13.5rad/s do=-2.98rad/s A3=-0.26 rad/s
4,5 =0.1362 *j 2.3 rad/s (5)

This problem is easily dealt with by gain scheduling the lateral control system.
Chapter 4 defines conditions under which this strategy will guarantee stability as well
as means of evaluating the gain scheduled controller to check for stability with

arbitrary parameter values and variation rates.

The feedback gains are polynomial curve fits to the gains of the designs done at

various points for wheelspeeds between 0.5 and 10 rad/s. The polynomials are

Kpni(f) = —1.1591e—407 + 4.717e~306 — 7.8746e—205 + 0.69541¢ — 3.493403
+ 9.997162 — 15.4410 + 11.3171 (6)
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Kphidos(R) = —3.4595¢—407 + 1.408e—206 — 0.23505 + 2.075504 — 10.42703 +
29.83812 — 46.077 + 33.778 (7)

Kpsidot() = 1.3197e-1207 — 7.5214e—1008 + 3.1598e—85 — 4.6734e—7l* +

5.2971e—703 + 4.8544e—502 — 6.6675E~7N + 0.08932 (8)
Kpsi() = —4.7625e—502 — 9.8481e-50 ~ 0.1296 (9)
Kintegrator{l) == 3.1675e—602 + 2.531de—50 — 0.29965 (10)

Figure 2.5 shows these gains vs wheelspeed, as well as the equivalent transformed
space gains vs wheelspeed (see chapter 4). Note that these gains vary less significantly
with wheelspeed than the example given in chapter 4, and also that these easily
satisfy the stability tests discussed therein, i.e. the gradients of each gain, evaluated
at the nominal wheelspeed of 1=2.5rad/s, satisfy the stability bounds of equation
(114) in chapter 4, thus

g%ﬁ < 8.1 < 38.0 (from equation (114a), chapter 4) (11)
-‘3%—1 < 3.25 ¢ 34.5 (from equation (114b), chapter 4) (12)
g%(—"’ < 0.21 < 10.3 (from equation (114c), chapter 4) (13)
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Z-space Gains vs Omega
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Figure 2.5. Gain scheduled lateral system feedback gains vs wheelspeed for system
space as well as tran:formed space (for the third order model excluding heading and

heading error integrator).
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Ga.n Scheduled Lateral System Root Locua ' Wheelspeed
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Figure 2.6. Root locus of closed loop gain scheduled (roll and yaw modes) eigenvalues
vs wheelspeed. Notice that for increasing wheelspeed, the roll mode pole tracks

toward the origin.
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Typical Lateral Heading Loop Bode Magnitude Plot. Omega = 3.5 rad/s
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Figure 2.7. Bode plots and typical step heading command response for lateral closed

loop (integral heading servo loop) system.
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Friction compensation.

The friction compensation for the baseline controller is of the form

I =Tgs + C/ny sgn(l'gs) (14)

where ['gs is the lateral gain scheduled controller command

(15)

I"gs = “‘[Kphidot Kphi Kpsidot Kpsi Kintegrator]

0 S SO €.

This ensures that the control command is always large enough to overpower the
friction effects between the wheel and surface, as well as in the turntable drive train.
This strategy works extremely well if carefully tuned. For C=1.25 (Nm), at steady
wheelspeed of =4 rad/s, for operation over the laboratory floor and the tire inflated
to 55psi, performance is good. Note all the parameters which define the friction
compensating value, hence the desire for adaptive friction compensation as discussed

in chapter 3.

These control laws form the baseline controllers from which the adaptive friction

compensating controllers are developed.

EXPERIMENTAL SETUP

The unicycle robot is a combination of off—shelf and self (by the author) constructed

parts. Figure 2.1 shows the completed fully autonomous unicycle with onboard power
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supplies (sealed lead acid batteries) and onboard CPU, with communication to the
operator via R/C radio. The operator commands servo set—points, wheelspeed and

heading, whilst inner loop stability augmentation takes care of the unicycle dynamics.

Piezoelectric solid state rate sensors (Watson industries ARS—C131--1A) are used for
three axis angular rate information and a vertical gyroscope (Humphrey VG24) is
used as roll and pitch angle sensor. Tachometers, integrated into the DC motor

actuators, sense wheel and turntable angular velocities.

All sensor lines are low pass filtered via second order Butterworth filters of
bandwidth 8 Hz for anti—aliasing (sample frequency of 18.2Hz) and the output liues
(torque commands) are low pass filtered via 50 Hz second order Butterworth filters to
ensure smooth output commands. Since the anti—aliasing filters are approximately
one decade higher frequency than closed loop system bandwidth, the phase penalty
incurred is approximately 6 degrees and the 50 Hz filters contribute only

approximately 1 degree phase loss, which is tolerable.

Mavilor DC motors by Infranor Inc. are used for actuators: MO301 (316 Watt) motor
for pitch actuator and MOS80 (155 Watt) for yaw actuator. These are controlled
through pulse width modulated amplifier cards, ESA—10—75 by Galil Motion Centrol

Inc, which are implemented as current amplifiers.

Onboard power is through two sets of sealed lead acid (rechargeable) cells by Gates.
A 32Volt set is used to power all electronics (sensors, anti—aliasing filters, onboard
CPU) and a 48Volt set drives the actuators. Slip rings (8) capable of carrying 30
Amp loads are used to transfer power from the (rotating) turntable where the

batteries are stored, to the unicycle frame. Two switching DC—DC power supplies by
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International Power Devices are used to generate the correct DC power requirements

of the onboard CPU and AT--Bus.

Gateway 2000 '386-33 PC

Detachable Cables

¢ RS232 Serial Link for Downloading and initializing R 4
Code for Running System from onboard Ampro CPU. P
All Cables Detached for Experiment.

¢ Analog Devices I/0 Card. Data Logging and Control
Cable for Running System from PC. This Cable Remains
Attached during Experiment under PC Control.

Figure 2.8. Unicycle control system development environment.
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The development system consists of a Gateway 2000 386—33 PC with Analog Devices
RTI-8151/O (8 A/D, 2 D/A, 16 Digital ports) card for remote data acquisition and
control via an umbilical. The target (onboard CPU) system is an Ampro
386—on—a—card CPU (20 Mhz) with Real Time Devices RTD402 I/O card with
similar capabilities to the RTI—815 card. Target system development is done using
the PC as a host, coi.ru.icating ver RS232 - "! link: wi h thc Ampro CPU, and
using Datalight C—Thru—Rom development software for remote development on the
target (Ampro) CPU. When development is complete, code is simply downloaded and
initialized over the RS232 link before disconnecting to yield a completely autonomous
system. Figure 2.8 illustrates the development environment. Ail Ccding is in

Microsoft C (and MS QuickC) and Microsoft Assembler.

This experimental setup has proven an extremely good and inexpensive development
environment with seamless transition from remote data acquisition and control via

PC to onboard autonomous control via Ampro card.



CHAPTER 3. NONLINEAR FRICTION COMPENSATION IN LATERAL
DYNAMICS

INTRODUCTION

Although well suited to fixed point linear control design techniques, and subsequent
gain scheduling of the lateral controller with forward speed, the unicycle lateral
dynamics require further compensation to overcome the dcstabilizing effects of
nonlinear friction torque arising between the tire and surface in yawing motion, as
well as stiction in the yaw actuawur gear .rair. Tlhe baseline couuroller of chapter 2
successfully employs an ad hoc friction cancellation tuned to particular operating
conditions. This scheme assumes the friction torque, due to both the actnator and the
tire, of such a nature as to always oppose the torque command required by the gain
scheduled lateral controller; i.e. the friction torque is a signum function of the linear
control command torque. The amplitude of this signum function is empirically
determined, which yields good performance for the speed, surface and tire conditions
at which this friction compensator is tuned. This, however, allows satisfactory
operation at only one operating condition, while it is desirable to have stability and
equally good performance for all forward speeds and various surfaces. In addition to
the tire friction being yaw rate and forward speed dependent, thus partially state
dependent, it is also dependent upon exogenous parameters such as tire pressure and
surface condition. The unknown and indeterminable (are not measured in real time
by the robot) nature of these exogenous parameters contributes to the need for

adapiive on—line compensation of these effects to ensure stable operation of the robot.

35
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Figure 3.1. Chapter Roadmap.
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The typical friction models of figure 3.2, for various systems, are either one (Coulomb
friction only), two (Coulomb and viscous) or more parameter dependent [Canudas,
Maron, Radcliffe]. While the gear train friction of the yaw torque reaction mass may
be characterized by Coulomb plus viscous friction effects, the rolling tire has friction
torques arising in yawing while in forward motion due to a number of effects,
differing from the typical models. [Papadopoulos] proposes a bicycle tire friction
ivdel based predominantly on two effects. Initial lateral deformation of the tire tread
due to the tire tracking a heading which is instanianeously at some "sideslip" angle
with the heading of the tire—surface footprint, causes a moment proportional to the
sideslip angle as a result of the lateral stress in the tread blocks: an effective spring
effect proportional to sideslip angle and dependent on forward speed. The second
effect, called scrubbing, arises when traversing a curved path, due to the torsional
stiffness of the tire tread blocks. This effect is proportional to the rate of change of
heading (yaw rate) and inversely proportional to forward speed. At high yaw rates
relative to forward speed, a plateau is reached in both of these effects and the friction

simply becomes Coulomb.

2 A A
S |
& N < h 'Y prd /" I</Q
x //- T
\4 \ 4
Stiction plus Coulomb Coulomb plus Viscous Coulomb limited Viscous

Figure 3.2. Typical friction models in mechanical systems. Linear viscous friction
often arises with a transition to a plateau for rates above some maximum value.
Other models are simply Coulomb models with stiction induced switching at the

origin.
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Depending on the operating condition of the system, one of these friction models’
effects dominates and with this assumed friction model it is then possible to define an
adaptive control law which continuously adapts the unknown friction model
parameters to attempt .0 eliminate the effect of the friction from the response of the
system. Adapting the parameters such that performance according to a desired model
is striven for, casts the design strategy into a model reference setting [see e.g.

Landav).

This approach of effectively input output (I/0) linearizing the nonlinearity is the
obvious one to take and is reported in a number of cases [Maron, Canudas and oihers]
where the unknown parameters for the assumed friction model are then estimated
on—line, usually by least squares or recursive least squares regression [see e.g. Astrom
and Wittenmark]. The adaptation laws used in this chapter, however, are determined
directly from the Model Reference Adaptive Control (MRAC) setting. As in the
refcrenced literature, I/O or feedback linearization offers a well structured means of
determining the feedback control law which cancels the nonlinearity, if the
notlinearity is perfectly known. Since the parameters of the assumed model are
unknown and dependant on variable operating and environmental conditions,

adaptive estimation of these is necessary for implementation.

For the system controlled by the gain scheduled controller, the only element which is
not accounted for in the control law is the friction problem. In this section, only the
relevant equations of motion (i.e. in which the friction effect appears explicitly) are
considered for applying I/O linearization to cancel these effects and yield the system
"apparently linear" as far as the rest of the controller sees the system. Figure 3.3
shows a block diagram representation of the gain scheduled lateral controlier with the

friction estimation and compensation loop. The friction compensation scheme tries to
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make unity the transfer function across the friction nonlinearity, as this is the

characteristic the gain scheduled lateral controller expects.

Ref * Gain Scheduled _ .| Friction ., Lateral Output
Lateral Controller ;\\ Nonlinearity : Dynamics -
- N | S
Commanded Torque Achieved Torque

Figure 3.3. Lateral control system block diagram. The friction nonlinearity appears as
a series concatenation in the yaw rate loop, with the rest of the plant being linear.
The transfer function through the friction nonlinearity should ideally be unity, s this

is the plant for which the lateral gain scheduled controller was designed.

An artificial neural network is used as another means of determining the friction
compensating control term in the control law. A model reference setting similar to
that of the MRAC strategy is used to determine the friction estimate, where this
differs from the MRAC system in that the full friction compensating model is learnt,
not only the parameter of an assumed model as in the MRAC case. The network is
initially trained on experimental data acquired in testing of the baseline controller of
chapter 2. By training a sufficientiy complex network on the actual experimental data
and subsequent pruning of nodes having small network weights, a network structure
able to capture the relevant map between the system states and the present friction
value is obtained. Once a reduced order network is determined in this fashion, it is
implemented on the unicycle robot for further on-line training. The implemented
neural network used an input layer (two inputs), a hidden layer and an output (single

output) layer with biases at each neuron.
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This chapter discusses use of both the neural network and MRAC techniques applied

to the friction cancellation problem.
TIRE FRICTION MODEL

The bicycle tire friction model proposed by [Papadopoulos| may be written as

5o | Ki(*)e + Ko(-)(@ + #R) if |F] < |Feoutoms| } 1)
F coulomb otherwise

with K, the sideslip coefficient, and X, the scrubbing coefficient and

F = Friction Torque

a = sideslip angle

¢ = angle of wheel from upright (roll angle)

k = curvature of circular path traversed by wheel

R = wheel radius

Both sideslip and scrubbing effects are dependent on the wheel geometry and speed as
well as tire characteristics including torsional and lateral stiffness of the tread
elements. The sideslip term, K;a, represents a spring effect due to the lateral stress in
the tire tread blocks as the tire moves in a direction at some sideslip angle () to the

heading of the footprint.

The scrubbing term Kj(-)(¢ + sR) may be viewed as a viscous damping effect.
Consider the second term, which depends on the effective relative yawing rotation of

the tire about the vertical axis per unit forward distance traveled. For the wheel



41

assumed nominally vertical (¢ # 0) and a nominal steady forward speed of (R, the

curvature of the circle traversed may be written as

K= g—fﬁ | (2)
with

Q wheel angular velocity in forward rolling motion
ibfp footprint yaw rate (rate of pivot about vertical axis) whick in steady

state is assumed equal to the wheel yaw rate ¢

This term may thus be written as Kzg—fﬁ, which indicates the depeadence on yaw

rate (thus an effect of a viscous nature) and inverse proportionality to wheelspeed.

For the sideslip term, the effective sideslip angle may be expressed as the difference
between wheel heading and footprint heading (¥ — ¥sp), resulting in a friction model
which is a second order oscillatory system. It is, however, not practicable to track the
footprint heading (¢fp) although actual heading (%) may easily be measured. The
effective length of the footprint may then be used to obtain an estimate of the sideslip

angle.

Assume the effective footprint length to be the length of that section of the footprint
which does not slide across the surface when the tire is in sideslip. Denoting this by
kp, with the tire radius R and the angular velocity of the tire {2, then the iime spent

by a tread block in contact with the surface (not sliding) is
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t = —é—fﬁ (3)

Since this tread block is on the same heading as ihe tire when initial contact with the
surface is made, and remains on this heading while the lateral stress is smaller than
the friction coefficient projection of the normal stress of the tread block onto the
surface (i.e. sliding across the surface does not yet occur), the sideslip angle may be
estimated as the difference between the headings of the tread block at initial contact
with the ground and the heading when the same tread element breaks contact with
the ground. This is effectively the change in heading of the tire over the time period

t1, thus

at) = y(t) - Yt-t) (4)

For the sample period AT of the digitai implementation of the controllers, the
sideslip is determined as the difference between the present heading and the integer

number (n) of sample periods in t)

a(k) = Y(k)— (k) (5)
with Z the set of integers, then

n o= max {z=—kh-lz€ 221}

max {z=—rlﬂ;ftp—ET—{z€Z,221} (6)

zZ

The friction model may be then be written in terms of known system states as
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A1) = Ki(-)K) — on) + Ko(-) G ")

thus proportional to yaw rate, where the footprint yaw rate is assumed represented
by the unicycle frame yaw rate, with the gradient (Kj(-)/Q(k)) inversely
proportional to forward speed. Note that the "sideslip" coefficient, K,(-), is defined
by the geometric and material characteristics of the tire, and the sideslip angle
(&(k)=¥(k) — #(k—n)) is inversely proportional to forward speed (2) (consider
equations (3), (5) and (6)). For torsional loads greater than the region in which this
linear relation holds (equivalently: |9p| > %1inear), it is assumed that the friction
behaves according to a Coulomb friction model. Figure 3.4 represents the assumed

model schematically.

The model assumed here is heuristically validated by a crude experiment. Figure 3.5
shows time histories of the actual unicycle in steady forward motion at constant
wheelspeeds, with impulse yaw torque applied whilst maintaining the unicycle
vertical in both pitch and roll. The lateral control system is inactive, with lateral
support provided by a bearing mounted on the turntable. The response is typical of a
second order system with the damping dependent on forward speed, thus qualitatively

corroborating the model.
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A
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/ N fl,
’/"’ﬂ
kmble Drive %
Friction Coulomb plus Viscous
A
Wheel Drive
Friction < '/’/g;)
Y
Viscous

Tire-Surface Interface
Friction

K, and K, inversely Proportional to wheelspeed

< &]‘9- s+ | < l\ﬁK""‘ 5
N /‘ Yaw Rate h jSideslip Angle

"Scrubbing" "Sideslip"

[
i

Figure 3.4. Unicycle friction problem. Turntable and wheel/frame friction are easily
measured and compensated. For friction between tire and surface in yaw, assume the
model according to [Papadopoulos], with linear dependence on "sideslip": error
between footprint and tire heading, and "scrubbing": friction proportional to yaw rate
for low enough rates where the footprint i not sliding across the surface. Both
coefficients exhibit inversely proportional dependence on wheel forward speed. For

large yaw rates, Coulomb friction is assumed.
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Yaw Rate vs Time. Impulse Response at Various Forward Speeds
0.8 . . ' ;

Omega in rad/s

165 17 175 18 185 19
Time (s)

Figare 3.5. Time histories of yaw rate response to impulse torque commands at
various forward speeds with unicycle robot maintained vertical. Behavior is typical of

second order system with effective damping ratio dependent on forward speed.

YAW ACTUATOR DRIVE TRAIN FRICTION

The yaw actuator is in the form of a torque reaction mass driven through a 25:1
reduction gear train. The gears are spur gears and as such do not have very good
meshing characteristics. In fact there is a significant high spot, resulting in drive train
friction dependent upon rotation angle. Figure 3.6 shows a plot of measured output
torque at the turntable versus commanded turntable torque with the drive train
stationary at the high spot. Note the deadband of approximately 2.5 Nm, which

represents the minimum torque required to rotate the reaction mass in either
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direction. If the torque motor does not generate torque greater than this value, the
power is simply dissipated in heating the motor and no torque is applied to the

unicycle frame.

The two curves generated represent the stall torque of the actuator in opposite
directions. For example, for a commanded torque of 10 Nm, the stall torque
(minimum torque required to prevent turntable turning) in the direction of the
torque command is 8.75 Nm and 13 Nm in the opposite direction (minimum torque
required to overpower the actuator, i.e. move actuator in direction opposite to

commanded torque direction).

Turntable Friction Data. Output vs Commanded Torque (Nm)
20 T T T T T

T

10

T

—
=)
T

—
(7Y
T

1 1 1 1

15

15 10 5 0 5 10

Commanded Torque (Nm)

Figure 3.6. Measured versus commanded turntable torque. The two curves represent

stall (minimum overpowering torques) torques in direction of commanded torque and

15
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in opposite direction to commanded torque, respectively. Note the *2.5 Nm deadhand.
This is a significant effect since the linear controller constantly requires small
correcting torques to maintain balance. The magnitude of these correcting torgues
often falls within this deadband, so without some enhancement of the lateral

controller with a friction compensating term, poor performance or instability results.

Since this friction is easily measured, such that a reasonably accurate model is
obtainable, simple cancellation without adaptation is easily achieved. Figure 3.7
shows the assumed model and measured parameters, with essentially stiction plus a
small viscous friction effect defining the structure of the turntable friction. The
viscous term is measured by applying a known torque command and monitoring the

average steady state turntable speed reached.

: A
Coulomb plus Viscous F -
Turntable Spin Rate
R
\4

Figure 3.7. Turntable friction model. The parameters are easily measured and the
model does not vary substantially in time, so that simple constant cancellation is

implemented in the form I‘=l‘a+(5ftumtab1e) /ng.

LINEAR REFERENCE MODEL FOR TRAJECTORY FOLLOWING
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The gain scheduled controller is designed using the wheel speed dependent lLnear
equations of motion (see chapter 4). These equations of motion thus describe the
response of the system to inputs as expected by the (linear) gain scheduled controller.
The friction nonlinearities which exist in the turntable drive train and between the
wheel and the surface result in a quite different response to that expected by the
linear system. If the unicycle can be forced to follow the expected behavior for a given
input, then the gain scheduled lateral controller will perform according to design
specifications. The actual linear equations of motion are thus a natural reference

model for the MRAC system.

The reference model for trajectory following, is determined from the linear equations
of motion of the unicycle [Vos] with the relevant equation being that describing the
yaw dynamics without the nonlinear friction effect. Since these are well
representative of the actual system dynamics (within parameter errors, apart from
the friction effects) in the region of linearization about the nominal vertical condition,
it is a reasonable model to select as the reference model since the system should easily
be able to track it (i.e. it is an achievable model for the system) if successful

cancellation of the friction nonlinearity is achieved.
The yaw equation of motion is

—F($) + ndl = f39 + Tfp + (I + 19)¢ (8)
where

F($,8) = friction torque model (Nm)

ng = yaw actuator gear ratio
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r = yaw actuator torque (Nm)

fft = yaw viscous friction coefficient (Nms/rad) (>0)

¢ = yaw rate (rad/s)

I} = mass moment of inertia of p’th element about q’th axis (kgm?)
0 = wheel speed (rad/s)

v = roll rate (rad/s)

) = yaw acceleration (rad/s?)

Notice that since the viscous friction coefficient is positive, A is Hurwitz for the
reference model in standard form: x(t) = Ax(t) + Bu(t); with the other terms (not
containing ¢ or any derivatives thereof) considered exogenous inputs or disturbances

to the stable system.

For training a neural network to learn the friction model, where the only information
regarding the effect of the friction is in the measured yaw rate, an estimate of the
friction acting on the system at the present time is required in order to define a
"teacher" according to which the network output may be compared and the error
used for updating the network weights. A simple means of achieving this estimate is

by discrete differentiation of the system response as follows [von Flotow).
Implementing the discrete time controller (of sample period At) with a zero order
hold, the torque impulse to the system over one sample period is given by the product
(F + n¢l'y)At, so that at the k’th time step

—Filt = (-m[ + fﬂ 4+ 1909 + (18 + TY)P)idt (9)

allowing the yaw rate at time ty,; to be determined by e.g. Euler integration as
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ﬁkd = T¢k+i&kAt
N f!ﬂ - 1‘5942;)1‘At (10)
(1§ + 19)

The gain scheduled linear controller expects the system to respond according to
equation (10) without the friction term, 7, so that a discrete time reference model is

then

(&ku)des'—" &k + (ntr - f¢¢ - Igﬂé))k At (11)
1 + 1Y)

f1x, ¢x And ¢ are known through measurement so the desired yaw rate (fix,1)des may
be calculated from equation (11). Since ¢k, is measured, an estimate of the

equivalent constant friction force active over one sample period is given by

Fi ® (1£+I§)(fﬁk+l——§ﬂl des — ;kﬁ'ﬂe—aﬂ@) (12)

In the case of the unicycle robot digital controller implementation, the sample rate is
set at 18.2 Hz and since the open loop dynamics are on the order of 1/2 Hz (time
constants on the order of 1/3 seconds), Euler integration with this relatively small
time step (1/18.2s) is an acceptable method of discretization. If sample rates closer to
the system open loop natural frequency were used, a more suitable discretization

algorithm such as Newton or Runge—Kutta would be necessary.
INPUT-OUTPUT LINEARIZATION OF FRICTION NONLINEARITY

It is often possible to write the relevant equations of motion for a nonlinear system in
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a form which is amenable to feedback or I/O linearization [see e.g. Isidori; Nijmeijer
and Van der Schaft; Slotine and Li; Cro Granito, Valavani and Hedrick]. The general
strategy is to try and achieve a description of the system in a form where the
nonlinearity appears linearly with the control terms. By a suitable number of
differentiations of the output until the input appears explicitly, it then becomes

possible to define ihe linearizing control law.

More formally [Cro Granito, Valavani and Hedrik], consider a system of the form

x(t) = f(x(t)) + B(x(t))u(t)
y(t) = Cx(t) (13)

with x(-)eR®, y(-)€R™, u(-)eR™, C:R"—R", B(-):R"—R™, {(-):R*—R"

Take derivatives of the i’th output, y (t), along f(-) and B(-), with the Lie derivative
1

defined as (the directional derivative)
L fA(x) =V A(x)-f(x) (14)
Determine the smallest 1; for which any input (bj: j=1,2,...m) appears exglicitly in

the 1y’th derivative of y;. This may be more rigorously phrased as determining the

smallest 1;; 1; being the relative degree of the system from uj to yj, such that

£, (c’} (v (£)) 0 for k=0,1,...,1;-2, some j€[L,2,...,m]
i

cbj(t}*“(yi(t») £ 0 V xeR" (15)
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The 1;th derivative of y; is then

=L+ YL € a o) (16)
J

j=1

for each i€[1,2,...m]. Grouping the system into matrix form with

1
£ ()
Ax) = : (17)
L -
H0)
3 1,1 1,1
L (L (v () £ (Le (v (1))
by f 1 bpm f 1
Bx) = : . ; (18)
1-1° ) 1-1°
£ (P - £ (1)
the control law for I/O linearization may be written as
-1
u = B (x) [- A(x) +u] (19)
where B(x) is assumed invertible. This yields the set of decoupled systems
liy.
A = VieL2,.m] (20)

For the case of the unicycle robot, an extremely simple control law results, since the
control term arises explicitly in the yaw equation of motion, which is the output of

concern, hence no further differentiation is required.
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In equation (8), the term I¥fy may be comsidered an exogenous disturbance of
bounded magnitude, assuming that successful control of the wheel dynamics (R) in

longitudinal, and roll rate (p) in lateral, is achieved. Select the control law

()= () F(B) + Tes (21)

which yields the resulting linearized dynamics (ignoring the "disturbances")

— nlgs (22)
(I + 19)s + f;p)

where

8 = Laplace operator

I'e = Control command generated e.g. by linear controller

Since the viscous friction coefficient f b and the inertias (1§ + I¥) are strictly positive,
the I/O output linearized system with 7(§,0) perfectly known and canceled, is strictly
stable. This linearizing control law (equation (21)) is to be used in the adaptive

friction compensation algorithms discussed in this chapter.
NEURAL NETWORK FRICTION IDENTIFICATION AND COMPENSATION
Introduction

Non—parametric regression techniques have in recent years seen a revival in interest

as tools where learning through experience is the primary means of generating a
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model. In this section this approach is applied to the friction compensation problem

of the unicycle robot.

These techriques would in general have great difficulty learning an inverse model of
the unicycle lateral dynamics for compensation and elimination of the friction effect,
as a result of the system being both non minimum phase and unstable, as well as
dynamic. The nature of the friction nonlinearity which is to be canceled, however,
being a series concatenation with the linear actuator and easily written as a
parametric model, lends itself well to localized learning of the unknown ("static")

parameters and subsequent cancellation of the friction nonlinearity.

Figure 3.8 illustrates the block diagram structure for the neural network friction
compensator. The network is continuously trained using a reference signal generated
by a model (may be linear or nonlinear) which depends on the state of the system.
The reference model in this case is that given by equation (8), specifying at each state
x(tk) and control command issued by the linear controller I'yc, an expected response
of the system as if it were linear. The error (at time ty,;) between the system actual
response and the expected response is used to determine an estimate of the friction
acting over the k’th sample period according to equation (12). This is then the

training value for the neural network at the (k+1)’th time step.
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Figure 3.8. Neural network applied to nonlinear friction cancellation using a reference

model for training. The transfer function between points x—x should ideally be 1.

The controller denoted "linear controller" in Figure 3.8, is the continuously gain
scheduled controller (chapter 2) necessitated by the forward speed dependence of the
lateral dynamics. In fact, lateral controllability varies strongly with forward speed
and is completely lost at zero wheelspeed. Small deviations (change in wheelspeed by
as little as 10%) from design points of the linear controllers can yield instability,

which is easily overcome by the gain scheduling procedure.

Use of experimental data and pruning of an initial network structure with three
inputs and a single hidden layer yields the structure of Figure 3.9. All inputs to the
network are normalized and pruning is done by eliminating those weights which are

orders of magnitude smaller than the rest.
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Figure 3.9. 3—Layer neural network structure determined by pruning an initial more

complex structure and training on experimental data.

Use of a hidden layer is motivated by the friction model of figure 3.4, which indicates
dependence of the friction on a combination of yaw rate and wheelspeed. The weights
of the network (after training), however, placed less emphasis on this coupling than

on direct dependence on wheelspeed and yaw rate.

The error A.‘F=i'k—}'k where i‘k is the neural network estimated value and 7y is as
determined by equation (12), is used for error back propagation to train the network.
Note that the training value Fy is only obtained at time tyx,; and could thus not be

used for compensation at time t.

The control command from the lateral gain scheduled controller (I'gs) is then
augmented with the present estimate of the friction correction term according to

equation (21) to yield the control command to the unicycle robot as (at time ty)
Iy = (Tgs) + Fiefny (23)

with Fi/n; the friction estimate scaled by the gear ratio (n;) of the actuator.



Activation Function

The activation function used is the logistic function [Rumelhart and McClelland] with

a change of scale to allow the output to be both positive and negative. Thus

flnet) = (1—+%)-1
= (2fi-1) (24)
where
£ = (1—4_135) (25)
and
xi = X(wyjo)) + 0 (26)

with wjj the network weight between the i’th and j'th nodes, #; the bias at the i’th
node and oj the output from the j'th node. The derivative of the activation function,

required in the error back propagation algorithm is simply

f’ (net) = 2f1(1 - fl) (27)

All inputs to the network are also normalized to prevent saturation of the activation
functions and the outputs are suitably scaled to give the correct command to the

anicycle in Newton metres.
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Error Back Propagation

The error back propagation algorithm (the standard delta rule) [Rumelhart and
McClelland] is used to train the network. Initial off-line training is donme using
experimental data obtained with the ad hoc friction compensation scheme outlined in
chapter 2. This allows pruning of the network to a simpler structure for implementing

in real time for further on—line training.

Performance of the Neural Network Friction. Compensator

The implemented neural network converges quickly when trained on new data.
Typicaily, within the first two to three seconds of on—line training, convergence is
reached, although this is still too slow when compared with the growth time
constants of the system (on the order of 1/3 seconds). The real time implementation
allows only a single error back propagation loop per control sample period as the
computaticnal load of the control algorithm combined with the error back

propagation algorithm is relatively high.

The network does very well in learning that which it is structured to learn, as is
apparent from time histories of training signal and neural network estimate thereof of
figure 3.10. Stability of the full closed loop lateral system is, however, not very good
and fairly large roll excursions occur. This appears to be not as much the fault of the
neural network, as that of the structure of the compensating scheme. As will be seen
in the section on MRAC friction compensation, approzimate cancellation of the
friction is not good enough to yield a "stiff" system: much better performance is

achieved if the friction is overpowered at all times, rather than only some of the time.



59
Neural Network Friction Estimation

4 T T T T
g o nNJd N N N
Z /
/ -- Training Signal |
- Neural Network Estimate
o 2 4 6 8 10 12 14 16
4 T T =T T T T T
ol T Expected Yaw Rate X i
= - Measured. Yaw Rate
8 )
0 M\/\/\ < _
2 . : : :
0 2 4 6 8 10 12 14 16
0.4 " . . ; . . I
0.2 r ; N / ‘\“ Fat .
0l AN o .
ozl -- Roll Rate (rad/s) L ]
e - Roll Angle (rad) Vv
0.4 ' - ' & 1 ' -
0 2 4 6 8 10 12 14 16
o Time (s)
1 N/Net ID Friction Model
Omega=3rad/s
0.5 : : .
Q Omega=4rad/s
g 0 -
Z,
-0.5+ -
_1 I —/ 1 1 ) 1 i
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Yaw Rate (rad/s)
Figure 3.10. Performance of neural network friction compensator. Although the

friction parameter estimates converge relatively quickly, the stability margins are
significantly reduced, leading to much poorer performance than in the case of the

MRAC controllers presented in the sequel.
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LYAPUNOV STABILITY BASED MODEL REFERENCE ADAPTIVE
CONTROLLER

Introduction

The Model Reference Adaptive Control (MRAC) technique [see e.g. Landau] offers a
methodology to solving the problem of adaptive control of systems in which
uncertainty in the parameters exists. The methodology has the invaluable advantage
of being stability based, where the continuous time adaptation laws are determined
strictly through consideration of the stability requirements of the system to be

controlled.

This being the case, it may appear that the obvious solution to successful control of
any parameter dependent system, for example the unicycle robot, is to define a model
structure with the parameters unknown and to simply apply the MRAC method to
the problem. This is a viewpoint difficult to oppose, since theoretically, precise
conditions on parameter update laws and sufficiency of excitation of the probing
signals in order to guarantee stability and parameter convergence may be determined
in the design process. These may be extended as far as defining requirements to meet
a desired form of stability: asymptotic, bounded, exponential, global, local, and more.
The successful implementation, however, involves much more than is at first

apparent, as is demonstrated in this section.

The performance of humans and other creatures of nature in the execution of a
multitude of activities is an excellent lesson in persistence of excitation and careful
model identification. It appears that the ability to execute tasks and functions is

hugely enhanced by gcod knowledge of the specific nature and finer details of the
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task. Without explicitly writing down a suitable definition of a model for example,
the human nnicyclist somehow learns an extremely good input—ouput mapping of the
dynamics of the unicycle—"human actuator" combination, through persistent,
repetitive execution of the various functions involved in riding a unicycle. Even when
the model finally becomes well defined and the parameters of the model are well
tuned to a specific unicycle, say a short one, the parameters have to be adjusted or
re—learnt when changing to riding of a tall unicycle. It seems clear then that a good
approach to achieving successful high performance "closed loop" control of any
system involves careful and extensive identification of the task and the cause and
effect relations (transfer functions) involved, as well as continuous training to
optimize the knowledge of the parameters of the system. Indeed, this serves as good
motivation for the ideas of persistence of excitation, identification and extensive good

modeling techniques.

This digression may be interpreted in many ways, but the one chosen here is to serve
as motivation for combining the best characteristics of each of the various control
design approaches and careful modeling into a good solution for controlling the
unicycle robot. To this end, the structure of the very successful linear controllers
(including the gain scheduled controller) is maintained. Having reached the point of
facing the nonlinear effects and hence the need to overcome these in a suitable
fashion, which does not require retuning of the control parameters for every new
friction condition, only this aspect which is uncertain is to be approached in an
adaptive setting. It does not make a great deal of sense to adapt on any more

parameters than is necessary.

The friction nonlinearity represents unstructured uncertainty to the linear gain

scheduled controller. The MRAC technique is applied to compensate for the nonlinear
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nature of the unstructured uncertainty by assuming some structure for the
nonlinearity and determining suitable parameter estimation laws for successful
tracking of the reference model. Figure 3.11 shows the structure of the implemented
MRAC friction compensator. Note that in this figure, the friction effect is redrawn as

an effective feedback nonlinearity.

Reference + ¥ - Gain Scheduled N Lateral >
Controller FA Dynamics
Friction
A
Friction
Mgdel
error
Reference YL
Model

Figure 3.11. MRAC friction compensator structure as applied to unicycle lateral

control problem.

Preliminaries

The following standard results from real analysis are useful in proving stability of the
MRAC control algorithms to be derived in this section.

Lemma 1. A function (- ):R,-R is uniformly continuous if it’s derivative is bounded,
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ie. If'(+)l|_<e.

Proof:  Assume f’(t) is bounded. Then, the derivative of f(t) in R is given by

3 f(t) - f(tﬂ) — 7
Lim = f 28
t—l»t . { t = 1, } (t) (28)

if the limit exists. For C>0 and || £/(-) [, = rup ]{ £ (1) } = C, by the
t€[t o,t

mean value theorem, 3 £€[to,t], such that

I1(t) —1f(to) | < [E(O) lullt—toll = Cllt—to

Set [t—to||=dand C= 6/5, 6 and € >0, ¢ independent of t, then this is

analogous to stating that given € > 0,3 § > 0, such that V || t —t, || < 6,

IHE(t) = £(to) | < ©/5(8) = € (29)
which is the definition of uniform continuity of f(-).
Lemma 2. For a positive defin’ ;e function V(e(t)), if V(e(t))=—Ke?, K>0, then e€ 4.

Proof:  Consider V(e(t)), for any t>t,. Then, since V(-) is positive definite,

Vie(t)) = V(e(to)) + [ (—Ke?) dt >0 (30)

or, since V(e(to)) is finite,
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t
.f |(Ke?)| dt < Vi(e(to)) <o (31)

which, by definition is equivalent to stating e€ .%.

Lemma 3. For a function V(-):R,-R, if V()€ % and the time derivative V(-)€ .2,
then V(-)-0 as t-o.

Proof: A formal proof of this lemma is given in [Slotine and Lie,Yale workshop ...
May 1987]

Theorem.(Lyapunov). For any positive definite symmetric matrix Q, there exists a
positive definite symmetric matrix P, which for the stable linear system x=Ax, i.e.
with Re{1(A)}<0, satisfies the matrix Lyapunov equation

A'P+PA  =-Q (32)

Proof: [Kailath] Necessity. Show that a suitable solution for P is given (for
Re{1(A)}<0) by

® /
P = [ Atqettas (33)
0

where the integrand exists due to the condition on the eigenvalues of A,

that Re{A(A)}<0. Substituting equation (33) into (32),
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® ; ® A
AP+PA = Arel tQettay + f eA'tQeftA gt
0 0
@ ’
= [ & et a
0
P o
= { A thAt}
V]
=-Q (34)

Sufficiency. Assume 3 Q, P positive definite symmetric matrices satisfying
the Matrix Lyapunov equation. Consider the Lyapunov function for the

linear system
V =x'Px (35)
then

V =x'A’Px+ x'PAx
= —x’Qx (36)

and stability follows.

Corollary. (La Salle). For the time invariant system x=Ax, Q may be positive
semi—definite if x’ Qx is not identically zero along any trajectory of the system. This
is in fact an observability requirement for the system output y=Cx, where

x’Qx=x’C’Cx, i.e. Q=C’C.

Remark. It is worthy of note that the system may be time varying, x(t)=A(t)x(t).

As long as constant matrices P and Q can be found satisfying the
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Lyapunov  equation, the  stability  argument  still  holds

[Anderson—Bitmead—Johnson et al].

Unicycle MRAC Friction Compensation Considering only Yaw Dynamics

The assumed friction model is a suitable function which does not have to be smooth

or continuous
Foo=F((t),¥(t)) (37)

and the reference model is the yaw equation of motion as in the previous section,
given by equation (8). Note that the model is dependent on both wheelspeed and yaw

rate, although not necessarily explicitly.

The compensator structure is simply the I/O linearizing control law of equation (12),
with the tracking error (e = $p — yn) driving the parameter update algorithm. The

reference model of equation (8) may be rewritten

o = (n¢lgs — ¢¢m — I0p) /15 (38)
and the (assumed) actual plant dynamics are given by

o = (w2 =G ~ T~ F( )/ (39)

where the inertia is lumped into one parameter, I3 = If + I¥. Note that the actual

plant is driven by a different input, us, to that of the model input, I'gs, where T'gs is
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the command generated by the gain scheduled linear controller and does not take into

account the friction effect. These control commands are related as
uy = Tgs+F(-)/n, (40)

For the error of interest (yaw rate error) e = éﬁp — ¢n, applying the control law of

equation (40), the error dynamics may be written

e = ;I.’p—am

= (F-7) - fye)/1s (41)
Write the friction in terms of the unknown parameter, {5, as
dF
F = s (42)
ZIEf
Defining the parameter error § = {5 — ¢5, a Lyapunov function candidate is
V = %—(7e2 + 02) (43)

which, for 7>0, is positive definite in the tracking error e and parameter error (. The

derivative V = 3V yields

V = qeé+ 00
dF 3 '
= 1e(% (& — ¢r) — f)/15 + 00 44
7 (agf( £ &) —1e)/1s (44)

Setting the parameter update law as
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0 = (re$ )
f

-
-~

= —¢s (45)
the Lyapunov function derivative with respect to time becomes
V =-— &82/13 (46)

which is negative definite in the tracking error (e). The tracking error will thus

converge asymptotically to zero as t-w.

Proof:  For any initial nonzero Vo=V(e(to),8(to)) (>0, since V pdf), then since V
is negative definite in the tracking error e (V=0 only for e identically
zero), V(e(t),0(t)) < Vo V t>t,. By lemma 2, then e€ .%, i.e. e is bounded,
thus # is bounded since V(e(to),8(to)) is finite and V( (t) )<V( (to) )-

Now,
V= —2qiee/l; = -21'f¢e(§% (¢ —¢é5) — £5)/1s)/1s (47)
f

with §=F—F bounded and e bounded, Ve .#, such that by lemma 1, V is
uniformly continuous and hence by lemma 3 it may be shown that V—0

as t — o, i.e. the output (t) tracks the reference trajectory yu(t).

In order to further guarantee parameter convergence (Ef — {f), richness conditions

on the output ¢ are needed.[see e.g. Canudas, Astrom and Wittenmark]
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STABILITY OF THE FULL LATERAL CLOSED LOOP SYSTEM
Introduction

In the previous section, the MRAC parameter adaptation algorithm is derived
assuming that by considering only the relevant equation of motion the parameter
estimation laws are easily determined without impacting the stability of the rest of

the system.
In this section, it is shown for the unicycle robot that this is indeed true. Designing
the adaptive controller by considering the complete lateral system with gain

scheduled lateral controller loops closed, yields exactly the same parameter

adaptation laws while maintaining stability of the full closed loop system.
MRAC Design with Full Lateral Model Excluding Turntable Dynamics.

Consider the full lateral model, with state vector x=[¢ ¢ ¢ ¢ iy]’. Define the reference

model as
%a(t) = Axa(t) + BIg(t) (48)

with
Pgs = —G(M(t))(xa(t) — Xrei(t)) (49)

the gain scheduled linear controller feedback command. The actual system is assumed

represented by
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xp(t) = Axy(t) + B (Tp(t) - Za(+)) (50)
with

Pp(t) = —G((t))(xp(t)xrer(t)) + LEa(-) (51)
Define the error state and derivative with respect to time as

e(t) = xp(t) —xa(t) (52)
&t) = (A—BG)e(t) ~BH{¢ta—ta) (53)

where, for example, if the assumed tire friction model for the unicycle robot is (£
¢a)= Csgn(¥) + KAy, then the "friction distribution matrix", ¢ is of order lxm,
where m is the number of friction parameters (m=2 in the case if a two parameter

friction model), thus

_[dF dF
< = [ a"fn a_ffz ] (54)
= [ sgn(y) A¢] ~ (55)
and the friction parameter vector is of order mx1

b =% (56)

mx1

For the Lyapunov function, with 0 = [, — Ea]
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V =e(t)'Pe(t) + 0'T-18 (57)

which is a positive definiie function (pdf) in e and 8, for P and T' positive definite

matrices. The derivative with respect to time is

V =eé&'Pe+e'Pée+ 0'T-10+ 0'T-10
= e’(A —BG)'Pe—e'PB.#{, — £2) + ¢’ P(A — BG)e
—(¢a— &)’ Z'B’'Pe + §'T-10 + 0'T1D (58)

Then for an assumed constant wheelspeed such that the lateral gain scheduled system
is time invariant (this is approximately true for operation at a commanded
wheelspeed setpoint with g{n % 0), since (A-BG) is Hurwitz, 3 a positive definite

matrix Q, satisfying the matrix Lyapunov equation
(A—BG)'P + P(A—BG) = — Q (59)
Selecting the parameter update law as

0Tt = e'PBY

—£,'T1 (60)

or, equivalently

ta = —T.2B Pe (61)

the Lyapunov function time derivative becomes
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V =—-e'Qe (62)

which is negative definite in the tracking error, e. Thus, it is concluded that the
tracking error asymptotically converges to zero as t-—w. Note that this result is
entirely dependent on the strong assumption that the only unknown aspect of the
plant is the friction nonlinearity which only explicitly impacts the yaw equation of
motion. For P and T diagonal, any modeling errors which may cause disparity in the
response of the roll dynamics relative to what the reference model expects, cannot
propagate into the parameter update laws in order for the adaptive controller teo
account for these errors as well as the friction effects. This becomes clear in the
following section where the adaptation laws are explicitly written out. The bottom
line is (not surprisingly!) that in order for this adaptive controller to account for any
error, explicit definition of a model for the error cause must be included into the

problem formulation.

Proof: The proof follows the same arguments as for the case of MRAC design for the

model considering oniy yaw dynamics.
Parameter Update Laws [
For the parameter update law derived above

2 =—T.2'B'Pe

with
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¢
¢
—| ¢
Y

(4]
Il
- eree.

i¢ actual i¢ model

Defining
B

_ [ Tu 0]

= | 0 Ta
P;; O 0
0 Pao 0
P = '
0 0 -+ Pg;

and assuming the tire friction model of [Papadopoulos] as
F = Kby + Kof

such that the friction distribution matrix is
L = | f"p Ayp ]

then, the update law reduces to

[ —P11¢pB3P33(¢p - ¢m)
= | T2A¢B3P33(¥p — ¥n)

(63)

(64)

(65)

(66)

(67)
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Ty i@ B3P33{¢p — ¥n)
- dKs (68)

~Ta9 _(_1_%'_2_ B3P 33(¢p — ¥n)
dK,

with

-

Fo = Ky (69)

The parameter update law is thus similar to the one (equation (45)) derived in the

previous section (apart from the "gains", I'i; and Pj;), only dependent on errors in the

yaw dynamics (¢p — ¥u), and stability of the full closed loop system is maintained ... .

with this adaptive control algorithm active.

MRAC DESIGN WITH MODEL INCLUDING YAW AND TURNTABLE
DYNAMICS.

For the unicycle robot, the turntable friction is easily measured and does not vary

significantly enough to warrant adaptive compensation of this effect too. Instead, a

fixed parameter turntable friction compensation term (ft) is added to the control law
I =Tg+ F&(-)/ne + Fi/ny (70)
(g is turntable gear ratio)

If, however, this is not the case, i.e. the friction due to the turntable drive train is, for

example, more significautly dependent on the turntable position or speed or both, or
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other parameters, then an adaptive control strategy for accounting for this variation
is given here. In this section, special use of the yaw inertia matrix is made to yield

simpler parameter update laws, an application inspired by [Slotine].

Consider the yaw dynamics of the unicycle robot with the turntable dynamics

appended [Vos, S.M.]. The state 7 represents turntable angular velocity relative to

the frame.
Reference Model
(19 + I5)fn + 1904 = — '}ﬁm + fi]i;,,, + nylgs (71a)
Ig(am + i‘.’m) == f;’ilm —ntlgs — i'-f (71b)
Assumed Actuel Plant
(19 + )y + [904 = — W‘ap + fﬂi,p +nof —Fe+ Fy (72a)
Ii(np + ¥p) = —fh;lp —nf =7 (72b)

with the I/O linearizing control law

I = D+ (Fr—Ft)/ne , (73)

where the turntable dynamics reference model includes the added torque due to
compensation for the friction arising at the tire/surface interface. Equations (71) and

(72) may be rewritten as (add (-)b to (-)a and include the control law of equation

(73))
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Model

(19 + 15 + 18)$n + Lgn + 1904 = — fio'}m ¢
Ig(ﬁm + am) == f,'7’.lm —n¢lgs — i"f

Plant

(13 + 1§ + Ty + Iinp + 10§ = — fydp — 7
Ig(;}p + ¢p) = _f;’;lp—ntrgs—i'f + j'-t. —-F

Define the matrices

(I"+IT+1Y) I*
3 3 3 3

I |
3 3
fy 0 114
: 0
0 1

el )
= ) F=
ft_ét —Tt

and for the assumed friction model parameters (¢ and ¢5)

~Fs + Fs —%% 0 ¢~ &
20 = = d7,
""Tt,+7t, 0 —a'z'g

For the error defined as

€ — &

(74)
(75)

(76)
(77)

(79)
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p Tm
the error dynamics are

¢ =-T'Ce—I'40 (81)

Noting that, since the (symmetric) inertia matrix has the property that —I is Hurwitz

it is a positive definite matrix, construct the Lyapunov function

V = (e’le+ 0'770)/2 (82)
with
7 = [ 31 72 ] (71 positive) (83)

Determine the Lyapunov function derivative with respect to time, noting that for the

damping matrix C’'=C, as

<
Il

(¢'Te +e’Te + 09710 + 0" 7'0)/2
=—eCle+(—0Le—e L0+ 090+ 070)/2 (84)

Select the parameter update laws as

Vo=e 2 (85)

or, equivalently, for ¢ ~ 0 and {; » 0 since the parameters are assumed either
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constant for a given operating condition or do not vary significantly with time

b = g (o~ ¥a) (26)

b = 7237 (i~ ) (87)
yields

V = —e'Ce (88)

hence asymptotic stability is guaranteed for the error dynamics, since the Lyapunov

function is negative definite in the error e.

Proof: As for the previous cases, since V is positive definite and V is negative
definite in the tracking error, then V(t)<V(to), Vt2to. This implies that
llell is bounded and ||f]| is bounded. Then, since V=e’C(I-1Ce+I1.¢
0)+(ICe+I-1.# 6)' Ce, this is also bounded, thus by Lemma 1, V is
uniformly continuous and by Lemma 3, V-0 as t-w. Thus the error

dynamics are asymptotically stable.

THE EFFECTIVE ERROR DYNAMICS

It is useful in terms of gaining insight to the parameter adjustment effects on the
system, to consider the error dynamics. Under the assumptions of the design, the

MRAC system typically yields stable error dynamics satisfying the equation
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&t) = (A—BG)e(t)—B( L~ £¢)

(A-BG)e(t) ~BA ¢ +{ f ‘T #/B'Pe dt + &(to) }) (89)

The error dynamics are thus effectively integral error regulation in order to eliminate

the tracking errors.
IMPLEMENTATION OF MRAC FRICTION COMPENSATOR
The Reference Model in implementation

The model reference adaptive control strategy, by it’s nature, requires integration of
the reference model dynamics forward in real time in order to generate a reference
trajectory for the controller. In implementation, it is typical for the MRAC system to
give good performance for extended periods of time before unexpectedly "blowing up"
as instability occurs [e.g. Rohrs]. This has been exemplified in the unicycle robot
case, since for a system of such unstable natural characteristics, it does not take long
for the tracking errors to propagate to too large values and subsequently destabilize

the process.

A possible reason for this is that tracking errors may grow due to inaccuracy and
biases in both sensors and actuators as well as the plant model. This combined effect
of model errors and sensor biases may lead to propagation of the tracking errors
different to what is expected by the adaptive update laws, and when the errors
become large enough, the parameter adaptation law effectively becomes nonsense,
since the parameters estimated by the MRAC parameter update law have no longer

any relevance to the problem at hand.
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Consider, for example, the parameter update laws derived above applied to a system

with some errors (modeling and/or sensor errors). The friction canceling control term

is
u = L(-)/n (90)

which is directly dependent on the estimate ¢. While it is true that the parameters of
the MRAC strategy may not converge to correct values while the errors do converge
to zero, this is exactly the undoing of the implemented system. Consider the model
and system equation of motion, with the error A due to the unknown effect of
incorrect modeling or sensor biases (assume full state measurement) and §(-) and

G(-) the friction nonlinearity and estimate, respectively,
Model: %, = f(xa) 4 G(-) (91)
Plant: x =1(xp)+6G(-)+A (92)

Propagating the states through integration yields the propagated error (assuming zero

initial conditions)

e = [ {f(xp)— H(xa) + 6(-) = G(-) + 4} dt (93)

to

The MRAC strategy is designed assuming f(-)=1(-), and the parameter update law
explicitly takes care of the nonlinearity G(-) — G(-). No strategy, however, takes care
of the error term A, which arises in the state error e(t) in integral form. Applying this

to the parameter update law, then yields
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-
P

¢ =—1gte (94)

which, when integrated yields
. : t ot
) =¢ W+ ft ft K A dt (95)
00

where

correc';(t) correct value. Note that this does not imply that the
parameter estimate converges to the actual correct value,
but simply that the actual error (the actual difference
between the system response and that predicted by the

model, excluding the A term) is driven to zero.

t oAt
f f KA dt Erroneous additive value which results in the measured
t

t00

error decaying to zerc, but this is not the actual error
which the MRAC system was designed to compensate

for.

This may further be viewed in the light of e.g. the case where persistence of
excitation exists, which, if A=0 would result in the correct error decaying to zero by

the MRAC control law and the parameter estimates converging to the actual values.

In effect, the stability of the system would then depend upon the correct parameter

estimate being determined after some time tg, i.e.
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E(t) = {correct(t) Vi>ts (96)

If, however, A#0, then the measured "error" will decay to zero, but the parameter
esiimates would be incorrect and the system may destabilize. In this case, the
estimate becomes that of equation (95) and since the condition for stability (where
persistence of excitation exists) is that the term § is satisfactorily canceled, this is

violated and stability is not guaranteed.
Also, the Lyapunov function time derivative with the error A included becomes
V =—-e'Qe+A’Pe+e’'PA

which is not guaranteed negative definite, herce stability of the error dynamics

cannot be concluded.

An easy means of solving this problem arises out of the discrete time implementation
of the MRAC controller. In the case of the unicycle, the differential equations are
integrated forward in time by Euler integration since the sample period is much
shorter than any of the system time constants. By integrating the model dynamics
forward in time assuming that the tracking error is zero at the beginning of each
sample period, i.e. assume Xo = Xp, for the k’th sample period, the model error does
not propagate and cannot thus cause any difficulty. The resulting tracking errors are
effectively only considered to contribute performance disparity (difference between
"model" and actual response) due to friction effects over the previous sample period

and then reset to zero after the effect has been included in the parameter update law.

The reference model is thus implemented as (AT sample period)
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Xref(k+1) = xl'ef(k) + iref(k)AT
after z samples, reset the propagated reference trajectory

xref(k“'z) = Xmeasured(k"‘z) (97)
In the case of the unicycle robot, z=1 yields excellent performance.

It is highly unlikely that the modeling/bias error would change as rapidly as the
sample period (if it does, new sensors Or modeling techniques should be considered

imperative!) so that the net effect is to completely eliminate this type of problem.

For the unicycle example, the yaw rate sensor (which is of critical importance in the
MRAC friction cancellation algorithm since this equation of motion is the reference
model) has a slowly drifting bias, which easily drives the MRAC system unstable.
Figure 3.12 shows the performance in the case of simply propagating the reference
model from some initial condition without reset. The case in which the tracking
errors are propagated indefinitely yields instability after only 4—5 seconds, whilst the

adjusted propagation case ("Error Reset") maintains good performance indefinitely.
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Friction Parameter and Tracking Error. Error Reset Inactive

20
101 | ' :
0 \ ] \ 4
1oL - Friction Parameter (Nm). )
) -- Yaw Rate Tracking Error’(rad/s) i
-20 ' - ' , : f
0 2 4 6 8 10 12
Time (s)
05 Roll Angle and Roll Rate. Error Reset Inactive
3 [ T aa T T ‘ T
‘.’" '//‘\Th\ (,___,"N\‘x ‘,‘" ",‘ ,.'I \‘. ."
o LN e AN
- Roll Angle (rad)
05l Roll Rate (rad/s) 1 , , ,
"0 2 4 6 8 10 12

Time (s)

Figure 3.12. Performance using the reference model propagating the tracking error
continuously, as opposed to the reference model only propagating the error over a
single sample period before resetting. Note instability of continvous error propagating
system. In comparison, "Error Reset" system as used in all other figures of this

chapter, does not destabilize due to this problem.
Performance of MRAC Compensators
The performance of the adaptive controller assuming various friction models is

presented in this section. In all of the cases, the reference model is propagated

according to the "Error Reset" strategy discussed above.
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Bounding the Friction Model Parameters

For any one of the friction models proposed, the performance of the compensation
scheme is rather unsatisfactory, in that large roll errors result when the friction model
parameters drift to unrealistic values due to lack of persistence of excitation. Figure
3.13 shows a typical case, where for the control and parameter update laws of
equations (40) and (45), instability finally resulted from the friction parameter

drifting to the extent that it became negative.

Since the friction models, as included in the equations of motion, are such that the
relevant parameter should always be positive in order for the friction effect to reflect
opposing of the motion of the moving element, the case of the parameter becoming

negative is clearly nonsensical and would easily lead to destabilizing the system.

In fact, it may be shown that the parameters may be negative for short periods of
time whilst still maintaining stability. Consider the friction model in the yaw

equation of motion, equation (8)

—F($A) + ml = £ + Ty + (1§ + 1Y)
F = csgn(4) (98)

with c=c(R). For the crror e=¢y—yn, (subscript m refers to reference model and p

vefers to plant), the error dynamics are
e = (~fye+ (6=) sgn(i)/Ts (99)

For the Lyapunov function V (P positive definite) of the full equations of motion,
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with x(t)=[¢ ¢ 9]’
i(t) = (A-BG)x(t) (100)
V = x'Px+ (c—¢)? (101)

then, since the (LTI) system (excluding the friction nonlinearity) is feedback
stabilized through I'ge=-Gx, 3 Q (pd), such that

A’P +PA =-Q (102)

and the time derivative of V

Vo= -x'Qx+2(c-t) 4] {f; (1~ l“l’ sgn(#)) — bsPas} (103)
t

where B/=[0 0 bs] and it is assumed that P is diagonal. For stability, it is required

that the function V is negative definite, thus

¢>c— X'Q x (104)

21ipl (1 — 2L sgnthp) = v

p

When suitable compensation occurs (good friction cancellation), then the reference
and actual yaw rates are approximately equal, and in the case of the roll angles and

rates negligibly small, then

e>ctoigx L =c+%§%ﬁ’i (105)
3 333
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i.e. the compensating estimate overpowers the destabilizing actual friction. For the
case where the actual yaw rate is different to the model (reference) yaw rate, which

may easily occur in the case of the unicycle, since the mean operating condition is

¥#pr0, get (set Prer=—¢p)

E>c— ,3’3 '+613t (106)
Clearly, the parameter estimate may sometimes be less than the actual value, for
example where over—correction of the friction effect has occurred. This cannot
continue as such for long, since the stability of the system relies on the friction effect
being overpowered. Certainly, the friction parameter should never need to be negative
as this would indicate that the friction effect is to aid the yaw rate rotion, not
oppose it. In order to prevent drifting and other errors in the parameter update law
from impacting the system too dramatically, the friction parameters are bounded to
always be positive, then stability is always guaranteed even though the friction
cancellation may sometimes be over compensating. With this strategy, the
implemented adaptive system has exhibited excellent stability; whereas instability

easily occurs if this is not done.
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" Measured and Reference Yaw Rates vs Time
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Figure 3.13. MRAC frictio.: compensation with friction parameter allowed to drift as
far as becoming negative. The parameter being negative effectively implies the
incorrect notion that the friction effect is to assist the motion of the unicycle instead
of opposing it. If recovery to a positive value for the estimate is timely, stability is
maintained; but if this is not the case, the system quickly destabilizes as occurs in the

data presented, at time tx12 seconds.
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Measured and Reference Yaw Rates vs Time
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Figure 3.14. Same controller as in figure 3.13 with the bound on the friction

parameter ¢>0 Vt>t, enforced. Note good performance and stability. Without this

bound, system may sometimes destabilize due to parameter drift.

Is Friction Compensation Enough?

With the parameters bounded to be within physically meaaingful ranges, the

parameter estimates tend to converge nicely to steady values for a given operating

condition. The performance, however, still leaves much to be desired, as the system

simply does not exhibit the "stiffness" that is necessary for robust operation of the
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unicycie robot.

Figure 3.15 shows performance of the MRAC system active with the friction model
assumed 1) the simple Coulomb model F=¢sgn(#) and 2) the model of [ Papadopoulos]
F=KA¢¥ + Kaf. Each of these models results in the respective parameters converging
to values which are physically reasonable, and the two strategies yield almost equally

poor stiffness of the system in roll.
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Friction Parameter and Wheelspeed. Coulomb Friction Model
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Figure 3.15a. MRAC friction compensation using the Coulomb friction model of
equation (107). Note good parameter convergence, but relatively poor roll rate and

angle regulation.
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MRAC with Papadopoulos Friction Model. Friction Parameters vs Time
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Figure 3.15b. Same as in figure 3.15a, with the friction model due to [Papadopoulos|
implemented. Again, good parameter estimate convergence to stable values is

obtained, but poor roll angle and rate regulation apparent.

The first question which comes to mind is why do both models yield virtually the
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same tracking performance with each model’s parameters converging to steady values
for a steady state operating condition? The answer is simply that since the yaw
controller is always operating about the nominal value of $=0, the yaw angle change
is extremely small, thus the effect of the term KAy in the second model is negligible.

The two models are then

Coulomb Model : F =2 sgn(y) (107)
Papadopoulos : F =Ky + Ko
x Koy (108)

then, for small values of yaw rate, the two models are essentially the same, i.e.

¢ sgn(y) » Kaf (109)

For this reason, backed up by experimental performance, the model vsed as the
"best" for the friction problem on the unicycle rcbot is the simple Coulomb friction
model, although if extensive long slew maneuvers are carried out, the model due to

[Papadopoulos] is better suited.

Use of Dither Signal to Overpower Friction Effects in Yaw about the Origin

Consider the MRAC system using the (favored) Coulomb friction model. The

relevant equations are

Friction Model:
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F =& sgn(y) (110)
Reference Model of equation (8) (subscript p refers to plant):
F(¥p,h) + el = fp + 10y + (If + I9)¥, (111)

Parameter Update Law of equation (45), setting I3,=(If + I¥)
- _ e . _ —.
E = 12 saliy) = (112)
For the Lyapunov function used in determining equation (112)
V =3 (re2+ 02) (113)
Apply the control law

P = Tgs+ S (asga($) - sgnle) (114)

instead of the standard I/O linearizing law of equation (40), which yields the time

derivative of the Lyapunov function more negative definite, i.e.

Vo= =y e pe (145 sen(s) + sen) (115)

This is negative definite for the relation
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1-f<asl+f (116)
Various values were tested in experiment, and the best performance is achieved for
f=1 and a=0 (117)

This implies that the system is in effect an adaptive swiiching controller, the
amplitude of the switching control law being adaptively determined for minimizing of
the tracking error. [Slotine] has used similar switching control laws to great success,
where the amplitude of the switching term is a constant value determined to satisfy

negative definite V.

Implementing this control law dramatically improves the system performance in a
stability robustness sense, as well as improved tracking performance. Figure 3.16

shows performance using the adaptive switching (dither) control law.
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Wheelspeed and Friction Parameter vs Time
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Figure 3.16. The same system as in figure 3.15a, but with the dither signal of the
adaptive switching control law (equation (114)) applied. The system stiffness is much
improved, although not as apparent in the time histories shown here, as in real life

experimental observation.
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Fast Changes in Parameters

In the MRAC design procedure, the Lyapunov function time derivative is forced to be
negative definite by judicious choice of the parameter update laws. Usually, the

parameter update laws then assume that the parameters do not vary rapidly (i.e.

d(parameter)
dat

specifically, the actual parameter rate of change, or value, is not known (if it were

x0) in order to practically be able to implement the strategy. More

known, the need for adaptive par. :eter estimation would be redundant) such that

only by assuming this to be negligible, is it implementable.

The parameter update law is usually of the form

A d(function)
6 = 7eﬂ(unknown parameter) (118)

and the parameter error

0 parameter vector) — (estimate of parameter vector)

~

= (
— ¢ (119)

Now, what if £&#0? If it is assumed that at least some knowledge of the parameter

exists, then the parameter and the parameter estimate may be rewritten

= €nominal + A (actual) (120)
= Enominal + A¢ (estimate) (121)

Ca T Y

where &qominal iS the estimated nominal value of the parameter, ||£[|>>||A¢]| and

likewise for the actual parameter £. The parameter error is now approximated by



98

= {nominal — Znominal + 8¢ — Az
SRISY; (122)

The time derivative of the parameter error is then, assuming that the actual
parameter error is constant (not always true, but a better assumption than assuming
the parameter is constant as is done in determining the parameter update law of

equation (112))
e (123)

The simple implication of this is that the parameter has some "guidance" in Enominal
when changing to a new operating condition, such that the range over which the
estimate has to change is much reduced and may even be constant if the parameter

function versus operating condition is clocely approximated by £,ominal.

Performance of the system for fast changes in operating condition is much improved
for this change in the parameter update procedure. In the unicycle example, the
approximate nature of the parameier as a function of wheelspeed is determined by
operating the adaptive controller over a range of wheclspeeds and curve fitting
through the experimentally obtaired parameter estimate data. Figure 3.17 illustrates
the data points (i.e. MRAC parameter estimates) for operating over the full range of
wheelspeeds. As predicted by [Papadopoulos], the friction parameter (refer to the
relation resulting in equation (109)) depends on the inverse of wheelspeed. The

nominal model assumed is thus
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Enominal() = 5.5/0 (Nm) V040 (124)

Friction Parameter vs Wheelspeed. Data and Nominal Model
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Figure 3.17. Friction parameter determined by operating the MRAC system using
update law of equation (112) over large range of wheelspeeds. The curve fit given by

equation (124) desczibes the nominal parameter estimate required in equation (121).

The system performance in this case is shown together with the case of the original
parameter estimation law of equation (112) which often resulted in instability, in

figure 3.18.
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Friction Parameter vs Time
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Figure 3.18a. System performance using the original parameter estimation law of
equation (112) for fast variation of operating condition. Note system tendency toward
instability due to the large parameter estimate change required over a relatively short

time period.
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Yaw Rate Tracking Performarce

2 )
Lo Reference Model Yaw Ra_te, i fﬁ "1 . I
- 1o § LR ETTE SRR & y
b= Actygl Xé‘l"}f HE " { f’é' lf ': iﬁ“” !ii'\l‘v. ,!ﬁlfn {
! d b htf{} { i f\ EVDL e i il o [t i
0 ==y f'l.“m R R T L T B R Vi A AR L R -
Iil!’i,;‘._ N 'f'&ﬁ' ;o iRt ‘-‘v‘il AN ’ﬁ"‘n"i{h;ﬁ ! Hh;‘( ;
I R ]
0 5 10 15 20 25
Time (s)
0.2 Roll Angle and Rate NNominal Frlctmn Model Indudcd
"1 -- Roll Rate (rad/s) ;
0.1 Roll Angle (rad) ion z , i
. I " #\\ r P TR \""i i
() Fd ﬁ.\,‘xj“l’_"""""’r‘&m‘ MM*"p / \\/ \\ r\‘\ f ‘\-‘\ : lr\y/‘.“‘:\\"\bv\zjl\:’v:.?w‘ 4-“"""'\.\*1,\,I —Ji
0.1F ' | y
i /
0.2, 5 10 15 Z0 25
Time(s)
6 Friction Parameter and Wheelspeed
4l o -- Friction Parameter (Nm} |
\/v/“’/\ - Wheelspeed (rad/s)
2} N 1
- M/A“‘A" \’\-\z\ ‘/\m - - e
7 T
O0 5 10 15 20 25

Figure 3.18h. Sam

Time (s)

e as figure 3.18a, but using the paramc ..r update law of equation

(123), where a much reduced range of change of A¢ needs to be achieved in a short

time, than for the case of figure 3.18a and stability properties are much improved.
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CONCLUSION

In this chapter, many practical issues involved in achieving good performance of
adaptive friction compensation strategies are diccussed. Both neural network and
MRAC compensation schemes are derived and implemenied on the yaw friction

problem of the unicycle robot.

The neural network implementation exhibited relatively good performance in learning
the parameter it was structured to learn. From the point of view of roll performance
of the unicycle, however, this friction compensation strategy resulted in the system
stability being only marginal. This is not surprising, as the structure of the network
concentrated on learning the yaw friction model at the tire/surface interface. Since
the method is ad hoc in the sense that no stability issues are considered in
determining the control law and parameter update law, it is not clear how to adjust
these strategies in order to improve matters. Although these techniques offer
interesting means of determining input—output relations of systems, the classical
control and estimation methods offer a more structured approach to achieving good
closed loop performance. Combining the ability of such methods to learn complex
input—ontput relations with stability based control techniques may yet prove a
feasible control strategy for parameter uncertain systems, but the experience of this
(limited) study using the neural network as a nonparametric map tends to indicate
that a great deal more development from a stability point of view needs to be done in

this area.

The MRAC friction compensation system is equally poorly behaved if directly
implemented as derived from the Lyapunov stability based synthesis procedure. It is

demonstrated here , however, that excellent performance may be obtained if certain
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implementation issues are borne in mind.

Bounding of the adaptation parameters to within physically feasible limits is a very
obvious and simple solution to preveniing parameter drift which may easily
destabilize the system. Even though it may be shown that the parameter value being
grossly incorrect is tolerable for stability, this may not be acceptable in reality. In the
case of the unicycle friction compensation scheme, allowing the friction estimate to be
so incorrect as to be "assisting" the system performance, is clearly nonsensical and
easily leads to instability. Simply bounding the parameters to always be of the correct

sign already makes a vast improvement.

A not atypical problem arising in MRAC adaptive control systems, is that of the
sudden "blow up’s" which occur after extensive periods of good performance. It is
shown here that one cause for this is the integrating up (over time) of system model
and sensor errors, which manifest in the parameter estimation update algorithm.
Since the system strives to drive the tracking error to zeto as best it can, this may
lead to grossly inaccurate parameter estimates which can easily destabilize the
system. This is clearly demonstrated in the case of the unicycle, where instability
occurs after only a few seconds of operation. By resetting the discrete time
implementation of the reference model trajectory generator at each integration step
(may be extended to every z’th integration step, where z is smaller than the number
of integrations required to integrate such modeling or sensor bias errors into
significant values), this problem is completely alleviated. This is achieved by setting
the reference trajectory state equal to the measured value at the present sample
instant, in order to predict the next sample trajectory estimaie for use in the error
driven parameter update law, thus effectively eliminating any sensor biases and

minimizing the effect of incorrect models. Performance of the unicycle is
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demonstrated to be indefinitely stable with this strategy, whilst instability occurs

very quickly if not used.

Use of "dither" signals which ensure greater "negative definiteness" of the relevant
Lyapunov function derivative, is made to improve the stability of the MRAC friction
compensation algorithms. The best amplitude of the dither signal is estimated
continuously in real time, using the same parameter estimation laws of the original
design, resulting in a form of adaptive switching control strategy. The stiffness of the

system is dramatically improved by this change.

Finally, for fast changes in operating condition, it is necessary to add more structure
to the parameter update algorithm in order to maintain stability. By employing
knowledge of the nominal parameter characteristics as a function of operating
condition and adapting on only the uncertain aspects, stability is maintained for
much faster operating condition changes. In the unicycle example, fast changes from
zero to maximum wheelspeed often destabilizes the MRAC procedure, since the
parameters cannot adapt quickly enough. By assuming only crude knowledge of the
nominal parameter value as a function of wheelspeed and adapting only the
parameter error instead of the full parameter value, performance and stability are

well maintained.



CHAPTER 4. GAIN SCHEDULED CONTROLLER DESIGN

INTRODUCTION

For many years, the approach to control of linear parameter varying systems has
been to design linear conmtrollers at a number of design points corresponding to
operating conditions distributed across the operating envelope, and to define some
scheduling technique according tc which the gains are adjusted as a function of
operating condition. This approach, while often yielding extremely satisfactory
performance for many systems, has also been known to fail in certain cases; one
possible reason being that the design strategy is rather ad hoc and it is not clear how

the feedback gains should be scheduled.

Although abundant in practical applications, gain scheduling has not been formally
addressed in the literature, with the work of [Shamma] the only notable effort at a
systematic, albeit rather conservative, analysis of this technique. This work [Shamma]
formalizes the rules of thumb which control system designers apply in the gain
scheduling problem, namely: 1) that as long as the scheduling parameter is varied
slowly enough (e.g. at least one decade slower than the closed loop dynamics), and
the effective "frozen" systems at each parameter value are stable, then the system is
stable, and 2) that the scheduling technique should capture the parameter
dependence: for example, since the unicycle dynamics are proportional to wheelspeed,

the gain scheduling should reflect dependence on the inverse of wheelspeed.

[Rugh] gives an overview of the typical approach used in this design methodology,

sketching the framework of linearization about discrete operating points (i.e. fixed

105
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parameter values) and fitting scheduling strategies through the controller parameters
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Figure 4.1. Chapter Roadmap.



107

determined at each design point. This work does not succeed in the attempt to

formalize the methodology nor does it address the arising stability issues.

Since the problem is fundamentally a non Linear Time Invariant (i.e. not an LTI
issue) issue, it is approached from a nonlinear point of view in this chapter. For the
case of the system to be controlled being nonlinear and parameter dependent, and
satisfying speciiic feedback LTI’ability conditions, it is shown that the scheduling
parameter need not be restricted to slow variation; indeed, for perfect knowledge of
the system, stability is guaranteed for arbiirary fast variation of the scheduling

parameters.

For the feedback linearizable system, a diffeomorphism (smooth and invertible state
transformation) exists which allows the nonlinear system to be viewed in a tangent
space which is Linear Time Invariant for fixed parameter values. If the system is in
addition feedback LTI’able, then the transformed system is LTI, regardless of the
parameter values or the rate of change of the parameters. For full state accessibility
(necessary for the transformation too), it is then possible to assign desired closed loop
behavior to the transformed system by any favored LTI control design strategy,
which, when transformed back to the real system, yields the same closed loop
dynamics regardless of the operating condition (parameter value) or rate of change of
parameteis. The feedback LTI'ing control law combined with the diffeomorphism,
define exactly the correct scheduling laws which must be adhered to in order to
deduce siability of the full gain scheduled system, regardless of rate of change and/or

instantaneous value of scheduling parameters.

In this approach, care needs to be taken that a practicable design is achieved. Since

the procedure yields a strategy which is analogous to pole/zero cancellation in the
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linear control world, caution needs to prevail <uch that the resulting design does not
attempt to "invert the plant" in a "high bandwidth" sense: i.e. the z—space design
should result in the actual system closed loop dynamics being reasonable.
"Reasonable" is used with the implication that attempting to cancel system natural
dynamics and replace these with much higher performance dynamics will invariably

lead to difficulty (if not instability) in application.

Maintaining invariant closed loop behavior regardless of the values of the scheduling
parameters, may not always be desirable. An aircraft would typically not be able to
perform similarly at high speed, low angle of attack and at low speed, high altitude
conditions. For this reason, it is of great use to have knowledge of the stability
characteristics of the gain scheduling designs for closed loop dynamics which vary
with operating condition. In this case, "slow" variation of the closed loop dynamics
(scheduling parameters are still allowed to change as fast as is possible for the
system) as a function of parameter variation is allowable, whilst still maintaining the
stability and robustness character of the fixed point designs. The above discussion has
involved the possibility of arbitrarily fast parameter variation and has introduced the
idea that an equivalently fast control gain variation can still lead to LTI closed loop

dynamics.

The reality of physical systems is that parameters are typically only able to vary at
certain limited rates: it is not possible, for example, to change the dynamic pressure
of the flight condition of an aircraft instantaneously. This is fundamentally limited by
the aircraft’s (limited) ability to change speed and altitude. Given then the maximum
achievabie rate of change of the scheduling parameters, the closed locp dynamics may
be allowed to vary slowly with the scheduling parameters. Since the parameter then

also varies slowly with time, the closed loop system departs from being true LTI, in a
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quantifiably limited way.

It is, however, important to stress that the formal results presented here do not
require slow variation of the scheduling parameters as prescribed by previous

analyses.[Shamma, Rugh, etc|

Full state accessibility is a requirement for the system to be feedback linearizable
(more specifically, input state linearizable) and subsequently feedback LTI'd for
aesign of the gain scheduled controller. For obvious reasons, this is not always
possible and it is necessary to be able to design a gain scheduled control system which
uses a reduced set of measurements. To this end, it is certainly possible to design a
Kalman Filter in the transformed LTI space in order to continuously obtain optimal
estimates of the full state vector for use in an LQG controller setting. In
implementation, the estimator runs in transformed state space with the physical
sysiem state estimate determined by transformation via the diffeomorphism. This
completely defines a fully gain scheduled LQG controller, with no requirement on full
state accessibility, which allows fast parameter variation (as in the full state feedback

case) and which is guaranteed stable.

FEEDBACK LINEARIZATION OF NONLINEAR SYSTEMS

Introduction

The transformation of a nonlinear system into a set of coordinates which yield the
transformed system LTI for fixed parameter values, is of particular interest to the
gain scheduling problem. The original work on such transformations is due to

[Krener] and [Brockett] in the seventies, with the eighties heralding a flurry of work
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[Isidori, Su, Hunt—Su—Meyer and others| resulting in explicit conditions being shown
under which exact linearization through transformation and feedback is possible. The
works of [Isidori and Van der Schaff] are excellent expository texts covering the
development to the piesent state of the art. None of these works, however, make the

connection with the traditional gain scheduling problem.

A vast number of systems to be controlled arise in the nonlinear affine form below,

with m inputs, p outputs and q parameters

() = f(x(t)P +2g, x(t),P) (1)

¥;i(t) = hy(x(t)) 1<i<p (2)

with fg and h smooth vector fields in an open neighborhood of the origin in R", x€R",

PeRY and
f(x(t),P) — - ﬁ&g:;:g; (3)
| fu(x(t),P)
gi(x(t),P) — — g: g E ggg (4)
! g,n(x(t),P)

The following assumes that the parameters are fixed at some value Ppopn. The system
functions are thus no longer dependent on P, which is Jropped from the relevant

expressions.
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Elements of Differential Geometry

The analysis to follow relies on extensive use of Lie derivatives along vector fields and

real valued functions, some basic elements of which are presented below.

The Lie derivative of some real valuved function A(x) along the function f or
equivalently, the projection of this function gradient (VA(x)) along the function f is

written as

n
_ d AMx \
@ = Yy G 5
i=1
which may be recursively applied, thus

d (Cx1\(x
iMx) = PEHD

X

o g (LA (x
-3 (gx())fi(x) o

i=1 !

The Lie_bracket: derivative of one vector field along another vector field, the vector

fields defined on an open set in R", is defined

8.9(x) ) - &L (x) oy (7)

where %igl and %%5)- are the Jacobian matrices of g and f respectively

[£(x),9(x)]
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The Lie bracket may be applied recursively, as in the case of the Lie derivative, and

is written for ease of notation as
ad‘} 9(x) = [ j(x),adl}-lg(x)] V k21 (10)
with

ad]"c 9(x) = ¢(x)

Transformation of Coordinates

For the nonlinear transformation of the coordinates of a nonlinear system to those of

a linear system, the transformation is written

z = §x,P)
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— géfizgg (11)

¢n&x»P)

The transformation is a global diffeomorphism if the following conditions hold

1) ¢&(x,P) is invertible, i.e. z = §7Y(x,P) V xeR"
2) Both the forward map #(x,P) and inverse map 3 (x,P) are smooth
mappings and thus have continuous partial derivatives of any order, ¥

xeR™.

The transformation is a local diffeomorphism if it is a diffeomorphism in a

neighborhood of some point (typically the equilibrium point of the system to be

controlled) in R™.

Lemma: For &(x) smooth in a subset fleRn, the Jacobian V& is nonsingular at a

point x¢€ft if and only if 8(x) defines a local diffeomorphism in {1.
Proof: [Isidori, Nijmeijer & van der Schafi]
Involutivity
A distribution of vector fields [ay(x) aa(x) a3(x) -+ an(x)] is said to be Involutive if

the Lie bracket of any two of the constituent vector fields of the distribution is

contained in the distribution. Thus

[2i(x),aj(x)] € [ax(x) ax(x) as(x) - -+ an(x)] foramyij<n  (12)
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this is equivalent to writing [Isidori,Su], for scalar fields c;;;(x)

(), (@) = Y ciu(Rax) (13)

k=1

Involutivity may be tested for by evaluating the rank of the following matrices. If
rank[a,(x) ax(x) - -+ an(x) [ai(x),0(x)]] = rank[a(x) ax(x) - - - an(x)]
for any integer 0<i,j< n and any x (14)

then the distribution is involutive. This implies that the space spanned by the vector
fields contains the Lie bracket of any two of the constituent vector fields and thus the

constituent vector fields are linearly independent.
Integrability

A distribution of vector fields [a)(x) as(x) a3(x) - -- an(x)] is said to be completely
integrable if the vector fields ai(x) are linearly independent, and for every point there
exists an m—dimensional submanifold # € R™ such that the distribution spans the

tangent space of A.

Equivalently [Isidori], the distribution [a,(x) @s(x) a3(x) --- am(x)] on R™ is said to
be completely integrable if and only if 3 (n—m) scalar functions A;(x):R"-R, which

satisfy

£a)j=0 Vi<i<{mand1<j<n—m (15)
1
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The previous definitions and results are succinctly stated in the theorem due to

Frobenius.

Frobenius’ Theorem: A set of linearly independent vector fields (constituting a

nonsingular distribution) is completely integrable if and only if it is involutive.
Proof: see [Isidori).

Remark: The notion of complete integrability allows use of the scalar functions
A;:R™R which satisfy £ i,\j =0V1<i<mandl < j<n—m, to define a
coordinate transformation into the tangent space at any point on the
system manifold (which contains the system functions f; and g). Thus, at a
point (x*) of concern, integrability ensures that there exists a
transformation of coordinates such that the time evolution of the system
in a neighborhood of the point on the system manifold is captured by time
evolr' . .:i e transformed LTI sysiem. Figure 4.2 illustrates the

manifold and tangent space for a 2nd order system.
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Figure 4.2. System manifold and tangent space at x*. The coordinate transformation

transforms from x—y space on the manifold to {—7 coordinates in tangent space

The above results now allow statement of the full state Exact Linearization problem.
Theecrem: Full State Ezact Feedback Linearization. The single input system
xt) = f(x,P)+ ¢(x,P)u x€eR" (16)

is Exactly Feedback Linearizable in the neighborhood of some point x* and for a fixed

value of Pnop, if and only if the conditions (writing f(x) for f(x,Pnon) and likewise
for ¢(-))

1) Controllability: the matrix [¢{x*) ad jg(x*) adjg(x*) ee ad‘}“g(x*)] has
rank n, i.e. rank equal to the dimension of the system.

2) Involutivity: the distribution [g(x*) ang(x*) ad;’g(x*) ad'}'2g(x*)] is
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involutive in a neighborhood of x*.

are satisfied, where we have denoted f (x,Pnom) by f(x) etc. The transformation is

determined from the function A(x) satisfying the integrability conditions, thus

z = ¥x) =[\x)LAx) - L)) (17)

The transformation which satisfies (17) is determined by evaluating

Lg/\(X) = 'Cad /\(I) = s = ﬁa‘dr}.ng(x) =0 (18)

]0

and the nontriviality condition

preventing the trivial solution A(x) = 0.

Note that the function A(x) may be viewed as a redefined output function such that
the relative degree of the system is n, i.e. relative degree equal to the order of the

system.

The linearizing control law is determined from the transformation by considering the

derivative with respect to time of the n’th transformation matrix row, thus
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=L, C‘]‘,"A(x) (20)
but, the system dynamics satisfy x = f{x) + g(x)u, then

z, = E’}A(x) + (£ gﬁ‘)‘(l)(x))u
=v (21)

yielding the linearizing control law

u = a(x) + A(x)v (22)
with
L% A(x) 1
(x) = _Ll__n- nd Ax) = T (23)
=) Eff A(x) * ’Cg[f A(x)

Proof: see e.g. [Isidori, Van der Schaft, Hunt—Su—Meyer]

Note: This strategy assumes a fixed value for the parameters Ppom, implicit in the

transformation (17) where the time derivative g-lt: = 0.

Remark 1)  For the case of the LTI system, the nonlinear "controllability" matrix
[f(x™) ad jg(x*) adjg(x*) ad’}-“g(x*)], yields exactly the
controllability matrix for LTI systems. Consider the LTI system x =

Ax + Bu. Then
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adgx)  =-g/B=-aB

ad:‘;g(x*) =— g}-{f ad fq(x*) = A’B

ad}-lg(x*) = (—1)"1A™IB (24)

The nonlinear "controllability" test evaluates the rank of the matrix,

which becomes exactly the test
rank[B/AB}A2B]- . - |An-1B] (25)
which is the controllability matrix for the LTI system.

The Multi—-Input—Muiti—Output case yields similar results for the
coordinate transformation and feedback linearizing control law. See e.g.

[ Hunt—Su—Meyer].

The transformation matrix &(-) captures the essence of the nonlinearity
and parameter dependence of the original system. For the linear
parameter dependent systems of special concern in the gain scheduling
problem, this transformation is wusually linear, but parameter

dependent.

FEEDBACK LTI’ZATION

The previous section discussed the procedure for feedback linearization of a nonlinear

parameter dependent system of the form of equations (1,2). It is of interest to further
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extend this to the case of obtaining an LTI system through transformation and
suitable feedback control, without requiring that the parameters are constant or
without restriction on the variation of the parameters other than knowledge of the

nature of the variation.

Consider the Feedback Linearizing control law derivation of equation (20).

iy =T, = Jin; +2‘9THP,

0Ts v
= L, Tn+ EBPTP*

= L £4(x) + ZaT“ (26)

i=1
The feedback LTI’ing control law is then
u = ofxP)+A(xP){v- ZaTn (27)
i=1

where a(x,P) and f(x,P) are

o(xP) = i A and  A(xP) -1
’ - L’}"A(X,P) ! - LLs A(xP)

THE GAIN SCHEDULING CONTROL LAW
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Applying the Feedback LTI’zation described above to the affine nonlinear system
x(t) = f(x,P)+ ¢xPu x € R", PeR4 (28)

where the full state is assumed available for measurement, the transformed system is

then in the LTI form
2 = Agz(t)+ B,y (29)

where the feedback LTI’ing control law is written

q
u = a(x,P)+ A(xP){v— Z‘g%_ P;) (30)

i=1

If P;=0 and the diffeomorphism is linear in the state (z=-#x and x=@-1z) , then this
control law can be written as an equivalent time invariant feedback law which is
linear in gains which are parameter dependent, i.e. u=—G(P)x, which defines exactly
the correct autonomous gain scheduling control law which will guarantee stability
regardless of the value of the parameters. If the parameters are varied at some rate (P

nonzero), it will not be possible to write the control as an autonomous law since the

q
feedback gains will contain the time varying components due to the last term Zggﬂ
1

i=1

P;. In this case, the control law constitutes the linear gain scheduling control law,
which is linear for ¢ linear in x, but time varying. In the sequel, the term "correct"
gain scheduling control law will refer to the linear gain scheduling law which may
include time dependence. Conditions under which the correct law may be replaced

(while still maintaining stability) by the autonomous law wili also be discussed. Note
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that the linearity of the control law in system space depends on the diffeomorphism
being linear in the state variables, which for the linear parameter dependent sysiem
of concern in this work, is true. In the sequel, thus, assume the diffeomorphism to be

linear in the state variables, and parameter dependent.

The transformed LTI system matrices appear in the form

01---0 0

Az = (.)0:.1'. . Bz= 0 (31)
: 1 .
00.---0 1

and the transformation z(t) = #(x(t}) is smooth and invertible, i.e. x(t) = &-1(¢(x(t)))

= #7(a(t))

The second term in (26) may also be determined directly from the transformed

system as follows.

Consider the linear parameter dependent diffeomorphism applied to the linear

parameter dependent single input system

then

z = §(x,P)x - (383)

and
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i = #(x,P)x + {i%@fﬁl?i}

q
= #(xP)A(P)(xP) 2 + H(xP)Be(Pu + { Y Z(TP) b} (34)

i=1

then, selecting the control law (writing By for By(P))

q
u = a(x,P) + A(x,P)v — (B.By)"B.d -l(x,p)zgg—r; B; (35)

i=1
yields the system of equation (31), thus, the control law of (35) and (30) are
equivalent.
Gain Scheduled Regulator Design
Assume that some suitable (e.g. LQR or pole—placement) LTI control design
methodology is now applied to yield desired (asymptotically stable) closed loop
dynamics of the system in z—space. The feedback law is of the form

v = —K(t) (36)

yielding closed loop dynamics

0 1 0
0 01 -
Bt) = | . g 2(t) = A, 3(t) (37)

n-1



with eigenvalues satisfying
Real{ /\i[Azcl] }<0 (38)
1.e. strictly stable.

Definition: An equilibrium point z* of a system is said to be stable if, given €>0, 3
6>0 such that ¥ z(t,)eB 6(2*) = z(t)eBe(z*) Y t>t,, where the notation B 5(2*) and
Be(z*) refer to balls of radii & and ¢ respectively, centered at z*. Thus, rewriting, the

equilibrium point 2" is stable if
V] 2(ty) =2 || <8 = ||2(t) —2"| <€ Vi, (39)

Note: The definition may equally well have been given for asymptotic stability,

exponential stability etc.

For she regulator feedback control law stabilizing the system of equation (31) in
z—space, the definition is thus valid with the equilibrium point being the origin,

z*=Q.

Theorem: Consider an affine parameter dependent system of the form equation (28),
which is feedback LTI’able and which thus yields an equivalent transformed LTI
gystem. Assume the Diffeemorphism is linear in the state (z=é&(P)x) . If the
transformed system (in z—space) is stabilized in some sense by feedback in
transformed space, then it is stabilized in the same sense in system space, regardless

of the system parameter values or the rate of change of the parameter.
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The transformed system is of the form (equation(37))

0 1 0
0 01 -
#Z(t) =1| - ST 2(t) = A, z{t) (40)
: R | cl
KK - K |
0 1 n-1

and since K; are selected for stability of the closed locp system
(equilibrium point at the origin, z*=0, corresponding to system space

equilibrium point x*=0), then
Real{ A [A, ]} <0

In the sense of the stability definition given above, then given ¢ > 0, 3 §

> 0 such that
V0a(t) —2 || <6 = |la(t)—2"|| <e Vi, (41)

Now, since the system is feedback linearizable, there exists a
diffeomorphism €(-) which by definition is smooth and invertible such

that

o) =4x() & x(-)=41a(-)) (42)

Then, in a neighborhood () of the equilibrium point, the Jacobian Vé is

nonsingular, such that for

13]] £ inf [|vé(x)]| (43)
X€
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then
[l 3x—x*) | < 1] 3(x) — #(x™) || V xen (44)
Rewrite equation (41), then Vxefl

VI 3(x(te) = x*) [ < 1] #(x(t,)) — #(x™) || < 6
= || I(x(t) —x") || ¢ [ #(x(t) = ¥ [| < e V28,

multiply by |[J|| -t both sides, then given ¢>0, 3 §>0, such that

Vol x(to) — x| < 17(8) = &
= | x(t) = x" || < Il H(e) = ¢’ V2t 145)

thus the equilibrium point in system space (x*) is stable in the same sense

as that of the transformed system.

Depending on whether the diffeomorphism is local or global, the stability
of the equilibrium point is local or global, since §’ and ¢’ are dependent
on the parameter value via the diffeomorphism. The fact that these vary
with the parameters is easily overcome by taking the supremum over all

possible parameter values, i.e. for the set ? defined as the set of feasible

parameters
6’ = sup{|lJ]|1} & and ¢’ =_ sup{||J]|-1} e (46)
P;e P.e?
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where the diffeomorphism is dependert on the parameter values.

Perfect, Stable Gain Scheduling with Arbitrarily Fast Variation of Parameters
For the transformed state feedback control law
v = —Ku(t) (47)

with K,=[K¢ K, - - - Kp-y], a constant feedback gain matrix, the closed loop dynamics
are LTI and stable, regardless of parameter values. If. in addition, the system is
feedback LTI'd, then the transformed system with the stabilizing control law (47) is
LTI and stable regardless of boih parameter values and rate of change of parameters.
By virtue of the smoothness and invertibility of the diffeomorphism ¢(x,P), the
transformation from system space to transformed space is one—to—one and onto. The
closed loop dynamics in system space (x—space) are thus also LTI and have exactly

the closed loop eigenvalues of the system in z—space.

The diffeomorphism combined with the feedback LTI’ing control law then defines the
correct gain scheduling law to be used if LTI closed loop dynamics are desired for the
system while guaranteeing stability, regardless of the rate of variation of the system
parameters or the values of the parameters. The added requiremnent on the feedback

LTT’ing control law allows this result. As will be seen in the sequel, the extra term
2" JT, -
—f(x,P) 'HP'H P; is not always necessary, thus allowing arbitrary parameter
1
i=1

variation under certain conditions whilst maintaining stability, with only the

feedback linearizing (not feedback LTI’ing) law applied.
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The gain scheduling control law in system space for the actual system, is then written

as

q
o(xP) + (xP) { v =) T5nP; )

i=1

— \ dTy D .
a(x,P) — A(x,P) { Kqz(t) +ZHPT P;}

i=1

o(s.P) - A(xP) { Kd(x(0) + Y 922 By ) (48)

where €(-) is the parameter Jependent diffeomorphism. Note ihat the feedback

linearizing control law, including the diffromorphism, captures exactly the required

scheduling law for guaranteed closed loop stability.

Remark 1)

The feedback linearization procedure assumes full state accessibility
and perfect knowledge of the plant. These assumptions are not always
satisfied, but do not generally present a problem since suitable robust
control design techniques can tolerate uncertainty in the plant and, as
will be discussed in the sequel, estimation of the full state vector in a
Linear Quadratic Regulator (LQG) setting will yield the same results
for the gain scheduling control law with stability guarantees. Model
Reference Adaptive Control (MRAC) techniques can also be used to
assist in maintaining performance robustness if the plant parameters
are not accurately known. [Kokotovic] then uses the Extended Matching
Condition (EMC) to ensure a parameter independent diffeomorphism
and a transformed system with parameters occurring linearly for a

structure well suited to parameter adaptive control.




Remark 2)

129

For the exact feedback linearized system where perfect knowledge of
the system and parameters is assumed, the degree to which stability
over the entire range of parameter values of the scheduled system is
achieved, is dependent on how well the actual feedback law
implemented mimics the correct law defined by equaticn (48). Clearly,
if the range of parameter variations about some operating point is
known, within which the control law approximates the correct gain
scheduling law arbitrarily closely, the system will be stable, regardless
of the rate of variation of the parameters within the known range.
Given that the P term is included in the control law, a test for stability
is then how well does the gain scheduling implemented control law

mimic the correct law in the region of interest.

Fast Parameter Variations and Slow Closed Loop Eigenstructure Variation

In this section, it is shown that for the case of the desired closed locop dynamics not

LTI, stability may still be guaranteed for maximal (as fast as is achievable by the

system) parameter variation rates if the closed loop dynamics (eigenvalues) are

"slowly" varying with parameter values. Note that this is an entirely different issue

to enforcing slow variation of the parameters: indeed, without belaboring the point,

the parameters are allowed to vary as fast as is possible.

Definition. A function f(x) is Lipschitz continuous if it is continuous and there exists

a constant K l>0’ such that

Il £(x) — £*) || < K, I x = x|V feasible x, x* (49)
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Theorem. Locally Lipschitz continuous transformed space feedback gains. If the

transformed space feedback gains evaluated at the nominal parameter value, K.,,(f’),

of the LTI system (LTI due to feedback linearization) satisfy a local Lipschitz

continuity condition arbitrarily closely, then the gain scheduled system is stable for

any feasible parameter value and for any feasible rate of change of the parameters.

The Lipschitz constant is

< , N —
I (Bret — PO)[1 — ¢ T/7P] |

For Tpax= sup{ri} for n closed loop modes, select

Proof:

i=1,--5n

71=w (strictly correct), or
71=3Tmax (96% settling time), or
T1=5Tmax (99% settling time).

Consider the feedback LTI’d system of the previous section. The
(regulator) system is stable if the control law satisfies the correct

scheduling procedure captured in the expression for the control

_ _ > 9Ty .
u = a(xP) - A(xP) { KA(x(t)) + ) 552 Pi ) (50)

i=1

Define the feasible set of parameters as ?, i.e. any feasible parameter vulue
P is contained in ?. (P may be a vector if the system depends on more

than one parameter)
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For the parameter variation bounded by a first order system of the form

2 _ -1 = 1as
P(1) = 2 B(1) + 7 Prer (51)
where f’ref is the maximum expected parameter change and

T = inf {7 52
» =it i) (52)

i.e. 7p represents the shortest equivalent time constant bound on the
variation of parameters in the feasible seu; thus, any parameter change

from P(t) to P(t+6t) occurs slower than this bound.

The gain scheduled control law is now implemented in the form

Y
u = a(xP) - A(xP) { Ku(B) $(x(t) + ). 552 P } (53)

i=1

where P is the equivalent first order filtered version of P, i.e. via equation

(51).

Since K,(P) is assumed Lipschitz continuous, then there exists a Lipschitz

constant K >0, such that ¥ P, P* ¢ 7 (feasible P)
I Ke(P) — Ko(PY) || < K| P—P*| (54)

or
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I AK,|| ¢ K| AP || (55)

Now, the evolution of P(t) is exactly known as bounded by (setting t,=0)

. —({t-7)
1e{ )

Pt)-B(0) = fo 7 (Prer — P(0))dr

= (Prar—PO)1 -/ 7P) (56)

Then ithe gain variations may be written as a function of P variations as
[MNote: This could as easily be wriiten for each individual gain, yielding a
similar result where the Lipschitz constant is tested for each gain, not the
more conservative approach given here of simply bounding all gain

margins by the smallest gain margin]

I Ko(P(t)) — Ko(P(0)) |

[P

K, || () - B(0) |
K, || (Brer — BO)[L - /7] || (57)

I

The variation. of Kz(l5) is of concern here, and only over periods of time on
the order of the closed loop time constants, 7,. In order for the gain
scheduled control law to effectively see the correct control law, the

Lipschitz constant must be selected as

K, < — € —- (58)
: I (Brer — PO)[1 — e TV/7P] |

then
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I KZ(?(TmaX)) - KZ(f)(O)) | <e (59)

Select € as the smallest gain margin (using the Circle Criterion discussed
below) of any one of +he ™edback ~ains K, at th~ nresert p7ramet _r valuc,

arbitrarily in time, but bounded in magnitude,

€ = inf { v={K¢+06Ko- - -Ki+0Kj: - - Ky 1+6Kn-] | #" stable equ. pt } (60)
i
i=0 gy e+oyn -1
The transformed (z—space) space gains are thus safely within gain margin
ranges as seen by the gain scheduled controller over time periods 7,. Note
that the actual gains in system space (x=¢%Y(z)) are not at all necessarily

constant over this time period.

The Lipschitz constant may be written, for APpax the largest expected

parameter change from the present value

€
Kl & AP pagll[1—e 7V 7] (61)

Note: Strictly speaking, the definition of stability involves the notion of
evaluating the system for all time after the initial time. This implies that
the parameter change should be allowed to evolve fully to its new value
before evaluating the Lipschitz constant. The strict stability constraint is

then that the Lipschitz constant be selected as (set 7i=w)

€ €
Kl 0P garll 1= /7] = [[AB ]

(62)
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Equation (61), however, gives a rule of thumb which in most practical
cases will be suitable for evaluating the stability of the gain scheduled
system. Define the slowest closed loop time constant as given by 7Tpax,

where Tpax= sup{ri} for n closed loop modes. Then, 7=37pax for the
i=1, + -Hn

initial condition settled to within 5%, 7,=57,., for settling to within 1%,

or 7y=Tpax (3% point) may be used for a less conservative estimate.

Sciecting ¢ using the Circle Criterion

In order to guarantee that the system is stable for arbitrary time variation of the
parameter within a bounded range, the Circle Criterion [see e.g. Vidyasagar,

Lefschetz, Narendra and Taylor] stated here without proof, may be used.

For systems (SISO) of the form of figure 4.3, consisting of a Linear Time Invariant
system in the forward path, and a time varying nonlinearity in the feedback loop,

which may be written as

x(t) = Ax(t) + Be(t)

y(t) = Cx(t) + De(t)

e(t) =—4(t,y(t))

g(s) =C[sI—A]"B+D (63)

with AeR™", BeR", x(t)eR", CeR"and e(t), y(t), D all scalars. The system must
also be such that [A,C] is observable, [A,B] is controllable and the function ¢ satisfies

#(t,0) =0 Vt>0 (64a)



¢(t,y) lies in the sector [a,4], i.e. ay? < y4(t,y) < fy? V>0, VyeR (64b)

LTI system

u=0 x(t) = Ax(t) + Be(t) y(®)
- y(t) = Cx(t) + De(t) >

- ')

o(ty) |

Nonlinear feedback elements

Figure 4.3. System structure for application of Circle Criterion.

Circle Criterion. Assume the system of (63), with A having no eigenvalues on the
imaginary axis and with v eigenvalues having positive real parts. If 4 lies in the sector
[a,6], i.e. ay2<yd(t,y)<fy? Vy€eR and Vt>0, then a sufficient condition for stability is

one of

1) If 0<a<f, the Nyquist plot of g(ju) does not enter the disk D(a,f) and

encircles it v times in the counterclockwise direction.

2) If O=a<f, the Nyquist plot of g(ju) lies in the half plane
{s:Re(s)>=-1/8}.

3) If a<0<f, the Nyquist plot g(ju) lies in the interior of the disk D(a,d).
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4) If a<f<0, replace g with —g, a with —f and f with —a and apply (1).

For application to the gain scheduling controlier design probiem, where
the closed loop dynamics are to vary as a function of parameter value, the

system equations should be written in the form

a(t) (65)

Il
N
—~~~
-+
o
il
>
N
o
e
N
—
o+
S

Since it is desired to determine the allowable (whilst maintaining
stability) variation of the feedback gains K as arbitrary functions of time,
define a fictitious output function which allows the system to be viewed in
the correct framework for application of the circle criterion. As the closed
loop dynamics are to vary with the parameter, the effective feedback

control law appears as
u = —K,a(t) = {Ko+6Ko- - - Ki+ 6K+ - - Kno+ 6Ky q)z(t) (66)

with K; the nominal gains associated with the present parameter value
(P(t)) and 6K; the change over the time period Tmax. Note that
0K;=6K;(t) (time varying). Writing the effective gain variation as scaled

versions of one of the §K;’s, e.g. defining
SKo(t)=6K, SKi(t)=R16K, .. SKn.=2B6K, (67)
’ Ko " Ko

and the time varying nonlinearity



Remark 1)

137

e(t) = —4(t,y(t) = —6Ko y(t) (68)
the output function is selected as

) =01 gt g2 SpHat) = Cut) (69)

o
(=3

yielding a restructured system in the correct torm. Now, the Circle
Criterion may be directly applied to determine limits on 6K, and, hence,
all the feedback gain perturbations which will guarantee stability for
arbitrary time histories of these perturbations within the determined
bounds, for the specific ratio of gain variation in equation (69). If the
actual z—space gains are of the same ratio for all P, then this test is

strictly correct. Otherwize, the test gives good ballpark estimates.
The value for ¢ is then selected as

e =inf {§K;} (70)

i=0y--yn -1

The unicycle example at the end of this chapter illustrates the procedure.

Clearly, if arbitrarily fast parameter variations are achievable (i.e. 7p is
very small relative to 7pax), then since the closed loop dynamics are not
necessarily able to be of arbitrarily small time constants (i.e. Tpax may
be >> 7, = [l—e_T“‘ax/ Tp]zl )s Kl is small if APy, is large, hence the

transformed state gains must be effectively coustant. Note that this
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implies that the correct gain scheduling law of equation (48), must then
be applied to accommodate the fast parameter variation. If, on the
contrary, the maximum achievable parameter rate of change is slow
(7p>>Tmaxy, then [l—e"T“‘a"/ "P] is small, so K ; nay be large and the
gains K,(P) may vary significantly with P, since the effective gain seen
by the controller will be AK,x¢ i.e. K, within gain margin limits, and
the control is, hence, effectively the correct gain scheduled control law

locally about the present operating parameter value.

Note that the gain scheduled control law u = a(x,P) — f(x,P) {

q
K, (P)#(x(t)) +Zg%ﬂ P; } achieves the required correct control law in
1
i=1

a local sense. For a given parameter value, the gains K, (including the
perturbation values 6K;) are with.n bounds which guarantee stability
(Circle Criterion). For changes in P which may arise due to high
frequency disturbances or unmodeled effects, which are then of reduced
amplitude (typically, the small amplitude higher frequency parameter
variations which occur due to disturbances), the control law is exactly
the correct one for these fast local parameter perturbations about the

more slowly changing nominal parameter value P.

The "slowly" varying transformed state gains K,(P), which vary in a
continuous fashion, imply that the closed loop dynamics vary "slowly"
with parameter changes. As in the case of the correct gain scheduling
law being applied across the entire parameter range with constant
closed loop dynamics, the condition previously stated by [Shamma] and

others, i.e. that the parameters should vary slowly for stability, is not



Remark 4)

Remark 5)

139

necessary if the control law includes the parameter rate of change term
as in the feedback LTD’ing control law of equation (48). Even for the
case of slowly varying closed loop dynamics, the parameters may be
varied as fast ac the system is capable of, whilst still maintaining closed

loop stability.

The Lipschitz constant may be evaluated for each individual gain

€3
according to the expression K< I[P aax]l[L _o—Tmax/7p} (for i’th gain),
1 max - 3

where ¢; is selected as _6K1=K—;6K0 from the Circle Criterion condition,
yiclding a less conservative range of acceptable gain variations with
parameter change (i.e. the gradient g-ln(—f,-" is determined for each gain

as opposed to assuming this as the smallest value over all the gains)

The Circle Criterion may further be used to evaluate whether or not
the P terms may be ignored in the control law, as will be discussed
later. It may be that P cannot be measured accurately, in which case
knowledge of whether the P term may be ignored in the control law is

important.
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——————— Gain for Constant Closed Loop Eigenvalues

Gain for Slowly Varying Closed Loop Eigenvalues

z-space Gain

Ny
>

Parameier P

o> |

Figure 4.4. Gains vs scheduling parameters for the stability proof. For very fast
parameter variation, the correct control law due to the feedback LTI’zation and the
diffeomorphism must be implemented for closed loop stability. Reducing the rate of
change of parameters, relaxes this requirement to the extent that, for slow parameter
variations, the transformed state feedback gains may vary significantly (but Lipschitz
continuously) such that in effect the closed loop dynamics may vary significantly with

parameter values, while maintaining closed loop stability.
Design Procedure. Full State Accessibility.

1) Check that system is Feedback Linearizable.
a)  Controllability: the matrix [¢o(x*) ad jg(x*) adjg(x*) ad;-lg(x*)]
has rank n, i.e. rank equal to the dimension of the system.
b) Involutivity: [g(x*) ad jg(x*) ad;g(x*) e ad'}‘zg(x*)] involutive,
which may be tested for by the rank test.

2) Define the diffeomorphism #(x) of equation (17) and transform the system to
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the equivalent LTI form in z—space.

Determine the feedback LTI’ing control law of equation (48).

Determine expected parameter variation range and upper bound on parameter

variation time constants to define a bound of the form of equation (51).

Design full state feedback law in transformed space (z—space) assigning closed
loop eigenvalues at each desired parameter design point such that the
Lipschitz condition of the gain K, variation is satisfied for the expected
parameter variations determined in (4) above. In order to ensure that the
system behaves suitably, it is useful to design the controller in system space
and then use the closed loop eigenvalues thus obtained as desired values for
pole placement design in {ransformed z—space. This allows the designer to
achieve a design which satisfies specifications written for the system in terms

of real (system space) performance criteria.

Transform the control law to system space. This defines the correct control

law at each design parameter value.

Curve fit through design points if the closed loop dynamics do not vary too
much as a function of parameter value, OR simply implement the control law
using equations (51) and (53). Note that if the Lipschitz condition is satisfied,
then the curve fit through suitably closely spaced design points will yield
control gains close to the correct scheduling law locally, thus guaranteeing

stability.
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Instability Due to Incorrect Feedback Control Law

One of the problems in gain scheduling applications has been that instability
sometimes occurs, even though the eigenvalues of the frozen time systems have
negative real parts [Aggarwal, Wu, unicycle ezample: see fig 4.14a ]. This is easily

explained in the light of the work presented here.

Figure 4.5 shows the typical case. Two parameter values are selected as design points
and then in classical scheduling fashion, some form of curve fitting of the gains
determines the values to be used at intermediate parameter values. If the transformed
state control gains do not satisfy the Lipschitz condition derived above and/or the
system space control law does not include the parameter rate of change dependent
term, then stability cannot be guaranteed for any rate of change of the parameters
other than extremely slow (relative to system time constants where P~0). Indeed, it
is possible that the regression function mapping the gain scheduling gains between
design parameter values does not pass through gain values which are stabilizing,

although this is fairly unlikely if design points are suitably closely spaced.
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A
S Different Closed Loop Dynamics at
\ Design Points P, and P,
S . QGain Scheduled Curve Fit
——  Correct Gains

System Space Gains

X
P

P
int 2 Parameter P

Figure 4.5. Gain scheduling between discrete design parameter values. Consider the
gain scheduled control law where the gains are determined by curve fitting through
two discrete designs (of different closed loop dynamics) at parameter values P; and
P, If the gains in transformed space do not satisfy the Lipschitz condition and/or the
P term is neglected in the control law, stability is not guaranteed for arbitrary rates
of change of the parametezs. Assuming the P term is included in the control law, then
if the Lipschitz condition is not met, the two correct gain scheduling curves drawn
through each point will not meet at a common point for the intermediate parameter
value, and in fact at all but the design points, an incorrect gain scheduling law will be

active, losing stability guarantees.
What if Full State is Not Accessible?

The previous results assume the full state vector is available for measurement in
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order to apply the transformation and determine the gain scheduled control law. This
is, however, not always the case. It may be argued that the solution to this problem is
to design and build/obtzin the necessary sensors to in fact obtain the full state vector
for measurement, but another alternative is necessary for cases where this is not a

viable option.

The obvious solution is to make use of an observer to obtain estimates of the state
vector which can then be used in the full state feedback control law determined in the
gain  scheduled design. One such solution is proposed by [Cro
Granito—Valavani—Hedrick] where use of an extended Kalman Filter or any other
nondivergent filter is made to this end. In this work, the authors make use of such an
estimator to obtain the full state estimate for use in a nonlinear servo design
technique based on Input—Output linearization. The results obtained depend strongly

on obtaining good estimates of the full state vector.

Another possibility, and the one to be further explored here, is to design a Kalman
filter for the transformed (even though the full state is not measured, it is possible to
write down the transformation for use in defining the z—space observer) LTI
equivalent system which is of suitable closed loop dynamics as to obtain good
estimates of the state. By then implementing the Kalman Filter in z—space, driven by
actual (physical) system measurements, it is possible to generate the transformed
space (z—space) state estimate, which is then easily transformed via the
diffeomorphism to system space for use in the gain scheduled regulator feedback law.
In transformed space, it is perfectly feasible, by use of the separation principle, to
design the regulator and filter separately. Proving stability of the transformed state

LQG system follows the same arguments discussed previously for the regulator.
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LQG Coutroller in Framework of Feedback LTI’zation

Consider the standard LQG control system structure of figure 4.6a applied to the
transformed feedback LTI’d system in z—space. The separation principle allows
separate design of the regulator and Kalman Filter, where the Kalman Filter is
designed to be of closed loop bandwidth approximately 3 or 4 times faster than the
regulator closed loop dynamics. This ensures that the estimates obtained are good.
Ideally, the settling time of a filter is 3 time constants, so the residues should be
arbitrarily small for suitable use of the filter state as a full state estimate for the

regulator.

Theorem. LTI'd LQG controller stability. For a feedback LTI’able system with only
a reduced set of states available for measurement, a single transformed space LQG
controller may be designed for stable control of the closed loop system over the entire
operating envelope. The observer is implemented in transformed coordinates driven

by system measurements, while the regulator is implemented in system coordinates.

Proof: For the feedback LTI’able system of equation (31), (with feedback LTT'ing

control law of equation (30)), the diffeomorphism may be written as

z = ¥(x)

(Note that this transformation is not implementable, since it requires a
transformation of the full state, which is not available due to the reduced

set states in the measurements)

Consider the system measurement rewritten in terms of the transformed
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state vector

y(t) = Cxx(t)
= Cx#1(z(t)) (71)

Assumption 1: Since, for a parameter dependant system, the
diffeomorphism is also parameter dependent, the measurement matrix
Cx3-1(z(t)) is a function of the parameter value Assume that by
redefining the measurement matrix with the same states measured, but
simply scaling ail parameter dependent terms, the output matrix is
parameter independent. Thus, define C/ such that Cl3-Y(z(t)) is

independent of P.

For the z—space system with process white noise {(t) and sensor white

noise 4(t) and L=B,

7= Az + B + LE(t)
y = Cx-Y(z(t)) + 0(t)

the Kalman filter is to be designed such that the error dynamics are of the

form (z = z — z, for z the estimate of z and z=%(x), z=4(x))

i = Agg— H,Cy(4(z) — §(3))

Assumption 2: Assume there exists a neighborhood of the equilibrium
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point x*, fleRz, where the Taylor series expansion of the diffeomorphism

* V24 Vné
z—z = V8 x*(x—x*)+—2— x’\_(x—x*)'b’+ e x*(x—x*)n

is approximated arbitrarily closely by the linear expression

z—2" % Vilx*(x—x*) Vxel

where the Jacobian Vil , exists and is nonsingular, since §(-) is a
X

diffeomorphism. Note that if the diffeomorphism is linear in =z, this

expression is ezact.

Then,

i = Ay — H,CL(Vé | )iz —2)
X

= Az% - HzCz(z - 2)

with C, = C,’[(VII )5 LTI and independent of P.
X

Select H, such that the error dynamics are asymptotically stable (solve

filter algebraic Riccati equation), i.e.
Rea-l{/‘i(Az - HzCz)} < 0 i=1,2,' -,

Now, the separation principle applied to design of an LQG controller in
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z—space (filter gains H,, regulator gains X,), yields the closed loop system

(see figure 4.6a)

d 2 A VA —HzCz_Bsz HzCz a':;a Hz
Hf z = —Bsz Az z t 0 (y_yref) (72)

which is strictly stable by design, in fact the eigenvalues are exactly the
filter and regulator eigenvalues. Now, it may be easily shown that since
the full system in z—space is stable, the full closed loop system in x—space
is likewise. The proof follows exactly the arguments of the case for only
regulator feedback in z—space, by defining the (invertible, since the
diffeomorphism &(-) is invertible) transformation matrix (Jacobian) such
z

],forx,ieﬂ,

that, for xaug= [i] and Zayg= [z

[:] = [ 0 V’ ] | [i] or zaUg = T Xaug and Xaug = T'lzaug
*
X

Then, by definition of stability of the system in z—space, given ¢>0, 3
6>0, such that

V| Zaug(to) — Zaug™ || < 6 = || Zaug(t) —zaug™ | < € ¥ £2t,
Apply the transformation to yield
V| T Xaug(to) — T Xaug) | < 6 = || T Xaug(t) = T Xaug™ [| < €V 121,

Then, in a neighborhood (#) of the equilibrium point, the Jacobian T is
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nonsingular, such that for

. . Vé 0
i 2 in 178 o |1

X,X €
then
| I(xaug — X:Ug) | <l T xang — T x:ug | VX, Xaug €
Now,Vx, xel

V || I(xaug(to) — Xaug) | < || T Xaug(te) — T xaug [| < 6

= || I(Xaug(t) — Xaug) l| < I| T Xaug(t) — T xaug [l < €V t2t,

multiply by ||J||-! both sides. Then, V x, Xaug € 1, given €>0, 3 6>0, such
that

V| aug(to) — Xaug [| < [l2I[-1(6) = &

= || Xaug(t) — xhvg | < 1T 4(e) = €’V t2t,

thus the equilibrium point, [:] = [g] in system space, is stable in the same

sense as that of the transformed system, if assuriptions 1 and 2 hold.
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- Figure 4.6a. LQG controller structure in traasformed space. Assuming the system
with full state accessibility is feedback LTI’able, the regulator is designed in z—space.
This assumption, however needs good state estimates x(t), which may be obtained
through suitable filter design. The Kalman filter is designed in z—space, by use of the
separation principle, and implemented in z—space. The x-—-space state estimates are
then obtained by transformation via the smooth diffeomorphism to system space for

implementing the regulator part of the control law.

The implementation of the LTI’ LQG controller is in the form given in figure 4.6b.
Note that the (LTI) state estimator runs in transformed coordinates with the
diffeomorphism yielding the correct transformation to system coordinates x for use in

the correct gain scheduled control law.
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Figure 4.6b. LTI’d LQG structure implemented. The observer runs in transformed
space, driven by the actual system measurements and yielding physical system state
estimates by transformation of the transformed space estimate via the

diffeomorphism.

The z—space estimator is of the structure

3(t) = (A~ H,0, ~ BKJ(1) + Byyalt) - s (1) (73)

where y, f=() for the regulator. Note that y,(t)=yx(t) in equation (73), so that the
re i

z—space estimator is driven directly by physical system measurements (scaled as

necessary to yield measurements independent of the parameter values). The z—space

state estimate is then transformed to system space via the diffeomorphism

Xt) = #(3(t) (74)

with the system space regulator control law
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9
w = a(®P) - A%P) { Ki(P) H(2(t)) + ). Jp2 P1 ) (75)

i=1

Design Procedure

The design procedure for the case of output feedback follows that of the full state
case, with the added step of designing the Kalman Filter in transformed space and

then transforming to system space to yield an implementable controller.
Add, thus, the step:

5(a) Define the scaled output matrix such that the measurements in z—space are
independent of the parameter P and LTI. Design a Kalman Filter for state
estimation in z—space, with the time constants at least 3 to 4 times faster than
the corresponding regulator time constants. Implement as shown in figure
4.6b, with the estimator running in transformed coordinates and the
diffeomorphism used to transform the z—space estimate into system space for

implementing of the regulator control law in system space.

THE IMPACT OF THE PARAMETER TIME DEPENDENCE

Consider the control law of equation (30)

— _ X aTn D .
u = a(xP)+A(xP) {r— ) g2 i)

i=1
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The effect of the parameter rate of change dependent term P; in the control law is to
cancel exactly such a term which arises in the last row of the transformed coordinates
system. The added term may be igrnored if the effective contribution is sufficiently
smaller than the individual gain margins of the relevant feedback gain K,;, where
v=—K 72=—Kzy Kz, -+ Ky; - -+ K3, _|z. For example, if the gain margin (evaluated
using the Circle Criterion) for individually changing K, is 6K,, and the parameter
rate of change term is of the form APz, then as long as the coefficient AZP<6K,,1,

then this element of the control law may be ignored.

More formally, for the case of a single parameter upon which the system is
dependent, consider the n’th row of the state space model of the transformed (via
diffeomorphism and feedback linearizing control law, i.e. without canceling the P term

as in the feedback LTD'ing control law) system, with v=—K,z

in = B{TP)p _ K (76)

The system may then easily be written in the correct form for use of the Circle

Criterion as

0 1 .-« 0 0
0 01 . 0
) =]l |a) || e (77)
-K-K ... K 1
0 1 n-l

with the output

y(t) = "2=P) - g (78)
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and the nonlinear feedback term

e(t) = -Py(t) (79)

In this form, the Circle Criterion directly yields bounds on the parameter rate of

change P for stability, thus allowing evaluation of whether the (known) P; term may

be ignored in the feedback LTI’ing control law whilst still maintaining stability.

The mechanisms by which this term may be ignored are the following.

1)

2)

"Siow" Parameter variation. In this case, where the parameters vary slowly
when compared to the system closed loop bandwidth, then Px0 on the time
scales of the closed loop system time constants and the term may be ignored.

The scheduling control law is then the autonomous gain scheduled law
u = a(x,P) + f(x,P) v (80)

This is exactly the case typically cited for the gain scheduling problem.

q
"Small" ﬂ(x,P)Z-z%‘—’i‘- P; #-1 (6K; evaluate by Circle Criterion). If this term

i=1
satisfies the Circle Criterion bounds, i.e. is "small" relative to the other

feedback terms, i.e.

q
Tn' .
sup {Il A=) Y G52 Pill} < inf { || 6K |} (81)
te[to,t ~ i=1-+n
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then the effect is equivalent to that of (1) small feedback gain variations which
may be viewed as insignificant in a gain margin sense, or (2) small amplitude
noise in the measurements of the state vector, both of which should not pose

any stability problem.

3) "Fast", Infrequent Parameter changes. If the parameter changes to a new
value, with equivalent parameter change time constant (7;) much shorter than

the closed loop system time constants, i.e.

Tp <<L Tmax (82)

with these time constants as defined in equation (52, 58), and remains at the
new value for time periods much longer than 7nax (i.e. the changes occur
"infrequently"), then the system will maintain the stability properties of the
feedback LTI’d system with the autonomous gain scheduled control law. This
kind of parameter change is equivalent to an instantaneous change, after
which the system remains at the new parameter value and is LTI even under
only feedback linearizing control (the P term is zero in the feedback LTT’ing

law).

EXAMPLE: THE AUTONOMOUS UNICYCLE ROBOT

The gain scheduling technique is applied to the autonomous unicycle robot and has
been successfully implemented and demonstrated on the actual physical system. This
section evaluates the existing gain scheduled controller in the light of the preceding

results, in order to gain insight regarding the stability of the closed loop system.
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Unicycle Parameter Dependent Lateral Dynamics.

The state space model, which is dependent on wheelspeed as derived in [Vos, S.M.] is
given below. For the state vector, with the terms roll and yaw of similar meaning to

common aerospace use,

Roll Rate a(t
x(t) = | Roll Angle| = |4(t (84)
Yaw Rate #(t
then
0 l{_lg kgﬂ!t!q 0
my; myy
O 10 0 |xt)+ | o]fr (85)
—1Y0(t) -1y ng
msz2 mz2 | L M22
with

gravity rolling moment due to roll angle away from vertical

kg
miyy
ko 0(t) gyroscopic coupling from yaw to roll
gyroscopic coupling from roll to yaw

f-
¥ viscous yaw damping due to tire/surface interaction

—L torque actuator (reaction mass) gearing
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Feedback LTT’zation of Unicycle Lateral Dynamics

In order to obtain a feedback LTI’d description of the lateral dynamics, the
controllability and involutivity conditions must be satisfied. To this end, the following

Lie brackets are evaluated about the [unstable] equilibrium point of x(t=0)=0.

adpg =) g - H) i)

[ —k 2“! t!nt'

m;msaz
- 0 (86)

f-!nt

| mM22M 22

kzﬂ(t)nt £
mj;  mp2ms2

adjrg = k o f} ( t )l'lt (87)
maz2m

_1E02(t)kony , _mp
- Mmpym32mM3 2 my, Y-

Controllability

The test for controllability involves evaluation of the rank of the matrix

g1 adsgi ad}a]

0o _ka20(t)n _ ka0 (t)n, ffb

mj;msag m;mjz2Mmjy
kzﬁ(t)nt (88)
0 0 maam

Dy _f& _I‘Zﬂ2(t)k2nt+ LT

- g9 Mo9oMyg9 m;mgomy 9 mgg ¢ -




The rank of this matrix is easily checked to be three if 140, which is the order of the
system (n=3), thus satisfying the controllability condition as long as the wheel speed
is nonzero. Notice that for this Linear Time Varying system, this is exactly the linear
system (x=Ax+Bu) controllability test, i.e. evaluation of the rank of the matrix [B |
AB | A2B].

Involutivity

In order for the system to be integrable, i.e. a transformation into a set of coordinates

yielding a linear system exists, it must be involutive. This is tested for by evaluating

rank([g | ad¢g]) = rank([gjad;g|[g,2dsg]])

where [g, ad £ g] is the Lie bracket evaluated as

dad, g
lg, adsg] = hf g—g,{adfy
0
= [o} (89)
0

Clearly, this Lie bracket cannot affect the rank of the matrix [g | ad 79 g, ad 79 IR

hence deduce that the system is involutive and hence integrable.
Diffeomorphism

Since the system is both controllable and integrable V 01#0, then there exists a

smooth, invertible diffeomorphism via which the coordinate system may be
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transformed such that the system is representable in the form of equation (31).

This is determined by evaluating equations (17) and (18)

_r0Mx) A(x) A q[9(x)
L = 1
¢ T5T s v | ow

9,(x)
0)(x
=_5(§l iy, =0 (90)
and
_r0Mx) Mx) dMx) m;  ms2
L., A =
| Ma22Ma2 |

= M=) ko f(t)ny | OA(x) fyme

F] ¢ m;mas 9 ¢ maaMm3y)

=0 (91)

These conditions are more simply expressed as

0A(x) _ 0Mx) -0

92
¢ dy 2

which is satisfied by setting A=¢. The transformation is then determined as follows.
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_0Mx) A(x) Ax),[f(x)

LA =

A PR TR I
()

=¢ (93)

and

L.LA(x =
1% ST TR T
£()
k ko 0(t) ;
= g+ — Y (94)

finally, get the diffeomorphism, which is smooth and invertible as long as 0,

0
gn x ¥ 040 (95)

Note that the diffeomorphism maps the roll angle and roll rate states directly to

equivalent z—space states, z, and z, respectively, with the implication that time

response of these states are exactly those of the system states ¢ and ¢. In addition,

the third row of the dif eomorphism is exactly the roll equation of motion, zz=g=---.

The feedback LTI’ing control law may now be determined as given by equation (48).

(Note that the third row,Tj, is the only diffeomorphism term which includes the

parameter {)

u = a(xP) - A(xP) { Kef x(t) + J12 1}
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with

3
a(x,P) = —E'IL(X’—P—) and  B(x,P) = —3 :

Eglff A(x,P) £g£f A(x,P)
The necessary terms are evaluated as

kol n
f"f)(x,P) mnmz; (96)

£4)(x,P) kg kol gy g ) (97)

myy mpmaz

0T3 — k 2 (98)
then, the correct feedback LTI’ing control law may be written as

o= Ba((gg

g, 180 _'é _ m;
0T )¢+m22¢ ]{#""m”} (99)
Note that the feedback linearizing control law of equation (22) ignores the extra term

—hli’n;f which is necessary to obtain the feedback LTI’d system, independent of

parameter value or rate of change.
LTI Control Design in Transformed Coordinates (Same Eigenvalues for all Speeds)

The diffeomorphism of equation (95) assumes full state accessibility. If this is the

case, then full state feedback in transformed coordirates is the obvious control
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strategy for the feedback LTI’d system. The result of the feedback LTI’d control law
implemented together with the regulator design in z—space, is a system which
exhibits the same z—space closed loop behavior regardless of the parameter value or
rate of change thereof. For the diffeomorphism in this case mapping directly from z,
and z, to ¢ and ¢ respectively, this implies the same closed loop behavior of roll angle

and roll rate for all values of wheelspeed and rate of change of wheelspeed.

For a control law of the form v = K,z = —[K¢ K; K3z, the closed loop z—space
system is of the form (assuming regulator control)

0 1 O
#(t) =[ 0 0 1 |z(t)

-Ky —K; K,

with K, chosen to yield the desired closed loop eigenvalues. Clearly, it would not be
prudent to arbitrarily assign the closed loop dynamics as the physical system has
limitations on achievable performance. Rather, it makes sense to initially design at
some nominal operating condition in system space (x—coordinates) such that ihe
system meets design specifications. Since the eigenvalues are invariant under the
diffeomorphism and feedback LTI’ing control law, these may then be used as desired

eigenvalues for a pole—placement solution to determining the z—space gains K.

Assigning numerical values to the unicycle equations of motion

kg = 429.96
kit = 10.9440
~I%0 = —0.08930
o, = —0.0245
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48.264
0.1898
25

then the open loop dynamics are given by

0 8.9085 0.226740 0
x(t) = 1 0 0 x(t) + 0 r (100)
—0.47058 0  —0.12908 131.72
’ Open Loop Root Locus vs Wheelspeed
xx
1F . b
5‘ Omega = 0 x
'En OMXXXXXXX X X X X - X a XxEx - X X X p. 4 X X X XOXXXXXX
g < mega =
- 1} : I *« Omega = 10rad/s
X
X
23 -2 -1 0 1 2
Real

Figure 4.7. Root locus of the plant open loop dynamics as a function of wheelspeed
over the range f(t)€(0,10). The LTT'ing control is to achieve LTI performance over

this range of speeds for arbitrary changes in wheelspeed.

The correct LTTing control law of equation (99) including the regulating control law

v = —K,%, may be written in system coordinates as
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uo= Doy M Lo

s m
mjys m22¢ - ]T¢ - “k—;;lf[KonKz]z}

k
=1111122 2&_*_;12‘: muK Vb + m22m11( Ko—Kz-—l—E)¢

f-
]
+ 2 (g -k
= 16,16, Gy] x(1) (101)

where the correct regulator gains in system coordinates are determined as

Gm = "122("k Iflf’; RiEK)) (1022)

am = m”m“(-xo—xz%) (102b)

Gyi) = -2 %-Kz—g ) (102¢)
mofl

Notice that the effect of the feedback LTI’zation is to add the term en to the yaw

rate control gain which the feedback linearizing control law yields.

Gain Scheduling: Slowly Varying Closed Loop Dynamics & Arbitrary Parameter
Changes

The previous section dealt with design of a time varying gain scheduled control law
which yields LTI behavior of the closed loop system in transformed coordinates

(z—space). Using the results of equation (62), it is possible to allow the closed loop
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dynamics to vary with parameter value, whilst still maintaining stability of the
closed loop system. In the case of the unicycle, it is not reasonable to expect similar
closed loop bandwidth at low speed and at high speed, since this places physically
unachievable requirements on the actuators. The closed loop dynamics are thus
scheduled to be lower bandwidth for small i and vice versa. Figure 4.8 shows the root
locus vs 1 of the closed loop dynamics for the gain scheduled design. This is simply an
LQR design with the control penalty (arbitrarily) decreased linearly with increasing

wheelspeed. The resulting controller gains are plotted vs ft in the same figure.
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Figure 4.8a. System space gains achieving slowly varying closed loop dynamics for the
gain scheduled system designed in system space. Lower bandwidth at small 8 reduces
load on the actuators. The eigenvalues of the design donme in system space at
=2.5rad/s are the reference values used for the pole placement design in z—space
which when transformed back to system space, yields the "correct" gains (solid lines)
shown. The dashed line shows the scheduled gains which are curve fits through the
design points (x). Also shown is the root locus of closed loop eigenvalues of the gain

scheduled design, vs 1.
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Z-space gains vs Omega for Gain Scheduled Design

500 , . . .
450 // -
400} s -
350 520/ :
300} -
250 -
200} P ' ]
150} / T ]
00F — e _ .
% 6 8 10

Omega (rad/s)
Figure 4.8b. The z—space gains for the gain scheduled designs of figure 4.8a (designs
done in system space) vary with f in order to yield slowly varying closed loop
dynamics as a function of the parameter . The correct control law is for constant
eigenvalues at all values of I, designed in this example to be the same as the
eigenvalues of the gain scheduled design at 1=2.5rad/s. The variation of the z—space
gains must satisfy the Lipschitz condition (62) in order to guarantee stability for this

system.

The criterion for stability with slowly changing closed loop dynamics (equation 23) is

repeated here, for the (not strictly correct) least conservative case of 7(=7nax,

€
Kl € AP gl 1—Tnax/ ey

12
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with APpax the maximum expected parameter change away from the present value,
and 7p and Tpax the slowest parameter variation and closed loop system time
constants respectively. The smallest allowable gain change (represented by ¢) for

instability is easily determined for this example by the Circle Criterion.
The characteristic equation for the example is given by
3+ Kos24+Kis+Kyg=0 (103)

for the system evaluated at the slowest wheelspeed (#=0.5 rad/s) where the closed

loop dynamics are the slowest (hence the gains K; are the smallest) with eigenvalues

A1 = -3.014+j0.088 Ay = —3.01-j0.088 A3 =—4.125 (104)

e

the z—coordinates gains are (solved by pole—placement)

K, = [Ko K; Ky = [37.4233 33.9111 10.1465] (105)

Applying the Circle Criterion to the system (Ac is Hurwitz, and [A¢),C] observable,
[Ac1,B] controllable)

0 1 0 0

at) = | 0 0 1 |a(t)+ |0 |e(t)= Acsz(t)+ Be(t) (106)
—Ko)—K; K, 1

e(t) = —8Koy(t) (107)

y®) = [1 g glat) = Cx(t) (108)
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where
6K, = 1%151{0 and 6Ky = %5}{0 (109)

For the time varying nonlinearity ¢=6K,(t) assumed in the sector [—p,p], the disk
D(a,f) is then of radius 1/p. From the Nyquist plot (figure 4.9) of the system of
equations (106,108) above, g(ju)=C[sI—-Ac]'B always lies inside the circle (centered
at the origin) of radius %— > 0.034232, thus the bound on the nonlinearity is

| 6Ko| ¢ 29.2 (110)

and, hence, the other acceptable gair variations are
//Lr
.-/‘

-
| 6K,| = % 5K, = 26.5 and | 8Ko| = % fKow=79  (111)

and fore the smallest allowable single gain change for stability,

e =19 (112)




Nyquist Plot for Circle Criterion Gain Margin
O¢02 T ! T o O d o ° T T

o

0.015

0.01

0.005 |f

Imaginary
[

-0.005
0.01

-0.015

o o
o o
Q00490

0.02 Lot L L
770 0.005 0.01 0.015 002 0.025 0.03 0.035

Real

Figure 4.9. Nyquist plot of system of (LTI) equations (106,108) for determining gain
margins by means of Circle Criterion for arbitrary time variation of each gain within
the determined bounds whilst maintaining stability. With this known, the Lipschitz
constant of equation (62) may be determined to evaluate the allowable (while

guaranteed stable) variation in closed loop dynamics of the gain scheduled system.

The Lipschitz constant K, may be determined (conservatively) for all gains
simultaneously using the expression of equation (62). For the closed loop system,
Tmax=1/3 second, 7p=2 seconds and APp.,=5 rad/s (these values are accurate

representations of the actual unicycle capabilities), then
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€
S Ty T

_ 7.9
— o(1—exp(-1/6))

10.3 (113)

Evaluation of figure 4.8 showing the z—space gains vs parameter (1), indicates that

the gain gradients do not satisfy this condition everywhere.

A less conservative estimate for the Lipschitz constant is determined by evaluating
each gain individually over the parameter range as mentioned in remark 4) of

equation (62). In this case, the individual Lipschitz constants are evaluated as

0K 50 29.2

KS aPga[1—emex/ T = B{=exp(~176)) — 280 (1142)
6K,y 2.5

B1E Paali—e o) = S{-exp(=17e)) = 345 (1140)
0K 2 7.9

K, < "APmax”[l__e"Tmax/Tp] =5(1—exp(—1/6))=10'3 (114c)

Comparing these Lipschitz constants with the local gradient (i.e. at 1=0.5) of z—space
gain with respect to wheelspeed of figure 4.10 indicates that the condition is satisfied
not only at 1=0.5, but up to wheelspeeds of 1=2.0rad/s. Re—evaluating the Lipschitz
constants at each design point, roting that for higher bandwidths the Nyquist plot
fits inside a ball of smaller radius, shows that the design easily meats the local

Lipschitz conditions everywhere in the operating range 1€[0.5,5.0]. Note that for the
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evaluation at =0.5rad/s, the nonlinearity satisfies 6Ko(t)€[0,4], such that condition

(2) of the circle criterion may be used to conclude stability for any increase in §Ko(t).

Z-space gains vs Omega for Gain Scheduled Design

500 T T T T T
450+
400

350

300

250

e

200} | Kzt
150

-

100+

50

................

Omega (rad/s)

Figure 4.10. Z—space gains of gain scheduled design vs unicycle wheelspeed. Note that
the Lipschitz constants determined above (equation (89)) are satisfied for l€[0.5,2.0].
Further evaluation at each design point (at 0.5rad/s intervals) shows that the local
Lipschitz condition is met across the full range 1€[0.5,5.0]. Since this evaluation is
done assuming 7,=Tnax in the Lipschitz constant, strictly speaking stability is not

guaranteed, but practically, the system will be stable, as shown in simulation.

Ignoring the Parameter Rate Dependent Term

The control laws of equation (48) for the Feedback LTI'd case, where closed loop
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eigenvalues are constant regardless of parameter value, and equation (53) where the
closed loop eigenvalues vary slowly with parameter value, include the parameter rate
of change term to ensure stability regardless of rate of change of the parameter. In
this section the Circle Criterion is used to determine when the P terms in the

feedback LTI’ing control law may be dropped.

Autonomous Control Law Excluding P term

In this case, the control law is that of equation (48) with K, constant. The closed
loop system with the control law ignoring the parameter rate of change term which is
simply the feedback linearizing law (as opposed to the feedback LTI’ing control law)

yields the extra P terms which are thus not canceled. For

vo= RROGEa  +ahd + B ) (115)

with

The resulting closed loop dynamics in transformed coordinates (z—space) are then

represented by the characteristic equation with the g- terms not canceled by the

control law, thus

59+ (Ka—11)s? + Kis + (Ko + ) =0 (116)

rewrite the system as



174

0 1 0 0
() = | 0 0 1 }z(t)+ [0]e(t)=Ac1 2(t) + Be(t)  (117)
—Ko—K; K, l1]1 ! 1
et =gy (118)
y(®) = 8 0 —ia(t) = C alt) (119)

Noting that the observability and controllability conditions are met with this output
function, the Circle Criterion yields (refer to the Nyquist plot of figure 4.11 for the
gains evaluated at 0=0.5rad/s, K,=[37.4233  33.9111  10.1465], the disk
D(-5.6657,3.8536) of radius 1/p=0.218 which entirely encircles the transfer function

plot, thus

~5.6657 < 7 < 3.8536 (120)

For the unicycle, the parameter change occurs mostly in a first order sense in normal
transition from one steady speed to another and otherwise arises in a sinusoidal form

for the station keeping case.
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‘Nyquist plot for Pdot term Circle Criterion
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Figure 4.11. Nyquist plot for determining the bounds of equation (120). The loop
transfer function plot falls inside the disk D(—5.6657,3.8536) of radius 1/p=0.218 for
all frequencies, thus satisfying the stability criterion if the nonlinearity is bounded

according to (120).

First Order Wheelspeed Changes

In this case, the parameter (1) changes approximately according to the first order

response

At) = Mreg(l—et/™P) + 1 | (121)



176

with the derivative

i) = ";—,gfe‘t/ﬁ’ (122)

then, the term of interest is

3 /o
~ rplI—exp(—t/7p) +lo/Nret]

(123)

= .

Physically, the unicycle never operates at a steady speed of less than y3,=0.5rad/s,
and the top speed is fpax=5.0rad/s, such that the maximum effective value of?l- may

be determined to be (evaluate at t=0, where %is maximum)

] _ el
{ T }max = 3[T=exp(0)70.5/5.0]

= 5.0 > 3.8536 (from equation (120)) (124)

The Circle Criterion is thus violated for this specific change of parameter, but the

Circle Criterion is extremely conservative in the sense that it allows arbitrary time

histories for the nonlinearity % and is extremely sensitive to the initial parameter

value fly. If, e.g. y=1, then { % } N 2.5, well within the allowable sector bounds.
max

Another simple solution is to design the closed loop system to be of higher

bandwidth. For example, setting the nominal feedback gains to K,=[68.8 53.8 13.3]

yields closed loop eigenvalues

A=-7.07 Ay=-311+j0.16 3 =-3.11-j0.16 (125)
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The Nyquist plot of figure 4.12 shows the disk D(-8,7.576), which intersects the real
axis at 1/a=—0.125 and 1/§=0.132, completely contains the plot. The stability range

for ?f is thus

8< b <7.57 (126)

So it may be concluded that this system can safely be operated without inclusion of

the parameter rate dependent term for this type of parameter change.

Nyquist plot for Pdot term Circle Criterion
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Figure 4.12. Nyquist plot for similar evaluation as in figure 4.11, but for higher

bandwidth closed loop system. In this case, the loop transfer function easily fits inside

the disk D(-8,7.576) which intersects the real axis at 1/a=—0.125 and 1/£=0.132,
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allowing greater range of variation of the nonlinearity whilst maintaining stability.

It is possible to view this situation a little more generically, by considering three
cases: 1) closed loop time constants approximately one tenth of parameter change
time constant, i.e. Tpax¥7p/10, 0T 2) Tpax®Tp, OF 3)Trax®107,. Then

e—Tmax/Tp

= Tpl1—exp(—tmax/7p) o/ Mref]

==

Tmax

0.000045 )
Tpl0.99+Mg [ Pref] for Tiax®107p
N 0.368 _ )
" | 7pl0.63+M [Mres] for Tmax®7p (127)
0.9 i
T07max] 0 - 1+o/Mrer] for Tnaxt0.17p,

In each of the above cases, the term may be ignored if the magnitude is smailer than
the relevant sector bound of equation (120). For example, with closed loop time
constants approximately 1/3second and f,=0.5rad/s, required to satisfy the bounds

of equation (120),

1) set 7p=1/30seconds (Tmax®107p), then?r % 1.2x1078 << 3.854. (128)
Tmax
2) set Tp="Tnax, theng— % 1.51 < 3.854. (129)
Tmax
3) set 7p=107max, then | % 1.35 < 3.854. (130)

Tmax
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In (127), it is clear that the situation becomes less tolerable for 8, small and s
large, and vice versa, i.e. more tolerable for small changes of the parameter away
from large 1. Conservatively, the evaluations are only made at the lowest wheelspeed
(i.e. 8p=0.5 rad/s) for expected changes up to the maximum achievable wheelspeed

(nref=5 l'a.d/S).

The above indicates that for this system with the control law ignoring P terms, first
order changes of the parameter may occur with almost any time constant and the
closed loop system will maintain stability. This has been the case in simulation
studies. No case of instability due to first order parameter changes has been found in
extensive simulation, where the control law ignores the parameter rate of change
term, but follows either the feedback linearizing control law or the gain scheduling
control law (where closed loop dynamics are not constant with parameter change).

Figure 4.13 shows simulation results.
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Figure 4.13a. Simulation results for first order parameter changes from 2=0.5 to =10
rad/s (physically achievable maximum speed is 5 rad/s) with various time constants.
No case was found where instability occurred for this type (first order step) of

parameter change.
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Figure 4.13b. f} changed according to first order filter of time constant 7=0.33s which

is approximately the same as the closed loop system time constants.
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Figure 4.13c. Same as figures 4.13a and 4.13b, with tau=0.033s. In this case, the
parameter change is instantaneous in the time scales of the closed loop system which

has time constants of approximately 0.33s.
Sinusoida! Wheelspeed Change
For the case of sinusoidal wheelspeed changes, the frequency is of importance in

determining the stability properties of the system. In this case, the nonlinear

feedback element in the Circle Criterion structure is
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@ _ w A0 cos(ut) .
T = MorMsin(at) (131)

Since the nonlinearity is periodic in this case, it must lie in the sector [—p,p], i.e. the
disk containing the Nyquist plot is centered at the origin. The bounds of equation

(120) thus become
| f

H‘ < 3.854 (132)

Then, for the wheelspeed varied according to f(t)=2.5+2sin(wt), get

@ _ w2cos(wt 2w
L. fﬁféﬁ(% < g2l <3.854 (133)

then

v < 0.964rad/s = 0.153Hz (134)

Note that for iy >> Af, the allowable frequency is much higher. These guarantees are
very conservative, as demonstrated in simulation. Figure 4.14 shows the case of the
unicycle with wheelspeed varied according to the function (t)=2.14+2.0sin(wt). For
this range of parameter variation, the above analysis predicts an extremely
conservative value of ¢<0.031Hz for stability. In simulation, instability is first
observed for the feedback linearized control law (not feedback LTI’d control law) at
w=0.8Hz. Note that this frequency is close to the system roll mode closed loop natural

frequency, which is ¥=0.479Hz.
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Sinusoidal Wheelspeed Variation
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Figure 4.14a. Sinusoidal wheelspeed variation according to f(t)=2.1+42.0sin(wt) for
various frequencies. The "Correct Control" is the full correct control law of equation
(48) including the P term. Note instability at v=0.8Hz for the feedback linearized

system which ignores the P control term (even though eigenvalues are stable, constant
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and well damped, independent of P); almost a full decade higher frequency than the

conservative estimate of 0.03Hz predicted by Circle Criterion based analysis.

Gain Scheduled Control Without Parameter Rate Dependent Term

02— 75~ Roll Angle
R A
o
& -0.2- - 0.033Hz
';.8. 0.4 -- 0.8Hz
065 i ; ; i ;
Time (s)
10 Gain Scheduled Control Without Parameter Rate Dependent Term
0 ‘\/,.:-':i """""""""
E -10 Yauw Holes
200 N/
3% 1 2 3 4 5

Time (s)

Figure 4.14b. Same as figure 4.14a, but for the gain scheduled control system with
closed loop dynamics varying over the parameter range as in figure 4.8a. This control
law ignores the P term, yet still manages to remain stable where the "Correct
without P term" of figure 4.14a went unstable. The reason for this is probably the
fact that the gain scheduled controller has much higher bandwidth at the larger

values of f1.
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Output Feedback Case. Feedback LTI'd LQG Controller.

For the case of full state not accessible, the strategy as outlined previously involves
defining the z—space estimator of equation (73). Assume for the unicycle example
that the sensors measure only yaw rate (¢) and roll angle (¢). The estimator is then
used to obtain optimal estimates of the full state vector z(t)’ =[#(t) ¢(t) #(t)] which
are, in turn, transformed via the diffeomorphism to yield the system space estimate

x(t)=4-1z(t) for implementing the feedback LT ’ing control law.
To this end, define the vutput
yx(t) = [ 01 ] x(t) = Cex(t) (135)

where the scaling of the measurement of ¢ according to 0 is due to the
diffeomorphism of equation (95) being dependent or 9. The diffeomorphism and its

inverse are repeated here

0 1 0 0 1 0
i = (1)11;_‘;%%2_1 §1= _éﬁg%% (136)
The equivalent measurement matrix in z—space is
0 0
¥x(t) = ya(t) = Cxd12(t) = [—-k 0 %]z(t) = Cyz(t) (137)

with the z—space measurement now independent of the parameter fi. This allows

designing of an LTI estimator independent of, and thus valid for all, parameter and P
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values.
For the z—space plant, with process white noise w(t) and sensor white noise v(t)

Z = Azz + Bzw
2 = Caz+v (138)

The noises are all assumed uncorrelated and, in typical LQG fashion, the noise
covariances are chosen as design parameters to yield the desired (fast) closed loop
estimator dynamics. Thus, for

g / ’ 1"10-4 O
B(ww’) = 1 E(vv )=[ . 1x10‘3] (139)

solve for the Kalman filter gains

16.709 —1.1526
48.804 27.601

Hys = (140)

5.5953 —0. 4595}

which yield the estimator closed loop dynamics with K, as in equation (105) for the
regulator structure (yrer=0) (note that the estimator is driven directly by the system

space measuremerts yx(t))

and
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—146.33rad/s
(142)

Ai{[Az — BK; — HisC,]} = { —6.1911rad/s
—3.0038rad/s

These closed loop dynamics are not sufficiently fast as to yield good estimates for use
in the regulator as is apparent in the pole at —3rad/s which is the same
(approximately) as the regulator closed loop bandwidth. This problem cannot be
overcome due to the ron minimum phase nature of the unicycle robot, and sirnply has
to be tolerated if full state measurement is not applied. The system space control law

is implemented using the transformed state estimate

2y ¢
— Z — | 4 ‘
k, 5+ MuLs ? (143)
Tt [
thus the control law is finally
u =—[G¢}G¢}G¢]i(t) (144)

where the gains Gj are as defined in equation (102) including the ! terms. Figure 4.15
shows simulation performance of the LTI’d LQG control system for the parameter i
varied according to the function Q(t)=2sin(wt)+2.1 for w=0.5 Hz, approximately

system closed loop modal frequencies.
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Figure 4.15. LTI’'d LQG control system including P term, applied to the unicycle
simulation. The wheelspeed (parameter) is varied according to fi(t)=2sin(wt)+2.1 for

v=0.5 Hz (3.14rad/s). Compare with figure 4.14.

IMPLEMENTATION ON ACTUAL UNICYCLE ROBOT

The gain scheduled control laws derived here are implemented on the unicycle robot
with great success. The implementation includes the parameter rate of change term in

the control law for stability when fast parameter changes occur, as weil as design with
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the closed loop dynamics slowly varying as a function of the parameter (wheelspeed).

Performance of the gain scheduled system is shown in the many experimental data
plots of chapter 2. These are all for the system with full state accessibility. For the
case of the full state not measured, with the observer as designed in the previous
section, the performance is shown in figure 4.16. Note the relatively poor roll
performance due to the phase lag incurred through the observer. Although the
observer is designed and implemented in z—space, the non minimum phase zeros still
limit the closed loop observer bandwidth, such that in the unicycle example, it is not
possible to achieve an observer with closed loop dynamics 4—5 times faster than the
regulator dynamics. In fact, the closed loop bandwidth is essentially the same for
both the regulator and the observer, resulting in significant phase lag in the estimate
obtained. This serves once again to illustrate that it is not possible to avoid the non
minimum phase issue by transformation or other means; that in the final
implementation, these zeros will always be there to degrade the system performance.

This is an artifact of the physical system and cannot be avoided.
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Wheelspeed and Friction Parameter vs Time

Figure 4.16. LTI'd LQG controller implemented on actual unicycle robot. The
inherent phase lag due to the closed loop bandwidth of the observer being limited by
the non minimum phase zeros of the lateral dynamics is apparent in the roll rate
estimate plot. This phase lag significantly degrades performance of the closed loop

system. This data is for the closed loop system including the adaptive friction
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compensation scheme (adaptive switching controller) as defined in chapter 3.

CONCLUSION

In this chapter, the gain scheduled control problem has been formally addressed
resulting in a clearer understanding of the design procedure than previously known.
The basis of evaluation of such parameter dependent systems is to transform the
system into a locally (about the equilibrium point of concern) tangent space to the
system manifold by means of suitable feedback linearizing control law and a
diffeomorphism which is smooth in state variables. Extending this further to the case
of suitable feedback LTI’'zation, the transformed system is LTI for all parameter, P,
and rate of change of parameter, P, values and analysis and synthesis of controllers

may then proceed in the vast world of linear control theory.

The gain scheduled control system must include parameter rate of change dependent
terms in order to guarantee stability for any value of, or rate of change of the
parameters. The old notion that the parameters must vary slowly for stability is only
valid in the case where the P term is ignored in the control law, which is the case for
these types of controllers designed in the traditional fashion of curve fitting through
the gains of LTI controllers designed at various points in the operating envelope. An
easy to evaluate means of quantifying how fast the parameters may vary if the P
term is ignored is described, based on the Circle Criterion applied to the transformed

space system.

Since it is often desirable to have the closed loop dynamics slowly varying as a

function of the parameters, a measure of how fast this may be done is given. The
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simple expression involves both system closed loop time constants and fastest
expected parameter change time constants, yielding a Lipschitz constant according to
which the (transformed coordinates) gains must be locally Lipschitz continuous in
transformed space, to satisfy stability margins determined by another (different to
the case of evaluating stability for fast parameter changes) application of the Circle

Criterion

Finally, for the case of the full state not accessible, an "LTI’d LQG" design
methodology is defined, resulting in an LTI estimator implemented in transformed
coordinates and driven by the physical system measurements, which gives least
squares optimal estimates in z—space. The estimates z are then transformed to system
space via the feedback linearizing diffeomorphism to yield system state estimates for
use in the feedback LTI’ing (gain scheduled) control law which includes the regulator

designed in transformed coordinates.

All of the techniques defined are applied to the unicycle robot example and also
implemented on the actual robot. Performance is as expected, as is demonstrated by
the results presented in chapter 2, in which the feedback LTId control law or gain
scheduling control law with slowly varying closed loop dynamics as derived in this

chapter, is implemented.



CHAPTER 5. SUMMARY AND CONTRIBUTIONS

Contributions

Feedback linearization is extended to explicitly account for the parameter dependent
case, where parameters vary in a known fashion. Stability conditions are defined for
two cases: 1) the closed loop dynamics are LTI and 2) closed loop dynamics slowly
varying with parameter value. Use of the circle criterion for stability to determine
conditions on the parameter variation for which the P terms may be ignored from the

control law, is demonstrated. This is the traditional gain scheduled controller case.

For the case of output feedback (full state inaccessible), under assumptions of 1)
scaling of the measurement matrix allows the z—space measurement to be
independent of the parameter value (P) and 2) the diffeomorphism may be
represented arbitrarily well by a first order Taylor expansion in a neighborhood of the
equilibrium point, the gain scheduling technique is extended to an LQG setting with
stability guarantees. The (single design point) observer, which runs in z—space, is

valid for any parameter value and rate of change.

Necessary implementation extensions to standard Model Reference Adaptive Control
techniques applied to friction compensation are determined. The problem to which
this is applied is the friction arising in yaw between the tire and surface. The
strategies are: 1) Tracking error reset, where the Reference Model trajectory is
periodically reset to equal the system response, prevents the traditional "blowing—up"
problem of these algorithms. 2) Bounding of the friction model paraineters to within

physically reasonable values prevents parameter drift in conditions of reduced

194
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persistence of excitation and thus improves stability robustness. 3) Implementing the
friction compensation in an adaptive dither setting achieves remarkable performance
improvement for this type of friction problem, where the nominal operating condition
is zero yaw rate. 4) Finally, for fast operating condition changes, the friction model
parameters are not constant and the standard MRAC parameter update laws are not
valid. Memorizing (through previous testing) a nominal model of the friction
dependence on operating condition solves this problem, since the adaptive control
algorithm then only has to adapt on the error between the nominal model and the
correct model, which is typically a constant error approximately independent of

operating condition, hence the adaptive parameter estimation laws are valid.

Implementing all of these strategies together, yields an extremely well performing

adaptive friction compensating controller.

Unicycle Robot Performance Capabilities

The unicycle is routinely operated with all of the discussed control strategies active.
The gain scheduled lateral controllers include all parameter rate of change (P) terms
and the adaptive friction compensation algorithm includes the discussed error reset,

parameter bounding, memorized nominal model, and adaptive dither strategies.

The robot is capable of stable operation over a range of speeds and surface conditions.
Speed ranges for which successful operation has been demonstrated, are from
0=0.5rad/s (forward speed of ¥ 0.12m/s) up to 5.7rad/s (forward speed of ~ 1.37m/s).
The top speed is limited by saturation of the A/D converter measuring wheelspeed;
this is obviously easily alleviated by suitable scaling of the signal from the

tachometer. Minimum speed is limited by the lack of roll controllability at
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wheelspeed of zero. Good, stiff performance is maintained for speeds down to

~0.5rad/s. At slower speeds, the actuators easily saturate in the attempts to

maintain stability.

Performance of the adaptive friction compensation has been demonstrated on a
number of surfaces. For steady speed of approximately 3rad/s, the robot has driven
between surfaces of polished tiled laboratory floor and 1/4 inch rubber mat as well as
between a pebbled paving surface and the same rubber mat, with failure rate of
approximately one in eleven attempts. Failure being that the system destabilizes due
to the friction adaptation not achieving suitable friction compensation timeously. The
unicycle has been operated over the full range of speeds on surfaces of tiled laboratory
floor, dry asphalt paving, wet asphalt paving and pebbled paving (pebbles of 3/4 inch
mean diameter in concrete matrix). The adaptive friction compensation maintained
good stability and performance with exactly the same adaptive algorithms act.ve in

all cases.

The gain scheduled controller capability has been well tested, with transition from
the minimum speed to the maximum speed through step wheelspeed commands to
the longitudinal controller. If, however, she initial conditions are unsuitably far from
the nominal equilibrium point (vertical upright balanced condition), i.e. if roll errors
are initially greater than 60 to 80, even with roll rates very small (<0.1rad/s), the
system may not recover and instability may result. This is more the case for
transition from low speed to high speed, than from high speed to low speed due to the

lower bandwidth of the lateral controller at low speed.

Pitch stability robustness is very good. The pitch controller has been successfully

operated with the turntable removed (turntable mass is 23kg located 0.5m above the
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nomiral C of G, with system total mass (including turntable) of 50kg and nominal C
of G position at 0.9m above ground contact point) and is easily able to recover from
100 pitch angle errors. When failure in pitch occurs, it has always been due to

saturation of the motor current amplifier cards.

Table 5.1 shows a summary of a series of sixteen test runs in a parking lot of
approximately 100 yards by 60 yards dimensions. Surface conditions varied from very
wet (puddles of water) asphalt to semi—dry asphalt with the accompanying range of
dips and bumps and lose gravel common to any parking lot. Three failures occurred
due to an as yet unknown reason, which has been conjectured to be due to
temperature cut—out of the actuator amplifier cards. On six occasions, the run was
aborted due to turntable spinning up to too high a speed, which leads to strong
gyroscopic coupling between the lateral and longitudinal dynamics, for which the
controllers are not designed. All other runs (seven) ended as a result of running to the
edge of the parking lot. These tests were done for the system commanded straight
ahead at nominal wheelspeed setting of 3.3rad/s, although drift in the yaw rate sensor
lead to drift in heading and the undulating nature of the surface caused the unicycle

to operate over the wheelspeed range of approximately f1€(1,4.5) rad/s.
Future Work

The output feedback case of the gain scheduled controller may be extended to not
require the assumption of linearizability of the diffeomorphism in a neighborhood of
the equilibrium point. [Cre Granito—Valavani—Hedrick] have done similar work,

where the strategy is based on Input—Output linearization of the system.

The remaining major goal is to realize a control strategy capable of stable station
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keeping. This involves for—aft periodic oscillation of the unicycle in order to maintain
lateral controllability for part of the for—aft cycle and thus the ability to recover roll

€ITOrIS.

The unicycle also remains an interesting testbed for further control algorithm

research, whether nonlinear, linear or non—parametric regression based.
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Duration | End of Run Comments
37sec t/table spinup 15deg left at 4sec

20deg left at 12sec

t/table spinup at 23sec
23.5sec | t/table spinup | 20deg left at 10sec, downbhill
36.5sec | roll over 20deg left at 2 & 11sec
22.6sec | t/table spinup | smooth throughout
29.6sec | end of park 10deg left at 10sec
27sec end of park 70deg left at 2sec

30deg left at 15sec
24sec t/table spinup | 10deg left at 2sec
21sec end of park 10deg left at 2sec
25sec t/table spinup | 20deg left at 3sec
31sec end of park 70deg left at 15sec
23sec t/table spinup | 60deg zig-zag at 3sec
38sec roll over S5deg ieﬁ at 15 & 25sec
35sec end of park generally straight ahead
35sec end of park 30deg right at 7sec

30deg left at 13sec

23sec end of park slow left drift to edge of park
39sec roll over 30deg zig-7ag at 26sec & 35sec

Table 5.1. Summary of autonomous test runs in open parking lot (x100x60 yds).

Setpoint values: steady forward speed (Rref=3.3rad/s) and steady heading.
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