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Abstract 

Increased energy consumption stimulates the development of various energy types. As a 

result, the storage of these different types of energy becomes a key issue. Supercapacitors, as 

one important energy storage device, have gained much attention and owned a wide range of 

applications by taking advantages of micro-size, light-weight, high-power density and long 

cycle life. From this perspective, numerous studies, especially on electrode materials, have 

been reported and great progress in the advancement in both the fundamental and applied 

fields of supercapacitor has been achieved. Herein, a review of recent progress in carbon 

materials for supercapacitor electrodes is presented. First, the two mechanisms of 

supercapacitors are briefly introduced. Then, research on carbon-based material electrodes for 

supercapacitor in recent years are summarized, including different dimensional carbon-based 

materials and bio-mass derived carbon materials. The characteristics and fabrication methods 

of these materials and their performance as capacitor electrodes are discussed. On the basis of 
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these materials, many supercapacitor devices have been developed. Therefore, in the third 

part, the supercapacitor devices based on these carbon materials are summarized. A brief 

overview of two types of conventional supercapacitor according to the charge storage 

mechanism is compiled, including their development process, the merits or withdraws, and 

the principle of expanding the potential range. Additionally, another fast-developed capacitor, 

hybrid ion capacitors (HICs) as a good compromise between battery and supercapacitor are 

also discussed. Finally, the future aspects and challenges on the carbon-based materials as 

supercapacitor electrodes are proposed.  

Keywords 

supercapacitor; energy storage; carbon-based materials; electrode 

1. Introduction 

Increased energy consumption along with the progress in the economic development 

brought severe pollution which was a serious threat to human health and environment 

security. The paradox between the dependence on energy of human being and the combustion 

of fossil fuels motivates the development of utilization of various energies, such as solar 

energy, wind energy, tidal energy, and nuclear energy, etc. Therefore, the storage of different 

types of energy became a key issue [1-4]. To evaluate the most relevant storage solution, it is 

necessary to consider the lifetime, reliability, storage capacity, cost, and environmental 

impact. Implementing the efficient and economic energy storage in the power infrastructure 

can bring great benefits to the power industry and human beings. Energy as a state variable is 

typically categorized into chemical, electrical, mechanical, radiant, thermal, nuclear, or 

relativistic. Both short term storage (only a few hours) and long-term storage (a few months) 

are essential in most applications. According to the final energy, there are electric energy 

storage and non-electric energy storage. Electric energy storage systems accept and return the 

stored energy as electric power, although they may store the energy in another form. 

Supercapacitor and battery, as two main electric energy storage systems, have been widely 

applied in different fields ranging from portable electric devices to smart grid [5-7]. 

Compared with battery, supercapacitor possesses high-power density and long cycle life 

(>100,000 cycles) which ensure the fast charging/discharging speed and almost no 
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maintenance charge [8-10].  

The comparison of specific power v. s. specific energy among different energy storage 

systems is presented in the Ragone plot (Fig. 1) [11]. It clearly shows that supercapacitor 

plays an important role in terms of high specific power and relatively high specific energy. 

With the advantages of micro-size and light-weight, supercapacitor can be used as power 

supplies for various portable electric devices like smart phone, notebook etc. In hybrid 

electric vehicles, supercapacitor can meet the requirements of high-power output for the 

short-term acceleration and high capacity for temporary energy storage equipment during 

braking, which save energy and avoid batteries suffering high frequency fast charge/discharge 

cycles [2,8]. In this case, supercapacitor is acting as a bridge for power/energy difference 

between high power output (capacitor) and high energy storage (batteries), and has the 

potential to play an important role in future large-scale hybrid energy systems. 
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Figure 1. Ragone plot of specific power v. s. specific energy for various energy devices [11] 

(©Springer Nature 2008).  

Generally, energy density and power density are two important parameters to measure 

the performance of energy storage devices, which can be calculated by Eq. (1) and (2), 

respectively [8,11,12]: 

Ed = 
1

2
CV2        (1) 

Pd= 
V2

4Rs

           (2) 

where Ed and Pd are energy density and power density, respectively, C is capacitance, V is 

operating voltage window, and Rs is the equivalent series resistance (ERS) of two electrodes. 
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According to these two equations, C, V, and Rs are three key factors affecting Ed and Pd. In 

supercapacitor, the capacitance largely depends on the electrode material, while the voltage is 

influenced by both electrode and electrolyte. However, ERS has more influence factors, such 

as the inner resistance of electrode and electrolyte, the resistance during charge transfer, and 

the contact of electrode materials with collectors etc. Hence, for the best performance of 

supercapacitor, it must simultaneously possess a high capacitance, a high voltage and a low 

resistance. 

Among all factors, electrode materials play the most important role in determining the 

performance of supercapacitor. Normally, the selection of electrode materials is based on 

different mechanisms of charge storage. For supercapacitor, the mechanism can be divided 

into two types, i.e. electric double layer capacitors (EDLCs) and pseudo-capacitors [13]. Thus, 

the electrode materials of supercapacitor can be categorized into three types [1,14]: (1) 

carbon materials, (2) conductive polymers, and (3) metal oxides/hydroxides. Among them, 

carbon-based materials are the most widely studied and applied for industrialization of 

batteries and capacitors. Carbon-based materials have the following advantages [1,13,15]: (1) 

abundance, (2) relatively low-cost, (3) easy for manufacturing, (4) non-toxicity, (5) higher 

specific surface area, (6) good mechanical property, (7) good electronic conductivity, (8) high 

chemical stability, and (9) wide working temperature range.  

In the past decade, many reviews on capacitor electrode materials have been published 

[1,3,8,12,16]. These articles mainly reviewed the carbon-based materials on the structure 

design properties and applications of individual classification of carbon electrodes, such as 

CNTs, graphene, C/metal oxides, and so on. As the development of modern electronics, 

supercapacitor devices are highly demanded. Therefore, it is necessary to deeply understand 

and thoroughly summarize the recent progress and development of carbon-based materials 

for supercapacitor electrodes and devices. There are mainly three parts in this review as 

shown in Fig. 2. (i) The mechanism of two types of conventional supercapacitors; (ii) A brief 

introduction of recent research on carbon materials for supercapacitor electrodes, including 

carbon-based materials in different dimensions; and (iii) Applications of carbon-based 

material in supercapacitor devices in recent years. Finally, challenges and future perspectives 
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are provided based on the present development of carbon-based materials for supercapacitor 

electrodes and devices.  

 

Figure 2. The overview picture of the content of the article. 

2. Mechanism of supercapacitors 

2.1 Electric double layer capacitors 

The concept and model of EDL were first built by von Helmholtz who thoroughly 

investigated colloidal suspension in 1853 [17]. This model described that two layers of 

electrically opposite charges formed at electrode/electrolyte interface and were divided in one 

atomic distance, which was quite similar to that of traditional capacitor. Then, this simple 

EDL model was modified by Gouy and Chapman [18,19]. The Gouy-Chapman model treated 

both cations and anions as a continuous distribution in electrolyte, which formed diffuse layer 

under thermal motion drive. In consideration of ions which were not rigidly attached to the 

surface, the amount of the distribution of opposite ionic charges in the electrolyte surrounding 

the charged solid was equal. The thickness of the diffuse layer was partially depended on the 

kinetic energy of the ions. However, this model led to an over estimation of EDL capacitance, 

because the capacitance that appeared along two different separated charges was inversely 

proportional to the distance between them, hence a huge capacitance value would be obtained 

when point charge ions came close to the electrode surface. Later, the Gouy-Chapman model 

was further modified by Stern by combining Helmholtz model with Gouy-Chapman model 
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[20]. He recognized two regions for charges distribution—the stern layer and the diffuse layer. 

In the Stern layer, charges (usually hydrated) were very strongly absorbed on the electrode, 

which consisted of specifically absorbed charges (SACs) and non-specifically absorbed 

countercharges (nSACs). While the IHP and OHP represented SACs and nSACs, respectively. 

The EDL models demonstrate that charges are stored at the electrode/electrolyte interface 

through electrostatic adsorption while no charge transfer occurs within electrode/electrolyte 

interfaces during charge/discharge processes. Benefiting from the physical electrostatic 

processes, the charge/discharge processes of EDLCs completes rapidly, which can respond to 

potential changes immediately. The capacitance of EDLCs electrode can be calculated by the 

following equation [8]: 

C=
εrε0

d
A           (3) 

where εr and ε0 are relative permittivity and permittivity in vacuum, A is the effective 

contact area between electrode and electrolyte, and d is the thickness of EDL. The 

development of the above three modeling mechanisms for EDL was reviewed by Zhang and 

Zhao, as illustrated in Fig. 3 [8]. 

 

Figure 3. Models of EDLCs: (a) the Helmholtz model, (b) the Gouy-Chapman model, and (c) 

the Stern model, where Ψo is electrode potential, Ψ is potential at electrode/electrolyte 

interface, d is Helmholtz distance, IHP and OHP are abbreviation of inner and outer 

Helmholtz plane, respectively. [8] (©The Royal Society of Chemistry 2009).  
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2.2 Pseudo-capacitors 

In contrast to EDL, pseudo-capacitance is driven by the thermodynamic factor and 

attributed to charges acceptance (Δq) and changes in potential (ΔU) [8]. The main 

electrochemical signature is that pseudo-capacitors electrode materials has Faraday process, 

i.e., redox reaction, during the charge/discharge processes, which means valence state 

changes with charge/discharge processes [21,22].  

The mechanisms of charge storage in pseudo-capacitors are illustrated in Fig. 4 [23]. 

Under potential deposition is a process in which the atoms are adsorbed on noble metals with 

an electrodeposition potential less negative than that of equilibrium potential for cation 

reduction. Redox pseudo-capacitance arises from redox reactions. These reactions are 

accompanied by cations being adsorbed on the surface of the electrode material, resulting in 

reversible and rapid charge transfer at the electrolyte/electrode interface [11]. 

Pseudo-capacitance can also deliver from cations insertion/extraction in tunnels or layers of 

crystalline materials. The crystal can remain electrically neutral during insertion/extraction. 

In some way, the intercalation pseudo-capacitance can be considered as ―transitional‖ 

behavior between Li-ion battery and supercapacitor [24]. The pseudo-capacitance electrode 

can perform a very higher capacitance than EDL electrodes do, however, they suffer from 

poor electrical conductivity and cycling stability. 
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Figure 4. Schematics of charge storage in pseudo-capacitors: (a) underpotential deposition, 

(b) redox reactions, (c) ion insertion/extraction [23] (©American Chemical Society 2018).  

3. Carbon materials 

Carbon materials come from a wide range of sources. Variety of natural materials, such 

as coal, crude oil, or biomass, can be used as precursor of carbon-based materials. When they 

come to nanoscale, their properties change greatly. With regard to carbon materials, different 

dimensions of carbon nanostructure give carbon-based materials different properties, such as 

light, heat, and electricity etc. Therefore, this section will be discussed according to various 

carbon nanostructures with different dimensions. 

3.1 Zero-dimensional carbon material 

Zero-dimensional (0-D) carbon materials refer to sphere-shaped carbon particles with an 

aspect ratio of ~1. 0-D carbon materials mainly include activated carbon (AC), carbon 

nanosphere, and mesoporous carbon. 0-D carbon materials possess a very large specific 

surface area (hundreds to thousands m
2

 g⁻
1
) with tunable pore size and distribution, which 

are critical factors that govern the performance of supercapacitor.  

An ideal pore structure should have the feature of hierarchical pore structure, which 

contains macropores (>50 nm) for infiltration of electrolyte, mesopores (2–50 nm) as the 
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place for ion transport, and micropores (<2 nm) for charge storage [25]. Migration of ions in 

micropores depends on the size of the solvated molecules and pore diameter [26]. In other 

words, when the size of the solvent molecules and solvated ions is smaller than the pore size, 

it is difficult for ions to break the energy barrier and access to the pores [27]. Hence, although 

the increase of micropores can increase the specific surface area, it does not necessarily 

contribute to the increase of specific capacitance (Cs). On the contrary, mesoporous is more 

conducive to the rapid transfer of ions, resulting in the improvement of electrochemical 

properties [28,29]. In addition, the pore size distribution is another thing needed to be taken 

into account. Pore structure with a narrow distribution can reduce the ion transport length, 

which improves the electrode kinetics [25]. Thus, the optimal performance is based on a 

reasonable pore size and distribution. 

Normally, 0-D carbon materials are produced from carbon-rich precursors by either 

physical (thermal) activation at high temperature (700-1200 °C) with H2O, CO2 and air, or 

chemical activation with a lower temperature (600-800 °C) with H3PO4, KOH, ZnCl2 etc. 

[30]. Previous reports showed that AC employed as electrode exhibited specific capacitance 

of 100-300 F g⁻ 1
 [31-35]. In addition, carbon nanosphere can be synthesized by the template 

method or the hydrothermal method. Yang et al. [36] prepared carbon nanosphere by using 

F108 (PEO132-PPO50-PEO132) as the structure direct agent. After carbonization and KOH 

activation, the products presented the highest specific capacitance of ~147 F g⁻ 1
 in 6 M 

KOH electrolytes and 97.5% capacitance retention over 10000 cycles. Li et al. [37] fabricated 

carbon nanospheres by hydrothermal method with the highest specific capacitance of 207 F 

g⁻ 1
 at a current density of 0.5 A g⁻ 1 

in 1 M Na2SO4 electrolyte, and high rate capability (181 

F g⁻ 1
 at a current density of 10 A g⁻ 1

). Moreover, a series of studies have reported the 

preparations of carbon microspheres from glucose or glucose derivatives as supercapacitor 

electrodes. These microspheres have a specific capacitance of 200-400 F g⁻ 1
 in aqueous 

electrolyte [38-41].  

3.2 One-dimensional carbon material 

0-D carbon nanoparticles, especially AC, have been widely used as electrode materials, 

where electrons are delivered either via hopping through trap states of adjacent nanoparticles 
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or via diffusive movement within the extended states, which is slowed by the (de)trapping 

processes [42-44]. The limited continuity among carbon nanoparticles is not beneficial to the 

improvement of electrical conductivity, so as to reduce the power density. Compared with 

0-D carbon nanoparticles, one-dimensional (1-D) carbon materials are promising candidates 

for supercapacitor electrodes due to their long 1-D nanostructure, which helps forming a 

consecutive network for the charge transport [12].  

Carbon nanotubes (CNTs), the most typical 1-D carbon material, exhibited a much 

higher conductivity than AC. CNTs can be categorized to single-walled carbon nanotubes 

(SWCNTs) or multi-walled carbon nanotubes (MWCNTs) and can be produced by 

arc-discharge method, chemical vapor deposition (CVD), pyrolysis of hydrocarbons, and 

pulsed laser vaporization [3,13,45]. Since its discovery, CNTs have received great attention 

for their potential applications in energy storage [46,47]. Previous research reported that pure 

CNTs possessed specific capacitance in a range of 20-100 F g⁻ 1
 in aqueous electrolyte 

[48-52]. The limited capacitance may be ascribed to the hydrophobic property and the limited 

specific surface area. After surface treatment by acid or base, the specific capacitance of 

CNTs still remains around 100 F g⁻ 1
 [3]. In addition, it was proved that entangled CNTs did 

not perform as well as aligned CNTs in fast ions transfer, due to the irregular porosity and the 

high entanglement [53].  

Carbon nanofibers (CNFs) are another typical 1-D carbon material which can be 

prepared by chemical vapor methods [54-57] or simple electro-spun technology [58-61]. Like 

other carbon materials, the pore size distribution and pore volume of CNFs can be activated 

by physical or chemical methods [59,62-65]. Recently, a large number of researches on CNFs 

as electrode materials by the electrospinning technology have been reported. Jiang et al. [66] 

prepared a CNF electrode followed by ZnCl2 activation. The as-prepared CNFs material 

exhibited the highest specific capacitance of 214 F g⁻ 1
 at 1.0 A g⁻ 1

 in acidic electrolyte and 

showed excellent cycling stability in alkaline electrolyte (97.3% after 60,000 cycles). Liu et 

al. [67] developed a facile and green method for the preparation of CNF from the perylene 

diimide derivative. This CNF showed a specific capacitance of 192 F g⁻ 1
 at the current 

density of 1 A g⁻ 1 
in 2 M H2SO4 electrolyte. Interestingly, the specific capacitance increased 
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with the cycling test, reaching 226 F g⁻ 1 
after 1000 cycles at 4 A g⁻ 1

.  

In nature, a lot of fibrous biomass, including cotton, flax, ramie, wood, have been 

utilized as precursors for the preparation of 1-D carbon electrodes. Cellulose is the most basic 

component of these biomass [68]. Due to abundant carbon reserve, rich active chemical 

groups, excellent mechanical property, and high specific surface area, cellulose becomes 

currently the most widely studied and used fiber-like material in energy storage systems 

[16,69-71]. So far, a series of research on cellulose-derived CNFs as electrode materials have 

been reported. These CNFs were obtained by electrospinning technology and owned a 

specific capacitance in a range of 150–280 F g⁻ 1
 in aqueous electrolyte [72-77]. Also, Han et 

al. [78] used cellulose nanocrystals (CNCs) to develop a nanofiber composite by combining 

electrospinning technology and in-situ polymerization. Fig. 5 illustrates the synthesize 

routine of this composite. By taking advantage of intermolecular esterification cross-linking, 

the composite membrane presented excellent mechanical strength, and thermal stability. The 

supercapacitor assembled by as-prepared materials showed a specific capacitance of 155.5 F 

g⁻ 1
 in in 2 M H2SO4 electrolyte and a high capacitance retention of 92, 90, and 89% after 

long-life cycles under flat, bending, and twisting form, respectively.  

 

Figure 5. Schematic diagram of the preparation process of nano-cellulose membrane with 

core-shell structure. (a) nano-cellulose membrane was prepared by electrospinning from 
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PVA/PAA/CNTs/CNC solution. (b) the membrane was thermally cross-linked to form ester 

bonds. (c) the core-shell structure was constructed by in-situ polymerization of aniline. (d) 

the core-shell membrane was used as flexible electrode for the assembly of device to lighten 

a LED) [78] (©American Chemical Society 2019). 

3.3 Two-dimensional carbon material 

Graphene, a typical two-dimensional (2-D) carbon material, is a one-atom-thick 2-D 

mono layer consisted of sp2-hybrid carbon. As shown in Fig. 6, graphene is considered as the 

basic constituent material of carbon materials in other dimensions which can be twisted into 

0-D carbon nanocages (fullerenes), rolled into 1-D carbon nanotubes or stacked into 

three-dimensional (3-D) graphite [79]. Owing to this unique structural feature, graphene 

owns a series of intrinsic virtues in both chemical and physical aspects, such as strong 

mechanical strength (∼ 1 TPa), excellent mass and heat transfer capability, extremely high 

light transmittance (~97%) and large surface area (2675 m
2
 g⁻ 1

), which may match or even 

exceed that of single-walled or multi-walled carbon nanotubes [80]. Several approaches have 

been utilized to prepare graphene, including CVD, mechanical stripping, solvent spalling, and 

reduction of graphene oxide (GO) [80,81].  
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Figure. 6 Diagram of graphene as the basic structure for all other dimensional carbon 

material [79] (©Springer Nature 2007). 

Excellent electric conductivity ensures that graphene can be used in energy storage 

devices [81]. Ruoff’s group [82] first explored graphene-based supercapacitor system 

utilizing chemically modified graphene. As shown in Fig. 7, although GO sheets could 

disperse in water evenly, the graphene agglomerated into particles with a size of 

approximately 15-25 μm in diameter during reduction progress. Due to the relatively high 

specific surface area, the graphene electrode still remained a specific capacitance of 135 F 

g⁻ 1 
in KOH electrolyte. However, the aggregation of GO sheets is irreversible [83]. Thus, 

improving the dispersion of GO sheets in solution is the key issue to convert GO sheets to 

graphene sheets by solution reduction method. To avoid severe stacking of GO sheets, Chen’s 

group [84] prepared graphene sheets by gas-based hydrazine reduction. A maximum specific 

capacitance of 205 F g⁻ 1 
in aqueous electrolyte was obtained.  
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Figure 7. SEM (a) and TEM (b) images of individual graphene particle, respectively, (c) 

SEM image of graphene electrode, and (d) scheme of graphene-based supercapacitor [82] 

(©The American Chemical Society 2008). 

The dispersion of GO sheets is not the only factor which affects the performance of 

supercapacitor based on graphene. The interlayer distance of graphene is another factor which 

has influence on the performance of supercapacitor. Lin et al. [85] prepared the interlayer 

distance-enlarged graphene by intercalation of hexadecyl trimethyl ammonium bromide and 

ionic liquids. It was found that the interlayer distance increased from 0.41 nm to 2.51 nm, 

resulting in the improvement of specific capacitance (43 to 141 F g⁻ 1
). In addition, Romano 

et al. [86] developed a wet-jet milling (WJM) method to peel single/few layered graphene 

from graphite, possessing an industrial-scaled production rate (0.5 kg/Day). 

Recently, Taniya et al. [87] prepared few-layered graphene by carbonizing peanut shell 

and activating with KOH. The as-prepared carbon nanosheets owned a high specific surface 

area of 2070 m
2
 g⁻ 1

 and a high specific capacitance of 186 F g⁻ 1
 in 1 M H2SO4 electrolyte. 

Gao et al. [88] prepared two different types of 2-D carbon nanosheets from cornstalk by 
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simple carbonization. The cornstalk pith derived- and cornstalk skin derived- nanosheets 

were named as P-carbon and S-carbon, respectively. It was found that P-carbon possessed a 

graphene-like nanosheets structure, while S-carbon showed a thicker planar morphology. The 

pour size distribution demonstrated that mesopores of P-carbon and S-carbon were 

concentrated on 2.12 and 12.24 nm, respectively. Thus, P-carbon exhibited a better specific 

surface area (805.17 to 332.07 m
2
 g⁻ 1

) and a superior specific capacitance (116 to 69 F g⁻ 1
 

in 6 M KOH electrolyte).  

It is worth noting that graphdiyne (GDY) is a series of brand new 2-D carbon materials 

formed by the connection of sp and sp2 hybrid carbon (Fig. 8) [89]. The existence of sp 

hybrid carbon gives graphene a completely different structure from other carbon materials, 

resulting in totally different properties. For example, sp and sp2 hybrid carbon enable GDY to 

exhibit high chemical activity and stable physical properties. Under external stimulation, the 

activity of c-c triple bond may expand the chemical properties of carbon materials (light, 

magnet, and electricity). 

 

Figure 8. Illustration of graphene to graphdiyne: aromatic groups linked by linear acetylene. 

(graphdiyne contains both sp and sp2 hybrid carbon) [89] (©The Royal Society of Chemistry 

2012). 

Moreover, enriched π-conjugated systems bring good theoretical conductivity and fast 

charge transfer [90]. These features guarantee GDY has the potential to be applied in better 

fabrication for high-performance electronic devices. The typical synthesis routines of GDY 

can be divided into dry chemical method and wet chemical method [91]. Kim and co-workers 

[92] first studied supercapacitors with the use of GDY as electrode. The GDY electrodes 
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delivered a specific capacitance of 71.4 F g⁻ 1
at a current density of 3.5 A g⁻ 1 

in Na2SO4 

electrolyte. The shapes of CV curves suggested that both EDLC and faradaic reactions 

contributed to the overall capacitance (Fig. 9). Li’s group also studied GDY-based 

supercapacitor systems. GDY with various N content were obtained through the reaction 

between different precursors with tetrabutylammonium fluoride [93]. Interestingly, the 

sample without N-doping delivered a maximum specific capacitance of 250 F g⁻ 1
 in 7 M 

KOH electrolyte. XPS spectrum implied that the existence of N element increased the band 

gap of GDY and indicated that the N-doping strategy was effective to tune the band gap for 

the on-demand requirements, which may widely extend the application of GDY. In the 

following work, Li’s group [94] first developed a moderate and superfast method for the 

growth of ultrafine GDY nanochain on arbitrary substrates. The as-prepared GDY electrode 

was applied as the self-standing electrode with high areal capacitance of 134.2 F g⁻ 1
 in 7 M 

KOH electrolyte and robust cycle stability. 

 

Figure 9. (a) CV curve of graphdiyne electrode at 100 mV/s, (b) CV curves of graphdiyne 
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electrode at different scan rate, (c) discharge curves at different current density, (d) rate 

capacitance of graphdiyne electrode [92] (©Hydrogen Energy Publications, LLC. Published 

by Elsevier Ltd. 2015) 

3.4 Three-dimensional carbon material 

As we know, microstructures of electrode materials play an important role in 

performances of energy storage systems [95-98]. With increasing in dimensionality, more 

percentage of active surface are contacted with electrolyte, which will efficiently improve 

electrochemical properties of electrode materials. From this point of view, three-dimensional 

(3-D) structure with well-interconnected pores not only offers continuous channels to 

guarantee good contact with electrolyte, but also accelerates the charge transfer by reducing 

the diffusion pathways [16,98-102]. 

Usually, 3-D carbon materials are grown on a flexible substrate such as metal-foam or 

polymer substrate by CVD, hydrothermal method, or template method [103-105]. Despite 

substrate can offer the electrode mechanical property that gives electrode self-standing ability, 

the use of substrates especially metal-foam increases the weight of devices, which hinders the 

improvement in the gravimetric specific energy and gravimetric specific power. Thus, 3-D 

carbon nanostructures without substrates are promising candidates for high performance 

supercapacitor. Ciszewski et al. [106] prepared resorcinol-formaldehyde-based carbon 

aerogels and modified with graphene, GO and CNT, respectively. It demonstrated that the 

introduction of graphene-like structured mass within traditional carbon aerogel greatly 

enhanced specific capacitance. The specific capacitance of CNT-, graphene- and 

GO-modified aerogel was 326, 227, and 244 F g⁻ 1
, respectively in 6 M KOH electrolyte. 

Wang et al. [107] prepared N, O-rich carbon aerogel from polyimide gel after carbonization 

and activation. As a result, the sample exhibited a high capacitance of 386 F g⁻ 1
 at 1 A g⁻ 1 

in 1 M H2SO4 electrolyte. Furthermore, the sample delivered an outstanding rate capacitance, 

the capacitance could remain 150 F g⁻ 1 
at 100 A g⁻ 1

. 

Compared to previous 3-D carbon nanostructured materials, biomass has obvious 

advantages in preparing 3-D carbon materials, which benefits from preservation of the 

original structure of biomass after carbonization [108,109]. For example, Lei’s group [110] 
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prepared a flexible carbon fiber aerogel (CFA) by simply carbonizing and activating natural 

cotton with KOH. The CFA presented an interleaved network structure with high conductivity 

(Fig. 10). The specific surface area was various with the amount of KOH, which was in a 

range of 1536 to 2436 m
2
 g⁻ 1

. Due to the distinct structural advantage of CFA electrode, it 

exhibited a specific capacitance of 283 F g⁻ 1
 at 1 A g⁻ 1

 in 6 M KOH electrolyte and 

possessed a high capacitance retention of ~80% (224 F g⁻ 1
) when the current density up to 

100 A g⁻ 1
. 

 

Figure 10. (a) SEM image of CFA, (b) Photograph of CFA after activation, (c-e) SEM images 

of CFA after activation with different magnifications, (f) conductivity of CFA activated with 

different KOH ratio [110] (©American Chemical Society 2016). 

4. Supercapacitor 

Supercapacitor can be categorized to EDLCs or pseudo-capacitors due to the mechanism 

or can be divided into symmetric or asymmetric supercapacitor according to the 

electrochemical activity of electrode materials. To evaluate the performance of electrode 

materials, it is not sufficient to test the electrode. It is necessary to assemble devices with 

these electrode materials. In this section, we will briefly summarize the application of carbon 

materials in devices based on the capacitor mechanism in recent years.  

4.1 Conventional supercapacitor 

4.1.1 Electric double layer capacitors  

 Although the mechanism of the EDL was recognized since the beginning of 20th 
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century, the first patent for electrochemical capacitors was not applied until 1954 [111]. It 

described an EDLC device containing two porous carbon electrodes immersed in NH4Cl or 

H2SO4 electrolyte. The device delivered a capacitance of 6 F at 1.5 V. After that, an ELDC 

device with multi cell units was developed by Rightmire at Standard Oil Company of Ohio 

(SOHIO) [112]. The device performed a storage capacity of 4-10 Wh per pound and could be 

charged to 6 V. SOHIO did not commercialize their invention, but licensed the technology to 

NEC, who finally marketed it to provide backup power for clock chips or CMOS. With the 

rapid increase in market demand, more and more studies on EDLCs have been reported. 

Some researches on aqueous/non-aqueous EDLCs in recent years are listed in Table 1. 
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Table 1. A brief overview of EDLC devices in aqueous/non-aqueous electrolyte in recent years 

Electrode Electrolyte Voltage/V Specific capacitance/F g⁻ 1
 Cycle life Ref. 

AC//AC 

6 M KOH 0.9 66.8 at 0.1A g⁻ 1
 93% after 1000 cycles 

[113] 2 M KCl 0.9 62.1 at 0.1A g⁻ 1
 94% after 1000 cycles 

0.5 M K2SO4 1.7 42.8 at 0.1A g⁻ 1
 96% after 1000 cycles 

AC//AC 1.5 M Na2SO4 1.0 93.1 at 0.005 A g⁻ 1
  – [114] 

AC//AC 1 M Na2SO4 0.6 113 at 0.3 A g⁻ 1
 100% after 5000 cycles [115] 

S-CB//S-CB 6 M KOH 1.0 120 at 1 A g⁻ 1
 92.6% after 10000 cycles [116] 

CNT-MC//CNt-MC 3 M H2SO4 0.8 237 at 1 A g⁻ 1
 92% after 20000 cycles [117] 

CNF//CNF 

1 M Na2SO4 0.8 69.3 at 50 mV s⁻ 1
 2000 cycles 

[118] 

6 M KOH 0.8 88.1 at 50 mV s⁻ 1
 2000 cycles 

GnP//GnP 

1 M Na2SO4 1.0 92 at0.1 A g⁻ 1
 – 

[119] 

1 M Et4NBF4 2.0 76 at 0.1 A g⁻ 1
 – 

CMK-3//CMK-3 

NaClO4 in EC/DMC (1:1 vol/vol) 

3.0 78 at 0.2 A g⁻ 1
 – 

[120] 

CMK-8//CMK-8 3.0 66 at 0.2 A g⁻ 1
 – 
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It can be seen that both the aqueous and non-aqueous EDLCs are limited by the specific 

capacitance of the device, which is ascribed to the inherent properties of the pure carbon 

materials. Also, due to the finite conductivity and incomplete utilization of active sites, the 

specific capacitance of EDLCs has generally been limited to 100-250 F g⁻ 1
 [121]. In case of 

aqueous EDLCs, the operating voltage (~1 V) is another critical factor which affects the 

performance of devices. The decomposition of H2O is 1.23 V, which greatly hinders the 

performance of aqueous EDLCs [122]. In addition, non-aqueous EDLCs performs a slightly 

less specific capacitance than aqueous EDLCs because the molecular size of organic 

electrolytes is larger than aqueous electrolytes. Previous studies implied that the pore size of 

0.4-0.7 nm was adequate to aqueous electrolytes, while the pore size of 0.8 nm was suitable 

for organic electrolytes [123,124]. As a result, the commercial EDLCs electrodes can only 

reach an Ed in a range of 3−10 Wh kg⁻ 1
. 

4.1.2 Pseudo-capacitors  

The first material found to exhibit pseudo-capacitance is RuO2 [125]. Despite the 

faradaic nature of the charge storage in RuO2 thin film, the cycle voltammogram of RuO2 

showed a rectangular-like shape, which demonstrated a typical capacitive behavior. 

Subsequent study improved the capacitance of RuO2 over 700 F g⁻ 1 
by preparing hydrous 

RuO2 with porous nanoscale structure [126,127]. Although the high-cost was a barrier to the 

application of RuO2, the discovery of pseudo-capacitance expanded the approach to enhance 

the capacitance of electrode materials. 

Typically, heteroatoms-doping is one of the most common way to introduce 

pseudo-capacitance to enlarge the charge capability of carbon material. It has been proved 

that mono, dual or multi heterpatom-doping (N, B, S, F, Cl, Si, Ti, etc.) could improve the 

electrochemical activity because it opened the intrinsic band gap and offered more active sites 

[128]. Usually, heteroatom-doped carbon materials can be synthesized in a variety of ways, 

such as CVD [129], pyrolysis with hetero precursor [130-132], self-doping [133-136] etc. 

These as-prepared electrode materials exhibited a specific capacitance of 150-500 F g⁻ 1 
in 

aqueous/organic electrolyte. However, these methods either have complex production 

processes, or utilize petroleum products as raw materials, which limits the industrial 
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production. To avoid these problems, it is a wise choice to use heteroatom-rich biomass or 

biomass waste as raw material. Recently, Jiang et al. [137] prepared N-doped porous carbon 

materials (NPCMs) using the wheat straw by carbonization and activation with KCl/ZnCl2. 

The NPCMs delivered an excellent specific capacitance of ~224 F g⁻ 1
 in 6 M KOH 

electrolyte and an outstanding cycle stability (capacitance maintained 91.6% after 10000 

cycles). Cai et al. [138] reported the synthesis of N‐ doped carbons from enteromorpha 

prolifera by hydrothermal carbonization. After optimizing parameters, the as-prepared 

N-doped carbon achieved a specific capacitance of 200 F g⁻ 1
 at 1 A g⁻ 1

 in 6 M KOH 

electrolyte. The symmetric device showed a good cycle stability (capacitance retention of 96% 

after 10000 cycles at 10 A g⁻ 1
).  

Hybridizing with metal oxide/metal hydroxide is another important way to increase the 

specific capacitance of electrode materials. Many studies on carbon metal oxide/metal 

hydroxide composites have been reported, such as C/MnO2 [139,140], C/Co3O4 [141-143], 

C/CoOOH [144] etc. MnO2 has been considered as the most promising candidate for 

electrode materials due to low cost and easy manufacturing. C/MnO2 composite can be easily 

prepared by redox reaction between carbon and KMnO4 [145,146], electrodeposition 

[147,148], template method [149] etc. Since the early report by Lee and Goodenough in 1999 

[150], C/MnO2 has attracted widespread concern and large number of research on C/MnO2 

for supercapacitor electrode has been reported, including mesoporous carbon/MnO2 [151], 

CNT/MnO2 [152,153], graphene/MnO2 [154,155], CNF/MnO2 [156,157] etc. These 

composites delivered a specific capacitance in a range of 270-642 F g⁻ 1
 with a long cycle 

life. Besides, biomass can also be good host for preparing C/MnO2 electrode in aqueous 

electrolyte. He et al. [158] prepared a self-standing C/MnO2 electrode by flax-derived carbon 

cloth reacted with KMnO4. The specific capacitance of electrode (in terms of MnO2) reached 

684 F g⁻ 1
 at 2 A g⁻ 1

 and still retained 269 F g⁻ 1
 at 300 A g⁻ 1 

in 0.1 M Na2SO4 electrolyte, 

indicating the outstanding electrochemical performance of the carbon cloth/MnO2. Hu’ group 

[159] developed wood-derived carbon/MnO2 (MnO2/WC) electrode by electrodeposition (Fig. 

11). MnO2/WC electrode performed a maximum specific capacitance of 176.8 F g⁻ 1 

(calculated based on the mass of MnO2) in 1 M Na2SO4 electrolyte. When assembled in 
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asymmetric device, an excellent areal capacitance of 3600 mF cm⁻ 2
 at 1 mA cm⁻ 2

 can be 

achieved, with a high energy density of 1.6 mWh cm⁻ 2
 and a long lifetime (over 10 000 

cycles). These studies establish a platform for low-cost, facile and large-scale fabrication for 

self-standing pseudo-capacitance electrode materials. Ni compounds such as NiO, NiCo2S4, 

etc. have also received extensive attention due to their extremely high theoretical specific 

capacities [160-162]. Yi’s group [163] demonstrated design and simple preparation of 

mesoporous NiCo2O4@MnO2 nanoneedle arrays on a conductive nickel foam. Benefits from 

the high surface area and their unique architecture, NiCo2O4@MnO2 composite electrodes 

exhibited excellent electrochemical performance. The initial specific capacitance of 

composite electrode was 1001 F g⁻ 1
 at current density of 15 A g⁻ 1

 in 3 M
 
KOH electrolyte 

and maintained 736 F g⁻ 1 
after 10000 cycles. In fact, transition metal compounds (TMCs) 

usually suffer severe cycle attenuation due to poor conductivity. The same group reported the 

synthesis of a novel ternary composites, porous spherical NiO@NiMoO4@PPy 

nanoarchitecture, for high performance supercapacitor [164]. The PPy-modified composite 

electrode exhibited significant improvement in cycling performance with a high specific 

capacitance retention of 77.1% even after 30,000 cycles. 

 

Figure 11. Scheme of the design and construction of the all-wood-based supercapacitor (WC 
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means wood carbon) [159] (©The Royal Society of Chemistry 2017). 

Fig. 12 illustrates the correlation among factors that affect the potential range of 

supercapacitor. As illustrated, the available potential range is the result of synergy between 

the potential range of the electrode and the stable voltage range of the electrolyte [165,166]. 

For electrode materials, the potential range refers to a range that guarantee electrodes perform 

reversible charge/discharge processes without causing electrode material decomposition. The 

range depends on the electrochemical activity of materials, especially for materials with a 

pseudo-capacitance behavior. A reference electrode (P0V) can be used to detect the potential 

variation between cathode and anode. P0V is considered as a core parameter for determining 

the electrode potential ranges and is defined as the potential which device are operated at 0 V 

[166-168]. P0V represents the full discharge of the cathode and anode, which means that when 

a certain pole reaches the limit of the possible range, the voltage range is determined. 

Therefore, finding suitable P0V is critical for adjusting the potential range [169]. Further, in 

aqueous system, the overpotentials for the evolution of H2 and O2 should be taken into 

account during the selection of electrode for extending potential range [170-173].Thus, 

building asymmetric supercapacitor systems to expand the operating voltage for higher 

performance is necessary.  
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Figure 12. Scheme of the correlation among the potential range of supercapacitor [169] 

(©Wiley‐ VCH Verlag GmbH & Co. KGaA, Weinheim 2018).  

Table 2 lists some typical asymmetric supercapacitors based on carbon/metal oxide or 

metal hydroxides (MnO2, Co3O4, NiO etc.). It can be seen that it is effective to expand the 

working voltage window of the device by constructing asymmetric supercapacitors, which 

brings an increase in both Ed and Pd. However, these composites in the above reports show 

far less specific capacitance than the theoretical capacitance in three-electrode test. This is 

due to the poor electrical conductivity of metal oxides/metal hydroxides, which makes 

electron transport blocked, resulting in insufficiently utilizing of specific capacity during 

charge/discharge progress. To alleviate these problems, most researches have focused on 

designing metal oxide microstructures, reducing metal oxide size, or hybridizing [174-176]. 

The specific capacitance was increased to some value by these methods, but still less than the 

theoretical value. Till now, improving the specific capacitance of materials (close to the 

theoretical value) still challenging.  
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Table 2. Some aqueous asymmetric supercapacitors in recent years. 

 

Positive electrode Negative electrode Voltage/V Specific capacitance/ F g⁻ 1
 Maximum Ed/Wh kg⁻ 1

@Pd/W kg⁻ 1
 Cycle life Ref. 

MnO2@SBA-C FeOOH@SBA-C 2.0 70.9 at 0.1 A g⁻ 1
 39.4 500 82.7% after 5000 cycles [177] 

CNF/PEDOT/MnO2 PCNFs 1.6 1061 at 0.6 A g⁻ 1
 60.5 700 104.6% after 5000 cycles [178] 

Fe2O3/MnO2 rGO/Fe2O3 2.3 61.3 at 1 A g⁻ 1
 57 333 88.9% after 10000 cycles [179] 

NiO/MnO2@CFC AC 1.7 – 20.87 850 92% after 1000 cycles [180] 

TiO2@MnO2 SWCNT 2.2 111.5 at 1 A g⁻ 1
 62 1000 – [181] 

CNFs/PEDOT/MnO2 AC 1.6 148.1 at 0.3 A g⁻ 1
 49.4 224.02 81.6% after 8000 cycles [182] 

DPC/Co3O4 AC 1.7 60.76 at 1 A g⁻ 1
 21.1 790 – [183] 

C/Co3O4 AC 1.6 99.8 at 1 A g⁻ 1
 35.08 630 94.2% after 5000 cycles [184] 

C/Co3O4 AC 1.5 446.5 at 2 A g⁻ 1
 68.17 549 87.92% after 10000 cycles [185] 

GLF/NiO GLF 1.5 152 at 1 A g⁻ 1
 47.6 750 83.6% after 6000 cycles [186] 

3-D Graphene/NiO AC 1.6 34.4 at 1 A g⁻ 1
 12.3 815.3 74.6% after 5000 cycles [187] 

NiO/D-rGO Bi2O3 1.6 62 at 3 A g⁻ 1
 43.7 4799 89.5% after 5000 cycles [188] 
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4.2 Hybrid capacitors  

There are two main types of reversible electrochemical energy storage devices: 

secondary batteries and electrochemical capacitors (EDLCs and pseudo-capacitors). The 

former provides a high Ed, while the latter offers a high Pd with long cycle-life. For instance, 

commercial lithium ion batteries (LIBs) deliver a specific Ed up to 200 Wh kg⁻ 1
, but with a 

maximum Pd being below 350 W kg⁻ 1
. In contrast, commercial electrochemical capacitors 

possess Pd reaching 10 kW kg⁻ 1
, but with an Ed less than 5 Wh kg⁻ 1

. Therefore, a new goal 

of next-generation electric energy storage devices is to provide high energy and high power 

concomitantly in a single system [189-191]. In this case, the concept of a hybrid ion 

capacitors (HICs) was proposed and HICs are named for their structure. In HICs, two 

electrodes are composed of a battery material and a supercapacitor material, respectively. Fig. 

13 illustrates the comparison of specific energy v. s. specific power for electrochemical 

energy storage methods, including lithium ion capacitors (LICs) which is a representative of 

HICs. Benefiting from their structure, the HICs is a good compromise between the battery 

and the supercapacitor in terms of energy supply, offering battery-like energy with 

supercapacitor-like power. One important potential application of HICs is regenerative 

braking. Regenerative braking energy from trains, different types of vehicles represents a 

huge potential market. Besides, UPS, voltage sag compensation, smart grids, and energy 

recovery systems in industrial machinery are all worth noticing [192]. However, due to the 

limitations in existing energy storage technologies, this market has not been fully developed, 

which accelerates the research on HICs [193].  



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer Science+Business Media, LLC, part of Springer Nature.

29 

 

 

Figure 13. Ragone diagram of energy storage with different electrochemical energy storage 

methods [192] (©American Chemical Society 2014). 

4.2.1 Lithium/Sodium ion capacitor  

The mechanism of LIBs provides support for the construction of HICs. In LIBs, lithium 

ions can be inserted (extracted) into (out of) the graphite anode, which facilitates the selection 

of electrode materials. Table 3 compiles some representative samples of various 

carbon-based materials employed for LICs or sodium ion capacitors (NICs). 

The majority of carbon-based materials are non-graphite structure and highly porous 

carbon. Since the radius of sodium ions is larger than that of lithium ions (0.102 nm to 0.076 

nm), it is very difficult for sodium ions to be embedded in graphite [194,195]. Moreover, 

heteroatoms-doped carbon and TMCs can also be employed for the storage of Li⁺ /Na⁺ . 

Overall, the choice of electrode materials for LICs/NICs is diverse and requires more 

extensive research. 
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Table 3. A summary of carbon-based LICs/NICs 

 

Anode Cathode Type Voltage/V Maximum Ed/Wh kg⁻ 1
@Pd/W kg⁻ 1

 Cycle life Ref. 

graphite AC LIC 3.5 145.8 65 65% after 10000 cycles [196] 

N-doped C AC LIC 2 28.5 348 97% after 5000 cycles [197] 

Hard carbon Bio-derived carbon 

LIC 2.5 121 300 81% after 8000 cycles 

[198] 

NIC 2.3 82 ~300 60% after 8000 cycles 

N,O-doped C HPC-800 LIC 4.0 184 200 70% after 10 000 cycles [199] 

Ti3C2/TiO2/rGO LiNi0.5Co0.2Mn0.3O2 LIC 3.2 165 260 83% after 700 cycles [200] 

Soft carbon AC NIC 3.6 110 245 71% after 1000 cycles [201] 

N-doped disordered C AC nanosheet NIC 4 111 67 

81% after 5000 

cycles 

[202] 

Peanut-skin derived C Peanut-skin derived C NIC 1.5 112 67 85% after 3000 cycles [203] 

Na2Ti7O15/graphene AC NIC 3.7 82.7 97.5 90% after 10000 cycles [204] 

Sn4P3 AC NIC 1.6 45 40 94% after 6000 cycles [205] 
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4.2.2 Other ion capacitor 

LIBs and sodium-ion batteries have many shortcomings, such as limited lithium reserves, 

difficulty in embedding sodium ions into graphite, the use of flammable organic electrolytes, 

etc. These issues lead to research on new types of ion batteries, including K⁺ , Ca
2⁺ , Mg

2⁺ , 

Al
3⁺ , and Zn

2⁺  [206-212]. Based on these ion storage mechanisms, hybrid ion capacitors 

name after these cations have naturally attracted attention, especially multivalent ions. 

Compared with energy storage system on univalent ion, the multivalent ion-based energy 

storage system possesses some advantages, such as fast charge transfer kinetics and higher 

capacity and energy density [213]. Among these multivalent ions, Zn
2⁺  and Al

3⁺  have 

attracted intensive attention because of their small ionic radius, abundant reserves, high 

volumetric capacity, and the ability to use aqueous electrolytes [214]. Some HICs based on 

multivalent ions (MHICs) are summarized in Table 4. These HICs show excellent 

performance, indicating that the design of devices based on multivalent ions is effective. In 

addition, it is worth noting that various materials are proven to be available for constructing 

MHICs, whereas only a few studies on AIC, MgIC and CaIC have been reported. 
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Table 4. A brief overview for construction and performance of ZICs and AICs 

 

Cathode Anode Type Voltage/V Maximum Ed/Wh kg⁻ 1
@Pd/W kg⁻ 1

 Cycle life Ref. 

MnO2 AC ZIC 2.0 34.8 ~60 93.4% after 5000 cycles [215] 

coconut shell-derived AC Zn foil ZIC 1.8 52.7 1725 91% after 20000 cycles [216] 

AC Zn ZIC 1.6 84 65 91% after 10000 cycles [217] 

AC MoO3@PPy AIC 1.5 28 460 93% after 1800 cycles [218] 

AC CuFe-PBA AIC 1.0 55 F g⁻ 1 
(only provide specific capacitance) 90% after 1000 cycles [219] 

AC Mg foil MgIC 1.6 90 F g⁻ 1 
(only provide specific capacitance) 79% after 4500 cycles [220] 

AC Ca foil CaIC 3.2 92 mAh g⁻ 1 
(only provide specific capacity) 84% after 1000 cycles [221] 
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5. Conclusion and perspective 

The scale of global market for supercapacitor reached $470 million in 2010. By 2020, 

the supercapacitor market is expected to be $3.5 billion, which will cover 5% of the battery 

market [12]. Due to the increasing market, it will further stimulate the study and development 

of supercapacitors. In our opinion, future research on carbon-based material as supercapacitor 

electrodes can be carried out in the following aspects. 

  (i) EDLCs generally possesses fast charge/discharge processes with long cycle-life. 

However, they are still limited by the relatively low specific capacitance, incomplete 

utilization of active sites, and relatively narrow operating voltage, which significantly affect 

the Ed and Pd. To obtain high Ed and high Pd, the future development of supercapacitors 

involves the novel design of carbon-based composite materials, e.g. carbon combined with 

pseudocapacitive materials because such composite materials are beneficial to expand the 

operating voltage and improve the capacitance of capacitor devices. Among pseudocapacitive 

materials, TMCs are often limited by their high charge transfer resistance from poor electrical 

conductivity and structure pulverization during cycling. Thus, the rational design in 

nanostructure of both carbon materials and TMCs to promote electrochemical kinetics and 

reduce the charge transfer resistance is still a big challenge. For example, uniform pore size 

distribution of porous carbon will reduce the ion transport length while suitable pore size will 

improve contact with electrolyte and ion migration (Section 3.1). Also, combining TMCs 

with conductive polymers can simultaneously improve the electrical conductivity and protect 

TMCs from structure damage and dissolution in the electrolyte.  

(ii) Flexible carbon-based supercapacitor devices are highly required for the expansion of 

the electronic product market. The fabrication to the flexible devices includes flexible 

packaging and the preparation of flexible electrodes.  

Packaging improvements are equally important to the success of qualified flexible energy 

storage systems. The development of a thinner, moisture-impermeable, flexible package that 

prevents electrolyte from flowing out of energy storage systems will help increase its 

volumetric energy density and make them more compatible. Current sealing plastics based on 

polydimethylsiloxane (PDMS) or other stretchable elastomers can meet the requirement on 
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mechanical properties, however, are limited by moisture permeability. The development of 

stretchable inorganic coatings, which can be deposited on stretchable elastomers, will help 

reduce the penetration of moisture into energy storage systems. Flexible electrodes based on 

paper, textiles, sponges, etc., can be achieved by vacuum suction filtration, printing 

technology, electrospinning technology, CVD, and electrochemical deposition. The 

stretchable electrodes can be realized by coating the electrode materials on stretchable 

substrates or embedding them in stretchable substrates. However, under strain, especially 

under severe strain, the electrochemical performance of flexible devices tends to be greatly 

compromised. Therefore, it is still a challenge to guarantee the electrochemical performance 

of flexible devices under ultimate strain. 

(iii) Supercapacitor devices in harsh conditions such as high temperature, low 

temperatures, strong acid and strong base are highly required in some extreme environments. 

The key points for such devices will be focus on the development of novel electrodes, 

electrolytes, separators and binders. Compared with the normal operating temperature, at high 

temperatures, the electrochemical reaction is faster and the pseudocapacitor behavior is more 

obvious, which puts forward the requirements for the structure stability of the electrode 

materials. In addition, at high temperatures, the electrode may peel off from the current 

collector due to the failure of the binder, resulting in performance degradation. While the 

wettability of the electrode material to the electrolyte will become worse at extremely cold 

temperatures, and the electrochemical reaction is slow or even stops. Hence, the selection and 

structural design of new electrode materials to meet the needs of normal operation under 

extreme conditions is very necessary. Additionally, molecular design to achieve high 

performance electrolytes, separators and binders could be a suitable path in the future. For 

example, ionic liquids and antifreeze agents could be good options for electrolytes in ultralow 

temperatures while high performance polymers such as polyimides (PI) could be the ideal 

candidate for separators and binders.  

(iv) There are still challenges to the way of industrial production of novel electrode 

materials. (1) One factor restricting the industrialization of new materials in supercapacitors 

is the high cost and energy consumption, which mainly occur during the carbonization and 
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the activation process of the material. Therefore, it is necessary to develop new procedure to 

simplify the above process. (2) Blade coating is the most commonly used process for 

depositing electrode slurry in large-scale production. However, it is difficult to achieve 

electrodes with ultrathin thickness and special patterns by this process. The developing 

technologies, such as screen printing, 3-D printing, and inkjet printing etc., could be the ideal 

options to realize such electrodes. (3) It is still necessary to develop test standards for 

supercapacitors in industrial and laboratory experiments. 
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