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smooth compactification, then any line bundle on S × Ran(X) is pulled back
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1. Introduction

1.1. The Ran space

Given a topological space X , its Ran space Ran(X) is the set of nonempty finite
subsets of X , endowed with a suitable topology. This space plays a role in the
study of configuration spaces and factorization structures associated to X . It has a
semigroup operation given by ‘union of finite subsets,’ which is idempotent because
S ∪ S = S for any subset S ⊂ X . This semigroup operation can be used to show
that Ran(X) is weakly contractible, see [1, 3.4.1].

Beilinson and Drinfeld introduced an analogous notion in algebraic geometry:
for any k-scheme X , the Ran prestack of X , denoted Ran(X), is the Set-valued
presheaf on affine schemes over k which sends a test scheme T to the set of nonempty
finite subsets of Maps(T,X). Hence, for every nonempty finite set I, there is a
natural map XI → Ran(X) sending an I-tuple in Maps(T,X) to the corresponding
subset of Maps(T,X). (See Section 3 for more details.)

The prestack Ran(X) is the natural base over which various algebro-geometric
objects with factorization structure are defined. As such, it plays a role in relating
geometric structures (affine Grassmannians and loop groups) to algebraic structures
(chiral algebras and factorization algebras) living on X , thereby enabling problems
concerning the former to be translated into problems concerning the latter. See [10,
0.6] for more comments on why the Ran prestack is useful, and see [21, Sect. 3] for
a clear explanation of how to define affine Grassmannians over Ran(X) when X is
a curve.

In this paper we assume that X is a smooth algebraic variety over k, and we
study quasicoherent sheaves and line bundles on Ran(X).

Remark. Although Beilinson and Drinfeld, in their development of chiral algebras,
mainly restricted to the case in which X is a curve, it was later demonstrated
by Francis and Gaitsgory that the notion of chiral (and factorization) algebras is
intelligible and interesting when X is any separated finite type k-scheme, see [9].
Likewise, we have taken pains to ensure that our results apply when dimX > 1.
However, we need the additional hypothesis of smoothness in order to control the
behavior of quasicoherent sheaves on infinitesimal neighborhoods; this issue does
not arise for D-modules because they are trivial on infinitesimal neighborhoods, by
definition.

1.2. Main results

We shall prove two statements about sheaves on Ran(X):

(1) If X is a smooth k-scheme, then any flat quasicoherent sheaf on Ran(X) has
a unique D-module structure. (Theorem 4)

(2) Let X be a smooth k-scheme satisfying property (C): the base change Xk

admits an open embedding into a smooth proper connected k-variety.1 Then,
for any locally Noetherian k-scheme S, every line bundle on S × Ran(X) is
pulled back from S. (Theorem 6)

The proofs of both statements rely on some results about the vanishing of limits of
n-excisive functors. Here is one such result:

(3) Let G : fSet∗ → A be a functor from pointed finite sets to some abelian
category A. Assume that G is n-excisive in the sense that it sends certain

1In particular, X is smooth and geometrically integral over k.
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strongly cocartesian (n+1)-hypercubes in fSet∗ to weakly cartesian diagrams
in A. Then limI∈fSetsurjn.e.

G({∗} ⊔ I) ≃ G({∗}). (Proposition 2.2.5)

There is an analogous result when A is replaced by a stable (∞, 1)-category. (The-
orem 2.3.3)

1.2.1. Discussion of (1). Beilinson and Drinfeld defined a factorization algebra to be
a quasicoherent sheaf F on Ran(X) equipped with a unital factorization structure2

– this consists of the datum of ‘partial multiplicativity’ of F with respect to the
semigroup structure of Ran(X), and the datum of a ‘unit’ 1 ∈ F. Using both of
these data, Beilinson and Drinfeld proved that any factorization algebra canonically
acquires a D-module structure [1, Prop. 3.4.7]. What our point (1) shows is that, if
F is flat, then neither datum is necessary. On the other hand, if F does happen to
have a unital factorization structure, then comparing the proofs of [1, Prop. 3.4.7]
and Theorem 4 shows that our D-module structure on F equals the one produced
by Beilinson and Drinfeld.

A non-flat quasicoherent sheaf on Ran(X) need not admit any D-module
structure; for example, take a skyscraper sheaf at a closed point of X , and push it
forward along the map X → Ran(X).

An immediate corollary of point (1) is that every flat schematic map Y →
Ran(X) automatically descends to Ran(X)dR, i.e. Y acquires the structure of D-
scheme over Ran(X) (and hence its pullbacks to each XI are DXI -schemes), in the
sense of [1, 2.3]. From the same ideas, it follows that any map from Ran(X) to a
scheme S must be constant, see Remark 6.2.4.

1.2.2. Discussion of (2). In analogy with the weak contractibility of Ran(X) in the
topological setting (see 1.1), there are various results in algebraic geometry which
state that Ran(X) is ‘contractible’ with respect to some cohomology theory:

(a) Let k be an algebraically closed field of characteristic zero, and let X be a
connected separated k-scheme. Then the de Rham cohomology of Ran(X) is
trivial, in the sense that H•(Ran(X)) ≃ k. [1, Prop. 4.3.3] (cf. [10, Thm. 1.6.5])

(b) Let k be an algebraically closed field, and let X be a connected k-scheme. Then
the ℓ-adic cohomology of Ran(X) is trivial, in the sense thatH•(Ran(X);Qℓ) ≃
Qℓ. [12, Thm. 2.4.5]3

(c) Let k be any field, let X be a smooth k-scheme, and let S be a k-scheme. Then
every regular function on S ×Ran(X) is the pullback of a regular function on
S. [21, Prop. 4.3.10(1)]

When X is a curve, these facts can be applied to study moduli problems which
involve the datum of a dense open subset U ⊂ X which is allowed to vary. (For
example, one could study rational mapsX 99K G with a domain of definition U ⊂ X
– this example plays a central role in [10].) For such moduli problems, there is a
semigroup action by Ran(X) where a subset S ⊂ X acts by subtracting S from U ,
and the above ‘contractibility’ results are applied to show that taking the quotient
by this action does not affect the cohomology of the moduli stack. As explained
in [21, 4.3], this idea enters in proving local-to-global principles which relate the
moduli stack of G-bundles on X to the Beilinson–Drinfeld affine Grassmannian

2Tangential point: Beilinson and Drinfeld also impose a mild flatness hypothesis, which could be
summarized as ‘flatness along the diagonals,’ see [1, Lem. 3.4.3(i)] and also Remark 3.2.5.
3Their notation ‘Ranu(X)’ is what we call Ran(X). For more information on comparing these
notations, see 3.1.3 and 3.1.4.
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GrG,Ran(X). In fact, the present article was motivated by an application of this
kind, see [18, Prop. 1.4].

In comparison with these known results, the main difficulty of proving point
(2) lies in the fact that the ‘cohomology theory’ sending X  Pic(X) does not
satisfy a Künneth theorem, so the proofs of (a) and (b) do not directly apply.
The relevant substitute is the Theorem of the Cube [17, Tag 0BF4]. This theorem
requires 2 out of 3 varieties to be proper, so the hypothesis (C) in point (2) is
designed to allow us to reduce to the proper case, at least when S is regular (e.g.
a field).

Note that, if char(k) = 0, then every smooth geometrically connected k-variety
X satisfies hypothesis (C). This follows from Nagata’s compactification theorem and
Hironaka’s theorem on resolution of singularities.

Remark. The proof of (c) given in [21] only works when k is of characteristic zero,
because this is the generality in which [21, Lem. 4.3.11] holds. For more discussion
of this point, see Remark 4.1.4. In the course of proving (2), we will supply a proof
of (c) that works in arbitrary characteristic, at least when S is locally Noetherian,
see Lemma 6.2.3.

1.2.3. Discussion of (3). In Goodwillie calculus, a functor G : C1 → C2 between
(∞, 1)-categories is called n-excisive ifG sends strongly cocartesian (n+1)-hypercubes
in C1 to weakly cartesian (n+1)-hypercubes in C2. Here ‘strongly cocartesian’ means
that every 2-dimensional face is a cocartesian square, while ‘weakly cartesian’ means
that the initial vertex is the limit of the remaining part of the hypercube. The par-
adigm of Goodwillie calculus is to study an arbitrary functor G : C1 → C2 by
its n-excisive approximations for successively larger n. The analogy with calculus
arises because these approximations behave like Taylor series.

As indicated in (3), we consider n-excisive functors fSet∗ → C where C is an
abelian category or an (∞, 1)-category. Let us indicate the two examples of this
notion which will be relevant in this paper. The following lemmas, which can be
treated as exercises, say that the functors of ‘polynomials of degree ≤ d’ and ‘line
bundles’ are d-excisive and 2-excisive, respectively:

Lemma. For each 1 ≤ i ≤ d+1, let Li ⊂ Ad+1
k denote the i-th coordinate hyperplane,

defined by xi = 0. The space of polynomials of degree ≤ d on Ad+1
k is isomorphic

to the space parameterizing the following data:

• For each 1 ≤ i ≤ d+1, we have a polynomial of degree ≤ d on Li, denoted fi.
• For each pair i, j with 1 ≤ i < j ≤ d+ 1, we require that fi|Li∩Lj = fj |Li∩Lj .

Proof. This is equivalent to the assertion that the functor G : fSet∗ → Vectk is
d-excisive, where G sends a set {∗} ⊔ I to the space of polynomials of degree ≤ d

on AIk. The proof follows by considering one monomial function on Ad+1
k at a time,

see Lemma 4.1.3. �

Lemma. Let X be a proper, geometrically connected k-variety with a basepoint x0 ∈
X(k). Then Pic(X3) is equivalent to the category whose objects are described as
follows:

• We have a one-dimensional k-vector space F.
• For each i ∈ {1, 2, 3}, we have a line bundle Ei ∈ Pic(X) and an isomorphism

qi : Ei|x0

∼
−→ F.

https://stacks.math.columbia.edu/tag/0BF4
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• For each pair i, j with 1 ≤ i < j ≤ 3, we have a line bundle Li,j ∈ Pic(X2)
and isomorphisms

σi,j : Li,j |X×{x0}
∼
−→ Ei

τi,j : Li,j |{x0}×X
∼
−→ Ej .

• These data are subject to the condition that, for any i < j as above, we have

qi ◦ σi,j |x0 = qj ◦ τi,j |x0

as maps Li,j |(x0,x0)
∼
−→ F.

Proof. This is a special case of the assertion that the functor G : fSet∗ → Grpd
is 2-excisive,4 where G sends a set {∗} ⊔ I to Pic(XI). This 2-excision statement
is deduced in 5.1.6. Alternatively, it is not difficult to deduce this lemma from the
standard statement of the Theorem of the Cube [17, Tag 0BF4]. �

Suitably amplified, these facts allow us to apply (3) and deduce the triviality
of regular functions and line bundles on Ran(X).

Remark. The notion of n-excisive functor on fSet∗ has been studied by Berger [4].
Also, the interpretation of the Theorem of the Cube as saying that I 7→ Pic(XI) is a
‘quadratic’ functor is well-known, see [5, Sect. 3] and [14] for example. We emphasize
that this notion of ‘quadratic functor’ is really the same as the aforementioned
notion of 2-excisive functor.

1.3. Overview of the paper

In Section 2, we develop the notion of n-excisive functor fSet∗ → C and prove
some vanishing results for limits of such functors over fSetsurjn.e., including point (3).
We introduce various categories of finite sets (2.1) and study n-excisive functors to
abelian categories (2.2) and (∞, 1)-categories (2.3). Lastly, we investigate analogous
results for functors which are only defined on sets I whose size is bounded above
by some fixed integer N , see 2.4. One such ‘finite limit’ result is needed for the
proof of Lemma 6.2.9, which is an enhanced version of the triviality of functions on
Ran(X).

In Section 3, which is purely expository, we review the definition of the Ran
space and of quasicoherent sheaves and line bundles on it. In 3.1, we introduce
various categories of prestacks and explain why several possible definitions of the
Ran space coincide (3.1.2). In 3.2, we define various categories of sheaves on Ran(X)
and we explain how the derived and abelian categories relate to each other.

In Section 4, we prove point (1). We define infinitesimal analogues of the Ran
space (4.1) and prove that flat quasicoherent sheaves on the infinitesimal Ran space
are canonically trivial (Proposition 4.1.5). Next, in 4.2, we use partially-labeled Ran
spaces to bootstrap this result from the infinitesimal Ran space to the completed
Ran space which Beilinson and Drinfeld introduced in order to prove the existence
of a canonical connection on a unital factorization algebra (see 1.2.1). Finally, we
complete the proof in 4.3.

4Note that G lands in the category of strictly commutative Picard groupoids, which identifies

with the extension-closed subcategory of Db(AbGrp) consisting of objects concentrated in coho-
mological degrees [−1, 0]. Thus, this example can be analyzed in the context of functors which

land in the stable (∞, 1)-category Db(AbGrp). However, note that the composition of G with the

full embedding into Db(AbGrp) need not be 2-excisive.

https://stacks.math.columbia.edu/tag/0BF4
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In Section 5, we prove point (2) in the case when S is a field. In 5.1, we use
the Theorem of the Cube to show that (3) can be applied, and at the same time we
deduce an improvement of the Theorem of the Cube, see Corollary 5.1.6. Although
the proof of this case of (2) uses the existence of a k-rational point and a smooth
compactification of X , we use Galois descent in 5.2 to weaken these assumptions
to the hypothesis (C) stated in point (2).

In Section 6, we finally prove point (2) when S is any locally Noetherian
k-scheme. In 6.1.2, we introduce the notion of a rigidified line bundle, i.e. a line
bundle equipped with trivialization at a basepoint. In 6.2, we prove that functions
on S×Ran(X) are pulled back from S. In 6.3, we use this to prove the result when
S is Artinian, and then in 6.4 we bootstrap to the case when S is arbitrary. This
relies on Beauville–Laszlo gluing for regular functions (rather than quasicoherent
sheaves), which we discuss in 6.5. In these subsections, we sometimes require the
hypothesis that X is affine, but we remove this hypothesis in 6.6 by bootstrapping
from the affine case. This proof loosely follows the strategy of ‘reduction to the
local Artinian case’ introduced in [8, I, p. 8–9]. For more discussion of this point,
see Remark 6.0.1.

1.4. Notations

1.4.1. General notations. In this paper, k is a field, and we never impose any as-
sumptions on the characteristic of k. Let Vectk be the abelian category of vector
spaces over k.

We will consider an abelian category A and an (∞, 1)-category C. All derived

categories in this paper will be indicated as such, e.g. Db(AbGrp). In particular,
QCoh(−) refers to the abelian category of quasicoherent sheaves.

All of our categories will be locally small. We say that a category is complete
if it admits limits indexed by arbitrary small (equivalently, essentially small) di-
agrams. A limit in an (∞, 1)-category is always to be understood as a homotopy
limit.

We employ the usual derived functor notation, e.g. limi, Ri Γ. All derived func-
tors and t-structures will be subject to cohomological indexing, with the exception
of π1, π0, . . . which has homological indexing.

We consider a scheme X over k, and we denote its base change to k by Xk.

By a ‘prestack over k’ we mean a contravariant functor on Schaff,ftk , which denotes
the category of affine finite type schemes over k – see 3.1.1 for more details. If a
product × or tensor product ⊗ appears with no subscript, it is taken over k.

A boldface Pic(−) refers to the (strictly commutative) Picard groupoid of
line bundles, whereas an ordinary Pic(−) indicates the Picard group. An underline
Pic(−) indicates a (relative) Picard functor.

When an object in a category c ∈ C appears with an underline c, this refers
to a constant functor with value c. (Exception: in 4.1.5, an underline V denotes a
free quasicoherent sheaf with fiber V .)

A hat (̂−) or (−)∧ will always denote completion, and (−)∧,a means comple-
tion with respect to the ideal a.

1.4.2. Specialized notations. In 2.1, we will introduce various categories of finite
sets, including fSet∗ and fSetsurjn.e.. We denote the faithful embedding fSetsurjn.e. →֒ fSet∗
by ι, so that ι(I) := {∗} ⊔ I. In 2.4, we introduce full subcategories consisting of
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finite sets bounded in size by some integer N , e.g. fSet∗,≤N and fSetsurjn.e.,≤N . Note

that the ‘size’ of a pointed set {∗} ⊔ I is defined to be |I|. The letters I and J will
always refer to finite sets. We let [n] := {1, 2, . . . , n}, so that [0] = ∅. For pointed
finite sets, we have the smash product and wedge sum operations, which satisfy

({∗} ⊔ I) ∧ ({∗} ⊔ J) ≃ {∗} ⊔ I × J

({∗} ⊔ I) ∨ ({∗} ⊔ J) ≃ {∗} ⊔ I ⊔ J.

In this paper, any limit is taken over fSetsurjn.e. , fSet
surj
n.e.,≤N for some N , Z≥0, or

a hypercube diagram. In the first two cases, we make the restriction to surjective
maps between nonempty subsets explicit by precomposing the functor in question
by ι, whose domain is fSetsurjn.e., see 2.1. There are no limits which are taken over
fSet∗, although we often consider functors defined on this larger category.

The notation Ξ(Ib)b∈B
refers to a ‘special’ hypercube diagram in fSet∗, and it

is introduced in 2.3.
In 4.1, we introduce the infinitesimal Ran space Ranninf , the Artinian Ran

space Rann〈d〉, and associated functors Pn,Pn,d : fSet∗ → Vectk corresponding to

their sheaves of regular functions. In 4.2, we define RanI(−),RanI
∆̂
(−), and (−)I

∆̂
.

In 6.1.2, we define the notion of ‘rigidified’ object, and denote it with an
e-superscript, e.g. Pic

e(−) and Γe(−,O).

1.5. Acknowledgments

The author would like to thank Dennis Gaitsgory for suggesting the problem of
showing that Ran(X) is Pic-contractible, Yifei Zhao for providing a wealth of help-
ful comments on an earlier draft, and Charles Fu for providing comments and
corrections on a later draft. Much of the paper in its current form was inspired
by Yifei Zhao’s suggestion that the proof of triviality of Pic(Ran(X)) could be
interpreted as a vanishing theorem for limits of polynomial functors. This work was
supported by the National Science Foundation Graduate Research Fellowship.

2. n-excisive functors on finite pointed sets

2.1. Categories of finite sets

Let fSet∗ denote the category of pointed finite sets. Let fSetsurj denote the category
whose objects are (possibly empty) finite sets and whose morphisms are surjective

maps. Note that fSetsurj = {∅} ⊔ fSetsurjn.e. where the second term is the subcategory

consisting of nonempty finite sets. We have a faithful embedding ι : fSetsurjn.e. → fSet∗
which sends I 7→ {∗}⊔I. The symbol ∗ will always denote the basepoint of an object
in fSet∗.

Remark. Note that the functor ι changes the underlying set. To remedy this, it is
perhaps better to think of fSet∗ as the category whose objects are (non-pointed)
finite sets and whose morphisms are partially-defined maps. We will not use this
interpretation so as to avoid introducing separate notation for the phrase ‘the map
ψ : I → J is not defined on the element i ∈ I.’ Instead, we can just write ψ(i) = ∗.

Define [n] := {1, 2, . . . , n} for integers n ≥ 0.
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2.1.1. Inclusions and projections. For a subset S ⊂ I, define the maps

{∗} ⊔ S {∗} ⊔ I
φS,I

ψS,I

as follows: φS,I is induced by the inclusion S →֒ I, and ψS,I is the identity on
S and sends I r S to {∗}. Furthermore, define eS,I := φS,I ◦ ψS,I and note that
these form a family of commuting idempotent endomorphisms of {∗} ⊔ I. Indeed,
for S1, S2 ⊂ I, we have eS1,I ◦ eS2,I = eS1∩S2,I .

For S ⊂ S′ ⊂ I, we clearly have the identities

ψS,I ◦ φS,I = id{∗}⊔S

ψS,S′ ◦ ψS′,I = ψS,I

φS′,I ◦ φS,S′ = φS,I .

2.2. Polynomial functors to an additive Karoubian category

In this subsection, we define the notion of a polynomial functor of degree ≤ n taking
values in an additive Karoubian category A, and we prove a vanishing theorem for
its limit over fSetsurjn.e. . We will only use these results when the target category A is
abelian.

Here are the main ideas. Given a functor G : fSet∗ → A where A is an
additive Karoubian category, we use the retracts ψS,[d] ◦ φS,[d] = idS to extract the
‘homogeneous parts’ of G, which constitute the values of another functor Prim(G) :

fSetsurj → A. Roughly speaking, the d-th homogeneous part of G consists of those
elements of G([d]) which do not come from G([d− 1]). This procedure bears a mild
resemblance to the passage from the unnormalized chain complex to the normalized
chain complex in the context of the Dold-Kan correspondence; compare [16, Def.
1.2.3.9] with Lemma 2.2.4(ii) below.

We show that G is determined by Prim(G) (Proposition 2.2.3), and we define
G to be ‘polynomial of degree ≤ n’ if it has no d-th homogeneous pieces for d > n
(Definition 2.2.5). The main result of this subsection is Proposition 2.2.5, which
shows that, if G is polynomial of degree ≤ n for some n, then the limit of G over
fSetsurjn.e. is trivial.

2.2.1. Here are some basic properties of additive Karoubian categories to be used
in this subsection. Let A be such a category. Since A is Karoubian, any idempotent
endomorphism e : a → a in A splits as se : b ⇄ a : pe where pe ◦ se = idb and
se ◦ pe = e. Note that b ≃ Im(e) ≃ ker(1− e). Furthermore, 1− e is an idempotent
which commutes with e, and we have

a ≃ b⊕ c

where b is as before, and c ≃ ker(e) ≃ ker(pe) ≃ Im(1 − e). In particular, if p is
any morphism in A which admits a section s, then ker(p) exists and identifies with
Im(1− s ◦ p).

If e1, e2 : a → a are two commuting idempotent endomorphisms, then the
limit of the cospan

ker(e1)→ a← ker(e2)

exists and identifies with Im((1−e1)(1−e2)), where (1−e1)(1−e2) is an idempotent.
Thinking of ker(e1), ker(e2) as subobjects of a, we denote this object by ker(e1) ∩
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ker(e2). In a similar vein, we have

a ≃ (ker(e1) ∩ ker(e2))⊕ (ker(e1) ∩ Im(e2))

⊕ (Im(e1) ∩ ker(e2))⊕ (Im(e1) ∩ Im(e2)).

In particular, we can always form the intersection of the kernels of finitely many
commuting idempotent endomorphisms on an object a.

2.2.2. Let A be an additive Karoubian category. Define functors

Fun(fSetsurj,A) Fun(fSet∗,A)
Ind

Prim

as follows:

• Given a functor F : fSetsurj → A, let G = Ind(F ) : fSet∗ → A be defined as
follows.

– On objects {∗} ⊔ I ∈ fSet∗, define G({∗} ⊔ I) =
⊕

S⊂I F (S).
– On morphisms ξ : {∗} ⊔ I → {∗} ⊔ J , define the map

G(ξ) :
⊕

S⊂I

F (S)→
⊕

T⊂J

F (T )

such that the matrix coefficient F (S)→ F (T ) corresponding to (S, T ) is

F (S
ξ
−→ ξ(S)) if T = ξ(S) and zero otherwise.

• Given a functor G : fSet∗ → A, let F = Prim(G) : fSetsurj → A be defined as
follows.

– On objects I ∈ fSetsurj, define

F (I) =
⋂

S(I

ker(G(eS,I)) =
⋂

S(I

ker(G(ψS,I))

as a subobject of G({∗}⊔ I). This makes sense because G(eS,I) are com-
muting idempotent endomorphisms of G({∗} ⊔ I).

– On morphisms ξ : I ։ J , define F (ξ) to be induced by

G({∗} ⊔ I)
G({∗}⊔ξ)
−−−−−−→ G({∗} ⊔ J).

The definition of Ind and Prim on morphisms (i.e. natural transformations) is ob-
vious.

2.2.3. We show that any functor G as above is determined by its homogeneous
pieces Prim(G).

Proposition. Ind and Prim are mutually inverse equivalences of additive Karoubian
categories.

Proof. First, we discuss the composition Prim ◦ Ind. Given F : fSetsurj → A, we get
the functor Ind(F ) whose value on {∗} ⊔ I is

⊕
S⊂I F (S). For a fixed I ′ ( I, the

map

Ind(F )(ψI′,I) :
⊕

S⊂I

F (S)→
⊕

S′⊂I′

F (S′)

has matrix coefficient F (S) → F (S′) given by F (S)
id
−→ F (S) if S = S′ and zero

otherwise. Therefore, the kernel of this map is
⊕

S⊂I and S 6⊂I′ F (S). Varying I
′, this
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shows that ⋂

I′(I

ker(Ind(F )(ψI′,I)) = F (I).

The resulting isomorphism Prim(Ind(F ))(I) ≃ F (I) extends to a natural isomor-
phism Prim ◦ Ind ≃ id.

Next, we discuss the composition Ind ◦Prim. Suppose we are given a functor
G : fSet∗ → A. For a fixed set I, the idempotents G(eS,I) for S ⊂ I commute with
each other, so G({∗} ⊔ I) admits the following direct sum decomposition:

⊕

S⊂I

(⋂

i∈I

(
ker(G(eIr{i},I)) if i ∈ S and Im(G(eIr{i},I)) otherwise

))

Furthermore, for each S ⊂ I, the corresponding summand rewrites as
⋂

i∈S

ker(G(ψSr{i},S)) =
⋂

i∈S

ker(G(eSr{i},S)) ⊂ G({∗} ⊔ S),

because eS,I =
∏
i∈IrS eIr{i},I implies that
⋂

i∈IrS

Im(G(eIr{i},I)) ≃ Im(G(eS,I)) ≃ G({∗} ⊔ S),

and because, for each i ∈ S, the idempotents eIr{i},I and eSr{i},S are intertwined
by ψS,I and φS,I . Thus, the whole direct sum decomposition for G({∗}⊔I) rewrites
as

G({∗} ⊔ I) ≃
⊕

S⊂I

(⋂

i∈S

ker(G(ψSr{i},S))

)

=
⊕

S⊂I

Prim(G)(S)

= Ind(Prim(G))({∗} ⊔ I).

This defines a natural isomorphism Ind ◦Prim ≃ id. �

2.2.4. The equivalent conditions of this next lemma will explain what it means for
a functor G to be polynomial of degree ≤ n.

Lemma. Let G : fSet∗ → A be a functor, and let n ≥ 0 be an integer. The following
are equivalent:

(i) For every I with |I| > n, we have

G({∗} ⊔ I) =
∑

i∈I

Im(G(φIr{i},I)).

(ii) For every I with |I| > n, we have
⋂

i∈I

ker(G(ψIr{i},I)) = 0.

(iii) For every I with |I| > n, this is an equalizer sequence:

G({∗} ⊔ I)
⊕

i∈I G({∗} ⊔ I r {i})
⊕

i,j∈I
i6=j

G({∗} ⊔ I r {i, j}).
f

g1

g2
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The sequence is defined with reference to a linear order on I. The matrix
coefficients of f are given by G(ψIr{i},I). For g1, the matrix coefficient

G({∗} ⊔ I r {i})→ G({∗} ⊔ I r {i, j})

is given by G(ψIr{i,j},Ir{j}) if i < j, and all other matrix coefficients are zero.
The matrix coefficients for g2 are defined by the same rule, replacing i < j
with i > j.

(iv) The functor Prim(G) sends I 7→ 0 for all |I| > n.

Proof. In view of Proposition 2.2.3, we have G ≃ Ind(F ) for some F : fSetsurj → A.
We want to show that each of (i), (ii), and (iii) is equivalent to the assertion that
F (I) = 0 for all |I| > n.

For (i), this follows because G({∗} ⊔ I) =
⊕

S⊂I F (S) by definition, and the
right hand side is the sum of F (S) for S ( I. So the equation in (i) asserts that
F (I) = 0.

For (ii), the left hand side is F (I) by definition of F = Prim(G).
For (iii), the term G({∗}⊔ I r {i}) has a summand F (S) for each S satisfying

S ⊂ Ir{i}. Likewise, G({∗}⊔Ir{i, j}) has a summand F (S) for each S satisfying
S ⊂ I r {i, j}. Examining the maps g1 and g2 on these summands shows that the
equalizer identifies with

⊕
S(I F (S). So (iii) asserts that F (I) = 0. �

2.2.5. We arrive at the main definition and result of this subsection:

Definition. Let G : fSet∗ → A be a functor. We say that G is polynomial of degree
≤ n if G satisfies the equivalent conditions of Lemma 2.2.4.

Remark. A functor G : fSet∗ → A is 1-excisive if and only if it is the direct sum of
a constant functor fSet∗ → A and a monoidal functor fSet∗ → A (intertwining the
monoidal structures ∨ on fSet∗ and ⊕ on A).

Proposition. If G : fSet∗ → A is polynomial of degree ≤ n, for some n, then
lim(G ◦ ι) exists and identifies with G({∗}).5

If one is willing to assume that A admits limits, then this proposition can be
proved using the strategy of Theorem 2.3.3, whose main idea is to deduce an oper-
ation on lim(G ◦ ι) which is analogous to the idempotent semigroup multiplication
on Ran(X). Below, we give a direct and elementary proof of the proposition.

Proof. Since {∗} ∈ fSet∗ is terminal, we have a natural transformation G→ G({∗})
where underline denotes the constant functor. This yields a map

f : lim(G ◦ ι)→ limG({∗})

in the presheaf category Fun(Aop,AbGrp), where ‘lim’ is interpreted as the formal

limit. Since fSetsurjn.e. has a terminal object, it is contractible, so limG({∗}) identifies

with G({∗}). To show that f is an isomorphism, it suffices to show that its value
at each a ∈ A is an isomorphism. In this way, we reduce to the case in which
A = AbGrp.

If A = AbGrp, the limit lim(G ◦ ι) exists, and an element of the limit is a
collection of elements aI ∈ G({∗} ⊔ I) for all nonempty I which are compatible
under the maps {∗}⊔I → {∗}⊔J induced by surjections I ։ J . By hypothesis, we

5The functor ι was defined in 2.1 and it appears here to indicate that the limit is over fSetsurjn.e. ,
not fSet∗.
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have G ≃ Ind(F ) where F (I) = 0 for all |I| > n. By definition of Ind, the element
aI corresponds to a tuple of elements bS,I ∈ F (S) for S ⊂ I. It suffices to show
that bS,I = 0 if S is nonempty.

First, considering permutations of I shows that bS,I depends only on the car-
dinality of S. Therefore we can write bS,I as bm,I when |S| = m. We shall use
downward induction on m to show that bm,I = 0 for all m ≥ 1. The claim for
m > n follows from our assumption that F (I) = 0 for all |I| > n. Assume that the
claim holds for m + 1, and prove it for m as follows. For any d ≥ m, consider the
map

{∗} ⊔ [d+ 1]
ξ
−→ {∗} ⊔ [d]

which sends i 7→ min(i, d). Observe that

• If J ⊂ [d] is an m-element subset which does not contain d, then there is
exactly one m-element subset of [d+ 1] which maps to J under ξ.

• If J ⊂ [d] is an m-element subset which contains d, then there are exactly two
m-element subsets of [d+ 1] which map to J under ξ.

If d > m, then there exist m-element subsets J ⊂ [d] which contain (resp. do
not contain) d, so the definition of G(ξ) = Ind(F )(ξ) implies that

bm,[d] = bm,[d+1] = 2bm,[d+1].

We conclude that bm,[d+1] = bm,[d] = 0.
It remains to show that bm,[m] = 0. If d = m, then the second bullet point

implies

bm,[m] = 2bm,[m+1],

but we already know that bm,[m+1] = 0, so bm,[m] = 0, as desired.
Now, applying the compatibility condition to any isomorphism I ≃ [d] shows

that bm,I = 0 for all I, which proves the inductive step. �

Remark. This elementary proof will be imitated to prove Lemma 2.4.4, which is an
analogue for finite limits. There, unlike here, we do not know an analogous result
in the homotopic setting parallel to Theorem 2.3.3, see Remark 2.4.7.

2.2.6. Remark. The notion of ‘polynomial functor’ which was introduced in Defi-
nition 2.2.5 is a special case of the notion of n-excisive functor to be introduced in
Definition 2.3. We chose a different terminology so as to distinguish between func-
tors landing in additive Karoubian categories (e.g. abelian categories) and (∞, 1)-
categories, since the term ‘excisive’ suggests homotopy limits. However, we em-
phasize that there does not seem to be a relation between ‘polynomial functor’ in
our sense and the corresponding term in combinatorics, referring to endofunctors
fSet→ fSet.

2.2.7. Remark. We give an example to show that a non-polynomial functor G need
not satisfy the vanishing result of Proposition 2.2.5. In fact, the simplest example
of a non-polynomial functor suffices.

Claim. There is a functor G : fSet∗ → AbGrp such that the map limGι→ G({∗})
is not an isomorphism.
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Proof. Take G = Ind(Z) where Z denotes the constant functor fSetsurj → AbGrp.

Thus, we have G({∗} ⊔ I) ≃ Z⊕2I , and for every map ξ : {∗} ⊔ I → {∗} ⊔ J , the
induced map ⊕

S⊂I

Z ≃ G({∗} ⊔ I)
G(ξ)
−−−→ G({∗} ⊔ J) ≃

⊕

T⊂J

Z

has (S, T ) matrix coefficient equal to idZ if ξ(S) = T and zero otherwise.
We will define an element aI ∈ G({∗}⊔I) for every nonempty finite set I such

that the aI are compatible with respect to maps of the form {∗}⊔f where f : I ։ J
is a surjection. Namely, define aI ∈

⊕
S⊂I Z to be 1 on the S = I coordinate and 0

on all other coordinates. The claim that G({∗} ⊔ f)(aI) = aJ follows from the fact
that the image of I ⊂ {∗} ⊔ I under {∗} ⊔ f is J ⊂ {∗} ⊔ J because f is surjective.

This defines a nonzero element in limGι. The image of this element under the
map to G({∗}) is zero, because the S = ∅ coordinate of each aI is zero. This shows
that limGι→ G({∗}) is not injective. �

2.2.8. Here is one way to prove that a functor is polynomial:

Lemma. Suppose G1, G2 : fSet∗ → A are two functors, and η : G1 → G2 is a
natural transformation whose values are surjections. If G1 is polynomial of degree
≤ n, then so is G2.

Proof. By Proposition 2.2.3, it suffices to show that, if F1, F2 : fSetsurj → A are
two functors, η : F1 → F2 is a natural transformation whose values are surjections,
and F1(I) = 0 if |I| > n, then F2(I) = 0 if |I| > n. This is true because, in any
additive category, the existence of a surjective map 0→ a implies that a = 0. �

2.3. n-excisive functors to an (∞, 1)-category

Our next goal is to develop material analogous to 2.2 for functors landing in an
(∞, 1)-category. Thus, let C be an (∞, 1)-category. All limits in this subsection are
to be understood as homotopy limits.

For any tuple (Ib)b∈B of finite sets (indexed by a nonempty finite set B), the
maps ψ(⊔b2∈B2

Ib2 ),(⊔b1∈B1
Ib1 )

for B2 ⊂ B1 ⊂ B combine to form a commutative
hypercube, denoted Ξ(Ib)b∈B

. We shall refer to this as a special hypercube in fSet∗.
The vertices of this hypercube are indexed by subsets B′ ⊂ B, where B′ corresponds
to the object {∗} ⊔ (⊔b′∈B′Ib′).

If a commutative hypercube in an (∞, 1)-category realizes its initial vertex
as the limit of the rest of the diagram, we say that it is weakly cartesian. If every
subsquare is cartesian, then we say that it is strongly cartesian. Similar definitions
apply for ‘cocartesian’ in place of ‘cartesian,’ writing ‘final vertex’ in place of ‘initial
vertex.’ Each special hypercube Ξ(Ib)b∈B

is strongly cocartesian in fSet∗, and we
will apply these definitions to commutative hypercubes in C obtained by applying
a functor fSet∗ → C to a special hypercube.

Definition. We say that a functor G : fSet∗ → C is n-excisive if, for any tuple
(Ib)b∈B with |B| > n, the diagram G(Ξ(Ib)b∈B

) is weakly cartesian.

Remark. This definition, which is due to Clemens Berger, is directly related to the
notion of n-excisive functor in Goodwillie calculus. See [4] for a precise relation
between n-excisive functors fSet∗ → Spaces∗ in this sense and n-excisive functors
Spaces∗ → Spaces∗.
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2.3.1. Remark. By applying the same definition with the (∞, 1)-category C re-
placed by an abelian 1-category A, we obtain the notion of n-excisive functor
G : fSet∗ → A. However, this notion is one which we have already studied. In-
deed, for a functor G : fSet∗ → A, the condition of Lemma 2.2.4(iii) is easily seen
to be equivalent to the requirement that G(Ξ(i)i∈I

) is weakly cartesian when |I| > n,
and this is equivalent to the condition that G(Ξ(Ib)b∈B

) is weakly cartesian for all
tuples (Ib)b∈B with |B| > n. Therefore, G is polynomial of degree ≤ n if and only
if it is n-excisive.

In general, if G : fSet∗ → A is n-excisive, the composed functor fSet∗
G
−→ A→

D(A) need not be n-excisive, because the image in D(A) of a weakly cartesian square
in A need not be weakly cartesian. However, when n = 1, this composed functor
is n-excisive. Indeed, in this case G is the direct sum of a constant functor and a
monoidal functor (see Remark 2.2.5), so the composed functor (from fSet∗ to D(A))
sends special cocartesian hypercubes in fSet∗ to strongly cartesian hypercubes in
D(A).

2.3.2. Paring down the hypercube. If a functor G is n-excisive, then the value
Gι(⊔b∈BIb) is determined by the diagram G(Ξ(Ib)b∈B

) minus its initial vertex, pro-
vided that |B| > n. Now, we show that if |B| > n+ 1, then this diagram is partly
redundant: to determine the value Gι(⊔b∈BIb) it suffices to remember only the
part of the diagram which is of height ≤ n. This result will be used to deduce an
improved version of the Theorem of the Cube, see Corollary 5.1.6.

For Ξ(Ib)b∈B
as above, let Ξ≤n

(Ib)b∈B
denote the full sub-diagram consisting only

of those vertices indexed by subsets B′ ⊂ B with |B′| ≤ n.

Lemma. Assume that G : fSet∗ → C is n-excisive. Then

limG(Ξ≤n
(Ib)b∈B

) ≃ G(⊔b∈BIb).

Proof. We shall prove the following statement by downward induction on m:

(·) For m ≥ n, we have limG(Ξ≤m
(Ib)b∈B

) ≃ G(⊔b∈BIb).

When m ≥ |B|, this statement is trivial because Ξ≤m
(Ib)b∈B

= Ξ(Ib)b∈B
, as before.

When m = |B| − 1, this restates the n-excision property for G, because Ξ
≤|B|−1
(Ib)b∈B

equals Ξ(Ib)b∈B
with its initial vertex removed.

From now on, assume |B|−1 > n, fix an integer m satisfying |B|−1 > m ≥ n,
and assume that the statement has been proven for m+ 1. To prove the statement
for m, our strategy will be to show that the restriction map

limG(Ξ≤m+1
(Ib)b∈B

)→ limG(Ξ≤m
(Ib)b∈B

)

is an isomorphism. To do this, we will apply the following observation:

Claim. Let D be a small diagram, and let D
F
−→ C be a functor. Let D0 →֒ D

be a full sub-diagram of D, let D⊳
0 be the left cone6 over D0, and consider the

diagram D1 := D ∪D0 D⊳
0

F1−→ C which sends the cone point to limD0 F |D0 . Then
limF ≃ limF1.

6This is the diagram obtained from D0 by freely adjoining an initial object.
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Proof of claim. The object limF1 represents the functor which sends an object
c ∈ C to MapsFun(D1,C)(c, F1). But we have

MapsFun(D1,C)(c, F1)

≃ MapsFun(D,C)(c, F ) ×
MapsFun(D0 ,C)(c,F |D0

)
MapsFun(D⊳

0 ,C)
(c, F1|D⊳

0
)

≃ MapsFun(D,C)(c, F ) ×
MapsFun(D0 ,C)(c,F |D0

)
MapsC(c, lim

D0

F |D0)

≃ MapsFun(D,C)(c, F ).

So limF1 and limF represent the same functor Cop →∞-Grpd, as desired. �

By the inductive hypothesis, limG(Ξ≤m+1
(Ib)b∈B

) ≃ G(⊔b∈BIb). The partial hyper-

cube Ξ≤m+1 is obtained from the partial hypercube Ξ≤m by adjoining one point for
each subset B′ ⊂ B with |B′| = m+ 1. For each such B′, the corresponding vertex
attaches as a cone point over the full sub-diagram of Ξ≤m given by the vertices
indexed by B′′ with B′′ ⊂ B′. Therefore, by the claim, it suffices to prove that each
such cone (for a fixed B′) maps under G to a limit diagram. But this holds because
each sub-diagram (with its limit point B′) is the full hypercube G(Ξ(Ib)b∈B′ ), where

|B′| = m + 1 > n (since m ≥ n), and G is n-excisive. This proves the inductive
step. �

2.3.3. We now state the main vanishing result for limits of n-excisive functors:

Theorem. Let C be a complete stable (∞, 1)-category with a right complete t-structure
C≤0, and let G : fSet∗ → C be an n-excisive functor. We assume:

(•) The essential image of G lies in C≥m for some m.

Then the natural map lim(G ◦ ι)→ G({∗}) is an isomorphism.

Remark. Before embarking on the proof, which will occupy the rest of this sub-
section, let us first describe the motivation. This proof follows the same formal
pattern as the proof in [10, Sect. 6] of the vanishing of the de Rham cohomol-
ogy of Ran(X), see 1.2.2(a). To see the analogy, suppose G({∗} ⊔ I) is of the

form F (XI) for some functor F : Schaff,opk → C. Then the functor M intro-
duced below is given by M({∗} ⊔ S) = F (Ran(X)S).7 Since Ran(X) admits a

semigroup multiplication Ran(X)S
mult
−−−→ Ran(X), we could apply F to deduce a

map M({∗, 1})
F (mult)
−−−−−→ M({∗} ⊔ S) for every S. This is the map constructed in

Lemma 2.3.6(i) (except there we carry around I ‘useless’ copies of Ran(X)). The
assertion of Lemma 2.3.6(ii) is a consequence of the fact that the composition

Ran(X)
∆
−→ Ran(X)S

mult
−−−→ Ran(X)

is the identity. Lastly, after a dévissage argument to reduce to the situation of a
functor landing in an abelian category, Lemma 2.3.7 performs the same cancellation
trick as in [10, Sect. 6]. The main difference is that, whereas Gaitsgory used the

7The value of F : Schaff,op
k

→ C on a prestack is defined by right Kan extension along the fully

faithful embedding Schaffk →֒ Fun(Schaff,op
k

,Set) = PreStkk, so we have

F (Ran(X)S ) ≃ lim
I∈fSet

surj
n.e.

F (XI×S) ≃ lim
I∈fSet

surj
n.e.

G({∗} ⊔ (I × S)) =: M({∗} ⊔ S).

For the first isomorphism, see 3.2.2.
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Künneth formula to inductively reduce to dealing with a degree ≤ 1 functor, we
need to deal with degree ≤ n functors. The I ‘useless’ copies mentioned before are
used to pin down (n− 1) elements of an n-element set, thereby reducing essentially
to the case of a degree ≤ 1 functor.

Proof of Theorem 2.3.3. Consider the smash product functor

∧ : fSet∗× fSet∗ → fSet∗

which satisfies ι(I) ∧ ι(J) = ι(I × J). We have the composition

fSet∗× fSetsurjn.e. fSet∗× fSet∗ fSet∗ C,
id×ι ∧ G

and we take its limit with respect to the second coordinate to get a functor M :
fSet∗ → C.

By definition, the functor M has the following behavior on objects:

M({∗} ⊔ S) ≃ lim
I∈fSetsurjn.e.

Gι(S × I).

Applying M to the map {∗, 1} → {∗} yields the map lim(G ◦ ι) → G({∗}) which
appears in the statement of the theorem.

2.3.4. The first step is to show the following:

Lemma. The functor M is n-excisive.

Proof. By definition ofM , for any tuple (Ib)b∈B with |B| > n, the diagramM(Ξ(Ib)b∈B
)

in C is the limit of the diagram

G(Ξ(Ib)b∈B
∧ ι(I)) (†)

over I ∈ fSetsurjn.e. . Since the smash product ∧ distributes over the wedge sum ∨, we
have a natural isomorphism of diagrams

Ξ(Ib)b∈B
∧ ι(I) ≃ Ξ(Ib×I)b∈B

.

Since G is n-excisive, this implies that the diagram (†) is weakly cartesian. Thus
M(Ξ(Ib)b∈B

) is also weakly cartesian, because limits commute with limits. �

2.3.5. We need to use [10, 1.5.3], which we restate here:

Lemma. Let C be a complete category, and let D1,D2 be essentially small categories.

Given a functor D2
G
−→ C, we obtain a functor Fun(D1,D2)→ C(limG)/ which sends

a functor D1
F
−→ D2 to a map

limG
φF
−−→ lim(G ◦ F1).

Proof. Let C
∆
−→ Fun(D1,C) be the functor sending d to the constant functor with

value d, and similarly forD2 in place ofD1. We have a strictly commutative diagram
of functors

Fun(D2,C)× Fun(D1,D2) C× Fun(D1,D2)

Fun(D1,C) C

compose

∆×id

pr1

∆
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Passing to right adjoints along the horizontal maps, we obtain a lax commutative
diagram

Fun(D2,C)× Fun(D1,D2) C× Fun(D1,D2)

Fun(D1,C) C

compose

lim× id

pr1⇓

lim

This yields the desired functor upon precomposing by the embedding

Fun(D1,D2) →֒ Fun(D2,C)× Fun(D1,D2)

which sends F 7→ (G,F ). �

2.3.6. Using the previous lemma, we discover that M satisfies some new functo-
riality which was not visible prior to taking the limit. Morally, this functoriality

corresponds to the semigroup multiplication Ran(X)S
mult
−−−→ Ran(X), which is not

visible at any finite stratum of Ran(X).

Lemma. Let I be a finite set.

(i) There is a functor fSetsurjn.e. → CM({∗}⊔I⊔{1})/ which sends a set S to a map

M({∗} ⊔ I ⊔ {1})
φS
−−→M({∗} ⊔ I ⊔ S).

(ii) For any S, let c : S → {1} be the unique map. The composition

M({∗} ⊔ I ⊔ {1}) M({∗} ⊔ I ⊔ S) M({∗} ⊔ I ⊔ {1})
φS M(id⊔c)

is homotopic to the identity map, and these data are compatible with the au-
tomorphisms of M({∗} ⊔ I ⊔ S) induced by permutations of S.

Proof. Applying Lemma 2.3.5 to the functor Gι((I ⊔ {1})× (−)) yields a functor

Fun(fSetsurjn.e., fSet
surj
n.e.)→ CM({∗}⊔I⊔{1})/.

Precompose this by the functor fSetsurjn.e. → Fun(fSetsurjn.e. , fSet
surj
n.e.) which sends S 7→

S×(−). (The functor S×(−) lands inside fSetsurjn.e. only if S is nonempty.) We obtain
a functor

fSetsurjn.e. → CM({∗}⊔I⊔{1})/

which sends a nonempty finite set S to a map

M({∗} ⊔ I ⊔ {1})→M({∗} ⊔ ((I ⊔ {1})× S))

=M({∗} ⊔ (I × S) ⊔ S).

Because {1} is terminal in fSetsurjn.e., the maps M({∗} ⊔ (I × S) ⊔ S)
(idI ×c)⊔idS
−−−−−−−−→

M({∗}⊔ I ⊔S) are functorial in S, and post-composing the above map by this one
yields the map φS .

To prove part (ii), note that part (i) identifies the composition in question with
φ{1}, and it does so functorially in S. The claim follows because φ{1} ≃ id. �
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2.3.7. We are now ready to complete the proof of Theorem 2.3.3:

Lemma. For every d, the functor τ≤dM is isomorphic to the constant functor with
value τ≤dM({∗}).

Proof. Since limits are left exact, our assumption (•) implies that the essential
image of M lies in C≥m. This proves the lemma for d < m. By induction, we may
assume that d ≥ m and that the result has been proven for all smaller d. We have
a map of exact triangles of functors fSet∗ → C as follows:

τ≤d−1M τ≤dM τ≥dτ≤dM

τ≤d−1M({∗}) τ≤dM({∗}) τ≥dτ≤dM({∗})

∼

Our desired statement is that the middle vertical arrow is a natural isomorphism.
Therefore, it suffices to prove that the right vertical arrow is a natural isomorphism.
In this way, we reduce to studying functors landing in the abelian 1-category A :=
C♥.

Consider the functor N : fSet∗ → A which corresponds to τ≥dτ≤dM . We
prove that N is a polynomial functor of degree ≤ n in the sense of Definition 2.2.5.
Let Ξ := Ξ(Ib)b∈B

be any special hypercube in fSet∗ with |B| > n, so that M(Ξ) is
a limit diagram by Lemma 2.3.4. Consider the exact triangle of functors fSet∗ → C

as follows:

τ≤d−1M(Ξ) M(Ξ) τ≥dM(Ξ)

By the inductive hypothesis, τ≤d−1M(Ξ) is a constant diagram, so it is a limit
diagram.8 Since C is stable, and limits commute with limits, we conclude that
τ≥dM(Ξ) is also a limit diagram. Since τ≤d preserves limits, this implies that
τ≤dτ≥dM(Ξ) is a limit diagram in C≤d. Now it follows from Remark 2.3.1 that N
is polynomial of degree ≤ n.

By Lemma 2.2.4, we have N = Ind(F ) for some F : fSetsurj → A which sends
J 7→ 0 if |J | > n. We shall prove the following statement by downward induction
on w ≥ 1: if |J | = w, then F (J) = 0. Thus, we fix w ≥ 1 and assume that the
statement has been proved for all integers larger than w.

Let I be a finite set with |I| = w − 1. In view of Lemma 2.3.6, we know that

for S ∈ fSetsurjn.e. there is a map

N({∗} ⊔ I ⊔ {1})
φS
−−→ N({∗} ⊔ I ⊔ S)

which is functorial in S. By definition of Ind(F ), this map rewrites as

⊕

T⊂I⊔{1}

F (T )
φS
−−→

⊕

T ′⊂I⊔S

F (T ′).

8If it were not a constant diagram, the proof would break at this point because, although it is
a limit diagram in C≤d−1, the inclusion C≤d−1 →֒ C≤d is a left adjoint and does not preserve
limits.
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Define φS′ := pr ◦φS ◦ i as shown:

⊕

T⊂I⊔{1}

F (T )
⊕

T ′⊂I⊔S

F (T ′)

F (I ⊔ {1})
⊕

I⊂T ′⊂I⊔S
|T ′|=w

F (T ′)

φS

pr

φ′
S

i

In this digram, i is the inclusion of the summand F (I⊔{1}), and pr is the projection
onto the indicated summands.

In order to formulate an analogous functoriality of φ′S with respect to S,
we first explain the functoriality of the target of φS′ with respect to S. Given a
surjection ξ : S1 ։ S2, we claim that there is a commutative diagram

N({∗} ⊔ I ⊔ S1) N({∗} ⊔ I ⊔ S2)

⊕

T ′⊂I⊔S1

F (T ′)
⊕

T ′′⊂I⊔S2

F (T ′′)

⊕

I⊂T ′⊂I⊔S1

|T ′|=w

F (T ′)
⊕

I⊂T ′′⊂I⊔S2

|T ′′|=w

F (T ′′)

∼

N(idI ⊔ξ)

∼

pr pr

ηξ

I.e., the map N(idI ⊔ξ) descends to a map ηξ between the quotients. This follows
from the definition of Ind(F ). Indeed, the T ′′-coordinate of the map N(idI ⊔ξ) only
depends on the summands F (T ′) with (idI ⊔ξ)(T

′) = T ′′, and if T ′′ satisfies the
conditions I ⊂ T ′′ and |T ′′| = w, then (idI ⊔ξ)(T ′) = T ′′ implies that I ⊂ T ′ and
|T ′| ≥ w. Since the summands for |T ′| > w are zero (by the inductive hypothesis),
the claim follows. The upshot is that these quotients are functorial in S.

Now, the functoriality of the maps φS with respect to S implies the functori-
ality of the maps φ′S with respect to S. The previous paragraph explains how the
target of φ′S is functorial with respect to S.

Remark. Note that the bottom row of the previous diagram rewrites as
⊕

s1∈S1

F (I ⊔ {s1})
ηξ
−→

⊕

s2∈S2

F (I ⊔ {s2})

because the subsets T ′ ⊂ I ⊔ S1 with I ⊂ T ′ and |T ′| = w are in bijection
with elements of S1 (this uses that |I| = w − 1) and similarly for S2 in place
of S1. Furthermore, the definition of Ind(F ) shows that the matrix coefficient
F (I ⊔ {s1}) → F (I ⊔ {s2}) of ηξ is an isomorphism if s2 = ξ(s1) and zero oth-
erwise.

Next, for notational convenience, we write V := F (w-element set). This is
safe because the subsequent manipulations do not involve any permutations on the
w-elements sets in question; indeed, w − 1 of the elements are ‘pinned down’ by
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their identification with elements of I. Thus, the map φ′S rewrites as

V
φ′
S−−→ V ⊕S

By the remark, permutations of S act on V ⊕S by permuting the summands, so
the functoriality of φ′S with respect to S implies that φ′S lands inside the subgroup
(V ⊕S)ΣS of symmetric group invariants.

Next, let r ≥ 3 and consider the surjection ξ : [r] → [r − 1] defined by
ξ(q) = min(r − 1, q). In this case, functoriality of φ′S with respect to S yields this
commutative diagram:

V V ⊕r

V ⊕(r−1)

φ′
[r]

φ′
[r−1]

id⊕···⊕id⊕ sum

The description of the vertical map follows from the remark. By the previous para-
graph, the rightward maps land inside (V ⊕r)Σr and (V ⊕(r−1))Σr−1 , respectively.
These facts imply that the maps φ′[r] and φ

′
[r−1] are equal to zero. This is because

any v ∈ V maps to some (v1, . . . , v1) ∈ V ⊕r and then to (v1, . . . , v1, 2v1) ∈ V ⊕(r−1),
and since this is cyclically invariant we conclude that v1 = 0.

Lastly, we apply the special case of functoriality which was stated in Lemma 2.3.6(ii).
This says that the composition

N({∗} ⊔ I ⊔ {1})
φ[r]
−−→ N({∗} ⊔ I ⊔ [r])

N(id⊔c)
−−−−−→ N({∗} ⊔ I ⊔ {1})

is equal to the identity map. Passing to φ′[r] as before, this yields a diagram

V
φ′
[r]
−−→ V ⊕r sum

−−→ V

where the description of the second map as the addition map follows from the
remark, and where the composition is φ′[1] = idV . On the other hand, assuming

r ≥ 2, this composition equals zero because φ′[r] = 0 (by the previous paragraph),

so we conclude that V = 0. This implies that F vanishes on all w-element sets, so
the inductive step is proved.

We have just shown that N is isomorphic to the constant functor with value
N({∗}) ≃ F (∅), so the analogous statement for τ≥dτ≤dM also holds. �

By Lemma 6.4, the map M({∗, 1})→M({∗}) becomes an isomorphism upon
applying τ≤d for arbitrarily large d. Since the t-structure on C is right-complete,
we conclude that this map is itself an isomorphism. This concludes the proof of
Theorem 2.3.3 �

2.4. Analogues for finite limits

We prove two analogous results about ‘vanishing of the limit’ which apply to func-
tors defined only on the subcategory of pointed finite sets whose size is bounded
above by some integer N . Although only the first result Lemma 2.4.4 will be used
in this paper, the second result Lemma 2.4.5 may be useful in other situations. In
general, even if one has a functor defined on all of fSet∗, one may nevertheless want
to restrict to looking at finite limits in order to use commutativity with filtered
colimits.



22 J. Tao

A heuristic reason why one should expect analogues for finite limits is that any
elementary proof of ‘vanishing of the limit,’ such as the second proof of Lemma 2.2.5,
will show that each term in a compatible system of elements is zero by using com-
patibilities which come in the form of equations. And it should only require finitely
many equations to show that a particular element is zero, because linear algebra
does not allow taking infinite linear combinations. Therefore, the same proof would
apply to any partially defined system of elements as long as the partial system
includes those elements which appear in the finitely many equations; this would
allow one to deduce a partial vanishing result for finite limits. Lemma 2.4.5 is in-
cluded to illustrate that a partial vanishing result can hold even in the absence of
an elementary proof.

2.4.1. Define fSet∗,≤N to be the full subcategory of fSet∗ consisting of sets {∗}⊔ I
for which |I| ≤ N . (Note that the set {∗}⊔I is considered to have size |I|, not |I|+1.
This agrees with the interpretation of fSet∗ mentioned in Remark 2.1.) Similarly,
let fSet≤N be the full subcategory of fSet consisting of sets I with |I| ≤ N .

2.4.2. Let A be an abelian category.

Proposition. Let N ≥ 0 be a fixed integer.

(i) We have inverse equivalences

Ind : Fun(fSetsurj≤N ,A)⇄ Fun(fSet∗,≤N ,A) : Prim.

(ii) These functors fit into a commuting diagram with the ones from 2.2.2:

Fun(fSetsurj,A) Fun(fSet∗,A)

Fun(fSetsurj≤N ,A) Fun(fSet∗,≤N ,A)

Ind

Res

Prim

Res

Ind

Prim

(iii) Let G : fSet∗,≤N → A be a functor, and let n ≥ 0 be an integer. Then the
four conditions of Lemma 2.2.4 apply to G (after restricting to I such that
|I| ≤ N) and they are equivalent.

Proof. The proofs are entirely similar to the analogous statements for unbounded
finite sets. This follows by noting that the definitions of Ind and Prim (2.2.2),
the proof that they are mutually inverse equivalences (2.2.3), and the proof of
Lemma 2.2.4 are carried out by considering a fixed set I and comparing it with
strictly smaller subsets. �

2.4.3. The definitions of ‘polynomial’ and ‘n-excisive’ can be applied to a functor
which is defined only on fSet∗,≤N because those definitions relate the value of the
functor on a given set I to its value on smaller sets (subsets of I), but not larger
sets.

Definition. Let N ≥ 0 be a fixed integer.

(i) Let A be an abelian category, and let G : fSet∗,≤N → A be a functor. We say
that G is polynomial of degree ≤ n if it satisfies the equivalent conditions of
Proposition 2.4.2(iii) for that n.
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(ii) Let C be an (∞, 1)-category, and let G : fSet∗,≤N → C be a functor. We say
that G is n-excisive if G(Ξ(Ib)b∈B

) is weakly cartesian, for any tuple (Ib)b∈B
of sets where |B| > n and |⊔b∈BIb| ≤ N .

Remark. Any functor G : fSet∗,≤N → A (resp. C) is polynomial of degree ≤ N
(resp. N -excisive) for trivial reasons.

2.4.4. We arrive at our first vanishing result for finite limits. Note that the first
proof of Proposition 2.2.5 does not obviously apply here.

Lemma. Let A be a complete abelian category, and let n, ℓ,N be nonnegative integers
with n+2 ≤ ℓ ≤ N . If G : fSet∗,≤N → A is polynomial of degree ≤ n, then the map

lim
fSetsurjn.e.,≤ℓ

Gι→ G({∗})

is an isomorphism.

Proof. Since a functor is polynomial of degree ≤ n only if it is polynomial of degree
≤ ℓ − 2, we may replace n by ℓ − 2 and thereby assume that ℓ = n + 2. The
assumption that n+ 2 ≤ N is still in force.

We copy the second proof of Proposition 2.2.5. As before, we reduce to the case
in which A = AbGrp, so an element of the limit is a compatible family of elements
aI ∈ G({∗} ⊔ I) for |I| ≤ n + 2. Writing G = Ind(F ) as in Proposition 2.4.2, the
element aI corresponds to a tuple of elements bS,I ∈ F (S) for S ⊂ I. Our goal is
to show that bS,I = 0 if S is nonempty.

Considering permutations of I shows that bS,I depends only on the cardinality
of S, so we write bS,I as bm,I when |S| = m. We use downward induction on m to
show that bm,I = 0 for all m ≥ 1 and |I| ≤ n+ 2. The claim for m ≥ n+ 1 follows
from our assumption that G is polynomial of degree ≤ n because this means that
F (S) = 0 for |S| ≥ n+ 1. Therefore, we may assume that 1 ≤ m ≤ n and that the
claim has been proven for all larger m. For any d ≤ n+ 1, consider the map

{∗} ⊔ [d+ 1]
ξ
−→ {∗} ⊔ [d]

which sends i 7→ min(i, d). Since d+1 ≤ n+2 ≤ N , we may apply G to these sets.
If d > m, then there exist m-element subsets of [d] which do (resp. do not) contain
d, and the same argument as in Proposition 2.2.5 shows that

bm,[d] = bm,[d+1] = 2bm,[d+1],

so bm,[d+1] = bm,[d] = 0. Take d = m + 1, . . . , n + 1 (since m ≤ n, this list is
nonempty) to conclude that bm,I = 0 for all I with m < |I| ≤ n+ 2. In particular,
bm,[m+1] = 0. It remains to show that bm,[m] = 0. From the same map for d = m,
we conclude that bm,[m] = 2bm,[m+1], and the claim follows. �

2.4.5. It is interesting to ask whether the (non-elementary) proof of Theorem 2.3.3
can be modified to give a vanishing result for finite limits. This is indeed possible:

Lemma. Let C be a complete stable category. Let G : fSet∗,≤N → C be a 1-excisive
functor with G({∗}) = 0. Then this map is zero:9

lim
fSetsurjn.e.,≤N

Gι→ lim
fSetsurj

n.e.,≤N/3

Gι

The map is the one obtained by applying Lemma 2.3.5 to fSetsurjn.e.,≤N/3 →֒ fSetsurjn.e.,≤N .

9The notation ≤ N/3 is shorthand for ≤ ⌊N/3⌋.
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Proof. We emulate the proof of Theorem 2.3.3. Since G({∗}) = 0, the 1-excisive
condition says that G is monoidal, in the sense that it sends wedge products (of
pointed finite sets) to direct sums (in C). First, consider the composition

fSet∗,≤3× fSetsurjn.e.,≤N/3 fSet∗,≤3× fSet∗,≤N/3 fSet∗,≤N C
id×ι ∧ G

and take its limit with respect to the second coordinate to get a functor M :
fSet∗,≤3 → C. For S such that |S| ≤ 3, we have

M({∗} ⊔ S) ≃ lim
I∈fSetsurjn.e.,≤N/3

Gι(S × I)

≃ lim
I∈fSetsurjn.e.,≤N/3

(Gι(I))⊕S

≃

(
lim

I∈fSetsurjn.e.,≤N/3

Gι(I)

)⊕S

where we have used the 1-excisive property of G. In particular, M({∗}) = 0. In
this way, we see that M is 1-excisive (cf. Lemma 2.3.4). In particular, this implies
that the map M({∗} ⊔ S)→M({∗, 1}) corresponding to the unique map S ։ {1}
identifies with the map

(
lim

I∈fSetsurjn.e.,≤N/3

Gι(I)

)⊕S

sum
−−→ lim

I∈fSetsurjn.e.,≤N/3

Gι(I) (♦)

To ease the notation, we write lim≤N Gι := limfSetsurjn.e.,≤N
Gι. Applying Lemma 2.3.5

to the functor Gι yields a functor

Fun(fSetsurjn.e.,≤N/3, fSet
surj
n.e.,≤N )→ C(lim≤N Gι)/

Precomposing by the functor

fSetsurjn.e.,≤3 → Fun(fSetsurjn.e.,≤N/3, fSet
surj
n.e.,≤N)

which sends S 7→ S × (−), we obtain a functor

fSetsurjn.e.,≤3 → C(lim≤N Gι)/

which sends a finite set S with |S| ≤ 3 to a map

lim
≤N

Gι
φS
−−→M({∗} ⊔ S),

and this is functorial in S (cf. Lemma 2.3.6).

We want to prove that the map lim≤N Gι
φ[1]
−−→ M({∗, 1}) ≃ lim≤N/3Gι is

homotopic to zero. We apply the functor of the previous paragraph to the sequence
of maps

[3]
ξ3
−→ [2]

ξ2
−→ [1]
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where ξ3(i) = min(i, 2). The resulting diagram is

lim≤N Gι (lim≤N/3Gι)
⊕3

(lim≤N/3Gι)
⊕2

lim≤N/3Gι

φ[3]

φ[2]

φ[1]

M(ξ3)

M(ξ2)

From the reasoning of (♦), we know that M(ξ3) = id⊕ sum and M(ξ2) = sum. By
considering permutations on the set S = [3], we conclude that φ[3] = (ψ3, ψ3, ψ3) for
some map ψ3. Therefore φ[2] = (2ψ3, ψ3). On the other hand, considering permu-
tations on the set S = [2] shows that φ[2] = (ψ2, ψ2) for some map ψ2. This yields
a homotopy from ψ3 to 2ψ3, which shows that ψ3 is homotopic to zero. Thus, ψ2

is also homotopic to zero. Thus φ[1] = 2ψ2 is homotopic to zero, as desired. �

2.4.6. Remark. We explain a sense in which the result of Lemma 2.4.4 is the best
possible. In that lemma, the main hypothesis is that the degree n of the functor is
two less than the bound ℓ for the finite limit. Therefore, it is natural to ask if any
vanishing result is possible for ℓ ≤ n. (We shall not discuss the case n = ℓ− 1.) For
sake of definiteness, we restrict attention to the following template:

(Q1) Fix positive integers ℓ′ ≤ ℓ ≤ n ≤ N . For any abelian category A, if G :
fSet∗,≤N → A is a polynomial functor of degree ≤ n with G({∗}) = 0, then
the map

lim
fSetsurjn.e.,≤ℓ

Gι→ lim
fSetsurj

n.e.,≤ℓ′

Gι

is equal to zero.

Our question, then, is whether there exist ℓ′, ℓ, n,N such that (Q1) is true.
The main observation is that of Remark 2.4.3: every functor fSet∗,≤ℓ → A is

polynomial of degree ℓ. This can be amplified to prove the following:

Claim. For fixed ℓ′, ℓ, n,N , the statement (Q1) is equivalent to the following state-
ment (for the same ℓ′, ℓ):

(Q2) Consider positive integers ℓ′ ≤ ℓ. For any abelian category A and any functor
G : fSet∗,≤ℓ → A with G({∗}) = 0, the map

lim
fSetsurjn.e.,≤ℓ

Gι→ lim
fSetsurj

n.e.,≤ℓ′

Gι

is equal to zero.

Proof. We clearly have (Q2)⇒ (Q1), so we focus on proving the converse. Assume
(Q1) holds. Let G : fSet∗,≤ℓ → A be any functor, which we may express as G =

Ind(F ) for some functor F : fSetsurj≤ℓ → A. Let F̃ : fSetsurj≤N → A be the extension of

F which sends I 7→ 0 whenever |I| > ℓ. Then Ind(F̃ ) : fSet∗,≤N → A extends G.

Furthermore, Ind(F̃ ) is polynomial of degree ≤ ℓ which is ≤ n, so we may apply
(Q1) to conclude that the map

lim
fSetsurjn.e.,≤ℓ

Ind(F̃ )ι→ lim
fSetsurj

n.e.,≤ℓ′

Ind(F̃ )ι
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is zero. But Ind(F̃ ) restricted to fSet∗,≤ℓ coincides with G, and the claim follows. �

The example of Remark 2.2.7 is easily modified to give a counterexample to
(Q2) for any ℓ′, ℓ. Indeed, one ensures G({∗}) = 0 by taking G = Ind(F ) where

F : fSetsurj → AbGrp is given by ∅ 7→ 0 and F |fSetsurjn.e.
= Z. The element of limGι

constructed in the remark maps to a nonzero element of lim≤mGι for every integer
m ≥ 1. Taking m = ℓ, ℓ′, we obtain a commutative diagram

limGι

lim≤ℓGι lim≤ℓ′ Gι

which implies that the horizontal map cannot be zero.
By the claim, we also conclude that (Q1) is not true for any positive integers

ℓ′ ≤ ℓ ≤ n ≤ N . Therefore, whenever ℓ ≤ n, it is not reasonable to expect any

general vanishing result for limits over fSetsurjn.e.,≤ℓ of arbitrary polynomial functors
of degree ≤ n. In particular, the vanishing statement considered in Remark 4.1.4
does not follow from a general theorem; the fact that it is true when R is a ring
over a characteristic zero field is a phenomenon specific to that functor.

2.4.7. Remark. One could ask whether there is an analogue of Lemma 2.4.5 for
n-excisive functors with n ≥ 2. The proof of Theorem 2.3.3 proceeds by reducing
to the case of functors landing in an abelian category and then carrying out an
elementary argument which shows that each successive homogeneous piece of a
polynomial functor is zero. This is a poor man’s version of the method, employed
in Goodwillie calculus, of understanding a functor by studying its homogeneous
pieces. If one could prove Theorem 2.3.3 without resorting to t-structures, then it
is likely that one could answer this question affirmatively.

3. Interlude: Sheaves on the Ran space

In this short section, we review several equivalent definitions of the Ran space
which appear in the literature, discuss the relation between various definitions of
‘structure on the Ran space,’ and explain what conventions we use in this paper.
The definitions which we actually use appear in 3.1.1 and 3.2.3.

3.1. Definitions of Ran(X)

3.1.1. Prestacks. Let Schaff,ftk be the category of affine finite-type schemes over k.
This category is essentially small. There are at least four notions of ‘prestack’ which
appear in the literature:

(i) Prestacks valued in sets: Fun(Schaff,ft,opk , Set)

(ii) Prestacks valued in groupoids: Fun(Schaff,ft,op
k ,Grpd)

(iii) Prestacks valued in ∞-groupoids: Fun(Schaff,ft,opk ,∞-Grpd)

(iv) Prestacks valued in (∞, 1)-categories: Fun(Schaff,ft,op
k , (∞, 1)-Cat)
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Here (iv) means the (∞, 2)-category of functors (i.e. pseudofunctors) from Schaff,ftk

to the (∞, 2)-category of (∞, 1)-categories. The datum of such a functor is equiv-

alent to the datum of a functor from Schaff,ftk to the (∞, 1)-category of (∞, 1)-
categories (obtained by discarding all natural transformations which are not natural
isomorphisms).

In this paper, we shall denote (iii) by PreStkk and call its objects ‘prestacks.’
Point (i) is the usual notion of ‘presheaf on the big Zariski site of finite type schemes
over k’ which is used in [21, 0.3.1]. Point (iii) is the notion of ‘prestack’ used in [10,
0.4.1]. And point (iv) is the notion of ‘prestack’ used in [12, 2.3.8]. Note that there
are canonical functors (i) → (ii) → (iii) → (iv).

Let X(−) : fSetsurj,opn.e. → Schaff,ftk be the functor which sends I 7→ XI and

which sends a map ξ : I ։ J to the generalized diagonal map ∆ξ : XJ →֒ XI

whose i-th coordinate is the ξ(i)-th coordinate projection of XJ , for all i ∈ I.

One could reasonably define Ran(a)(X) := colimfSetsurj,opn.e.
X(−) where the col-

imit is evaluated in the category (a) for any choice of a = i, ii, iii. However, we
shall see in 3.1.2 that the versions for (i), (ii), and (iii) are isomorphic as prestacks
valued in ∞-groupoids. In view of this, we define Ran(X) to be any of these three
equivalent prestacks. On the other hand, see 3.1.4 for a discussion about evaluating
the colimit in the category (iv).

3.1.2. The colimit definition of Ran(X) does not depend on whether the colimit
is evaluated in the category (i), (ii), or (iii). This follows from the next lemma.

Lemma. The colimit

colim
fSetsurj,opn.e.

X(−) ∈ Fun(Schaff,ft,opk ,∞-Grpd)

is a functor whose values in ∞-Grpd are equivalent to sets.

Proof. Since colimits in functor categories are computed pointwise, we want to show
that

colim
I∈fSetsurj,opn.e.

MapsSchk
(Y,XI),

when evaluated in∞-Grpd, is equivalent to a set. To see this, write S = MapsSchk
(Y,X)

and note that

{pt} ⊔ colim
I∈fSetsurj,opn.e.

MapsSchk
(Y,XI) ≃ {pt} ⊔ colim

I∈fSetsurj,opn.e.

SI

≃ colim
I∈fSetsurj,op

SI .

Let C be the category whose objects are pairs (I, φ) where φ : I → S is any
map (not necessarily surjective) and whose morphisms from (I1, φ1) to (I2, φ2) are
commutative diagrams

I1 I2

S
φ1 φ1

where the horizontal map is surjective.10 The forgetful functor F : C → fSetsurj,op

which sends (I, φ) 7→ I is a cocartesian fibration whose fiber C|I over I ∈ fSetsurj,op

10Remark: C is the fiber over Y of the category defined in [12, Def. 2.4.9] and denoted ‘Ran(X)’
therein.
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identifies with the set SI . The previous colimit rewrites as follows:

colim
I∈fSetsurj,op

SI ≃ colim
I∈fSetsurj,op

colim
C|I

pt

≃ colim
C

pt,

where the last line uses Thomason’s theorem for colimits, see [20, Prop. 26.5] for
example.

Next, view the power set Pow(S) as a discrete category and define the functor
G : Pow(S) → C by sending S0 ⊂ S to the pair (S0, S0 →֒ S). We claim that G is
final, in the (∞, 1)-categorical sense. By [15, Thm. 4.1.3.1], it suffices to show that,
for any (I, φ) ∈ C, the comma category Pow(S)(I,φ)/ is weakly contractible. But
this category has a terminal object corresponding to φ(I) ∈ Pow(S), so the claim
follows.

Now we conclude that colimC pt ≃ Pow(S), so that the original colimit is
isomorphic to Pow(S)r {∅}, as desired. �

3.1.3. A second definition of Ran(X). The following concrete description, which
appears as [21, Def. 3.3.1], follows from the previous lemma:

Corollary. Ran(X) is equivalent to the Set-valued presheaf on Schaff,ftk which sends
S 7→ Pow(MapsSchk

(S,X))r {∅}.

This is also the definition of the ‘unlabeled Ran space’ Ranu(X) in [12, Def.
2.4.2], so Ranu(X) in that paper coincides with the Ran(X) considered here.

3.1.4. What about version (iv)? When working with prestacks valued in (∞, 1)-
categories, which is category (iv) defined in 3.1.1, one could consider two versions
of Ran(X):

• Define Ran(iv,strict)(X) := colimfSetsurj,opn.e.
X(−) where the colimit is the strict

colimit in the (∞, 2)-category (iv). By definition, a strict colimit over some
(strict) diagram in an (∞, 2)-category is given by the ordinary colimit over the
same diagram in the (∞, 1)-category obtained by discarding the noninvertible
2-morphisms.

• Define Ran(iv,lax)(X) := colimlax
fSetsurj,opn.e.

X(−) where the colimit is the lax col-

imit in the (∞, 2)-category (iv). Roughly speaking, the lax colimit over some
diagram in an (∞, 2)-category corepresents (co)cones out of the diagram which
are ‘lax’ in the sense that the 2-cells need only commute up to a natural trans-
formation.

There is a map Φ : Ran(iv,lax)(X)→ Ran(iv,strict)(X).

Lemma. The prestack Ran(iv,strict) is equivalent to the image of Ran(X) under
∞-Grpd →֒ (∞, 1)-Cat.

Proof. This follows from the fact that ∞-Grpd →֒ (∞, 1)-Cat′ is a left adjoint
and therefore preserves colimits. Here (∞, 1)-Cat′ is the (∞, 1)-category obtained
from (∞, 1)-Cat by discarding the noninvertible 2-morphisms. The right adjoint is
given by sending an (∞, 1)-category C to the ∞-groupoid obtained by discarding
all noninvertible 1-morphisms of C. �

However, the map Φ is not an equivalence. In fact, Ran(iv,lax)(X) coincides
with the prestack defined in [12, Def. 2.4.9] for which they use the notation ‘Ran(X).’
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We emphasize that the prestack Ran(X) studied in the present paper is what they
denote ‘Ranu(X).’

3.2. Sheaves on Ran(X)

3.2.1. Let C be any complete (∞, 1)-category, and let F : Schaff,ft,opk → C be any
functor. To extend F to be defined on PreStkopk , one takes the right Kan extension

along the Yoneda embedding i : Schaff,ft,opk →֒ PreStkopk .
This allows us to define quasicoherent sheaves (and functions, and D-modules,

etc.) on Ran(X). For definiteness, we take up the problem of defining the derived
category of quasicoherent sheaves on Ran(X), which we shall denote DQCoh(Ran(X)).

Let C be the (∞, 1)-category of presentable stable (∞, 1)-categories, and let F
be the functor S 7→ D(QCoh(S)), with functoriality given by (derived) ∗-pullbacks.
Then we define DQCoh(Ran(X)) := RKEi(F )(Ran(X)). By the construction of
right Kan extensions via limits, and the construction of limits of categories as
sections of the corresponding cartesian fibration which send arrows to cartesian
arrows (see [15, Cor. 3.3.3.2]), we arrive at a more concrete description of the
objects of this category:

• For every map S → Ran(X) where S ∈ Schaff,ftk , we have a complex FS ∈
D(QCoh(S)).
• For every diagram of maps

S1 S2

Ran(X)

f

we have an isomorphism σf : f∗FS2

∼
−→ FS1 .

• These isomorphisms σf satisfy (higher) cocycle conditions.

One could alternatively define DQCoh(Ran(X)) to be the limit

lim
I∈fSetsurjn.e.

D(QCoh(XI)).

Concretely, an object of this second category is described as follows:

• For every nonempty finite set I, we have a complex FI ∈ D(QCoh(XI)).
• For every surjective map f : I ։ J , giving rise to the generalized diagonal
map ∆f : XJ →֒ XI , we have an isomorphism

σf : (∆f )
∗FI

∼
−→ FJ .

• These isomorphisms σf satisfy (higher) cocycle conditions.

(For example, the definition of ‘category of D-modules on Ran(X)’ used in [9, Sect.
2.1] follows this pattern.) Since it is this second definition that will be directly used
in this paper, we provide an explanation of why it is equivalent to the first one:

3.2.2. Let C, F, i be as before. Define a functor G by the composition

G : C
Yonedaop
−−−−−−→ (Fun(C,∞-Grpd))op

((−) ◦F )op

−−−−−−−→ PreStkopk ,

where the functor Yoneda : Cop → Fun(C,∞-Grpd) sends c 7→ HomC(c,−).

Lemma. The functor G is the left adjoint of RKEi(F ).
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Proof. This is a standard fact from category theory. The version for (∞, 1)-categories
is deduced from the proof of [15, Prop. 5.2.6.3]. �

Corollary. The functor RKEi(F ) preserves limits.

Since Ran(X) = colimfSetsurj,opn.e.
X(−) by definition, where the colimit is taken in

PreStkk, the corollary implies that the two definitions of the category DQCoh(Ran(X))
given in 3.2.1 are equivalent. This is parallel to the discussion in [11, 2.1.3] for D-
modules.

3.2.3. In this paper, we work in the underived setting, i.e. we define

QCoh(Ran(X)) = lim
S→Ran(X)

QCoh(S) ≃ lim
I∈fSetsurjn.e.

QCoh(XI)

Pic(Ran(X)) = lim
S→Ran(X)

Pic(S) ≃ lim
I∈fSetsurjn.e.

Pic(XI),

where the isomorphisms follow from 3.2.2. The limits in these definitions involve
1-categories, so the cocycle conditions (see 3.2.1) are easy to describe: there is one
cocycle condition for every commutative triangle, and no higher cocycle conditions.
For the reason, line bundles and quasicoherent sheaves on Ran(X) are very concrete
objects.

We also define

QCoh(Ran(X))flat := lim
S→Ran(X)

QCoh(S)flat ≃ lim
I∈fSetsurjn.e.

QCoh(XI)flat,

where QCoh(S)flat is the category of quasicoherent sheaves which are flat over S.
This is the full subcategory of QCoh(Ran(X)) consisting of objects (FS , σf ) for
which each FS is flat over S.

3.2.4. One could ask how QCoh(Ran(X)) relates to DQCoh(Ran(X)) as defined
in 3.2.1. There is no map in either direction; all one can say in general is that both
categories map to a third one:

QCoh(Ran(X)) DQCoh(Ran(X))

limI∈fSetsurjn.e.
QCoh(XI) limI∈fSetsurjn.e.

D(QCoh(XI))

limlax
I∈fSetsurjn.e.

QCoh(XI) limlax
I∈fSetsurjn.e.

D(QCoh(XI))

∼ ∼

where ‘lax’ denotes lax colimits in the (∞, 2)-category of (∞, 1)-categories.11 The
horizontal map arises from the fact that R· f∗ is right-exact.

Informally, suppose we are given an object of limlax
I∈fSetsurjn.e.

QCoh(XI) which

is represented by data (FI , σξ) as in 3.2.1, where lax-ness means that σξ need
not be an isomorphism. For any map ξ : I ։ J , the map σξ : (∆ξ)

∗FI →

11Remark: These lax colimits admit a less ad hoc interpretation. Namely, limlax

I∈fSet
surj
n.e.

QCoh(XI )

is equivalent to the category of natural transformations (i.e. pseudonatural transformations)

Ran(iv,lax)(X) ⇒ QCoh(−) of functors Schaff,ft,op
k

→ (∞, 1)-Cat. One can replace QCoh(−)

by another functor to (∞, 1)-Cat.
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FJ yields a map R·(∆ξ)
∗Fi → FJ , and in this way one obtains an object of

limlax
I∈fSetsurjn.e.

D(QCoh(XI)).

3.2.5. Remark. On a full subcategory of limI∈fSetsurjn.e.
QCoh(XI), one can say more.

If each F is flat along the diagonals ∆ξ and each σξ is an isomorphism, then the
maps R·(∆ξ)

∗FI → FJ constructed in the previous paragraph are isomorphisms, so
the resulting object upgrades to one in the strict limit limI∈fSetsurjn.e.

D(QCoh(XI)).
Thus, there is a map

lim
I∈fSetsurjn.e.

QCoh(XI)∆-flat → lim
I∈fSetsurjn.e.

D(QCoh(XI))

where the subscript ‘∆-flat’ indicates objects which are flat on all the diagonals in
XI . Moreover, since each map QCoh(XI)∆-flat → D(QCoh(XI)) is fully faithful
onto the heart of a t-structure, and since limits are left-t-exact, the above map is
fully faithful.

In Beilinson and Drinfeld’s discussion of factorization algebras (see [1, 3.4.2
and Lem. 3.4.3]), they work in the category limI∈fSetsurjn.e.

QCoh(XI)∆-flat because

these are the quasicoherent sheaves on Ran(X) in the abelian sense which never-
theless make sense as objects in the derived category.

Of course, this hypothesis of being flat on all the diagonals is satisfied by
flat quasicoherent sheaves and in particular by line bundles. Therefore, the sheaves
which are actually studied in this paper do not leave the generality adopted by
Beilinson and Drinfeld. In summary, there are fully faithful maps

QCoh(Ran(X))flat → lim
I∈fSetsurjn.e.

QCoh(XI)∆-flat → DQCoh(Ran(X))

and we shall work exclusively in the leftmost category.

4. Canonical connection on quasicoherent sheaves over Ran(X)

The goal of this section is to prove the following theorem, which says that a flat
quasicoherent sheaf on Ran(X) has a unique D-module structure.

Theorem. Let X be a smooth k-scheme. The pullback functor

QCoh(Ran(X)dR)flat → QCoh(Ran(X))flat

is an equivalence of categories.

As this statement indicates, we adopt the interpretation of D-modules as
quasicoherent sheaves on the de Rham prestack set forth in [11]. The category
QCoh(Ran(X))flat was defined in 3.2.3, and QCoh(Ran(X)dR)flat is defined in a
similar way.

4.1. Infinitesimal Ran space

To place D-module structures on sheaves on Ran(X), we will need to introduce
analogues of Ran(X) which are defined using formal neighborhoods of diagonal
maps.
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4.1.1. If Z →֒ Y is a closed embedding of schemes, the formal neighborhood of Z in
Y (or the completion of Y along Z) is the prestack colimit of the d-th infinitesimal
neighborhoods of Z for d ≥ 1.

Fix an integer n ≥ 0. Let Dn be the formal neighborhood of An at the origin,
whose ring of functions is k[[x1, . . . , xn]].

12 For any finite set I, let (Dn)I be the I-fold
product. This assignment is functorial in {∗}⊔ I ∈ fSetop∗ because {∗}⊔ I 7→ (An)I

defines a functor to k-schemes,13 and taking formal neighborhoods at the origin is
functorial. Therefore, we may define

Ranninf := colim
I∈fSetsurj,opn.e.

(Dn)I

where the colimit is taken in the category of prestacks.
We also introduce some notation for the rings of functions on these formal

neighborhoods. Let S = SpecR, and define the functor

PS,n : fSet∗ → R-mod

by sending
{∗} ⊔ I 7→ O(S × (Dn)I) ≃ R[[(xm,i)m∈[n],i∈I ]].

The map ξ : {∗} ⊔ I → {∗} ⊔ J induces the map on complete rings given by
xm,i 7→ xm,ξ(i) if ξ(i) 6= ∗ and xm,i 7→ 0 otherwise.

When S = Spec k, the subscript S will be omitted from the notation PS,n.

4.1.2. Artinian Ran space. We introduce finite-length analogues of the construc-
tions made in 4.1.1. Retain the integer n > 0 from before, and fix another integer
d ≥ 0. Let Dnd be the d-th infinitesimal neighborhood of An at the origin, which has
structure sheaf k[x1, . . . , xn]/(x1, . . . , xn)

d+1. (Note that Dnd is not isomorphic to

(D1
d)

×n.) Similarly, define D
n,I
d to be the d-th infinitesimal neighborhood of (An)I

at the origin. (Note that Dn,Id is not isomorphic to (Dnd )
I .) We define

Rann〈d〉 := colim
I∈fSetsurj,opn.e.

D
n,I
d ,

where the colimit is taken in the category of prestacks.
For S = SpecR, we define the functor

PS,n,≤d : fSet∗ → R-mod

by sending

{∗} ⊔ I 7→ O(S × D
n,I
d ) ≃ R[(xm,i)m∈[n],i∈I ]/m

d+1,

where m is the maximal ideal at the origin. The right hand side consists of poly-
nomials of degree ≤ d in the variables xm,i. Similarly, there is the functor PS,n,d
whose values are spaces of homogeneous polynomials of degree d.

Lemma. We have Ranninf ≃ colimdRan
n
〈d〉

Proof. Since colimits commute with colimits, this follows from the fact that (Dn)I ≃

colimdD
n,I
d for all I. �

12As the notation suggests, we have Dn ≃ (D)×n.
13More precisely, for any test scheme S ∈ Schaff

k , we have

HomSchaff
k

(S, (An)I ) ≃ HomSchaff
k

(S,An)I ≃ HomSet∗({∗} ⊔ I,HomSchaff
k

(S,An)),

where Set∗ is the category of pointed sets, and the distinguished point of HomSchaff
k

(S,An) is the

constant map to 0 ∈ An. This shows how to make the map {∗} ⊔ I 7→ (An)I functorial.
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4.1.3. As one would expect, the functor PS,n,d of ‘homogeneous polynomials of de-
gree d’ is polynomial of degree d in the sense of Definition 2.2.5. Moreover, we prove
that PS,n,d is polynomial of degree d, even in the derived sense (Definition 2.3):

Lemma. Let S = SpecR be an affine k-scheme. The functor PS,n,d, viewed as a
functor to D(AbGrp), sends special hypercubes Ξ(Ib)b∈B

with |B| > d to strongly
cartesian diagrams. In particular, PS,n,d is d-excisive.

Proof. For any tuple (Ib)b∈B of finite sets with |B| > d, we will decompose the
diagram PS,n,d(Ξ(Ib)b∈B

) as the direct sum of several strongly cartesian diagrams,
each corresponding to one monomial basis element in PS,n,d({∗} ⊔ I), where I :=
⊔b∈BIb. To start, recall that PS,n,d({∗} ⊔ I) is a free R-module of finite rank with
basis given by monomials of degree ≤ d in the variables xm,i, where m ∈ [n] and
i ∈ I, see 4.1.2. Each such monomial q splits uniquely as a product q =

∏
b∈B qb

where qb consists of all the variables xm,i for which i ∈ Ib. Let Bq ⊂ B be the
subset of b for which qb 6= 1. Since |B| > d, we have Bq ( B.

By definition, the hypercube diagram spanned by q, denoted Ξq, is the sub-
diagram of PS,n,d(Ξ(Ib)b∈B

) spanned by q in PS,n,d({∗} ⊔ I) and the images of q
in the other vertices of PS,n,d(Ξ(Ib)b∈B

). Recall that vertices of the hypercube are
parameterized by subsets B′ ⊂ B. Observe that Ξq consists of k at the vertices for
which Bq ⊂ B′ and 0 at all other vertices, and the map between any two copies of
k is the identity map. This description shows that every square of Ξq is cartesian,
so it is a strongly cartesian diagram.

To finish, note that the original hypercube PS,n,d(Ξ(Ib)b∈B
) is the direct sum

of Ξq for all degree d monomials q ∈ PS,n,d({∗} ⊔ I). �

Remark. Here is an analogous statement which is proved in the same way. If V is a
finite-dimensional k-vector space, then the functor which sends {∗} ⊔ I ∈ fSet∗ to
the space of degree ≤ d polynomial functions on V I is d-excisive. (Compare with
the first lemma in 1.2.3.)

The lemma immediately implies the analogous d-excision statement for the
functor PS,n,≤d.

4.1.4. Remark. Consider the following statement:

• The map limfSetsurjn.e.,≤3
PS,1,d ◦ ι→ PS,1,d({∗, 1}) is zero.

For S = SpecR, the statement is equivalent to the following:

• Let f(x, y, z) ∈ R[x, y, z] be a symmetric polynomial which is homogeneous
of degree d. Assume that g(x, y) := f(x, x, y) is symmetric (i.e. f(x, x, y) =
f(x, y, y)). Then h(x) := f(x, x, x) is zero.

This statement in the special case R = C appears as [1, Exercise 3.4.2], and
it is stated for arbitrary R as [21, Lem. 4.3.11]. Unfortunately, this statement does
not hold when the characteristic of the field k is nonzero. We give a counterexample
when char(k) = p and d = p, for any prime p ≥ 5. Let

f(x, y, z) := xyz
(
xp−3 + yp−3 + zp−3 + (p+1

2 )
∑

cyc

(xp−4y + · · ·+ xyp−4)
)
,
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where the subscript cyc denotes cyclic summation with respect to x, y, z. Then we
have

f(x, x, y) = x2y
(
2xp−3 + yp−3 + 2(p+1

2 )(xp−4y + · · ·+ xyp−4)

+ (p+1
2 )(p− 4)xp−3

)

= xp−2y2 + xp−3y3 + · · ·+ x2yp−2,

so g(x, y) is symmetric. Then

g(x, x) = (p− 1)xp

is nonzero, i.e. h(x) is nonzero. This yields our desired counterexample.
We do not know whether this statement becomes true (in characteristic p) if

≤ 3 is replaced by ≤ 4, although it seems doubtful. As discussed in Remark 2.4.6,
it is unlikely that such a statement could be deduced from a ‘vanishing of the limit’
result which holds for arbitrary polynomial functors.

4.1.5. Consider the maps

Ranninf Spec k =: pt
p

q

which satisfy p ◦ q = id. For V ∈ Vectk, write V := p∗V for notational convenience.
The next result says that flat quasicoherent sheaves on the infinitesimal Ran space
are canonically trivial.

Proposition. We have mutually inverse equivalences of symmetric monoidal cate-
gories

QCoh(Ranninf)flat QCoh(pt) = Vectk
q∗

p∗

(The left hand side category is defined in analogy with 3.2.3.)

Proof. Let V be a fixed vector space over k. It suffices to show that any pair
(E, σ) with E ∈ QCoh(Ranninf)flat and σ : q∗E ≃ V admits a unique trivialization
τ : E ≃ V such that q∗τ = σ. In view of Lemma 4.1.2, it suffices to prove this
analogous statement for all d:

(P) For any pair (F, σ) with F ∈ QCoh(Rann〈d〉)flat and σ : q∗F ≃ V , there exists
a unique trivialization τ : F ≃ V such that q∗τ = σ.

The statement is trivial for d = 0, so we fix d ≥ 1 and assume that it has been
proven for all smaller d. Thus, we start with (F, σ) as above, and we know that
(F|Rann

〈d−1〉
, σ) admits a unique trivialization τ (by the inductive hypothesis). We

want to show that there is a unique extension of τ to Rann〈d〉, i.e. that the category

of such pairs (F, τ ) is the point category.

For any finite set I, any flat quasicoherent sheaf on D
n,I
d is (noncanonically)

free, and any trivialization on D
n,I
d−1 (noncanonically) extends to one on D

n,I
d . Let

Cd(I) be the category of pairs (G, ν) where G ∈ QCoh(Dn,Id )flat and ν is an isomor-

phism of G with V on D
n,I
d−1. The first sentence of this paragraph implies that Cd(I)

is equivalent to a groupoid with one object. Its automorphism group is the group

of automorphisms of V on D
n,I
d which are trivial on D

n,I
d−1.
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Claim. The automorphism group π1(Cd(I)) identifies with the abelian group Pn,d({∗}⊔
I)⊗k Endk(V ) where Endk(V ) is regarded as a group via its additive structure.

Proof. The endomorphism k-algebra of V on D
n,I
d is

EndPn,≤d({∗}⊔I)(V ⊗k Pn,≤d({∗} ⊔ I)) ≃ Homk(V, V ⊗k Pn,≤d({∗} ⊔ I))

≃ Homk(V, V )⊗k Pn,≤d({∗} ⊔ I),

where the last line follows because Pn,≤d({∗}⊔ I) is finite dimensional. The restric-

tion of endomorphisms to D
n,I
d−1 is given by the surjection

Homk(V, V )⊗k Pn,≤d({∗} ⊔ I)։ Homk(V, V )⊗k Pn,≤d−1({∗} ⊔ I)

induced by the quotient map Pn,≤d({∗} ⊔ I) ։ Pn,≤d−1({∗} ⊔ I). The desired
automorphism group is the preimage of 1 under this map, with the group structure
induced by ring multiplication. The kernel clearly identifies with Homk(V, V ) ⊗k
Pn,d({∗} ⊔ I), and the group structure is as described because the ideal Pn,d({∗}⊔
I) ⊂ Pn,≤d({∗} ⊔ I) is square-zero. �

We have a functor G : fSet∗ → AbGrp defined by {∗} ⊔ I 7→ Pn,d({∗} ⊔
I) ⊗k Endk(V ) with the additive group structure. The category of pairs (F, τ ) as
above14 is equivalent to limI∈fSetsurjn.e.

Cd(I) for tautological reasons, so the previous
claim implies that the set of isomorphism classes of objects is in bijection with
lim1

fSetsurjn.e.
Gι and the zero object has automorphism group lim0

fSetsurjn.e.
Gι. To finish

the proof, it suffices to show that both of these groups are trivial.

Claim. The functor G, viewed as a functor to D(AbGrp), is d-excisive.

Proof. Since Endk(V ) splits as the (infinite) direct sum of one-dimensional k-vector
spaces, and tensor products commute with direct sums, the functor G is the direct
sum of copies of Pn,d. Thus, the claim follows from Lemma 4.1.3 and the fact that
infinite direct sums preserve cartesian squares because we are working in a stable
category. �

Now Theorem 2.3.3 applies (because G takes values in cohomological degrees

≥ 0), and we conclude that limi
fSetsurjn.e.

Gι is zero for all i. This shows that the

category of pairs (F, τ ) is equivalent to a point, which completes the proof of the
inductive step. �

4.1.6. The benefit of working in the generality of quasicoherent sheaves rather
than coherent sheaves is that, by considering algebra objects, we can deduce an
analogous statement relative to an arbitrary scheme over k.

Corollary. Let Y be a k-scheme. Then we have mutually inverse equivalences of
categories

QCoh(Y × Ranninf)fl. QCoh(Y )
(id×q)∗

(id×p)∗

where the subscript fl. indicates quasicoherent sheaves flat over Ranninf .

14Namely, F is a sheaf on Rann
〈d〉 and τ is an isomorphism with V on Rann

〈d−1〉.
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Proof. If {Uα}α is an affine open cover of Y , then {Uα×Ranninf}α is an affine open
cover of Y ×Ranninf .

15 Since quasicoherent sheaves form a stack in the Zariski topol-
ogy, we reduce to the case in which Y = SpecA is affine. In this case, the corollary
can be deduced from Proposition 4.1.5 as follows. The k-algebraA is a commutative
algebra object in QCoh(pt), and QCoh(Y ) identifies with its category of modules.
Similarly, the free sheaf A is a commutative algebra object in QCoh(Ranninf)flat, and
QCoh(Y × Ranninf)fl. identifies with its category of modules. Since the equivalence
in Proposition 4.1.5 is symmetric monoidal, and it sends A 7→ A and preserves the
commutative algebra structure, it yields an equivalence between their categories of
modules as well. �

4.2. Partially labeled Ran spaces

Given a k-scheme Y , let Y 2
∆̂

be the formal neighborhood of Y 2 along the diagonal.

Roughly speaking, a D-module on Y consists of a quasicoherent sheaf F on Y ,
along with an identification of the pullbacks of F to Y 2

∆̂
along the two projections

pr1, pr2 : Y 2
∆̂
⇒ Y . There are two ways in which these projection maps differ from

the generalized diagonal maps ∆I։J : Y J →֒ Y I which appear in the colimit
definition of Ran(Y ):

• The spaces Y J and Y I are not completed along the diagonal. This issue can
be easily resolved by pulling back to a completed version of the Ran space,
defined as the colimit over the maps ∆I։J : Y J

∆̂
→ Y I

∆̂
, see 4.2.4.

• In terms of labeled subsets of Y , the projection maps correspond to deletion of
points, while the generalized diagonal maps correspond to doubling of points.
This issue is much more serious, and overcoming it is the crux of the proof.
The main idea is to find a way to delete points (in some sense) using only
the generalized diagonal maps. See Remark 4.2.2 for further discussion of this
intuition.

In this subsection, Y is a fixed k-scheme.

4.2.1. Define the functor Ran(−)(Y ) : fSetop → PreStkk by

RanI(Y ) := Y I × Ran(Y )

for I ∈ fSet, and for a map I1
ξ
−→ I2 the corresponding map

RanI2(Y )
Ranξ(Y )
−−−−−→ RanI1(Y )

is given by the composition

RanI2(Y ) = Y I2 × Ran(Y ) Y Im(ξ) × Y I2rIm(ξ) × Ran(Y )

Y I1 × Ran(Y )× Ran(Y )

Y I1 × Ran(Y )

∼

∆ξ×i×idRan(Y )

id×mult

15This statement is true because, in the definition of the infinitesimal Ran space from 4.1, we used
the formal neighborhood Dn rather than Spec k[[x1, . . . , xn]].
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Here ∆ξ = ∆
I1

ξ
−→Im(ξ)

is the diagonal map Y Im(ξ) → Y I1 associated to ξ, and

i : Y I2rIm(ξ) → Ran(X) is the standard map given by the colimit expression for
Ran(X). In particular, if I1 = ∅, then Im(ξ) = ∅ so the map ∆ξ is just the map
pt→ pt.

4.2.2. We have a map RanI(Y )
pI

−→ Y I given by projecting onto the first fac-
tor, and this is functorial in I ∈ fSetop, so p(−) gives a natural transformation

Ran(−)(Y ) =⇒ Y (−). Because this is the most important construction in this sub-

section, let us spell it out in more detail. For any map I1
ξ
−→ I2, we get a commuting

square

RanI2(Y ) Y I2

RanI1(Y ) Y I1

pI2

Ranξ(Y ) Y ξ

pI1

This is not as trivial as it looks because Ranξ(Y ) is not equal to the map Y ξ ×
idRan(Y ).

Remark. We explain the significance of this commuting square. Let ξ be the inclu-

sion {1} →֒ {1, 2}. A k-point of Ran{1,2}(Y ) is a triple (y1, y2, C) where y1, y2 are
points of Y and C is some finite set of points of Y . The mapping diagram is as
follows:

(y1, y2, C) (y1, y2)

(y1, y2 ∪ C) y1

The right vertical map is the projection pr1 : Y 2 → Y , while the left vertical
map is defined solely in terms of the generalized diagonal maps. (In particular,
the semigroup multiplication on Ran(X) is ultimately defined using the generalized
diagonal maps; this is made more explicit in 4.2.4.)

4.2.3. For any finite set I, there is also a map dI : Y I → RanI(Y ) defined as

Y I
diag
−−−→ Y I × Y I

id
Y I ×i
−−−−−→ Y I × Ran(Y ) = RanI(Y )

where ‘diag’ is the diagonal map and i : Y I →֒ Ran(Y ) is the map in the colimit
diagram for Ran(Y ). The maps dI are not functorial in I, but they satisfy two
useful properties:

(i) For any I, the following diagram commutes:

RanI(Y ) Y I

Ran(Y )

Ranc(Y )

dI

i

Here c : ∅ → I is the unique map, and the target of Ranc(Y ) is Ran∅(Y ) =
Ran(Y ).

(ii) For any I, we have pI ◦ dI = idY I .
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4.2.4. Completions along the diagonal. Define

Ran∆̂(Y ) = colim
J∈fSetsurj,opn.e.

Y J
∆̂
,

where the subscript ∆̂ denotes the formal neighborhood of the (small) diagonal
Y →֒ Y J .

Remark. This version of the Ran space was used by Beilinson and Drinfeld in
establishing the existence of the canonical connection on a factorization algebra on
Ran(X), see [1, Prop. 3.4.7]. They denote Y J

∆̂
by Y <J>.

Similarly, define

RanI
∆̂
(Y ) = colim

J∈fSetsurj,opn.e.

Y I⊔J
∆̂

.

We enhance the assignment I  RanI
∆̂
(Y ) into a functor for I ∈ fSetop in analogy

with RanI(Y ) as defined in 4.2.1. Namely, given a map I1
ξ
−→ I2, the corresponding

map

RanI2
∆̂
(Y )

Ranξ

∆̂
(Y )

−−−−−−→ RanI1
∆̂
(Y )

is induced by the map

Y I2⊔J
∆̂

≃ (Y Im(ξ) × Y (I2rIm(ξ))⊔J )∆̂

→ (Y I1 × Y (I2rIm(ξ))⊔J)∆̂

≃ Y
I1⊔
(
(I2rIm(ξ))⊔J

)

∆̂

by taking the colimit with respect to J , and using the colimit version of Lemma 2.3.5
for the functor fSetsurjn.e. → fSetsurjn.e. given by J 7→ (I2 r Im(ξ))⊔ J . When I1 = ∅, the
last sentence of 4.2.1 explains how to define the above map.

4.2.5. As in 4.2.2, we have a natural transformation p(−) : Ran
(−)

∆̂
(Y ) → Y

(−)

∆̂

of functors fSetop → PreStkk. The map pI is obtained from the projection map
Y I⊔J
∆̂

→ Y I
∆̂

by taking colimits with respect to J ∈ fSetsurj,opn.e. and applying the

colimit version of Lemma 2.3.5.
As in 4.2.3, we have maps dI : Y I

∆̂
→ RanI

∆̂
(Y ) satisfying properties analogous

to (i) and (ii) in 4.2.3. The map dI is defined to be the composition Y I
∆̂

diag
−−−→

Y I⊔I
∆̂

i
−→ RanI

∆̂
(Y ) where i is part of the colimit diagram for RanI

∆̂
(Y ).

4.2.6. We prove a technical result which will be used in Lemma 4.2.7. The idea is
that, given a coordinate system on Y , the datum of |I| + 1 nearby points on Y is
the same as the datum of the first point, along with an |I|-tuple of displacements.

Lemma. Let Y be a k-scheme equipped with an étale map f : Y → An. Then, for
each I ∈ fSet there is an isomorphism

Y
{0}⊔I

∆̂
≃ Y × (Dn)I ,

and this is functorial in I.
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Proof. Consider the commutative diagram

Y {0}⊔I

Y Y × (An)I

idY ×(f)I∆

Γ
(f)I

Since the vertical map is étale, the formal neighborhood of Y {0}⊔I along Y (via the
diagonal map) is isomorphic to the formal neighborhood of Y × (An)I along Y (via
the horizontal map). The graph Γ(f)I defines an automorphism of Y ×(An)I via the
group structure of An, and this automorphism allows us to replace the horizontal
map by

Y
(idY ,0,...,0)
−−−−−−−→ Y × (An)I .

But the formal neighborhood associated to this map is evidently Y × (Dn)I . �

4.2.7. We are now in a position to deduce from Corollary 4.1.6 a triviality result
which relates flat quasicoherent sheaves on the two sides of the crucial diagram
of 4.2.2.

Lemma. Assume that Y is smooth over k. For any I ∈ fSetn.e., the functors

QCoh(RanI
∆̂
(Y ))flat QCoh(Y I

∆̂
)flat

(dI)∗

(pI )∗

yield mutually inverse equivalences of categories, where the subscript ‘flat’ indicates
quasicoherent sheaves flat over RanI

∆̂
(Y ) and Y I

∆̂
, respectively.

Proof. This proof will show that (pI)∗ is an equivalence of categories. This implies
the statement about (dI)∗ because we have pI ◦ dI = idY I

∆̂
.

First, we argue that both sides are global sections of Zariski sheaves of cate-
gories on Y .

1. For any scheme Ỹ equipped with an isomorphism σ : Ỹ red ≃ Y , the category

QCoh(Ỹ ) is the global sections of a Zariski sheaf of categories on Y whose

value on an open subscheme U ⊂ Y is QCoh(Ũ), where Ũ ⊂ Ỹ is the unique

open subscheme of Ỹ whose underlying reduced scheme identifies with U via
σ.

2. This statement remains true when Ỹ is replaced by any prestack Z of the form
colimc∈CZc, where Z(−) is a functor from some category C to the category

of pairs (Ỹ , σ) as in point (1). This follows from (1) because QCoh(Z) =
limcQCoh(Zc) and limits of sheaves are computed pointwise.

3. Finally, observe that RanI
∆̂
(Y ) and Y I

∆̂
are prestacks of the form considered

in (2).

Since the functor (pI)∗ arises from a map of sheaves in this sense, it suffices to
prove the lemma after replacing Y by U , where U ranges over a Zariski open cover
of Y . In this way, we may assume that Y has a globally-defined coordinate system,
i.e. an étale map Y → An.

Although the functor (pI)∗ is canonical, we shall prove that it is an equivalence
using a noncanonical operation. Since the set I is assumed to be nonempty, we may
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pick an element i ∈ I and thereby obtain an isomorphism

Y I⊔J
∆̂
≃ Y × (Dn)(Ir{i})⊔J

≃ Y × (Dn)Ir{i} × (Dn)J

by Lemma 4.2.6. Taking colimits with respect to J ∈ fSetsurj,opn.e. , we obtain an
isomorphism

φ : RanI
∆̂
(Y ) ≃ Y × (Dn)Ir{i} × Ranninf .

Similarly, we get an isomorphism φ′ : Y I
∆̂
≃ Y × (Dn)Ir{i}, and it is not difficult to

see that this diagram commutes:

RanI
∆̂
(Y ) Y I

∆̂

Y × (Dn)Ir{i} × Ranninf Y × (Dn)Ir{i}

pI

∼φ ∼φ′

pr12

Therefore, it suffices to show that (pr12)
∗ induces an isomorphism on categories of

flat quasicoherent sheaves. Since limits preserve isomorphisms, it suffices to show
the analogous statement for the maps

Y × (Dnd )
Ir{i} × Ranninf

pr12−−−→ Y × (Dnd )
Ir{i}

for integers d ≥ 0. But this statement follows from Corollary 4.1.6. �

4.2.8. Following through with the plan articulated at the start of this subsection,
we interpret 4.2.2 and Lemma 4.2.7 as saying that, as far as flat quasicoherent
sheaves are concerned, projection maps can be realized in terms of generalized
diagonal maps. This allows us to begin constructing D-module structures:

Lemma. There is a functor Ψ : QCoh(Ran(Y ))flat → QCoh(YdR)flat such that this
diagram strictly commutes:

QCoh(Ran(Y )dR)flat QCoh(Ran(Y ))flat

QCoh(YdR)flat QCoh(Y )flat

Ψ

The four unlabeled functors are induced by pullback along Y →֒ Ran(Y ) and along
the map from a prestack to its associated de Rham prestack.

Proof. Given F ∈ QCoh(Ran(Y ))flat, we need to equip FY ∈ QCoh(Y )flat with the
datum of descent along Y → YdR, i.e. an action of the infinitesimal groupoid of Y .
Recall that the infinitesimal groupoid of Y is a functor LY : ∆op → PreStkk for
which LY ([0]) = Y , LY ([0→ 1]) = Y 2

∆̂
, and the two maps [0]⇒ [0→ 1] correspond

to the two projections Y 2
∆̂
⇒ Y .16 More precisely, if τ : ∆→ fSetn.e. is the functor

sending [0→ · · · → n] to the underlying set {0, . . . , n}, then we have LY ≃ Y
(−)

∆̂
◦τ .

(In the rest of this proof, we omit the subscript ‘flat’ for notational conve-
nience. Every instance of QCoh is meant to be QCohflat.)

16We emphasize that the simplicial category ∆ is written in bold font, while the small diagonal
∆ : Y →֒ Y I is not. In this proof, the latter meaning is intended only when ∆ appears as a
subscript (−)

∆̂
indicating completion.
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Remark. The category of quasicoherent sheaves equipped with action by the infini-
tesimal groupoid is lim(QCoh ◦LY ) by definition. Here, as motivation, we explain a
naive attempt to produce an object in this category and why it fails. By restricting
F along Y I

∆̂
→ Y I → Ran(Y ) for each I ∈ fSetsurjn.e., we obtain an object

F′ ∈ lim(QCoh ◦Y
(−)

∆̂
◦ ι).

(This is just the restriction of F along Ran∆̂(Y ) → Ran(Y ), and the category
displayed above is just QCoh(Ran∆̂(Y )) by definition.) If we had an object in

lim(QCoh ◦Y
(−)

∆̂
), then we could precompose by τ in the limit and thereby obtain

an object in the desired category. The presence of ι above indicates that F′ does
not have sufficient functoriality for this to work: it defines a family of sheaves on
the Y I

∆̂
which is not equipped with functoriality with respect to nonsurjective maps

I → J . The next construction fixes this problem.

Now we resume the proof of the lemma. Since ∅ ∈ fSet is initial, we get maps

RanI
∆̂
(Y ) → Ran∅

∆̂
(Y ) ≃ Ran∆̂(Y ) which are functorial in I ∈ fSet. Composing

with the map Ran∆̂(Y )→ Ran(Y ) and pulling back F to each RanI
∆̂
(Y ) yields an

object

F′ ∈ lim
fSet

(QCoh ◦Ran
(−)

∆̂
(Y )).

Since Lemma 4.2.7 is functorial in I ∈ fSetn.e., it gives a natural equivalence between

QCoh ◦Ran
(−)

∆̂
(Y ) and QCoh ◦Y

(−)

∆̂
as functors on fSetn.e.. Under this equivalence,

F′ corresponds to an object

F′′ ∈ lim
fSetn.e.

(QCoh ◦Y
(−)

∆̂
).

Precomposing by τ , we obtain an object

F′′′ ∈ lim
∆

(QCoh ◦Y
(−)

∆̂
◦ τ).

By the first paragraph of this proof, QCoh ◦Y
(−)

∆̂
◦τ coincides with QCoh ◦LY , so F′′′

is a quasicoherent sheaf on Y equipped with action by LY , and we set Ψ(F) := F′′′.
It is straightforward to amplify this to yield a definition of Ψ as a functor.

Let us equip the lower-right triangle (in the statement of the lemma) with the
datum of commutativity. This is done via the commutative diagram

Ran
{1}

∆̂
Y

Ran(Y )

Ranc
∆̂
(Y )

d{1}

i

which results from the property (ii) mentioned in 4.2.5. By the construction of Ψ,
the pullback of Ψ(F) to Y is obtained by pulling back F along Ranc

∆̂
(Y ) and then

applying the equivalence of Lemma 4.2.7. Since that equivalence occurs via (d{1})∗,
we obtain a natural isomorphism from this sheaf to i∗F =: FY , as desired.

For the upper-left triangle, we assume that F is the pullback to Ran(Y ) of
some sheaf G on Ran(Y )dR. We have to show that the crystal structure on FY
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arising from Ψ is equal to the crystal structure coming from G. Since the map from
a prestack to its de Rham prestack is functorial, we have a natural transformation

QCoh ◦Ran
(−)

∆̂
(Y )dR =⇒ QCoh ◦Ran

(−)

∆̂
(Y ).

Moreover, all the steps in the construction of Ψ can be carried through for the
de Rham versions of the prestacks involved, and the two versions are related by a
natural transformation as above. In more detail, we have a commutative diagram

QCoh(Ran(Y )dR) QCoh(Ran(Y ))

lim
fSet

(QCoh ◦Ran
(−)

∆̂
(Y )dR) lim

fSet
(QCoh ◦Ran

(−)

∆̂
(Y ))

lim
fSetn.e.

(QCoh ◦Y
(−)

∆̂
) lim

fSetn.e.
(QCoh ◦Y

(−)

∆̂
)

lim
∆

(QCoh ◦LYdR
) lim

∆

(QCoh ◦LY )

∼
∼

∼

Tracing G ∈ QCoh(Ran(Y )dR) through the upper composition yields Ψ(F) by def-

inition. For the lower composition, note that the functors Ran
(−)

∆̂
(Y )dR, Y

(−)

∆̂
, and

LYdR
are constant with value YdR, so the lower three terms in the left column are

just QCoh(YdR), and with these identifications the labeled arrows become identity
functors. Hence, G maps under the lower composition to GYdR

∈ QCoh(YdR), so
Ψ(F) ≃ GYdR

as desired. �

4.3. Proof of Theorem 4

We construct an inverse functor

Φ : QCoh(Ran(X))flat → QCoh(Ran(X)dR)flat

as follows. Since Lemma 4.2.8 is functorial with respect to Y , we may take Y = XI

to obtain a diagram

QCoh(Ran(XI)dR)flat QCoh(Ran(XI))flat

QCoh(XI
dR)flat QCoh(XI)flat

ΨI

which is functorial with respect to I ∈ fSetsurjn.e. . We have an identification (XI)(−) ≃
X(I×(−)) of functors fSetsurjn.e. → PreStkk, and combining this with the colimit version
of Lemma 2.3.5 yields a map

Ran(XI) = colim(XI)(−)

≃ colimX(I×(−))

→ colimX(−)

= Ran(X)
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which is functorial with respect to I. There is a similar map for the correpsonding
de Rham prestacks, and pulling back along these maps allows us to expand the
previous diagram:

QCoh(Ran(X)dR)flat QCoh(Ran(X))flat

QCoh(Ran(XI)dR)flat QCoh(Ran(XI))flat

QCoh(XI
dR)flat QCoh(XI)flat

ΨI

In fact, we focus solely on the outer square:

QCoh(Ran(X)dR)flat QCoh(Ran(X))flat

QCoh(XI
dR)flat QCoh(XI)flat

ΦI

Here ΦI is the composition of ΨI with the upper-right vertical map. Taking the
limit of this diagram over I ∈ fSetsurjn.e., and using that

lim
fSetsurjn.e.

(QCoh(X(−))flat) ≃ QCoh(Ran(X)flat),

we obtain a diagram

QCoh(Ran(X)dR)flat QCoh(Ran(X))flat

QCoh(Ran(X)dR)flat QCoh(Ran(X))flat

Φ

where the vertical maps are the identity functors and the horizontal maps are both
given by pullback along Ran(X)→ Ran(X)dR. Since this diagram is strictly com-
mutative, we conclude that Φ is an inverse to the horizontal maps. This concludes
the proof of Theorem 4.

5. Triviality of Pic(Ran(X))

5.1. The Picard groupoid as a quadratic functor

We use the results of Section 2 to show that line bundles on Ran(X) are trivial.
For this, we need I  Pic(XI) to be an n-excisive functor defined on fSet∗. In
Proposition 5.1.1, hypothesis (i) will allow us to pick a basepoint on X , which
ensures this functor is defined on fSet∗. Hypothesis (ii) will allow us to apply the
Theorem of the Cube to conclude that this functor is quadratic. Unfortunately for
our purposes, this theorem is usually stated for the Picard group rather than the
Picard groupoid, so we will need to discuss the π1 and π0 terms of the groupoid
separately. However, as a corollary of this discussion, we deduce the corresponding
statement for Picard groupoids, which can be interpreted as an improved version
of the Theorem of the Cube, see Remark 5.1.6.
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5.1.1. Here is the main result of this subsection:

Proposition. Let k be a field, and let X be an algebraic variety over k which satisfies
the following properties:

(i) X(k) is nonempty.
(ii) X admits an open embedding into a smooth proper geometrically integral k-

variety.

Then the pullback functor Pic(Spec k)→ Pic(Ran(X)) is an equivalence.

Proof. In 3.2.3, we noted the equivalence

Pic(Ran(X)) ≃ lim
I∈fSetsurjn.e.

Pic(XI).

Recall that the category of strictly commutative Picard groupoids is equivalent to
D(AbGrp)[−1,0], which is the full subcategory consisting of complexes in degrees
−1 and 0.17 In D(AbGrp), we have

lim
I∈fSetsurjn.e.

Pic(XI) ≃ τ≤0

(
lim·

I∈fSetsurjn.e.

R· Γ(XI ,O×
XI )[1]

)
,

and similarly Pic(Spec k) ≃ k×[1]. Therefore, to prove the proposition it suffices to
show the following two statements:

• H0 lim·

I∈fSetsurjn.e.

R· Γ(XI ,O×
XI ) ≃ k

×

• H1 lim·

I∈fSetsurjn.e.

R· Γ(XI ,O×
XI ) ≃ 0

Applying the spectral sequence of [2, 7.1], we reduce to proving these statements:

(A1) lim0

I∈fSetsurjn.e.

R0 Γ(XI ,O×
XI ) ≃ k

×.

(A2) lim1

I∈fSetsurjn.e.

R0 Γ(XI ,O×
XI ) ≃ 0.

(B) lim0

I∈fSetsurjn.e.

R1 Γ(XI ,O×
XI ) ≃ 0

This is accomplished in 5.1.3 and 5.1.4. �

5.1.2. Setup. By assumption (i), we may choose a basepoint x0 ∈ X(k). This gives
a functor fSetop∗ → Schk which sends {∗} ⊔ I 7→ XI .

5.1.3. Proof of (A1) and (A2). Define the functor G : fSet∗ → AbGrp by the
assignment {∗} ⊔ I 7→ Γ(XI ,O×

XI ).

Lemma. The functor G is linear in the sense of Definition 2.2.5.

Proof. By the criterion of Lemma 2.2.4(i), it suffices to show that, for every I with
|I| > 1, every function in Γ(XI ,O×

XI ) is a product of pullbacks of functions in

Γ(XIri,O×
XIri) for i ∈ I. This follows from the well-known fact that an invertible

function on a product of algebraic varieties is an external product of invertible
functions on each factor, see [6, Lem. 5.1.15]. �

17For details regarding this point, see [7, Sect. 1.4].
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Now Remark 2.3.1 tells us that G is 1-excisive, when viewed as a functor to
D(AbGrp). Applying Theorem 2.3.3, we conclude that

lim·

I∈fSetsurjn.e.

R0 Γ(XI ,O×
XI ) ≃ R0 Γ(Spec k,O×)

≃ k×

as complexes of abelian groups. This proves (A1) and (A2).

5.1.4. Proof of (B). Let X →֒ X be a compactification of X where X is smooth
and geometrically integral, as guaranteed by the assumption (ii). Define a functor

F̃ : fSet∗ → AbGrp by I 7→ Pic(X
I
).

Lemma. The functor F̃ is quadratic in the sense of Definition 2.2.5.

Proof. Fix I with |I| > 2. We can write I = {1, 2} ⊔ J for nonempty J . Applying

the Theorem of the Cube [17, Tag 0BF4] to the product decomposition X
I
≃

X × X × X
J
, we conclude that an element of Pic(X

I
) is zero if and only if its

images in

Pic(Spec k ×X ×X
J
)

Pic(X × Spec k ×X
J
)

Pic(X ×X × Spec k)

under pullback are all zero. (This is where we use the hypothesis that X is proper
and geometrically integral.) This implies that the hypothesis of Lemma 2.2.4(ii)
holds for n = 2, so the functor is quadratic. �

Let F : fSet∗ → AbGrp be defined by I 7→ Pic(XI).

Corollary. The functor F is quadratic.

Proof. Restriction of line bundles from X
I
to XI defines a natural transformation

F̃ ⇒ F . Because X is smooth, every line bundle on XI extends to one on X
I
. In

other words, this natural transformation is a surjection, and Lemma 2.2.8 proves
the corollary. �

Now Proposition 2.2.5 implies that lim0(F ◦ ι) ≃ Pic(Spec k) = 0, and this
proves (B).

5.1.5. Our next goal is to reformulate the Theorem of the Cube as a statement
about 2-excision and to discuss 1.2.3 in greater depth.

Claim. The functor

E : fSet∗ → (strictly commutative Picard groupoids) ≃ D(AbGrp)[−1,0]

defined by I 7→ Pic(XI) is 2-excisive.

Proof. This follows from a dévissage argument similar to Lemma 2.3.7. Consider
the following exact triangle of functors fSet∗ → D(AbGrp)[−1,0]:

τ≤−1E E τ≥0E

https://stacks.math.columbia.edu/tag/0BF4
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For any special hypercube Ξ := Ξ(Ib)b∈B
with |B| > 2, define I := ⊔b∈BIb, let

Ξr{I} be the special hypercube minus its initial vertex, and consider the following
map of exact triangles

τ≤−1E(I) E(I) τ≥0E(I)

lim τ≤−1E(Ξr {I}) limE(Ξr {I}) lim τ≥0E(Ξr {I})

in D(AbGrp)[−1,0]. We will show that the first and third vertical arrows are equiv-
alences. For the first vertical arrow, note that the truncated functor

G = τ≤−1E : fSet∗ → D(AbGrp)[−1] ≃ AbGrp

is 1-excisive by Lemma 5.1.3, so the first remark in 2.2.5 implies that it is the
direct sum of a constant functor and a monoidal functor. The same is true of the
composition of τ≤−1E with

D(AbGrp)[−1] → D(AbGrp)[−1,0],

because this functor is monoidal (where the monoidal structure on both sides is
given by ⊕), so the composition is 1-excisive as well. For the third vertical arrow,
note that the truncated functor

F = τ≥0E : fSet∗ → D(AbGrp)[0] ≃ AbGrp

is 2-excisive by Corollary 5.1.4. The same is true of the composition of τ≥0E with
the functor

D(AbGrp)[0] → D(AbGrp)[−1,0],

because this functor preserves limits (since limits are left-t-exact). Thus the second
vertical arrow is also an equivalence, so E is 2-excisive, as desired. �

Remark. This proof would not have worked if G were only known to be 2-excisive.
This is because the functor

D(AbGrp)[−1] → D(AbGrp)[−1,0],

does not preserve limits. The proof would also not have worked if the codomain of E
were taken to be D(AbGrp) instead of D(AbGrp)[−1,0]. This explains the footnote
in 1.2.3.

5.1.6. Applying Lemma 2.3.2 yields the following improvement of the Theorem of
the Cube, under the hypotheses of Proposition 5.1.1:

Corollary. Let n ≥ 3. The category of line bundles on Xn is equivalent to the
category consisting of the following data:

• We have a one-dimensional k-vector space F.
• For each i ∈ [n], we have a line bundle Ei ∈ Pic(X) and an isomorphism

qi : Ei|x0

∼
−→ F.

• For each pair i, j with 1 ≤ i < j ≤ n, we have a line bundle Li,j ∈ Pic(X2)
and isomorphisms

σi,j : Li,j |X×{x0}
∼
−→ Ei

τi,j : Li,j |{x0}×X
∼
−→ Ej .
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• These data are subject to the condition that, for any i < j as above, we have

qi ◦ σi,j |x0 = qj ◦ τi,j |x0

as maps Li,j |(x0,x0)
∼
−→ F.

These conditions correspond to the
(
n
2

)
square facets in a partial hypercube

Ξ≤2 in dimension n.
It is straightforward to modify the proof of this corollary to apply to a product∏n

i=1Xi of possibly different varieties Xi, each satisfying the hypotheses of Propo-
sition 5.1.1. This yields an improved Theorem of the Cube for (not necessarily
proper) smooth varieties. We explain the idea below:

Sketch of the proof. Let C be the category whose objects are pairs ({∗}⊔I, φ) where
the first element is a pointed finite set and the second element is an injective map

I
φ
→֒ [n]. A morphism from ({∗} ⊔ I1, φ1) to ({∗} ⊔ I2, φ2) is a map ξ : {∗} ⊔ I1 →
{∗} ⊔ I2 satisfying the following property:

• For every i ∈ I1, if ξ(i) 6= ∗, then φ1(i) = φ2(ξ(i)).

The category C along with the object ({∗}⊔[n], id[n]) ∈ C is the universal example of
a category with an object which has n commuting split idempotent endomorphisms.
There is a faithful embedding C →֒ fSet∗,≤n given by forgetting φ.

The datum of the varieties (X1, . . . , Xn) and their chosen basepoints yields a
functor Cop → Schk which sends

({∗} ⊔ I, φ) 7→
∏

i∈I

Xφ(i).

Post-composing with Pic, we obtain a functor G : C→ D(AbGrp)[−1,0].
One can formulate the notion of n-excision for functors defined on C by trans-

ferring Definition 2.4.3. The arguments of 5.1.3 and 5.1.4 work just as well in this
setting, because the usual Theorem of the Cube does not require the varieties to be
the same, and this proves that G is 2-excisive. Then the analogue of Lemma 2.3.2
finishes the proof. The reason these definitions and results transfer to the setting of
functors defined on C is because they only use the split endomorphisms in fSet∗,≤n
and not the permutations. �

These comments also apply when each Xi is proper and geometrically integral
over k but not necessarily smooth (these are the usual hypothesis for the Theorem
of the Cube). Moreover, in this case, we can take one of the Xi to be an arbitrary
k-variety.

5.2. The hypothesis (C)

Using Galois descent for line bundles, we weaken the hypotheses of Proposition 5.1.1
as follows:

Corollary. Let k be a field, and let X be an algebraic variety over k which satisfies
the following property:

(C) Xk admits an open embedding into a smooth proper connected k-variety.

Then the pullback functor Pic(Spec k)→ Pic(Ran(X)) is an equivalence.
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Proof. Let i : Xk →֒ Y be the open embedding guaranteed by (C), where Y is a

smooth, proper, and connected k-variety. Since i is a map between finite type k-
schemes, there exists a finite sub-extension E/k (where E ⊂ k), a variety Y0 over E,

and an open embedding i0 : XE →֒ Y0 such that the base change of i0 along E →֒ k
identifies with i. Furthermore, Y0 is smooth, proper, and geometrically connected
over E. Since X(k) is nonempty (by the Nullstellensatz), we can ensure that X(E)
is nonempty by choosing E large enough.

For each finite set I, let (πI)∗Pic(XI) denote the fppf sheaf of groupoids over
Spec k which sends a k-scheme S to the Picard groupoid Pic(S × XI). The case
I = ∅ is Pic(Spec k). We have a map

ψ : Pic(Spec k)→ lim
I∈fSetsurjn.e.

(πI)∗Pic(XI),

and taking global sections yields the map Pic(Spec k) → Pic(Ran(X)). This is
because the functor of global sections commutes with limits.

We now show that ψ is an equivalence. By fppf descent for the cover SpecE →
Spec k, it suffices to show that ψ induces an equivalence on spaces of sections over
any fppf cover of Spec k of the form

SpecE ×
Speck

SpecE ×
Speck

· · · ×
Speck

SpecE.

Each such cover is isomorphic to a disjoint union of covers of the form SpecE′

where E′ ⊂ k is a finite extension of k which contains E. Thus, it suffices to show
that the map

Γ(SpecE′, ψ) : Pic(SpecE′)→ lim
I∈fSetsurjn.e.

Pic(XI
E′) ≃ Pic(RanE′(XE′))

is an equivalence. (Here RanE′(XE′) denotes the Ran space construction taken over
E′ rather than k.) The constructions of the first paragraph can be base-changed
along E →֒ E′, and this shows that the hypotheses of Proposition 5.1.1 apply to
XE′ as a variety over E′, so Γ(SpecE′, ψ) is an equivalence, as desired. �

6. Relative Pic-contractibility of Ran(X)

Our goal is to prove the following relative version of Corollary 5.2:

Theorem. Let k be a field, and let X be an algebraic variety over k which satisfies
the following property:

(C) The base change Xk admits an open embedding into a smooth proper k-variety.

Then, for any locally Noetherian k-scheme S, the pullback functor Pic(S)→ Pic(S×
Ran(X)) is an equivalence.

6.0.1. Remark. Our strategy is a variation on the method of ‘reduction to the case
of an Artinian local ring with separably closed residue field.’ Let us explain this
method in more detail. When proving a statement about a morphism f : Y → Z,
one makes the following reductions:

1. If the statement is suitably local on the base, one can replace Z by an affine
open subscheme, and subsequently by SpecA where (A,m) is a local ring.

2. First, study the problem when A is an Artinian local ring with separably
closed residue field. In this case, one can use deformation theory.
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3. Via the theory of formal schemes, extend from the case of an Artinian local
ring to that of a complete local ring (with separably closed residue fields).

4. If A is an arbitrary local ring, descend the result of step (3) to the strict
henselization Ash and subsequently to some étale A-algebra.

These steps are paraphrased from [8, p. 8–9]. Our morphism of interest is the
projection

pr1 : S × Ran(X)→ S,

but this lies outside the usual realm of application of the method in several ways:

• This method is suited to proving statements that are ‘finitely presented’ in the
sense that they assert the existence of solutions to finitely many polynomial
equations. Such statements are nice because if they are true in a filtered colimit
(of rings) then they are true at a finite stage in that colimit. Our situation
involves an infinite set of data (a section on XI for each I) so this principle
does not apply. We circumvent this issue by judiciously considering finite limits
or focusing attention on Xn for one n at a time.
• A more serious obstruction is that this method is adapted to proving proper-
ties, whereas we want to construct data consisting of trivializations of some
line bundles. An identity of functions on a Noetherian scheme can be checked
on formal neighborhoods of closed points, but it is not a priori clear how to
similarly localize the problem of constructing a function. For this reason, given
a closed subscheme Z ′ ⊂ Z, we set up a framework for gluing two functions
defined on the formal neighborhood of Z ′ in Z and on the complement ZrZ ′,
respectively (see 6.5). The ability to glue functions along formal neighborhoods
allows us to dispense with step (4) entirely.
• The method is usually applied when f is proper, which assists in carrying out
step (3) because tools like Grothendieck’s existence theorem become available
for controlling coherent sheaves on Y , see [13, Thm. 8.4.2]. In our situation,
suppose S is affine, let S′ ⊂ S be a closed subscheme, let Sinf be the formal

neighborhood of S′ in S, and let Ŝ be the Spec of the completed local ring, so

there are maps Sinf → Ŝ → S. If X were proper, the Grothendieck existence
theorem would imply that a section on Sinf × XI automatically descends to

one on Ŝ ×XI .
Since we do not assume that X is proper, this technique is not available.

Instead, we assume that X is affine, which allows us to work with the Spec
of the ring of functions of Sinf × XI , denoted (S × XI)∧. Then a weaker
form of Grothendieck’s existence theorem implies that a section on Sinf ×X

I

descends to one on (S×XI)∧. The price we pay is that we have to work harder
to prove the triviality of functions on the completed version of S × Ran(X)
(see Lemma 6.2.9) and we have to use a covering argument to reduce to the
case of affine X (see 6.6).

In what follows, one could identify step (1) with Corollary 6.2.5, step (2) with
Lemma 6.3.1, step (3) with the application of Grothendieck’s existence theorem in
Proposition 6.4, and step (4) does not appear as explained in the second bullet point
above. The passage to a separably closed residue field corresponds to the Galois
descent trick which was used in Corollary 5.2 and which appears again in 6.1.1.

6.0.2. Remark. The crux of the proof is Proposition 6.4, which establishes the the-
orem when X is affine. Here are some more technical comments which may be useful
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for understanding how Proposition 6.4 is proved. Using Noetherian induction on S,
we may assume that the result holds when S is replaced by any closed subscheme of
S. Roughly speaking, we consider an increasing family of closed subschemes S′

n →֒ S
and their open complements Un = S r S′

n, and we compare trivializations of line
bundles over the formal neighborhoods of the S′

n and over the Un. As n grows,
the subschemes Un approximate the localization of S at its minimal primes; this
Artinian case is handled in 6.3. In order to glue the two families of trivializations,
we need to show that some functions on (completions and localizations of) S×Xn

are zero. Since the support of a regular function is the closure of some associated
points, a large part of the difficulty (in 6.2 and 6.4) will be to manage associated
points. On a first pass, the reader might read these subsections assuming that S
is integral, so it has only one associated point. However, this restriction does not
logically yield a simpler proof in the integral case, because the S′

n are not integral
even when S is integral.

6.1. Basepoints and rigidification

6.1.1. Basepoints. In this section, we will be studying functions and line bundles,
both of which satisfy fppf descent. Therefore, by the same trick used in the proof
of Corollary 5.2, we may assume that X(k) is nonempty by passing to a finite
extension of k.

Now, if X(k) is nonempty, we can pick a basepoint x0 ∈ X(k), which gives
basepoints xI0 ∈ X

I(k) and xRan
0 ∈ Ran(X)(k).

6.1.2. Rigidification. Upon choosing these basepoints, the association {∗} ⊔ I 7→
XI becomes a functor from fSetop∗ to the category of k-schemes equipped with
a k-rational point. In other words, these basepoints xI0 are compatible with all
generalized diagonal maps, projection maps, and inclusion maps.

Pulling back along the inclusion maps of the basepoints of XI gives retracts
to the pullback maps Pic(Spec k)→ Pic(XI) which are functorial in I. We define
Pic

e(XI) to be the kernel of this retract.18 Concretely, Pic
e(XI) is the Picard

groupoid of line bundles on XI equipped with trivialization at xI0. We refer to such

a datum as a rigidified line bundle. Taking the limit over fSetsurjn.e. , we obtain a retract
of the map Pic(Spec k) → Pic(Ran(X)) and a Picard groupoid Pic

e(Ran(X)) of
rigidified line bundles.

We also make analogous definitions for the functor {∗} ⊔ I 7→ Γ(XI ,O).
Namely, for each I, the subspace Γe(XI ,O) ⊂ Γ(XI ,O) consists of functions which
are zero on xI0, and similarly for the subspace Γe(Ran(X),O) ⊂ Γ(Ran(X),O). We
refer to functions vanishing on the basepoint as rigidified functions.

If S is any k-scheme, we can similarly definePic
e(S×XI),Pic

e(S×Ran(X)),Γe(S×
XI ,O), and Γe(S ×Ran(X),O). For example, a rigidified line bundle on S ×XI is
a line bundle on S ×XI equipped with a trivialization on S × {xI0}.

It is clear that Pic(S) → Pic(S × Ran(X)) is an equivalence if and only if
Pic

e(S×Ran(X)) is trivial, and there is the analogous statement for Γ(S×Ran(X)).

6.2. Triviality of functions

Our plan is to show that line bundles on S×Ran(X) are trivial by first trivializing
them over certain completions and then gluing these trivializations. To make this

18The e-superscript notation for rigidified line bundles is inspired by [21, Sect. 3.4].
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gluing manageable, we need to first prove that the trivializations over the com-
pletions are unique. Since automorphisms of the trivial line bundle are given by
nonvanishing functions, this amounts to showing that there is a paucity of such
functions on S × Ran(X) (or a completion thereof).

6.2.1. We need a basic commutative algebra lemma.

Lemma. Let S be a locally Noetherian k-scheme, and let Y be a smooth k-scheme.
Then the associated points of S × Y are exactly the generic points of the fibers of

S × Y
pr1−−→ S over the associated points of S.

Proof. We immediately reduce to the case when S = SpecA is affine. By considering
étale maps U → An for open subschemes U ⊂ Y covering Y , we reduce to the case
when Y = An. By inducting on n, we reduce to the case when n = 1. By localizing
at a point of A, we reduce to the two following statements:

Let (A,m) be a local k-algebra.

(i) Let me ⊂ A[x] be the extension of m, i.e. the generic point of the fiber over m.
Then me is an associated point of A[x] if and only if m is an associated point
of A.

(ii) Let p ⊂ A[x] be a point lying over m which is not the generic point of the fiber
over m. Then p is not an associated point of A[x].

For (i), the ‘only if’ follows from the fact that flat maps send associated points
to associated points [19, Exer. 24.2.J]. Conversely, if m is an associated point of A,
then there exists f ∈ A such that AnnA(f) = m. Then AnnA[x](f) = me, so me is
associated.

For (ii), there exists a monic polynomial P (x) ∈ A[x] whose vanishing locus
contains the point p. If p is associated, then P (x) must be a zerodivisor in A[x].
However, no monic polynomial in a polynomial ring can be a zerodivisor, contra-
diction. �

6.2.2. The following lemma reduces us to studying functions on the infinitesimal
Ran space.

Lemma. Let S = SpecA where A is a Noetherian k-algebra. If a regular function
f ∈ Γ(S ×XI ,O) vanishes on the formal neighborhood of S × {x0}, then f = 0.

Proof. By the Krull intersection theorem (which uses that A is Noetherian), we
conclude that Supp f is disjoint from S × {x0}. However, Supp f is a union of
closures of associated points of S×XI, and Lemma 6.2.1 says that all such closures
are of the form Z×XI for some closed Z ⊂ S. Since each Z×XI intersects S×{x0}
if Z is nonempty, the only possibility is that Supp f is empty, i.e. f = 0. �

6.2.3. We prove the following lemma for expository purposes only. We actually
need the stronger version Lemma 6.2.9, which applies to a completed version of
S × Ran(X).

Lemma. Let S be a locally Noetherian k-scheme. Then the pullback map Γ(S,O)→
Γ(S × Ran(X),O) is an isomorphism.

Proof. In view of 6.1.2, it is equivalent to prove that Γe(S × Ran(X),O) = 0. We
may assume that S = SpecA for a Noetherian k-algebra A.

Claim. We have Γe(Ranninf,S ,O) = 0.
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Proof of claim. First, observe that

Γe(Ranninf,S ,O) ≃ lim
I∈fSetsurjn.e.

Γe(Ranninf,S({∗} ⊔ I),O)

≃
∞∏

d=1

lim
I∈fSetsurjn.e.

PS,n,d({∗} ⊔ I).

But Lemma 4.1.3 tells us that PS,n,d is d-excisive, so Proposition 2.2.5 implies that

lim
I∈fSetsurjn.e.

PS,n,d({∗} ⊔ I) ≃ PS,n,d({∗}).

The right hand side is A if d = 0 and 0 otherwise, and the claim follows. �

An element of Γe(S × Ran(X),O) is a compatible family of elements aI ∈
Γe(S × XI ,O). Upon choosing a uniformizer for X near x0, we can identify the
colimit of the formal neighborhoods of S×{xI0} →֒ S×XI with Ranninf,S , similarly
to Lemma 4.2.6. After doing so, the claim tells us that the restrictions of aI to each
of these formal neighborhoods is zero. But then aI = 0 by Lemma 6.2.2. �

Remark. As mentioned in Remark 1.2.3, it is notable that this proof works for
a field k of arbitrary characteristic. See Remark 4.1.4 for more discussion of this
point.

6.2.4. Remark. It is not hard to show, using the claim proved in 6.2.3, that any
map Ran(X) → S to any scheme S is constant. The idea is to restrict to various
infinitesimal neighborhoods Ranninf → Ran(X). The previous claim implies that the
maps Ranninf → S are constant, and this allows one to show that the restrictions
XI → S are constant, which implies that Ran(X)→ S was constant to begin with.

6.2.5. We deduce that the assignment S 7→ Pic
e(S × Ran(X)), which is a priori

a sheaf valued in Picard groupoids, is actually a sheaf valued in abelian groups.

Corollary. Let S be a locally Noetherian k-scheme. Then the groupoid

Pic
e(S × Ran(X))

is equivalent to a set. Equivalently, rigidified line bundles on S×Ran(X) admit no
nontrivial automorphisms.

Proof. Define a rigidified invertible function on S × Ran(X) to be an invertible
function on S × Ran(X) which is equal to 1 on S × {xRan

0 }. If f is a rigidified
invertible function, then 1− f is a rigidified function, and Lemma 6.2.3 proves that
1− f = 0, so f = 1. Therefore, any rigidified invertible function is identically equal
to 1.

An automorphism of a (rigidified) line bundle is given by a (rigidified) invert-
ible function, so the previous paragraph shows that rigidified line bundles have no
nontrivial automorphisms, as desired. �

6.2.6. Punctured completions. Assume that X is affine. This assumption is needed
because, in general, the colimits over m in the following paragraph exist in the
category of affine schemes, but not in the category of all schemes.

Let A be a Noetherian k-algebra, let f ∈ A, and define S = SpecA. Let T ⊂ A
be a multiplicative system each of whose elements maps to a non-zerodivisor in
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Af ,
19 and let fT be the multiplicative system generated by f and T . Define

Ŝ := colim
m

V (fm)

(S ×XI)∧ := colim
m

V (fm)×XI

where the limits are taken in the category of affine schemes. If X = SpecR, then
(S ×XI)∧ is the spectrum of the completion of A⊗R⊗m at the ideal (f). Define

ŜfT := localization of Ŝ by fT

(S ×XI)∧fT := localization of (S ×XI)∧ by fT .

There is evidently a map (S ×XI)∧fT → ŜfT .

In this way, we obtain a functor fSet∗ → Schaffk which sends {∗} ⊔ I 7→ (S ×
XI)∧fT . Let

Y := colim
fSetsurj,opn.e.

(S ×XI)∧fT ,

evaluated in the category of prestacks. The maps defined at the end of the previous

paragraph combine to give a map Y→ ŜfT .

Remark. In the proof of the crucial Proposition 6.4, we will need to glue trivial-
izations of a line bundle on S × XI using the ‘cover’ of S ×XI consisting of the
localization Sf ×XI and the completion (S ×XI)∧, for a suitably chosen f . This
fits the pattern of Beauville-Laszlo gluing, and we summarize the requisite lemmas
from commutative algebra in 6.5. The upshot is that the ‘overlap’ for the gluing
procedure is the punctured completion (S × XI)∧f defined above, and this is why

we need to study functions on (S ×XI)∧f and Y.

6.2.7. Reduction. In 6.2.6, the requirement that T maps to non-zerodivisors in Af
is engineered so that, when studying the punctured completions Y and (S×XI)∧fT ,
we may assume that f and T consist only of non-zerodivisors in A. In the next
paragraph, we explain how to perform this reduction step:

Let AnnA(f) ⊂ A be the ideal consisting of elements annihilated by a power
of f . This is set-theoretically supported on V (f), so we can make the following

replacement without changing Y or ŜfT :

• Replace A by A′ := A/AnnA(f).
• Replace f and T by their images in A′.

By performing this replacement, we may assume that f is a non-zerodivisor on S.
Then fT consists only of non-zerodivisors in A.20

If this is the case, then the pullback of fT to S ×XI and (S ×XI)∧ consists
only of non-zerodivisors. Indeed, upon noting that a function is a non-zerodivisor
if and only if it does not vanish on any associated point, this follows from Exer-
cise 24.2.J and Theorem 29.2.6(a) in [19]. (This uses the Noetherian hypothesis on
A.) Therefore

O(S×XI)∧fT
→ O(S×XI)∧

19Equivalently, no element of T vanishes on an associated point of Af . In fact, we will only use
this construction when f vanishes on the embedded points of A, so Af has no embedded points,
in which case the requirement on T is simply that its elements do not vanish on any generic point
of A.
20In geometric terms, f does not vanish on any associated point of SpecA′, and the hypothesis
on T then implies that none of its elements vanish on any associated point of SpecA′.
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is an injection. So any function on (S × XI)∧fT admits at most one extension to

(S ×XI)∧.

6.2.8. Rigidification for punctured completions. As in 6.1.2, the basepoint xI0 ∈ X
I

determines maps ŜfT → (S × XI)∧fT which are functorial in I, so we can define

rigidified line bundles and functions, denoted Pic
e((S ×XI)∧fT ),Pic

e(Y),Γe((S ×

XI)∧fT ,O), and Γe(Y,O). (Here Y is the prestack which was defined in 6.2.6.) These
are functors defined on fSet∗.

6.2.9. Now we study functions on the punctured completion of S × Ran(X).

Lemma. If A is Noetherian, then any regular function on Y is pulled back from ŜfT .

Proof. By 6.2.7, we may assume that fT consists only of non-zerodivisors in A. In
view of 6.1.2 and 6.2.8, it suffices to prove that Γe(Y,O) = 0. Consider an element
of Γe(Y,O), which is a compatible family of elements aI ∈ Γe((S × XI)∧fT ,O) for

I ∈ fSetsurjn.e. .
Let N > 0 be an integer. There exists gN ∈ fT such that gN aI extends to

(S×XI)∧ for all |I| ≤ N . If gN has this property, then so does any multiple of gN .
We may therefore assume that, for each pair of integers N < N ′, there exists an
element rN,N ′ ∈ fT such that gN ′ = rN,N ′ gN .

In this paragraph, we consider a fixed finite set I. Let m be the maximal
ideal of the closed point xI0 ∈ XI . For integers m, d ≥ 0, we have the following
commutative diagram of affine schemes:

V (fm)× V (md+1) (V (fm)×XI)∧,m V (fm)×XI

(S × V (md+1))∧,(f) (S ×XI)∧,(f)+m (S ×XI)∧,(f)

(S ×XI)∧.

colimd

colimm colimm colimm

colimd

Each ∧ denotes completion (i.e. colimit in the category of affine schemes) and is
followed by the ideal with respect to which the completion is performed. The arrows
labeled ‘colim’ are members of a colimit diagram; for example, the upper horizontal
arrow indicates that (V (fm)×XI)∧,m ≃ colimd V (fm)× V (md+1). Also, we have

(S × V (md+1))∧,(f) ≃ Ŝ × V (md+1). (P)

Now, for any function h ∈ Γ((S×XI)∧,O), we obtain functions denoted as follows:

(h)m,d (h)m,∞ (h)m

(h)∞,d (h)∞,∞ (h)∞ h.

We will apply this to functions of the form h = gN aI .
In this paragraph, we fix an integer N > 0. Recall the functor

PS,n,≤d : fSet∗ → AbGrp
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defined in 4.1.3, for any base scheme S. The assignment

I  (gN aI)∞,d

yields an element of lim|I|≤N PŜ,n,≤d where n = dimX . (This uses (P).) Lemma 4.1.3

implies that PŜ,n,≤d is polynomial of degree ≤ d, so Lemma 2.4.4 can be applied

when d ≤ N − 2. Since we are dealing with rigidified functions, i.e. the constant
terms are zero, we conclude that (gN aI)∞,N−2 = 0.

Now fix an integer N0 > 0, and let N > N0 be any integer. The identities in
this paragraph will be valid for I satisfying |I| ≤ N0. Recall that gN = rN0,N gN0

for rN0,N ∈ fT . The previous paragraph implies that

0 = (gN aI)∞,N−2

= rN0,N (gN0 aI)∞,N−2.

Now, since Ŝ × V (mN−2) has the same associated points as Ŝ,21 the isomorphism
(P) implies that fT maps to non-zerodivisors on (S × V (mN−2))∧,(f). Therefore
the previous equation implies that

(gN0 aI)∞,N−2 = 0.

Keeping N0 fixed and passing to the limit as N →∞, we conclude that

(gN0 aI)∞,∞ = 0.

This implies that

(gN0 aI)m,∞ = 0.

This is a function on (V (fm)×XI)∧,m, so we may apply Lemma 6.2.2 and conclude
that

(gN0 aI)m = 0.

Taking the limit as m → ∞ we find that gN0 aI = 0, from which it follows that
aI = 0, by definition of ring localization.

This conclusion applies to |I| ≤ N0, but we are now free to take N0 →∞, so
aI = 0 for all I, as desired. �

6.3. The Artinian case

To prove the result in the case when S is Artinian, we bootstrap from the result of
Corollary 5.2 using deformation theory.

6.3.1. Here is the desired statement. The proof will rely on Lemma 6.3.2.

Lemma. If S is an Artinian scheme over k, and X satisfies the hypothesis (C),
then Pic

e(S × Ran(X)) = 0.

Proof. We may assume that S = SpecR where R is local and Artinian. Then R
has a unique prime ideal m with residue field K := R/m which is a field extension
of k. Furthermore, as an R-module, R has a filtration

0 = IN ⊂ IN−1 ⊂ · · · ⊂ I0 = R

21Proof: the map Ŝ×V (mN−2)
pr1−−→ Ŝ is flat and induces a bijection on the underlying topological

spaces, so Exercise 24.2.J in [19] yields the result.
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where In/In+1 ≃ K for each n. The image of 1 ∈ K under this (non-canonical)
isomorphism gives an element ǫn ∈ In/In+1. For each n, we have a short exact
sequence in R-mod:

0→ K
ǫn−→ R/In+1 → R/In → 0.

If we define Sn := R/In, then we have a sequence of closed embeddings

SpecK = S1 →֒ S2 →֒ · · · →֒ SN = S.

For any k-algebra R̃, define the following sheaves of abelian groups on the big
Zariski site of Spec k:

(Ga ⊗ R̃)(T ) = {regular functions on T × Spec R̃}

(Gm ⊗ R̃)(T ) = {invertible functions on T × Spec R̃}

where T is an arbitrary affine k-scheme. These are just the mapping prestacks

Hom(Spec R̃,Ga) and Hom(Spec R̃,Gm), respectively.
For each n ≥ 1, we have an exact sequence of Zariski sheaves of abelian groups:

0→ Ga ⊗K → Gm ⊗R/In+1 → Gm ⊗R/In → 0.

On an affine scheme T = SpecA, the first horizontal map is defined by sending a
function a ∈ A⊗k K to the invertible function 1 + a ǫn ∈ A⊗k R/In+1.

Now fix a rigidified line bundle L on S×Ran(X). Its restriction to S1×Ran(X)
is trivial by Corollary 5.2. Fix n ≥ 1 and assume by induction that its restriction to
Sn × Ran(X) is trivial. We claim that its restriction to Sn+1 × Ran(X) must also
be trivial. Indeed, a line bundle on Sn+1 × Ran(X), equipped with trivialization
on Sn × Ran(X), is equivalent to a torsor for Gm ⊗ R/In+1 defined on Ran(X),
equipped with trivialization of the induced Gm⊗R/In torsor. But this is equivalent
to a Ga ⊗ K torsor on Ran(X), which is trivial by Lemma 6.3.2. This completes
the proof of the inductive step. �

6.3.2. LetK be an arbitrary field extension of k, and recall from 6.3.1 the definition
of the big Zariski sheaf Ga ⊗K valued in abelian groups.

Lemma. Any Ga ⊗K torsor on Ran(X) is trivial.

Proof. Writing XK := SpecK ×Speck X , we have a Cartesian diagram:

RanK(XK) Ran(X)

SpecK Spec k

q′

p′ p

q

(Here, as in Corollary 5.2, the notation RanK(XK) means the Ran space construc-
tion taken over K rather than k.) The restriction of Ga ⊗K (as a sheaf on the big
Zariski site of Spec k) to Ran(X) is q′∗ORanK(XK), so isomorphism classes of torsors

for this sheaf are in bijection with the cohomology groupH1(Ran(X), q′∗ORanK(XK)).
Since ORanK(XK) is quasicoherent, and q

′
∗ is affine and hence acyclic for qua-

sicoherent sheaves, we have

H1(Ran(X), q′∗ ORanK(XK)) ≃ H
1(RanK(XK),ORanK(XK))

as k-vector spaces. The argument of [10, Sect. 6] shows that

Hi(RanK(XK),ORanK(XK)) = 0
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for all i > 0, as desired. This argument applies because there is a Künneth theo-
rem for coherent cohomology [17, Tag 0BEC] and because we already know that
H0(RanK(XK),O) = K, by Lemma 6.2.3. �

6.4. The case of affine X

Starting from Lemma 6.3.1, which establishes the desired result in the case when S
is Artinian, we extend the resulting trivializations of line bundles to the completed
version of S ×Ran(X) introduced in 6.2.6. We need to restrict to affine X because
that is the generality in which this construction makes sense. Next, we glue these
trivializations across punctured completions. In order to do so, we will use some
lemmas in commutative algebras which are gathered in 6.5.

Proposition. Assume that X is affine and satisfies (C). Then, for any locally Noe-
therian scheme S over k, we have Pic

e(S × Ran(X)) = 0.

Proof. We know from 6.2.5 that the assignment U 7→ Pic
e(U × Ran(X)) defined

on open subschemes of S is a sheaf valued in abelian groups. Therefore, it suffices
to prove the result when S is affine, so we may assume S = SpecA. Since the result
when S is a reduced point follows from Corollary 5.2, we may assume by Noetherian
induction that the result holds for all strictly smaller closed subschemes of S.

Fix a rigidified line bundle L on S × Ran(X).

For notational ease, we replace fSetsurjn.e. by its skeletal subcategory C consisting
of the objects [n] for n ≥ 1.

Let T ⊂ A be the multiplicative system consisting of elements of A not con-
tained in any minimal prime ideal. Then ST := SpecAT is an Artinian scheme, so
Lemma 6.3.1 implies that the restriction of L to ST ×Ran(X) is trivial. Concretely,
this trivialization provides sections å(n) ∈ Γ(ST × Xn,L) which are compatible
under the maps corresponding to surjections of finite sets.

Claim. For each n, there exists fn ∈ T such that å(n) is the restriction of a nonva-
nishing section a(n) ∈ Γ(Sfn ×X

n,L), where Sfn := SpecAfn .

Proof. Fix local trivializations of L|S×Xn with respect to some affine open cover
{Uβ}β∈B of S × Xn, and write Uβ = SpecAβ where each Aβ is an A-algebra.
Localizing by T , this yields local trivializations of L|ST×Xn with respect to the
affine open cover of ST ×Xn consisting of (Uβ)T := Spec((Aβ)T ). The nonvanishing

section å(n) can be interpreted as consisting of the following data:

There are functions gβ , hβ ∈ Γ((Uβ)T ,O) for each β ∈ B, satisfying two con-
straints:

(F1) For each β ∈ B, we have gβ · hβ = 1.
(F2) For each pair β1, β2 ∈ B, the product gβ1 ·hβ2 on the overlap (Uβ1)T ∩ (Uβ2)T

is equal to the corresponding transition function of L|ST×Xn .

For each β ∈ B, we have gβ = t−1 g̃β and hβ = s−1 h̃β for some functions g̃β , h̃β on
Uβ and some elements s, t ∈ T . If we take f ′

n ∈ T to be the product of all such s and t
which arise, then for each β ∈ B the functions gβ and hβ are restrictions of functions
g′β and h′β defined on the localizations (Uβ)f ′

n
. Now, each equation g′β · h

′
β = 1

becomes true after further localizing by some element u ∈ T , and similarly for the
equations corresponding to (F2). (Note that the transition function in question is
defined on Uβ1 ∩Uβ2 , even before localizing by T .) Let fn be the product of f ′

n with

https://stacks.math.columbia.edu/tag/0BEC
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all the u’s which arise. Then the restrictions of g′β and h′β to (Uβ)fn for each β ∈ B
yield a nonvanishing section of L|Sfn×Xn , as desired. �

By multiplying fn by an additional element of T , we may assume that fn
vanishes on all the embedded points of S. Hence, its pullback to Sfn ×X

n vanishes
on all the embedded points of Sfn ×X

n (see Lemma 6.2.1).
For anym ≥ 1, the inductive hypothesis gives a trivialization of L on V (fmn )×

Ran(X), where V (fmn ) is the vanishing locus of (fn)
m on S. The uniqueness of trivi-

alizations proved in Corollary 6.2.5 implies that these trivializations are compatible
under pullback along the maps V (fmn ) →֒ V (fm+1

n ). In this way, we obtain nonva-
nishing sections of L on the formal neighborhoods of V (fn) ⊂ S ×Xn for various
n. Grothendieck’s existence theorem turns these formal sections into nonvanishing
sections of L on the completions (S×Xn)∧.22 In this way, we obtain a trivialization
of L on

Y′ := colim
Cop

(S ×Xn)∧.

Here L|Y′ is taken to be a rigidified line bundle in the sense of 6.2.8. Let b(n) ∈
Γ((S ×Xn)∧,L) be the section given by this trivialization.

At this point, we have sections

a(n) ∈ Γ(Sfn ×X
n,L)

b(n) ∈ Γ((S ×Xn)∧,L).

In what follows, subscripts on (S ×Xn)∧ indicate localization.

Claim. The pullbacks of a(n) and b(n) to (S ×Xn)∧fn agree.

Proof. We have a commutative diagram23

(S ×Xn)∧T (S ×Xn)∧fn (S ×Xn)∧

ST ×Xn Sfn ×X
n S ×Xn

Since fn vanishes on all the embedded points of S, every element of T restricts to
a non-zerodivisor on Sfn . Note that the maps

(S ×Xn)∧fn → (S ×Xn)fn → Sfn

are flat, because completion is flat under Noetherian hypotheses [19, Thm. 29.2.6]
and localization preserves flatness. It follows that every element of T restricts to a
non-zerodivisor on (S ×Xn)∧fn as well. Hence, a nonzero function on (S × Xn)∧fn
pulls back to a nonzero function on (S ×Xn)∧T . It now suffices to check that a(n)

and b(n) agree on (S ×Xn)∧T .

The pullback of a(n) to (S ×Xn)∧T is also the pullback of å(n) to (S ×Xn)∧T .

This shows that a(n) is part of a trivialization of the restriction of L to Y, where

Y := colim
Cop

(S ×Xn)∧T

22The scheme (S ×Xn)∧ is defined as in 6.2.6, completing with respect to fn in place of f .
23A comment about notation: since we are in the special case of 6.2.6 when fn = f ∈ T , we can
replace the subscripts fT by T , and we have done so above.
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was defined in 6.2.6, and L|Y is viewed as a rigidified line bundle in the sense
of 6.2.8. On the other hand, b(n) is already part of a trivialization of L|Y′ from
before, and this pulls back to a trivialization of LY. Now Lemma 6.2.9 implies that
these two trivializations coincide, thereby showing that the restrictions of a(n) and
b(n) to (S ×Xn)∧T are equal. �

Proposition 6.5.4 gives a section

c(n) ∈ Γ(S ×Xn,L)

which restricts to a(n) and b(n). This section is nonvanishing since a(n) and b(n) are
nonvanishing. We wish to show that these c(n) determine a trivialization of L on
S × Ran(X).

Claim. The section c(n) does not depend on the choice of fn.

Proof. Let c′(n) correspond to the choice of another f ′
n, and let c′′(n) correspond

to fnf
′
n. It suffices to show that c(n) = c′′(n), because the same argument could be

repeated to show c′(n) = c′′(n).
Since c(n) and c′′(n) both restrict to å(n), their difference restricts to zero on

ST ×Xn. This implies that the difference is supported on the closure of the union of
the embedded points of S×Xn, which is the same as the preimage of the analogous
locus in S. In particular, the difference is annihilated by a sufficiently high power
of fn, since fn vanishes on the embedded points of S.

By construction, the restriction of c(n) to (S × Xn)∧,fn is b(n) which is part
of a trivialization of L on Y′ as defined before.24 Similarly, the restriction of c′′(n)

to (S ×Xn)∧,fnf
′
n is some section b′′(n) which is part of a trivialization of L on

Y′′ := colim
Cop

(S ×Xn)∧,fnf
′
n ,

as a rigidified line bundle. We have a natural map Y′ → Y′′, and the uniqueness
of trivializations which follows from 6.2.9 implies that the restriction of b′′(n) to
(S ×Xn)∧,fn coincides with b(n). Therefore the difference c(n) − c′′(n) restricts to
zero on (S ×Xn)∧,fn . Since this difference lies in Ann(fn), Corollary 6.5.3 implies
that it equals zero. �

Now, consider an arbitrary surjective map ξ21 : [n1] ։ [n2] which gives rise
to the diagonal map ∆ξ21 : S × Xn2 → S × Xn1 . By our construction, there

are functions fn1 , fn2 ∈ T which give sections c(n1) and c(n2). By the previous
claim, we can replace both fn1 and fn2 by fn1fn2 without changing c(n1) and c(n2).
Therefore we may write f := fn1 = fn2 . Now c(n2) and (∆ξ21)

∗c(n1) are two sections
of L|S×Xn2 which coincide when restricted to ST × Xn2 and (S × Xn2)∧,f . The
same argument as was used to prove the claim shows that c(n2) = (∆ξ21 )

∗c(n1), as
desired. �

6.5. Beauville–Laszlo gluing for regular functions

6.5.1. Setup. Let A be a Noetherian ring and let f ∈ A be an arbitrary element.

Let Â be the completion of A along the ideal (f), and let Âf := Af ⊗A Ã be the

24The additional superscript indicates completion with respect to (fn).
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localization of Â by the image of f . We have an obvious commuting diagram:

A Af

Â Âf

6.5.2. We shall use the following elementary result:
Lemma.

(i) Let M be an A-module which is set-theoretically supported on the vanishing

locus of f . Then the natural map M → Â⊗AM is an isomorphism.

(ii) The natural map Af/A→ Â⊗A (Af/A) is an isomorphism.

Proof. Point (i) appears as Lemme 1 in [3], and (ii) follows from (i). �

6.5.3. Let AnnA(f) ⊂ A denote the ideal consisting of elements which are annihi-
lated by some power of f , and define AnnÂ(f) similarly.

Corollary. The natural map A→ Â induces an isomorphism AnnA(f) ≃ AnnÂ(f).

Proof. Because AnnA(f) is finitely generated (this uses that A is Noetherian), we
have the following exact sequence for all sufficiently large n:

0 AnnA(f) A A
fn

Since Â is flat over A by [19, Thm. 29.2.6(a)], we obtain another exact sequence

0 Â⊗A AnnA(f) Â Â
fn

Since this holds for arbitrarily large n, we conclude that Â⊗AAnnA(f) ≃ AnnÂ(f).
But AnnA(f) is set-theoretically supported on the vanishing locus of f , so Lemma 6.5.2

implies that Â⊗A AnnA(f) ≃ AnnA(f). �

6.5.4. Gluing. This gluing result for functions is used in the proof of Proposi-
tion 6.4.

Proposition. Let a ∈ Af and b ∈ Â be such that their images in Âf agree. Then
there exists a unique c ∈ A which simultaneously maps to a and b.

Proof. Since tensors commute with quotients, Lemma 6.5.2(ii) says that

Af/A ≃ Âf/Â.

By hypothesis, the image of a in Âf lies in Â. Therefore the image of a in Af/A
vanishes, so a can be lifted to ã ∈ A. Subtracting off ã, we may assume that a = 0.

With the assumption that a = 0, we have that b lies in the kernel of Â→ Âf .

The isomorphism of Corollary 6.5.3 implies that b ∈ Â is the image of a unique
c ∈ A which is also annihilated by f . But then c also maps to zero in Af , so it
satisfies the requirement of mapping to a = 0 and to b. �

6.6. The general case

We now complete the proof of Theorem 6 by explaining how to remove the hypoth-
esis that X is affine from the statement of Proposition 6.4.



n-excisive functors, connections, and Pic(Ran(X)) 61

6.6.1. Assume that Y satisfies (C) and has a basepoint y0 ∈ Y (k). Let S be
a locally Noetherian k-scheme, and take a rigidified line bundle L ∈ Pic

e(S ×
Ran(Y )).

Lemma. There exists a unique trivialization r ∈ L|S×Y such that, for any affine
open U ⊂ Y containing y0, the restriction of r to S × U equals the (S × U)-
part of the unique trivialization of L|S×Ran(U) ∈ Pic

e(S × Ran(U)) guaranteed by
Proposition 6.4.

Proof. Since Y is covered by the affine open subschemes U ⊂ Y containing y0, the
uniqueness of r is automatic. To show existence, we need only show the following
statement:

• For every such U , let rU ∈ L|S×U be the S × U -part of the unique trivial-
ization of L|S×Ran(U). Then, for any two such U1, U2 with U1 ⊂ U2, we have
rU2 |S×U1 = rU1 .

Then the Zariski sheaf condition on L|S×Y shows that the rU glue into a nonvan-
ishing section r.

The bullet point statement follows from the uniqueness of trivialization of a
rigidified line bundle on S×Ran(U1) (see Corollary 6.2.5). Indeed, the trivialization
of L|S×Ran(U2) pulls back to a trivialization of L|S×Ran(U1) under the map S ×
Ran(U1) → S × Ran(U2), and looking at sections on S × U1 yields the claimed
equality. �

6.6.2. Assume that X satisfies (C) and has a basepoint x0 ∈ X(k). Let S be
a locally Noetherian k-scheme, and take a rigidified line bundle L ∈ Pic

e(S ×
Ran(X)). For each I, we have a functor fSetsurjn.e. → fSetsurjn.e. given by I × (−), and

the colimit version of Lemma 2.3.5 yields a map Ran(XI)
φ(I)

−−→ Ran(X) which is
functorial in I. (This construction was already used in 4.3.) We observe here that
there is a commutative diagram

XI Ran(XI)

Ran(X)

φ(I)

which is also functorial in I.
Let L(I) ∈ Pic

e(S × Ran(XI)) be the pullback of L under the resulting map
S ×Ran(XI)→ S ×Ran(X), and let r(I) ∈ L(I)|S×XI ≃ L|S×XI be the trivializa-
tion guaranteed by Lemma 6.6.1, where we choose the basepoint xI0 ∈ X

I(k).

Lemma. The trivializations r(I) are compatible under surjections ξ : I ։ J in the
sense that (idS ×∆ξ)

∗r(I) = r(J). Therefore, the r(I) collectively yield a trivializa-
tion of L.
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Proof. Given a surjection ξ : I ։ J , the claimed compatibility involves the diagram

XJ

Ran(X)

XI

∆ξ

which we factor as follows:

XJ Ran(XJ)

Ran(X)

XI Ran(XI)

∆ξ

φ(J)

φ(I)

By definition, r(I) is characterized by the property that r(I)|S×U is part of the
unique trivialization of L(I)|S×Ran(U), for any open U ⊂ XI containing the base-

point xI0. For a fixed U , let V ⊂ XJ be an affine open subscheme containing xJ0 such
that ∆ξ(V ) ⊂ U . By the above commutative diagram, the pullback (idS ×∆ξ)

∗r(I)

restricts to the (S×V )-part of the unique trivialization of L(J)|S×Ran(V ). Therefore,
we have

(idS ×∆ξ)
∗r(I)|S×V = r(J)|S×V

by the defining property of r(J). As U and V vary, the resulting V ’s cover XJ , and
the lemma follows. �

6.6.3. Proof of Theorem 6. Assume that X satisfies (C) and let S be a locally
Noetherian k-scheme. By 6.1.1, we may assume that X(k) is nonempty. Now,
Lemma 6.6.2 implies that every L ∈ Pic

e(S × Ran(X)) is trivial, i.e. Pic
e(S ×

Ran(X)) = 0, as desired.
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