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Abstract This paper explores the use of designed experiments in an on-line environ-
ment. Motivated by real-world examples, we model a scenario where the practitioner
is given a finite set of units and needs to select a subset of these which are expended
towards a one-shot, multi-factor designed experiment. Following this phase, the de-
signer is left with the remaining set of unused units to implement any learnings from
the experiments. With this setting, we answer the key design question of how much
to experiment, which translates to choosing the number of replicates for a given de-
sign. We construct a Bayesian framework that captures the expected cumulative gain
across the entire set of units. We derive theoretical results for the optimal number
of replicates for all two-level, full and fractional factorial designs with 7 factors or
fewer. We conduct simulations that serve as validation of the theoretical results, as
well as enabling us to explore scenarios and techniques of analysis that are not cap-
tured in the theoretical studies. Our overall results indicate that the optimal allocation
of units for experimentation varies from 1% to 20% of the total units available, which
is mainly governed by the experimental environment and the total number of units.
We conclude that experimenting with the optimal number of replicates recommended
by our study can lead to a cumulative improvement which is 80− 95% greater than
the expected cumulative improvement gained when a practitioner chooses the number
of replicates randomly.
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1 Introduction

There has been a vigorous exchange of views within the community of Research in
Engineering Design regarding the relationship of design theory to concepts of ratio-
nality (Reich (2010)). Much of the debate has centered on challenges of maintaining
consistency of our decisions with declared principles and stated preferences. An alter-
native viewpoint is that correspondence is a more fitting criterion by which to judge
decision making methods. Katsikopoulos (2009) argued that a decision process can
be viewed as good when its performance in its authentic environment is good even
if the process lacks internal logical coherence and therefore could, in theory, lead
to poor decisions in some cases. In a position paper that summarizes this debate,
Reich (2010) ends by asking researchers to explore several different topics including
new issues/criteria that must be addressed when dealing with selection methods. That
topic is the one taken up in the present paper although admittedly we constrain our
attention to a narrow slice of selection methods, viz, gathering information in a live
setting in a way that optimally supports selection.

An important development relevant to this debate about decision making has been
the explosion of new theory and applications in data analytics and machine learn-
ing. We appear to be at the beginning of a decades-long trend toward increasingly
data-intensive, evidence-based decision making (Jordan and Mitchell, 2015). This is
highly relevant to design theory because, in many cases, machine learning algorithms
engage in selection among alternatives. Notably, the approach that has dominated ML
so far is strongly correspondence-based. The best current algorithms do not result in
self-consistent rule sets for rational decision making but rather they are pattern recog-
nition schemes that explicitly define success as providing good results across large
empirical training sets.

In the age of Machine Learning, the data have proven to be the carriers of value
more so than the data processing methods. The most successful companies make little
effort to protect algorithms (in fact they tend to distribute them freely) and, by con-
trast, are aggressive in gathering and protecting data sets. It’s worth reflecting what
lessons may be garnered for design theory. Perhaps we will find that good design
decisions will increasingly be the ones made based on the best data sets (once we un-
derstand what best really means). While best data sets are sometimes the largest ones,
in other settings they might be the highest quality data sets with the most relevant and
timely information. Experimentation is an approach intended to generate such useful
data.

Emerging from the rapid expansion of machine learning has been a vibrant aca-
demic community studying on-line experimentation through the bandit framework
(Sutton and Barto, 1998). In the multi-armed bandit problem, a limited set of re-
sources must be allocated between competing (alternative) choices in a way that max-
imizes their expected gain. This is essential when the algorithms for machine learning
are not simply trained once on a predefined data set but instead have to continuously
learn in an on-line setting. This raises the important question of how much resource
to spend on exploration (which fosters more robust learning) and exploitation (which
provides benefits from having learned).
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In the context of design, our decisions are specific enough that they require a
data gathering effort highly tailored to the task at hand. Our study presents a common
real-world context that spans multiple domains and entails the use of experimentation
for improvement. In such a setting, the key task for the statistician is to determine an
appropriate experimental plan along with the required replicates. This, is often done
with the experimental budget in mind. The important trade-off here is to balance the
cost of experimentation with the cost of failing to accurately characterize the effect
of a particular input factor. The latter could lead to the exclusion of an input factor
from the model, or in some cases, it could result in an inference favoring a less than
optimal setting. With this dichotomy in place, academics and practitioners have come
up with various approaches to determine the number of replicates for a given design
(we discuss these in greater detail in Section 2).

In this general form, such a conception assumes that the experiments are con-
structed in an offline environment. Here, the cost of experimentation is quantified
through various channels such as the cost of downtime, labor costs, material costs,
operational cost, etc. The product or process resulting from the experiment however
does not reach the end user. This might not be feasible in a wide range of environ-
ments where the experimentation is conducted on the real system–as opposed to a
model–and downtime is not an option. In such systems, the costs of experimenting
are, in a sense, the costs associated with producing inferior products. This is precisely
the setting that is studied in bandit framework in reinforcement learning. However,
the bandit conception of the problem is one of sequential learning. This might be
very useful for wide range of applications, such as online Ads, recommender sys-
tems, where bandit algorithms have been successfully deployed. There exist a wide
range of applications where a planned multi-variable experimental design needs to be
constructed, before interacting with the system. In particular, we contend that exper-
iments in production-related setups and design initiatives, owing to the time lines for
experimental implementation and delayed feedback of the response, would require
a parallel one-shot approach that is typified in DoE. We illustrate this through two
concrete examples:

1. Example A (Production): A foundry has an order to create 1000 Aluminum casts.
They would like to create casts with minimum hydrogen gas porosity (all casts
have some porosity and are still fit for use but the quality of our work is mea-
sured by the porosity). They can make minor adjustments to three furnace set-
tings, where each can be set at two levels (eight treatment combinations). They
would like to experiment with the furnace parameters to determine which settings
minimize porosity for this particular part. The eight furnace settings can be used
to separately create a pre-specified volume of molten metal to be poured into a
predetermined number of casts (for each of the eight combinations).1 Using the
results from the one-shot experiment, the remaining (1000 minus the number of
casts already made) are set to the best settings. How many casts should we com-
mit to experimenting on the furnace settings?

1 In this case, it would be impractical to operate the furnace, adaptively, by melting metal and changing
settings for one cast at a time as the bandit framework would require
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2. Example B (Design): A boutique athletic footwear brand decides to put out a
set of limited edition shoes, three months before the Rio Olympics 2016. They
anticipate a maximum demand of 10,000 pairs and have sourced the materials
required for this. The brand is considering two different color themes, and two
different sizes of the logo on the shoes. Their objective is to minimize the unsold
units before the Olympics. The manager decides to run an experiment by trying
each of the four possible combinations. She will pick a winner based on 30 days of
sales data from the experiment to commit the remaining units (10,000 minus the
shoes that were used in the experiment). How many of the 10,000 shoes does she
commit to the experiments? Again, in this example more adaptive approaches–
like the bandit framework–are precluded by the fact that the reward is delayed (it
takes 30 days of sales data to make meaningful conclusions) and the decision-
making can support at most one experimental iteration.

This is the environment we choose to study. One, where a one-shot design like an
A/B test, RCT, or a designed experiment is required to improve a system or product.
However, the experiments are conducted in an on-line setting where the resulting
outcomes are not discarded. Additionally, a constraint is imposed on the total number
of units which can be subject to the treatments, since an infinite potential to exploit
the findings of an experiment would logically justify infinite experimentation.

For a given experimental plan, the critical design question then becomes to choose
the number of replicates that the statistician needs to conduct in this on-line environ-
ment. This is the overarching question that this study chooses to address. Intuitively,
one can see that there is a trade-off. In example A, if the experimenter chooses to
conduct a 100 replicates across the eight treatments, she might find the optimal one
with sufficient statistical certainty. However, this would leave her with only 200 casts
to implement her knowledge. Whereas, if the experimenter ran a single replicate, she
might be exposed to a higher risk of making a sub-optimal conclusion on the factor-
levels for the remaining 992 units.

In this study, we present the mathematical framework to determine the optimal
number of replicates under certain assumptions on the environment. We specifically
consider the case of factorial designs. We demonstrate our approach by deriving the
optimal replicates across the entire range of 2-level full factorial and fractional fac-
torial designs for 7 factors or fewer. We augment this study with a computational
analysis that looks at different approaches of analyzing designed experiments as well
as accounting for various regularities in the environment.

The rest of this paper is structured as follows: In section 2 we present the litera-
ture pertinent to this study. In section 3 we present the main results of the paper for
all the 2-level full and fractional factorial designs with 7 factors or fewer. In section
4, we present an empirical validation of the theory, and also provide indicative nu-
merical results for the different environments through different techniques. Finally,
we conclude our work in the section 5 and suggest some areas for future work.
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2 Related Work

Given the multidisciplinary nature of our study, the areas of related literature are also
manifold. First, we discuss related work from the perspective of the design philos-
ophy we adopt. This is broadly aligned with other studies that look at the effect of
interventions over time rather than a single point optimization. We then study the
body of literature pertaining to the use of statistical methods in design engineering
to improve processes and products. Finally, we discuss the more methodologically
relevant literature; we go beyond the design engineering context and study literature
related to the statistics inspired question of sample size determination, in both off-line
and on-line scenarios.

From a design philosophy perspective, this paper builds upon a tradition of de-
sign scholarship in which the behavior of companies and teams are assessed using a
long-term perspective. Decisions can be evaluated not only on the basis of the coher-
ence of the process they use Katsikopoulos (2009) or the probabilistic properties of
outcomes from a single project, but rather can include consideration of the future po-
sitioning of the company on many later projects. Whitney (1993) studied the product
design and risk management strategies of Nippondenso Co. Ltd by conducting exten-
sive on-site visits and interviews over a period from 1974 to 1991. Whitney observed
that a key to Nippondensos success was a framing of their decisions by classifying
products according to the demands that they placed on their manufacturing infrastruc-
ture. In addition, developments were made in manufacturing infrastructure to enable
families and sequences of products to be delivered as the needs of their partner firms
evolved. As part of their Jikigata-Ken approach, action plans commit resources to
improvement efforts that, in some ways, parallel the commitment to a period of ex-
perimentation that we seek to guide in this paper. Following in that vein of design
scholarship, Gonzalez-Zugasti et al. (2000) considered the ways that product plat-
forms can be architected to enable high performance and flexibility. They studied the
behavior of Team X at JPL as a family of interplanetary missions were designed.
They documented an iterative process in which platforms were chosen, portions of
the design were frozen, and subsets of variables were altered to improve performance.
The relationship to the present study arises because the challenges of space missions
drive an emphasis on flexibility and performance over a long time horizon. Although
Team X did not necessarily field a sequence of missions during the scope of the
study (Gonzalez-Zugasti et al., 2000), they did document a design process adaptable
to such a sequential improvement process extending over the launch and design of
several missions.

This paper, similar to many others in the design literature, builds from a basis of
statistical theory and technique. Osio and Amon (1996) developed an adaptive en-
gineering design methodology based on sequential sampling. Similar to the current
paper, they support the designer in information gathering for the purpose of perfor-
mance improvement. Their method was not for the on-line setting and instead used
computational models of the design and surrogates thereof rather than physically in-
stantiated systems in the hands of the intended users. Their procedure was Bayesian
relying on a prior judgment of the designers to establish a stochastic process reflect-
ing their initial level of confidence which was then updated by data from computer



6 Nandan Sudarsanam et al.

simulations. Their process of sampling the space was based on A optimal and D opti-
mal designs with no replication (as is common in computer experiments) whereas the
current paper employs full and fractional factorial design with replication since the
on-line setting will exhibit variation across replicates. Martin and Ishii (1997) used
empirical data from industry to guide development of quantitative tools. They devel-
oped indices for commonality, differentiation, and set-up and proposed to combine
them in a regression based decision procedure. Orsborn et al. (2008) employed Prin-
cipal Components Analysis to determine the characteristics within vehicle classes
that could then be used by product designers to form new designs incorporating de-
rived shape relationships. İç (2016) developed an optimization method combining
statistical DoE with the Technique for Order Preference by Similarity to Ideal So-
lution (TOPSIS). This paper is similar to the current one in that it applies DoE to
gain information optimally under resource constraints but it differs in its focus on
multi-criterion decision problems whereas we assume that a single criterion has been
formed to guide decision making.

Independent of the design engineering context, there are multiple well established
approaches in the statistics literature which focus on determining the sample size for
an experiment. These broadly rely on frequentist inferencing. These foundations are
commonly used in single factor experiments which are extended to the multi-factor
settings. Montgomery (2008) summarizes three broad approaches to determining
sample size: (i) The operational characteristic (OC) curve, (ii) Maximum permissible
standard deviation increase, and (iii) Confidence interval estimation methods. All ap-
proaches essentially require the experimenter to specify probabilistic requirements on
the ability of the experiment to determine differences in the treatments. In multi fac-
tor settings the detection of differences also accounts for interactions between treat-
ments of different factors. This concept has also led to simplified heuristics, such as
those put forth by Berndtson (1991); Schmidt and Launsby (1989). Other extensions
include explorations to multiple response types (Machin et al., 2011; Newcombe,
1998), and to the use of phases of experiments to account for lack of knowledge of
critical parameters (Simon, 1989; Simon et al., 1985; Stein, 1945). While these ap-
proaches help with the traditional experimental design setup, they are less useful in
the on-line setting. There are two key differences. The first is that the probability of
failing to attain statistical significance when there is a known difference in treatment
mean, also referred to as the Type II error, is not relevant to us. The practitioner is
required to choose a treatment combination irrespective of statistical significance.
Therefore we adopt a framework that uses a similar approach to the OC curve, but
instead quantify the probability of erroneously concluding on an inferior treatment.
The second noteworthy difference is that in the traditional setup an increase in repli-
cates translates to an increase in the performance of the experimental findings. This
is what leads to the reformulation of the problem where a practitioner typically de-
termines the minimum number of replicates required to attain a pre-specified perfor-
mance level. In our setting this requirement need not be specified. The cost associated
with extended experimentation is implicitly built in as a cost of poorer performance
which is equated with the gains. Finally, in the frequentist approach to DoE, a solution
to on-line experimentation is proposed through EVolutionary OPeration (EVOP) by
George E.P. Box (Box, 1957). The objectives of EVOP align with ours in that EVOP
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seeks to facilitate process improvement in the normal course of production. This is
synonymous with experimenting in an on-line environment. However, there are two
significant differences between EVOP and our work. In terms of the environment,
we assume statistical control, temporally, whereas EVOP seeks to adjust for an ever
changing environment which could have drifts in the process. In terms of method-
ological strategies of minimizing the risk due to experimentation, EVOP adopts the
approach of running traditional designed experiments over a narrower range. This, the
authors note, could run the risk of failing to capture macroscopic trends, either owing
to locally different behavior, or noise. Our approach, and those in traditional Bandit
studies, explore the question of how much to experiment and on which treatments,
for a fixed factor-level definition assuming a stable process.

An alternate line of inquiry is seen in the Bayesian studies that seek to determine
the optimal sample size. Here, assumptions are made on the prior distribution of the
treatments or the treatment differences. These techniques then adopt various crite-
ria of performance, which incorporate both the costs and benefits of increased sam-
ples (Fraser and Guttman, 1956; Pham-Gia and Turkkan, 1992; Schlaifer and Raiffa,
1961; Schönbrodt et al., 2017; Tan and Machin, 2002; Willan and Pinto, 2005). The
techniques then seek to identify sample sizes or dynamically make stopping rules
for sampling based on this criterion. A study that typifies this approach is seen in
Willan and Pinto (2005) which uses the idea of expected value of sample information
(EVSI) Schlaifer and Raiffa (1961) to quantify the probabilistic value of experiment-
ing against the costs associated with conducting experiments. Our work also broadly
adopts the Bayesian approach and defines a criterion of cumulative improvement that
we are maximizing. However, our work is different from Willan and Pinto (2005) and
the other studies in that it is a specific implementation of the generic Bayesian ap-
proach for sample size determination to factorial designs. More importantly, since it
is not a general framework for decision-making, the costs and benefits are explicitly
defined (in the other studies that are referenced the costs and benefits are parameters
which are inputs to the model). In other words, the online setting motivates us to not
have any exogenous costs or benefits, but are instead built into the process of exper-
imenting and exploiting. This, in turn, results in fewer parameters and enables us to
create close-form solutions to identifying the optimal number of replicates.

Finally, the main and vast body of work related to sequential experimentation
comes from the Bandit framework (Sutton and Barto, 1998). If the goal is pure explo-
ration (offline environment) then this is captured in studies of best-arm identification
(Audibert and Bubeck, 2010). A stronger parallel to the multi-factor DOE setting can
be seen in the work of Soare (2015) which extends the sequential exploration through
linear bandits and discusses it’s connection to the G-optimal design. However, our
problem statement seeks to balance exploration and exploitation in the online setting
which is typified in the multi-armed bandit problem. Again the DOE multi-factor set-
ting can be captured through the linear bandit conception and has been discussed in
literature (Sudarsanam and Ravindran, 2017). However, an important distinction with
these online learning approaches is the process of sequential decision-making, which
restricts the experimental problem to non-parallel deployments only. Our work is
built to exploit typical designed experiment settings which can, and sometimes must,
be deployed in parallel.
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3 Theory

In this section, we put forth the mathematical formulation of the problem statement
and present theoretical results. We conceptualize a Bayesian framework to the Gen-
eral Linear Model with two-way and three-way interactions. We assume Gaussian
priors for the co-efficients as presented in Joseph (2006). We then derive the expected
value of improvement for various orthogonal experimental designs as a function of
the number of replicates and the underlying environment. We then extend this cumu-
lative improvement in the online context and identify the optimal number of replicates
as a function of T , the total number of units which can be subject to the experimental
settings.

The derivations for expected improvement are broadly along the lines of Frey
and Wang (2006), with some notable extensions. The study of Frey and Wang (2006)
was primarily concerned with resolution III arrays, which has the unique structure of
two-way interactions being aliased with main effects, which in turn results in certain
simplifications for the analysis of improvement. We extend this approach to all forms
of factorial designs. Also, our work extends to three-way interactions, while the pre-
vious study was confined to two-way interactions. Finally, and most importantly, our
major contribution lies in extending the derivation to cumulative improvement in the
online context and deriving the optimal number of replicates which was not the focus
of the previously mentioned study.

Similar to Frey and Wang (2006), our study seeks to determine the factor-levels by
analyzing only the main effects, without any statistical significance tests. The authors
of this study acknowledge that this can be a limitation, especially in environments
where the interaction strength is high. While this analysis of experiments does not
seek to explicitly model interaction terms, our study still captures the effect of inter-
action terms and quantifies the consequences of failing to exploit them. Therefore,
if practitioners seek to use more advanced methods of analyzing data, the optimal r,
which we derive in this section can be thought of as an lower bound. The underly-
ing assumption here is that the other methods will lead to an improvement greater
than or equal to those provided by an analysis that is limited to main effects. Also, in
section 4 we explore computational results of explicitly modeling both main effects
and interaction terms through regression, and compare these to the theoretical results
developed in this section.

3.1 Mathematical Framework and Notations

y(x1,x2......,xk) =
k

∑
i=1

∆i

2
xi +

k−1

∑
i=1

k

∑
j=i+1

∆i j

2
xix j +

k−2

∑
i=1

k−1

∑
j=i+1

k

∑
k= j+1

∆i jk

2
xix jxk +εk xi ∈{1,−1}

(1)
where

y(x1,x2, ...xk)−Response for the given factors
xi−Factor which takes value either 1 or -1
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∆i ∼ N(0,σ2
m)−Coefficient of main effects

∆i j ∼ N(0,σ2
2int)−Coefficient of second order interaction effects

∆i jk ∼ N(0,σ2
3int)−Coefficient of third order interaction effects

εk ∼ N(0,σ2
e )− Irreducible error

A list of related parameters

Pr(L∗)−Probability of choosing the optimal level
EId−Expected Improvement for an experimental design d

CId−Cumulative Improvement for an experimental design d

r−Number of replicates
r∗−Optimal number of replicates
k−Number of factors
p−Degree of fractioning for a fractional factorial design
T −Total available number of units for exploration and exploitation
α−Likelihood of main effects being statistically significant
γ−Likelihood of second order interaction effects being statistically significant
ρ−Likelihood of third order interaction effects being statistically significant

φ =
σm

σe

ψ =
σ2int

σe

η =
σ3int

σe

Ns−Number of second order interaction effects which are confounded with a main effect
Nt −Number of third order interaction effects which are confounded with a main effect

3.2 Number of replicates for full factorial designs

Theorem 1 If a two level full factorial design with k factors is conducted in an online
setup, where there are a total of T units and the environment is characterized by
equation 1 with its corresponding priors, then the optimal number of replicates is
given by:

r∗ =
−3 +

√
9 + 2T φ 2

2kφ 2 (2)

Proof In a 2k design all three-way interactions and two-way interactions are com-
pletely orthogonal to the main effects. Hence any effort to estimate the main effect
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co-efficients (or just their sign in order to make a decision) is unaffected by the pres-
ence of these terms. This leads to a simplification of equation 1. We rewrite this as:

y(x1,x2......,xk) =
k

∑
i=1

∆i

2
xi + εk xi ∈ {1,−1} (3)

where the assumptions and corresponding priors still hold.
Here, we choose a level (−1 or +1) for each factor independently. The probabil-

ity of choosing the correct level is a function of whether our estimate of ∆i (∆̂i) is the
same sign as ∆i. In other words, the gap between the superior treatment to inferior
treatment is represented through |∆i| which is a half-normal distribution. The prob-
ability of picking the superior treatment is if our estimate has the same sign, which
can be captured by the probability that N(|∆|, σ2

e
2k−2r ) takes on a value greater than 0.

This is shown in the double integral below

Pr(L∗) =
∫

∞

0

∫
∞

0

1
σe√
2k−2r

√
2π

exp(− (x−∆)2

23−kσ2
e

r

)dx

√
2

σm
√

π
exp(− ∆2

2σ2
m

)d∆ (4)

The outer integral (related to ∆) captures the probabilistic magnitude of the gap
through the half-normal, where as the inner integral, over x, conveys the likelihood
that the estimate of ∆ is a positive value.

Then, the expected improvement after experimentation builds on the idea that
with the probability Pr(L∗) (equation 4), the experimenter will gain an improvement
of ∆

2 , and with the 1−Pr(L∗) the experimenter will lose a value of−∆
2 . The expected

improvement (EI) after using 2× r units is formulated below:

EI2k (r) = α× k× (
∫

∞

0

∫
∞

0

∆
2

1
σe√
2k−2r

√
2π

exp(− (x−∆)2

23−kσ2
e

r

)dx

√
2

σm
√

π
exp(− ∆2

2σ2
m

)d∆

+
∫

∞

0

∫ 0

−∞

−∆
2

1
σe√
2k−2r

√
2π

exp(− (x−∆)2

23−kσ2
e

r

)dx

√
2

σm
√

π
exp(− ∆2

2σ2
m

)d∆)

(5)

=
αkσm

√
2π

√
1 + 22−k

r
σ2

e
σ2

m

(6)

if we write φ = σm
σe

then

EI2k (r) =
αkσm

√
2π

√
1 + 22−k

r
1

φ2

(7)
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The equation above captures the expected improvement post experimentation which
can be exploited on (T −2kr) units and the expected improvement during the exper-
imental phase ( of 2kr units) is zero. The cumulative improvement after T units is
given by:

CIT = (T −2kr)
αkσm

√
2π

√
1 + 22−k

r
1

φ2

(8)

To find the maxima, we differentiate equation 8 with respect to r and equate it to zero.

∂ ((T −2kr) αkσm
√

2π

√
1+ 22−k

r
1

φ2

)

∂ r
= 0 (9)

The main claim of Theorem 1 as shown in Equation 2 follows from simplifying
the equation above.

3.3 Number of replicates for fractional factorial designs

Table 1: Optimal number of replicates for fractional factorial designs

Design Specification Expected Improvement Theoretical r∗

23−1
III

3ασm
√

2π

√
1+γ

ψ2

φ2 + 1
r

1
φ2

−3+
√

9+2T (φ2+γψ2)
4(φ2+γψ2)

24−1
IV

4ασm
√

2π

√
1+ρ

η2

φ2 + 1
2r

1
φ2

−3+
√

9+2T (φ2+ρη2)
8(φ2+ρη2)

25−1
V

5ασm
√

2π

√
1+ 1

4r
1

φ2

−3+
√

9+2T φ2

16φ2

25−2
V

ασm
√

2π

√
1+2γ

ψ2

φ2 + 1
2r

1
φ2

+ 4ασm
√

2π

√
1+γ

ψ2

φ2 +ρ
η2

φ2 + 1
2r

1
φ2

** 2

26−1
V I

6ασm
√

2π

√
1+ 1

8r
1

φ2

−3+
√

9+2T φ2

32φ2

26−2
IV

6ασm
√

2π

√
1+2ρ

η2

φ2 + 1
4r

1
φ2

−3+
√

9+2T (φ2+2ρη2)
16(φ2+2ρη2)

26−3
III

6ασm
√

2π

√
1+2γ

ψ2

φ2 + 1
2r

1
φ2

−3+
√

9+2T (φ2+2γψ2)
8(φ2+2γψ2)

27−1
V II

7ασm
√

2π

√
1+ 1

16r
1

φ2

−3+
√

9+2T φ2

64φ2

27−2
IV

3ασm
√

2π

√
1+ 1

8r
1

φ2

+ 4ασm
√

2π

√
1+ρ

η2

φ2 + 1
8r

1
φ2

**2

27−3
IV

7ασm
√

2π

√
1+4ρ

η2

φ2 + 1
4r

1
φ2

−3+
√

9+2T (φ2+4ρη2)
16(φ2+4ρη2)

27−4
III

7ασm
√

2π

√
1+3γ

ψ2

φ2 + 1
2r

1
φ2

−3+
√

9+2T (φ2+3γψ2)
8(φ2+3γψ2)

The proof for theorems 2 through 6 are presented in the Appendix.

2 Owing to space constraints these formulations are excluded. They can be found in the Appendix

0012569
Highlight
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Unlike the full factorial designs, the optimal number of replicates for fractional
factorial arrays do not have a general form. This is owing to the fact that different de-
signs have different resolutions and aliasing patterns. We study all possible fractional
factorial arrays for designs with 7 factors or less.

Theorems 2 - 6 present the expected improvement for each design after r repli-
cates and also derive an optimal number of replicates for each design. We present
these in Table 1 below

3.4 Inferences from the theoretical proofs

There are three broad inferences we can draw from the proofs developed in sections
3.2 and 3.3:

1. An important driver of improvement and the optimal level of experimentation
is based on φ or the ratio σm

σe
. A larger σm (for a given σe) translates to greater

absolute gains, since the gap between a random treatment (or the average treat-
ment) and the optimal treatment is higher. More interestingly, we can observe that
across the board a higher φ translates to a lower requirement of experimentation
(in terms of replicates) for a given design. This is primarily driven by two comple-
mentary reasons. First, when φ is high, a given level of statistical certainty on the
optimal treatment is arrived at with fewer experiments. Second, the cost of exper-
imentation is higher, since the balanced experiments are subjecting resources to
a suboptimal treatment which differs from the optimal one by a larger magnitude
(since σm is relatively high). The parameter α related to likelihood of significance
has no impact on the optimal level of experimenting since it only scales up (or
down) the cumulative improvement by a fixed factor.

2. An increase in the strength and likelihood of interaction effects, captured by ψ ,
η , ρ , and γ leads to a decrease in the overall improvement. This is because a
classical analysis is not capable of exploiting these effects, and their role could
probabilistically lead to inaccurate inferences on main effects, in designs where
there is confounding of the main effect with the interaction terms. An increase
in these effects also lead to a decrease in the optimal number of replicates for
the designed experiment. This is owing to the fact that for a given system and de-
sign, when these parameters are high, the dividends from conducting experiments
are more gradual with increasing replicates. In other words, one gains less from
increasing the replicates.

3. Finally, we observe that in designs where there is no confounding of main ef-
fects with two and three-level interactions, the optimal level of experimentation
is the same. This might seem contrary to the results, since smaller designs seem to
require more replicates. However, this scales inversely with the number of treat-
ment combinations, leading to the exact same number of experimental units to be
expended. A closer look at equation 2 for full factorials would serve as a valida-
tion. This can also be extended to compare different levels of fractions for designs
with the same number of factors. For example, we could consider the compari-
son between the 27 and the 27−1

V II (both designs do not confound main effects with
two-way and three-way interactions). However, when this is extended to fractions
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with confounding (for instance 27−2
IV , 27−3

IV and 27−4
III ), we observe that due to the

effect discussed in inference 2, the designer would be motivated to experiment
less.

4 Empirical Validation and numerical results

In this section, we validate our theoretical findings with simulations conducted on a
meta model of real world experiments and present indicative numerical results for
various environments. We use the data set of 113 published experiments studied in
the Li et al. (2006). We adopt the parameters and regularities as identified by the same
study. We then build a probabilistic meta model as described in Frey and Li (2008).
We use this to simulate response surfaces, as well as the noise in the experimental
environment. We then study on-line performance, empirically, from using a different
number of replicates. Each iteration fixes a given response surface, and then gener-
ates the maximum number of replicates with noise. This regulates the uncertainty due
to responses, and replicates, to the minimum required while simultaneously explor-
ing the inherent variability in using different response surfaces across iterations. In
essence, the difference in average performance is accurately captured while minimiz-
ing variability due to the generation of pseudo random numbers.

Our empirical study seeks to (i) Validate the theoretical findings through a simu-
lated environment that reflects the regularities of sparsity, hierarchy and also heredity
(the last regularity is not captured in the theoretical model), (ii) Explore the effect of
explicitly modeling interactions through a regression based approach, (iii) Establish
baseline improvements that can be attained from each method of analysis and use it
to quantify the value that can be gained through such a study, and finally,(iv) Provide
indicative numerical results of the optimal number of replicates across various envi-
ronments which can be easily used by practitioners. The topics (i), (ii) and (iii) are
studied in section 4.1, and topic (iv) is studied in section 4.2.

4.1 The effect of environmental regularities and using regression based approaches
on improvement

The empirical explorations in this section are three-fold. The first is to use the hier-
archical probability model (HPM) as a simulation based empirical study to validate
our theoretical results. The parameters derived from real-world data and the charac-
terization of regularities such as sparsity, hierarchy, and heredity are adopted from
Frey and Li (2008). Second, we consider the effect of explicitly modeling interaction
terms through a regression based approach, which is a more common, and statisti-
cally sound approach to modeling and optimization. We seek to understand the major
differences in performance through such an approach. Third, we establish a baseline
of performance that can be expected through experimentation that is uninformed by
our studies. This allows us to compare the improvement witnessed when the optimal
number of replicates are chosen with the baseline to quantify the value of using such
an approach. In this section, as an illustrative exercise we focus on designs with 7
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factors. In particular, we study the five designs of the 27 full factorial, and the four
fractional factorials 27−1

V II , 27−2
IV , 27−3

IV and 27−4
III . We confine our analysis to the case

where the total number of units (T) is 10,000 and to a value of φ = 1. In the numerical
results summarized in section 4.2 we explore various values of φ and T .

We assert that the empirical study of 27 full factorial or 27−1
V II fractional factorial

design, when used in conjunction with classical analysis, serves as true validation of
the theoretical results. Whereas, the empirical analysis of the remaining three frac-
tional factorial designs can broadly serve to quantify any differences in performance
due to an environmental regularity termed as heredity which is captured in the simula-
tions. The environmental regularity, heredity, captures the phenomena that interaction
effects are conditionally more likely to be significant if their parent effects are sig-
nificant. While heredity would play no role in the 27 full factorial or 27−1

V II fractional
factorial design (since there is no confounding of main effects with two-way or three-
way interactions), in the other designs it could potentially cause a disparity in actual
performance from the theoretical solution. This is owing to the fact that our theoret-
ical analysis determines γ and ρ as expected values of the likelihood of significance
and the more intricate dependence structure could cause difference in actual perfor-
mance. However, this is expected to marginal, given the sparsity of two and three
way interactions, as well as the strength owing to hierarchy. Figures 1, 2,3,4 and 5
captures these studies across the five 7 factor designs.

Fig. 1: Cumulative improvement for 27 design for
varying numbers of experimental samples out
of T = 10,000 units and φ=1

Fig. 2: Cumulative improvement for 27−1
V II design for

varying numbers of experimental samples out of
T = 10,000 units and φ=1.0
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Fig. 3: Cumulative improvement for 27−2
IV design for

varying numbers of experimental samples out of
T = 10,000 units and φ=1.0

Fig. 4: Cumulative improvement for 27−3
IV design for

varying numbers of experimental samples out of
T = 10,000 units and φ=1

Fig. 5: Cumulative improvement for 27−4
III design for varying numbers of experimental samples out of T =

10,000 units and φ=1

At a high-level, the results indicate that the cumulative improvement from the
HPM based simulation with classical analysis is statistically in-line with the theoret-
ical results for the 27 full factorial or 27−1

V II fractional factorial design. In the cases of
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the 27−2
IV , 27−3

IV and 27−4
III designs, where heredity could cause a difference between

the theoretical results and the empirical performance, we observe that this effect is
too small for the environments studied. The largest difference is seen in the 27−2

IV and
to significantly lower degrees in 27−3

IV and 27−4
III . Also, any minor differences in per-

formance between the theoretical and HPM based classical analysis in these designs
show no difference to cause an impact on the optimal number of replicates recom-
mended by both approaches (they both peak at the same number of replicates).

With respect to the use of a regression-based interaction modeling, we find that
the design matrix plays a significant role. The larger design matrices (full fractions
and high resolution designs), are capable of exploiting more parameters in the model,
and this has two effects. First, the overall improvement using regression-based in-
teraction modeling is superior to classical analysis, for the optimal number of repli-
cates. The 27 full factorial or 27−1

V II fractional factorial have the biggest difference in
performance (they can both exploit all two-way and three-way interactions), where
as the 27−4

III results in an identical performance to classical analysis since the interac-
tion modeling approach cannot model any interaction terms. Second, with the larger
designs where there is a significant improvement in regression based modeling, the
optimal number of replicates is higher. In the 27−1

V II , 27−2
IV , and 27−3

IV designs, a low
number of replicates results in the interaction modeling approach having poorer per-
formance than classical analysis. This is primarily because of overfitting the model
to limited data. By contrast, the classical analysis is a high bias, low variance model
that is robust to the noise in the system. However, with more data (more replicates),
the interaction modeling approach is capable of utilizing the information to create a
more refined model. Whereas, we can see that classical analysis with its limitations of
exploiting only the main effects is limited in improvement. As a summary, with larger
design matrices, we can conclude that the optimal number of replicates is higher than
the theoretical results if one chooses to analyze the data through a regression based
approach which explicitly models the interaction terms. The theoretical results can
therefore be used as a lower bound requirement on the experimentation needed in
these cases.

In order to provide a relative, numeric measure of the optimal cumulative im-
provement seen in figures 1 through 5, we establish a baseline performance. Here, we
assume that a practitioner, uninitiated to such a study, could choose to experiment a
uniformly random percentage of the total available units. We establish the baseline
as the expected value of the cumulative improvement that can be gained when the
number of replicates is a uniform random variable. This is compared to the cumu-
lative improvement of the proposed method which is the value obtained when the
optimal number of replicates are selected. Having established that theoretical results
with the classical analysis are in line with the empirical studies, we present the per-
centage improvement over the baseline only for the theoretical classical analysis and
the empirical modeling with regression based interaction modeling.
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Table 2: Percentage improvement in cumulative improvement from deploying the optimum number of
replicates recommended in the proposed framework over the Baseline of a random selection of replicates

Design Classical Analysis (Theoretical) Regression Based Interaction modeling

Baseline (Expected
Cumulative Improvement
with a random number of
replicates) (no units)

Proposed Method
(Cumulative Improvement
with optimal number of
replicates) (no units)

Percentage
Improvement
over Baseline 1

Baseline (Expected
Cumulative Improvement
with a random number of
replicates) (no units)

Proposed Method
(Cumulative
Improvement
with optimal number of
replicates) (no units)

Percentage
Improvement
over Baseline 3

27 57,083 111,315 95.01% 67,725 122,989 81.61%
27−1

V II 57,083 111,315 95.01% 67,872 125,903 85.51%
27−2

IV 57,068 111,287 95.01% 58,895 112,962 91.81%
27−3

IV 57,057 111,266 95.01% 57,218 111,633 95.12%
27−4

III 56,569 110,337 95.05% 56,483 110,313 95.30%

The results indicate that the cumulative improvement that can be expected through
the recommended number of replicates are at least 81.6% more than a random guess
of degree of experimentation, and can be at most 95.3%, across the designs explored
in this section and the two different methods of analysis. This magnitude of improve-
ment cannot directly be inferred from figures 1 through 5, because the figures explore
a fairly narrow range of potential replicates close to the optima, whereas a truly un-
informed random guess leads to a substantially lower expected value of cumulative
improvement.

4.2 Numerical results for optimal sample size under various environments

In this section, we present numerical results for various environments. This can be
conveniently adopted by a practitioner who is looking for indicative values. Our study
explores values of φ = 0.5,1,2 and population sets of T = 100, 1000 and 10000. Sim-
ilar to table 2, we only compare the theoretical classical analysis and the regression
based interaction modeling. This is owing to the fact that the theoretical results with
the classical analysis are in line with the empirical studies. We set α = 0.41, which is
adopted from the findings of Li et al. (2006) and accounts for sparsity of effects (Box
and Hunter, 1986), a documented pattern of the experimental environment which
states that a subset of the total input parameters in an experiment tend to be significant
(have a real effect on the output). We fix η and ψ , based on the relative magnitude of
σ2int and σ3int as determined by Frey and Li (2008). This is done in order to capture
a regularity termed as hierarchy (Hamada and Wu, 1992), which captures the idea
that main effects tend to have a higher magnitude than two-way interactions, which
in turn tend to have a higher magnitude than three-way interactions and so on. For
instance, a φ = σm

σe
= 1.0 would result in a ψ = σ2int

σe
= 0.278 and η = σ3int

σe
= 0.137.

Also, similar to the use of α to capture the likelihood of a main effect being statisti-
cally significant, we use the terms γ and ρ to signify the likelihood of two-way and
three-way interactions being significant, respectively. This extends the idea of spar-
sity to interaction terms. The values of γ = 0.079 and ρ = 0.048 are also adopted

3 The improvement is defined as the percentage gain of the proposed method over the baseline in abso-
lute terms, since the lowest possible improvement is 0, which occurs at 0 replicates and maximum possible
replicates
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from the same source (Li et al., 2006). In Table 3, we consider all factorial designs
with 7 factors or less.

Table 3: Indicative numerical results: A practitioners cheat sheet for optimal number of replicates

Design Specification No of units
Optimal r∗ through
classical analysis

Optimal r∗ through
regression

φ = 0.5 φ = 1 φ = 2 φ = 0.5 φ = 1 φ = 2

22
100 5 3 2 6 4 2

1000 20 11 6 24 13 7
10000 68 35 18 78 40 21

23
100 3 2 1 4 3 2

1000 10 6 3 13 8 4
10000 34 18 9 42 22 11

23−1
III

100 5 3 2 5 3 2
1000 19 11 6 20 11 6
10000 67 35 18 66 35 17

24
100 2 1 1 3 2 1

1000 5 3 2 7 4 3
10000 17 9 5 24 13 7

24−1
IV

100 3 2 1 4 2 1
1000 10 6 3 12 7 4
10000 34 18 9 41 22 11

25
100 1 1 1 2 2 1

1000 3 2 1 5 3 2
10000 9 5 3 15 8 5

25−1
V

100 2 1 1 3 1 1
1000 5 3 2 7 4 3
10000 17 9 5 22 12 7

25−2
III

100 3 2 1 3 2 1
1000 10 6 3 11 6 3
10000 34 18 9 36 19 9

26
100 1 1 1 2 2 1

1000 2 1 1 3 2 1
10000 5 3 2 8 6 3

26−1
V I

100 1 1 1 2 2 2
1000 3 2 1 6 3 2
10000 9 5 3 17 11 6

26−2
IV

100 2 1 1 2 2 1
1000 5 3 2 6 4 2
10000 17 9 5 20 11 6

26−3
III

100 3 2 1 3 2 1
1000 10 6 3 10 6 3
10000 34 18 9 34 18 9

27
100 N/A N/A N/A N/A N/A N/A

1000 1 1 1 2 1 1
10000 3 2 1 6 3 2

27−1
V II

100 1 1 1 2 2 1
1000 2 1 1 4 3 2
10000 5 3 2 11 7 4

27−2
IV

100 1 1 1 2 2 1
1000 3 2 1 4 3 2
10000 9 5 3 16 10 6

27−3
IV

100 2 1 1 3 2 2
1000 5 3 2 7 5 4
10000 17 9 5 23 14 9

27−4
III

100 3 2 1 3 2 1
1000 10 6 3 10 6 3
10000 33 18 9 33 18 9



Optimal replicates for Designed Experiments under the on-line framework 19

5 Conclusions and future work

The study looks at determining the optimal expenditure for one-shot, non-sequential
experimental plans, which are typified by A/B tests, split tests, pilot studies, random-
ized control trials, statistical designed experiments, etc., in an online environment.
We illustrate this work through theoretical derivations of the optimal number of repli-
cates for full and fractional factorial arrays with two to seven factors. The novelty in
our approach stems from our assessment through cumulative improvement, which
is suited for the online environment, rather than traditional offline statistical metrics
(OC, curves, p-values, lift scores). Our empirical explorations through simulations
validate the theoretical results and also facilitate the exploration of specific environ-
ments and techniques of analysis that are not supported by the theory. Our conclu-
sions from this study are broadly divided across insights pertaining to the environ-
ment and those relating to the method of analysis. Both of these play an important
role in determining the degree to which a practitioner should commit resources to
experiments.

With respect to the environment, we observer that the most important parameters
are the total number of units (T) and φ (the ratio σm

σe
). With respect to T , we find

that a larger value requires more experimentation in absolute terms, because there
are more units at stake once a decision is made. However, if we study percentage of
experimentation (which for full factorials would be defined as r∗×2k

T ), then a larger
T requires a smaller percentage for experimentation since the increase in statistical
certainty asymptotically reduces beyond a certain number of experiments. With re-
spect to the ranges studied, for the value of φ = 1, the percentage of experimentation
( r∗×2k

T ) ranges from 11% for 100 units to 1% for 10,000 units. With respect to φ ,
a larger value results in lower experimentation. As an indication, for full factorial
designs, when T is set to 1000 units, φ = 0.5 results in 7.82% of experimentation
whereas φ = 2 results in 2.16%. We see the most requirement for experimentation
(as a percentage) when T and φ are both low. at T = 100 and φ = 0.5 we require 20%.
Conversely, when T = 10,000 and φ = 2 we need less than 1%. Given the assump-
tions of sparsity and hierarchy adopted from earlier studies, the roles of ψ , η , ρ , and
γ are minimal in the theoretical analysis. However, the ability of the regression based
approaches to leverage interaction effects suggests that degree of experimentation
could be more sensitive to these terms using this approach.

With respect to the method of analysis, we observe that regression based interac-
tion modeling reaches optimal performance with more replicates than a classical anal-
ysis for full factorial and high resolution designs. This is because regression based
approaches that explicitly model interactions have more to gain from extended ex-
perimentation as opposed to classical analysis when the interaction terms can be sta-
tistically inferred. Adopting values for strength and likelihood of interactions relative
to the main effects from Li et al. (2006), we find that the requirement for experimen-
tation increases by approximately 90% to 120% when interaction modeling through
regression is used as opposed classical analysis. With low-resolution designs which
can only model a subset of the interactions or cannot model interactions fully (due
to there being insufficient degrees of freedom), the difference between the two ap-
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proaches decreases commensurately. In designs where no interaction terms can be
modeled (like the 27−4

III ) both approaches yield identical recommendations for cumu-
lative improvement as well as the optimal level of experimentation. Across both types
of analyses, we observe that performance at the optimal number of replicates is sig-
nificantly greater than the expected improvement for a random guess of replicates.
This difference is consistently equal to a 95% for the classical analysis, and can vary
between 82% to 95% for the interaction modeling.

In terms of future work, there exists a wide range of possible extensions that one
could explore. One such extension, which could substantially increase the real-world
applicability, is to consider quasi-sequential environments. In this study, we consider
a one-shot experimental design followed by implementation. This is essentially a
two-phase setup– one for exploration and the other for exploitation. By contrast, the
bandit studies follow a fully sequential form of one-unit-at-a-time (there are as many
phases as units). There could be many real-world settings which can afford some
number of phases in between. For instance, if the time horizon and cost structure
could support three separate phases (or batches), what should be the resource alloca-
tion towards each phase? More interestingly in the middle phase what should be the
ratio of allotment of treatments to resources (which understandably need not be bal-
anced, as it is for the first phase, or an entire commitment to the preferred treatment,
as it is in the last phase).

Another area of inquiry could be to look at alternate distributions that represent
the true mean of treatments, as well as the noise distribution. Future studies could
also explore environments which are distribution-free or have limited assumptions
associated with distributions. In alignment with the major focus of DoE literature,
all the designs explored in this study consider 2-level designs. Another prospective
extension could be the exploration of experiments with 3 or more level designs, which
we believe goes beyond a mathematically trivial extension of the 2-level case. The
second prospective area for future work could surround analyses that are not restricted
to maximizing the expected cumulative improvement. This work could model the
entire distribution of the outcome variable conditioned on the controllable ones. One
could also look at modeling of upper/lower bounds in performance, which naturally
aligns with using fewer distribution-related assumptions as priors. We see this in the
use Chernoff bounds which are adopted extensively in the Bandit literature. These
extensions would also help align the decision-making process with the risk profile of
the practitioner or context.

Acknowledgements This work was partially supported by the Robert Bosch Center for Data Science and
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Appendix 1: Proofs

Theorem 2:4

This theorem shows the derivations for all arrays that have a resolution V or higher. Here, the main effects
are only confounded with four-way interactions or higher. The optimal number of replicates is given by:

r∗ =
−3 +

√
9 + 2T φ 2

2k−pφ 2 (A.1)

Proof:
All fractional factorial arrays with a resolution V or higher can be captured in this derivation. Some exam-
ples are: 25−1

V , 26−1
V I and 27−1

V II . In all these designs the main effects are aliased with four way interactions

or higher.The estimate of ∆ for these designs follows N
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Let σm
σe

= φ , γσ2int
σe

= ψ and ρσ3int
σe

= η

=
kασm

√
2π

√
1 + 1
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(A.4)

The equation A.4 gives the expected improvement for the (T-2k−pr) units and the expected improvement
during the experiment (nr) is zero. The cumulative improvement after T units is given by:

CIT = (T −2k−pr)
kασm

√
2π

√
1 + 1

2k−p−2r
1

φ2

(A.5)

To find the maxima, differentiate the above function with respect to r and make it equal to zero.

∂CIT

∂ r
= 0 (A.6)

Solve the resultant equation to get the closed form equation for optimal number of replicates

r∗ =
−3 +

√
9 + 2T φ 2

2k−pφ 2 (A.7)

Theorem 3

This theorem covers standard resolution III designs (the one exception is the 25−2 which is covered in
Theorem 5). Here, the main effects are confounded with the two-way interaction effects. The optimal
number of replicates is given by:

4 The proof for theorem 1 is in the main body of the manuscript - section 3
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r∗ =
−3 +

√
9 + 2T (φ 2 + Nsγψ2)

2k−p(φ 2 + Nsγψ2)
(A.8)

Proof:
Examples of designs that are covered by this theorem are: 23−1

III ,26−3
III and 27−4

III . Here, each main effect in the
23−1

III design is confounded with one two-way interaction effect. Whereas, each main effect in 26−3
III design is

confounded with 2 two-way interaction effects. Finally, each main effect in 27−4
III design is confounded with

3 two-way interaction effects. The estimate of ∆ for these designs follows N
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Let σm
σe

= φ , σ2int
σe

= ψ and σ3int
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The cumulative improvement after T units is given by:

CIT = (T −2k−pr)
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(A.12)

To find the maxima, differentiate the above function with respect to r and make it equal to zero.

∂CIT

∂ r
= 0 (A.13)

r∗ =
−3 +

√
9 + 2T (φ 2 + Nsγψ2)

2k−p(φ 2 + Nsγψ2)
(A.14)

Theorem 4

This theorem covers standard resolution IV designs (the 27−2 is an exception that is covered in theorem
6). Here, the main effects are confounded with the third order interaction effects. The optimal number of
replicates is given by:

r∗ =
−3 +

√
9 + 2T (φ 2 + Nt ρη2)

2k−p(φ 2 + Nt ρη2)
(A.15)

Proof:
Examples of designs that are covered by this theorem are: 24−1

IV , 26−2
IV and 27−3

IV . Here, each main ef-
fect in the 24−1

IV design is confounded with one three-way interaction effect. Whereas, each main effect
in 26−2

IV design is confounded with 3 three-way interaction effects. Finally, each main effect in 27−3
IV
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design is confounded with 4 three-way interaction effects. The estimate of ∆ for these designs follows

N
(
|∆|,

(
Nt ρσ2

3int +
σ2

e

2k−p−2r

))
and the expected improvement at an optimal level is given by:

EI(r) = k×α× (
∫

∞

0

∫
∞

0

∆
2

1√
2π
(
Nt ρσ2

3int +
σ2

e

2k−p−2r

) exp
(
− (x−∆)2

2
(
Nt ρσ2

3int +
σ2

e

2k−p−2r

)
)

dx

√
2

σm
√

π
exp(− ∆2

2σ2
m

)d∆

+
∫

∞

0

∫ 0

−∞

−∆
2

1√
2π
(
Nt ρσ2

3int +
σ2

e

2k−p−2r

) exp
(
− (x−∆)2

2
(
Nt ρσ2

3int +
σ2

e

2k−p−2r

)
)

dx

√
2

σm
√

π
exp(− ∆2

2σ2
m

)d∆)

(A.16)

=
kασm

√
2π

√
1 + Nt ρ

σ2
3int
σ2

m
+ 1

2k−p−2r
σ2

e
σ2

m

(A.17)

Let σm
σe

= φ , σ2int
σe

= ψ and σ3int
σe

= η

=
kασm

√
2π

√
1 + Nt ρ

η2

φ2 + 1
2k−p−rr

1
φ2

(A.18)

The cumulative improvement after T units is given by:

CIT = (T −2k−pr)
kασm

√
2π

√
1 + Nt ρ

η2

φ2 + 1
2k−p−rr

1
φ2

(A.19)

To find the maxima, differentiate the above function with respect to r and make it equal to zero.

∂CIT

∂ r
= 0 (A.20)

r∗ =
−3 +

√
9 + 2T (φ 2 + Nsγψ2)

2k−p(φ 2 + Nsγψ2)
(A.21)

Theorem 5: Optimal number of replicates for 25−2
III design

The confounding structure is not same for all main effects like previous designs. Among five main
effects, one main effect is confounded with two way and five way interaction effects and the remaining
main effects are confounded with two way, three way and four way interactions effects. The expected
improvement derivation is not same for all main effects since the confounding structure is not same for all
main effects.

Therefore, the estimate of ∆ which is confounded with two way and five way interaction effects

follows N
(
|∆|,

(
2γσ2

2int +
σ2

e
2r

))
and the expected improvement at an optimal level is given by

EI25−2
V

(r) = α×
∫

∞

0
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0
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1√
2π

(
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dx
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π
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2σ2
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+
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2π
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e
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) exp
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2
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e
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)

dx
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π
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)d∆

(A.22)
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=
ασm

√
2π

√
1 + 2γ

σ2
2int
σ2

m
+ 1

2r
σ2

e
σ2

m

(A.23)

Similarly, the estimate of other ∆s for 25−1 design follows N
(
|∆|,

(
ρσ2

3int + γσ2
2int +

σ2
e

2r

))
and the

expected improvement at an optimal level is

EI25−2
V

(r) = 4×α×
(∫
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0
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=
4ασm

√
2π

√
1 + γ

σ2
2int
σ2

m
+ ρ

σ2
3int
σ2

m
+ 1

2r
σ2

e
σ2

m

(A.25)

The expected improvement for 25−2 design is

=
ασm

√
2π

√
1 + 2γ

σ2
2int
σ2

m
+ 1

2r
σ2

e
σ2

m

+
4ασm

√
2π

√
1 + γ

σ2
2int
σ2

m
+ ρ

σ2
3int
σ2

m
+ 1

2r
σ2

e
σ2

m

(A.26)

Let σm
σe

= φ , σ2int
σe

= ψ and σ3int
σe

= η

=
ασm

√
2π

√
1 + 2γ

ψ2

φ2 + 1
2r

1
φ2

+
4ασm

√
2π

√
1 + γ

ψ2

φ2 + ρ
η2

φ2 + 1
2r

1
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(A.27)

The cumulative improvement after T units is given by:

Max
r

(T −8r)×α×
(

σm
√

2π

√
1 + 2γ

ψ2

φ2 + 1
2r

1
φ2

+
4σm

√
2π

√
1 + γ

ψ2

φ2 + ρ
η2

φ2 + 1
2r

1
φ2

)
(A.28)

The r which maximizes the above equation can be numerically determined.

Theorem 6: Optimal number of replicates for 27−2
IV design

The confounding structure for 27−2 design is not same for all main effects. There are two types of
confounding structure: (1) Three main effects are confounded with fourth order interaction effects and its

estimates are from N
(
|∆|,

(σ2
e

8r

))
(2) Other main effects are confounded with third order interaction effects

and its estimates are from N
(
|∆|,

(
ρσ2

3int +
σ2

e
8r

))
. The expected improvement for 27−2 design is given by

EI27−2
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(r) =
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√
2π

√
1 + 1

8r
σ2

e
σ2

m

+
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√
2π
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σ2
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m
+ 1
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σ2

e
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(A.29)

Let σm
σe

= φ , σ2int
σe

= ψ and σ3int
σe

= η

=
3ασm

√
2π

√
1 + 1

8r
1

φ2

+
4ασm

√
2π

√
1 + ρ

η2

φ2 + 1
8r

1
φ2

(A.30)
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The optimal number of replicates for 27−2 design is

Max
r

(T −32r)×
(

3ασm
√

2π

√
1 + 1

8r
1

φ2

+
4ασm

√
2π

√
1 + ρ

η2

φ2 + 1
8r

1
φ2

)
(A.31)

The r which maximizes the above equation can be numerically determined.

References

Audibert, J.-Y. and Bubeck, S. (2010). Best arm identification in multi-armed bandits. In COLT-23th
Conference on Learning Theory-2010, pages 13–p.

Berndtson, W. E. (1991). A simple, rapid and reliable method for selecting or assessing the number of
replicates for animal experiments. Journal of animal science, 69(1):67–76.

Box, G. and Hunter, J. (1986). An analysis of unreplicated fractional factorials. Technometrics, 28(28):11–
18.

Box, G. E. (1957). Evolutionary operation: A method for increasing industrial productivity. Applied
Statistics, pages 81–101.

Fraser, D. A. and Guttman, I. (1956). Tolerance regions. The Annals of Mathematical Statistics, pages
162–179.

Frey, D. D. and Li, X. (2008). Using hierarchical probability models to evaluate robust parameter design
methods. Journal of Quality Technology, 40(1):59.

Frey, D. D. and Wang, H. (2006). Adaptive one-factor-at-a-time experimentation and expected value of
improvement. Technometrics, 48(3):418–431.

Gonzalez-Zugasti, J. P., Otto, K. N., and Baker, J. D. (2000). A method for architecting product platforms.
Research in engineering design, 12(2):61–72.

Hamada, W. and Wu, C. (1992). Analysis of designed experiments with complex aliasing. Journal of
Quality Technology, 24:130–137.
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