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Abstract: The momentum-weighted sum of the electric charges of particles inside a jet,

known as jet charge, is sensitive to the electric charge of the particle initiating the parton

shower. This paper presents jet charge distributions in
√
sNN = 5.02 TeV lead-lead (PbPb)

and proton-proton (pp) collisions recorded with the CMS detector at the LHC. These data

correspond to integrated luminosities of 404 µb−1 and 27.4 pb−1 for PbPb and pp collisions,

respectively. Leveraging the sensitivity of the jet charge to fundamental differences in the

electric charges of quarks and gluons, the jet charge distributions from simulated events

are used as templates to extract the quark- and gluon-like jet fractions from data. The

modification of these jet fractions is examined by comparing pp and PbPb data as a

function of the overlap of the colliding Pb nuclei (centrality). This measurement tests

the color charge dependence of jet energy loss due to interactions with the quark-gluon

plasma. No significant modification between different centrality classes and with respect

to pp results is observed in the extracted quark- and gluon-like jet fractions.
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1 Introduction

High-momentum partons produced by hard scatterings in heavy ion collisions undergo en-

ergy loss as they traverse the quark-gluon plasma (QGP) created in these interactions [1].

The mechanisms by which these partons lose energy to the medium, as well as their color

dependence, are still not fully understood [2, 3]. The particles resulting from the frag-

mentation and hadronization of these partons can be clustered into jets. Jets are used as

parton proxies to examine the properties of the QGP. Parton energy loss manifests itself

in various experimental observables including the suppression of high transverse momen-

tum (pT) hadrons and jets [4–8], as well as modifications of parton showers [9, 10]. These

phenomena are collectively referred to as jet quenching [1].

At leading order in quantum chromodynamics, the type of parton that initiates a jet

can be distinguished. The resulting jet can therefore be labeled as a quark, antiquark, or

gluon jet. Several recent measurements indicate that the fractions of quark and gluon jets

in a sample may be modified as they are expected to suffer different energy loss in the

QGP due to their different color charges [11, 12]. This analysis explores the extraction

of the fractions of quark and gluon jets from an inclusive jet sample in lead-lead (PbPb)

and proton-proton (pp) collisions. This is achieved with a template-fitting method using
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the “jet charge” observable. Jet charge, defined as the momentum-weighted sum of the

electric charges of particles inside a jet, is sensitive to the electric charge of the particle

initiating a parton shower and can be used to discriminate between gluon- and quark-

initiated jets. This observable was initially suggested as a way of measuring the electric

charge of a quark [13] and was first measured in deep inelastic scattering experiments at

Fermilab [14, 15], CERN [16–19], and Cornell University [20].

More recently, jet charge was measured at the LHC in pp collisions by the ATLAS [21]

and CMS [22] collaborations, characterizing the contributions of quark and gluon fragmen-

tation to jet production. At LHC energies, gluon contributions dominate jet production

at lower transverse momenta, while the valence quark contributions overtake at higher jet

pT [23]. According to predictions from the pythia event generator (version 6.424 [24],

tune Z2 [25]) for pp collisions at 5.02 TeV, gluon jets are expected to constitute about

59% of a sample of jets with transverse momenta above 120 GeV. Similarly, up and down

(anti)quark jets are predicted to make up about 32% of the sample with the other 9%

arising from charm, strange and bottom (anti)quark jet contributions. A detailed investi-

gation of jet charge and its applications in heavy ion collisions is motivated by extensive

theoretical calculations [23, 26, 27]. The dependence of the mean and width (standard

deviation) of the jet charge distribution on both jet energy and size, can be calculated

independently of Monte Carlo (MC) fragmentation models despite the large experimental

uncertainty in fragmentation functions [28]. This makes jet charge a suitable variable for

the determination of quark and gluon jet fractions.

This paper presents the first jet charge measurements in heavy ion collisions along

with pp jet charge results at the same center-of-mass energy per nucleon pair (
√
s
NN

). The

analysis uses PbPb and pp data at
√
s
NN

= 5.02 TeV, both collected in 2015 with the CMS

detector at the CERN LHC. The data correspond to an integrated luminosity of 404 µb−1

(27.4 pb−1) for PbPb (pp) collisions [29]. In heavy ion collisions, the discrimination be-

tween jet and background constituents is not straightforward and often impossible on a

per-particle basis. In this work, “background” is defined as uncorrelated and long-range

correlated contributions [30], as measured at least 1.5 units of relative pseudorapidity (∆η)

away from the jet axis [10, 31, 32], which do not arise from the jet-initiating parton shower.

Any short-range modifications to either the medium or the jet structure are thus included

in the jet “signal”. The measurements are corrected for detector and background effects

using an unfolding procedure, and are presented as a function of the overlap of the col-

liding Pb nuclei (centrality). The jet charge distributions of light (anti)quark and gluon

jets from MC generators are used as templates to fit the inclusive jet charge distribution

measured in data. The fractions of quark- and gluon-initiated jets are extracted from this

fitting procedure and are referred to as quark- and gluon-like jet fractions. The results are

presented as a function of the minimum pT threshold of the particles used in the jet charge

measurement and also as a function of a pT weighting factor, κ [26].

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal

diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon
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pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and

a brass and scintillator hadron calorimeter (HCAL), each composed of barrel and endcap

sections. Two hadron forward (HF) steel and quartz-fiber calorimeters complement the

barrel and endcap detectors, extending the calorimeter from the range |η| < 3.0 provided

by the barrel and endcap out to |η| < 5.2. Events of interest are selected using a two-tiered

trigger system [33].

In this analysis, jets are reconstructed within the range |η| < 1.5. In the region

|η| < 1.74, the HCAL cells have widths of 0.087 in both η and azimuth φ. Within the central

barrel region corresponding to |η| < 1.48, the HCAL cells map onto 5 × 5 ECAL crystal

arrays to form calorimeter towers projecting radially outwards from the nominal interaction

point. Within each tower, the energy deposits in ECAL and HCAL cells are summed

to define the calorimeter tower energies, which are subsequently clustered to reconstruct

the jet energies and directions [34]. The silicon tracker measures charged-particle tracks

within |η| < 2.5. It consists of 1440 silicon pixel and 15 148 silicon strip detector modules.

For charged particles with 1 < pT < 10 GeV in the barrel region, the track resolutions

are typically 1.5% in pT and 25–90 (45–150)µm in the transverse (longitudinal) impact

parameter [35]. A detailed description of the CMS detector, together with a definition of

the coordinate system used and the relevant kinematic variables, can be found in ref. [36].

3 Event selection and simulated event samples

The PbPb and pp data are selected with a calorimeter-based trigger that uses the anti-kT
jet clustering algorithm with a distance parameter of R = 0.4 [37]. The trigger requires

events to contain at least one jet with pT > 80 GeV. This trigger is fully efficient for events

containing jets with reconstructed pT > 100 GeV. The data selected by this trigger are

referred to as “jet-triggered”, and corresponds to 3.35 (2.6) million PbPb (pp) collision

events. Vertex and noise filters are applied to both PbPb and pp data to reduce con-

tamination from noncollision events (e.g., beam-gas interactions), as described in previous

analyses [10, 38]. Additionally, a primary vertex with at least 2 tracks is required to be re-

constructed and have a z position (vz) within 15 cm of the center of the nominal interaction

region along the beam axis. In PbPb collisions, the shapes of clusters in the pixel detector

are required to be compatible with those expected from a PbPb collision event. The PbPb

events are also required to have at least three towers in each of the HF calorimeters with

energy deposits of more than 3 GeV per tower.

Simulated MC samples are used to evaluate the performance of the event reconstruc-

tion, in particular the track reconstruction efficiency and the jet energy response and reso-

lution. The MC samples use the pythia (version 6.424 [24], tune Z2 [25]) event generator

to describe the hard scattering, parton showering, and hadronization of the partons and

are referred to as the pythia6 sample. To account for the soft underlying PbPb event,

the hard pythia6 interactions are embedded into simulated minimum-bias PbPb events

produced with hydjet (version 1.383 [39]). This minimum-bias event generator is tuned

to reproduce global event properties such as the charged-hadron pT spectrum and particle

multiplicity. The combined sample of hard pythia6 interactions and soft hydjet underly-
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ing event is referred to as the pythia6+hydjet sample. The Geant4 [40] toolkit is used

to simulate the CMS detector response.

The scalar pT sum of the HF calorimeter towers (3.0 < |η| < 5.2) is used to define the

event centrality in PbPb events and to divide the event sample into centrality classes, each

representing a percentage of the total inelastic hadronic cross section [41]. Events in PbPb

collisions are divided into four centrality intervals corresponding to 0–10% (most central),

10–30%, 30–50%, and 50–100% (most peripheral).

Because of the large number of nucleon-nucleon interactions in head-on PbPb colli-

sions, jets are more likely to be reconstructed in more central events. Requiring a jet to

be present in an event, therefore, biases the data sample toward more central collisions.

In comparison, the pythia6+hydjet sample consists of a flat distribution of jets (from

pythia6), as a function of centrality. Thus, a centrality-based reweighting is applied to

this MC sample to match the centrality distribution of the jet-triggered PbPb data. An

additional reweighting procedure is performed to match the simulated vz distributions to

data for both the PbPb and pp samples. The contribution of pile-up in both PbPb and

pp collisions is negligible [29].

4 Jet and track reconstruction

The jet reconstruction in PbPb and pp events is performed with the anti-kT jet algorithm

with a distance parameter of R = 0.4, as implemented in the FastJet framework [42].

Individually calibrated calorimeter towers are used as inputs to the algorithm. Only cal-

orimeter information is used in the jet reconstruction to minimize the bias of the tracking

efficiency on the reconstruction of jets. In PbPb collisions, the contributions of the under-

lying event are subtracted using a two-iteration variant of the “noise/pedestal subtraction”

technique described in refs. [43, 44]. In this method, only calorimeter towers outside of

the jet area are used in the background estimation after identifying and excluding the jets

in the first iteration. The underlying event and pile-up contribution is negligible in pp

collisions and therefore do not require any subtraction. In both PbPb and pp events, jet

energy is calibrated and the calorimeter response is verified as a function of jet pT and

η. To account for the variation in detector response with the total number of jet con-

stituents, additional corrections are applied in both collision systems based on the number

of charged-particle tracks with pT > 2 GeV within the jet cone (relative angular distance

from the jet axis ∆r =
√

(∆η)2 + (∆φ)2 < 0.4), the jet pT, and the collision centrality [10].

This corrects for a difference in the simulated calorimetric jet energy response between

quark and gluon jets and reduces the difference in response between the two jet flavors

from 10% to around 3%. After reconstruction and offline jet energy calibration, jets are

required to have pT > 120 GeV and |η| < 1.5. In this kinematic range, the jet trigger

is observed to be fully efficient and the jet energy response and resolution is optimized.

Within this selection, it is possible for multiple jets to be selected from the same event.

For pp collision events, charged-particle tracks are reconstructed using an iterative

tracking method [35] that finds tracks within |η| < 2.4 down to pT = 0.1 GeV. For the PbPb

data an alternative iterative reconstruction procedure is employed because of the large track
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multiplicities [45, 46]. It is capable of reconstructing tracks down to pT = 0.4 GeV. The

charge of the particle is measured based on the direction of curvature of the reconstructed

track. Tracks used in this measurement are required to have a relative pT uncertainty of

less than 10% (30%) in PbPb (pp) collisions and also satisfy the standard track quality

requirements [38]. For both collision systems, it is required that the significance of the

distance of closest approach to at least one primary vertex in the event be less than 3

standard deviations, in order to decrease the likelihood of counting nonprimary charged

particles originating from secondary decay products. Tracks with pT > 20 GeV are re-

quired to have an associated energy deposit [47] of at least half their momentum in the

calorimeters to reduce the contribution of misreconstructed tracks with very high pT. In

PbPb collisions, tracks must additionally be associated with at least 11 hits and satisfy a

fit quality requirement that the χ2, divided by both the number of degrees of freedom and

the number of tracker layers hit, be less than 0.15 [38]. The tracking efficiency in pp col-

lisions is approximately 90% for pT > 1 GeV. Track reconstruction is more difficult in the

heavy ion environment because of the large track multiplicity, and so the tracking efficiency

ranges from approximately 60% at pT = 1 GeV to about 70% at pT = 10 GeV [38].

5 Jet charge measurement

The jet charge is defined as:

Qκ =
1

(pjetT )κ

∑
i∈jet

qipT,i
κ. (5.1)

The variable pjetT is the transverse momentum of the calorimeter jet. The qi and pT,i symbols

refer to the electric charge (in terms of the proton charge e) and transverse momentum

of the i-th particle in the jet cone, respectively. The κ parameter controls the weighting

of the jet charge variable to low- and high-pT particles in the jet cone. Low values of κ

enhance the contribution from low-pT particles to the jet charge, and vice versa.

Tracks with pT > 1 GeV that are located within the jet cone (∆r < 0.4) are used

in the jet charge measurement. The track pT threshold of 1 GeV ensures that the MC

templates for different flavors used in the fitting procedure are well resolved and also

reduces the contributions of uncorrelated and long-range correlated background to the jet

charge. Theoretical predictions suggest that a parameter value pT-weighting factor κ ≈ 0.5

is the most sensitive to the electric charge of the parton initiating the jet in vacuum [26]. In

this analysis, measurements are shown for κ values of 0.3, 0.5, and 0.7, and with different

selections on the minimum track pT of 1, 2, 4, and 5 GeV to retain a broad sensitivity to

both hard and soft radiation inside jets.

6 Corrections for background and detector effects

To allow for a comparison with future measurements from other experiments or theoretical

predictions, the jet charge distributions are unfolded from the detector to the final-state

hadron particle level. The jet charge measurements at the detector level are broadened by

track reconstruction inefficiencies, and this effect increases with decreasing κ values. In

– 5 –



J
H
E
P
0
7
(
2
0
2
0
)
1
1
5

PbPb collisions, there is additional smearing that is caused by the background from the

underlying event and long-range correlations [30]. The unfolding is performed to account

for these effects using the D’Agostini iterative method [48–50], as implemented in the

RooUnfold software package [51]. Response matrices are derived from pythia6 and

pythia6+hydjet simulation samples for pp and PbPb collisions, respectively.

Response matrices in the unfolding procedure are constructed using jet charge distribu-

tions measured with reconstructed tracks, and that measured with generator-level particles

originating from the hard scattering. To account for the background effects in PbPb colli-

sions, the reconstructed tracks used in constructing the response matrices includes contri-

butions from both the hard scattering and background as modeled by pythia6+hydjet.

As a cross check of the background estimation procedure, a data-driven technique is also

used to measure the uncorrelated and long-range correlated contributions, as further dis-

cussed in section 8. No background correction is required in pp collisions because of the

negligible underlying event and pile-up contribution [29].

The number of iterations in the unfolding procedure trades off bias towards MC with

statistical fluctuations. To obtain an optimal number of iterations, reconstructed jet charge

distributions from modified samples of pythia6 and pythia6+hydjet are unfolded using

the nominal response matrices. Quark and gluon jet fractions are varied by 50% in the

modified simulation samples, which is expected to give a good bound on the potential

modification of the jet charge distribution in data [23]. Based on these studies, three to

four iterations are used in the unfolding procedure for different selections of threshold track

pT and κ.

7 Template fitting

The flavor-tagged jet charge distributions from pythia6 at the generator-level are used as

templates to fit the unfolded jet charge measurement to estimate the fractions of quark

and gluon jets. Measurements from pythia6 simulations for jets initiated by up quarks

(mean = 0.254e, width = 0.341e), down quarks (mean = −0.150e, width = 0.335e), and

gluons (mean = 0.001e, width = 0.364e) are well separated and make up the dominant

fractions of the sample. The quoted mean and width values for the different-flavor jets are

from measurements at the generator-level, with a minimum track pT threshold of 1 GeV

and a κ value of 0.5. They have statistical uncertainties of less than 0.1%. The average

jet charge for jets initiated by quarks and gluons varies by less than 1% as a function of

the jet pT in pythia6, allowing for the stable extraction of the respective jet fractions

in the pT range examined here. In the fitting procedure, the fractions of up antiquark

jets (u) and down antiquark jets (d), are varied along with the up and down quark jets,

respectively. Jets initiated by charm, strange, and bottom (anti)quarks (c, c, s, s, b, and

b, respectively) are categorized as “other flavor” jets and their fractions are fixed during

the fitting procedure to reduce the number of degrees of freedom. The fitting procedure

takes into consideration the total systematic uncertainty in the jet charge measurements

from all sources combined with the statistical uncertainty.
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A small fraction of jets have no reconstructed tracks inside the jet cone above the

threshold track pT used in the jet charge measurement. This fraction is negligible for a track

pT threshold of 1 GeV in both collision systems but goes up to 10 (6)% in central PbPb (pp)

collisions for a track pT threshold of 5 GeV. Such jets, with no reconstructed tracks inside

the jet cone, are excluded in the fitting procedure, and the fractions of quarks and gluons

for such jets are assigned directly from simulation. The related systematic uncertainty is

discussed in section 8. Previous CMS results have shown a large excess of soft particles

in PbPb events relative to pp events up to ∆r ∼ 1 from the jet axis, compensated by a

relative depletion of higher-pT tracks [10, 52]. Consequently, the fraction of jets with no

high-pT tracks is observed to be 50% higher in PbPb data compared to pythia6+hydjet

predictions for the most central collisions.

For a given jet energy, jets with a harder constituent pT spectrum are more likely to

be reconstructed because the calorimeter response does not scale linearly with the incident

particle energy, resulting in a bias toward the selection of jets with fewer associated tracks.

On average, quark jets have harder fragmentation than gluon jets and are therefore pref-

erentially reconstructed. Jet energy corrections based on the number of jet constituents

are applied to reduce the difference in the response between quark and gluon jets from 10

to around 3% (see section 4). To compensate for the residual difference, an extra correc-

tion factor, based on the deviation from unity in the response, is applied to the extracted

fractions of quark- and gluon-like jets [10].

8 Systematic uncertainties

A number of sources of systematic uncertainty are considered, including effects from the

unfolding, tracking efficiencies, background correction, jet reconstruction, and the contri-

butions from “other flavor” jets. To estimate most systematic uncertainties, a quantity

is varied by an appropriate amount in the construction of the response matrix and prop-

agated through the full analysis chain. The fitting procedure is repeated on the varied

distributions and the deviation from the nominal results are assigned as systematic un-

certainties. The systematic uncertainties from all sources are added in quadrature. The

relative uncertainties in the measured jet charge distributions vary for different selections

of pT-weighting factor κ and track pT threshold.

An uncertainty of 5 (4)% in PbPb (pp) data is considered to account for possible

differences in track reconstruction between data and simulation, including reconstruction

of misreconstructed tracks [38]. The reconstruction efficiency is varied by this amount

when populating the response matrices used in the data unfolding. The resulting jet charge

distributions are fit with the generator-level templates and the differences in the extracted

fractions of quark- and gluon-like jets, observed to be 1–2%, are quoted as a source of

systematic uncertainty.

From simulation studies, the difference in the tracking efficiencies for positively and

negatively charged particles is found to be 0.5% in both PbPb and pp collisions regardless

of the particle pT. This uncertainty is propagated to the final result in a way similar

to what is used for the tracking reconstruction difference between data and simulation,
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i.e., the unfolding response matrices are modified and any differences after applying the

template fitting procedure are taken as systematic uncertainties.

To study the systematic effect arising from the choice of the MC event generator to

produce the response matrix used in the unfolding procedure, a response matrix is formed

using a modified pythia6 sample with varied quark and gluon jet fractions, and both of

these matrices are used to unfold the data. In this study, quark and gluon jet fractions

are varied by 50% from their nominal MC values while populating the modified response

matrices. The fitting procedure is repeated on the resulting varied unfolded distributions

and the deviation from the nominal fitting results are then assigned as a systematic un-

certainty. Other sources of uncertainty in the unfolding procedure include effects from

bin-to-bin correlations in the unfolded distribution and the statistical uncertainty in the

MC simulation of the response matrix elements. They are propagated using covariance

matrices constructed with the RooUnfold software package. These studies result in a

relative uncertainty of 4–7% on the extracted jet fractions. Additional studies are per-

formed using pythia8 v212 [53] tune CUETP8M1 [54] and herwig++ 2.7.1 [55] tune

EE5C [56] event generators, neither of which are observed to describe the jet spectra in

pp data very well. After reweighting the jet spectra in these MC samples to match data,

while jet charge distributions from pythia8 are in very good agreement with those from

pythia6 and data, herwig++ overestimates the width of the data jet charge distributions

and are hence not used in systematic uncertainty studies.

The systematic uncertainty due to the jet energy resolution is estimated by changing

the jet energy resolution by 5% to cover the corresponding uncertainty [34], followed by

a comparison of the modified spectra with the nominal spectrum. The corresponding

differences in the extracted quark- and gluon-like jet fractions, estimated from repeating

the fitting procedure on the smeared jet charge distributions, are 1–3% and are included as

systematic uncertainties. The effects of the angular resolution of the jet axis are negligible

in the jet charge measurements.

To study the background modelling uncertainty in PbPb collisions, the response matri-

ces are also built using a data-driven reference event technique to estimate the uncorrelated

and long-range correlated background contributions. The jet charge is measured using jets

in a jet-triggered “signal” event and tracks from a separate minimum-bias “reference” event

which is required to have a vz within 1 cm and collision centrality within 2.5% of the signal

event. The signal and reference events must also have similar charged particle multiplicities

outside of the jet cone. The background obtained from the reference event technique is

observed to be in close agreement with that for hydjet and the resulting uncertainty is

less than 1%. No background subtraction is performed in pp due to its negligible effect,

and hence no corresponding systematic uncertainty is assigned.

The contribution from jets with no tracks in the jet cone above a pT threshold, which

are excluded in the fitting procedure, to the gluon-like jet fraction measurements is assigned

from MC. The difference in the fraction of such jets between data and MC increases with

increasing track pT threshold and with more central collisions because of the observed

depletion of high-pT tracks in PbPb collisions [10, 52]. This difference is less than 1%

in pp collisions but can reach 4.5% in PbPb collisions. It is assigned as a systematic

uncertainty.
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pp PbPb centrality intervals

Source 50–100% 30–50% 10–30% 0–10%

Response matrix modelling 4–6 5–7.5 5–7.5 5–7.5 5–7.5

Monte Carlo event count 1.5 3 3 3 3

Jet energy resolution 1–1.5 2 2 2–3 2–3

Tracking efficiency (data/simulation) 1 2 2 2 2

Tracking efficiency (positive/negative) 0.5–1 1–1.5 1–1.5 0.5–1.5 0.5–1.5

Jets with no tracks 0.1 0.2–1 0.4–2 0.4–3 0.5–4.5

Unfolding procedure 0.5 0.7 0.8 1.1 1.4

Background modelling and fluctuation — 0.5 0.5 1 1

“Other flavor” jets 1 1 1 1 1

Total 4–5 7–8 7–8 7–8 7–9

Table 1. Relative systematic uncertainties in percentage for the measurements of gluon-like jet

fractions in pp and PbPb events. The PbPb results are given in intervals of centrality. When an

uncertainty range is given, the range of the values are the maximum variation in the fractions for

different selections on κ and track pT threshold values.

In PbPb data, there is an additional bias toward selecting jets that are reconstructed

on upward fluctuations in the underlying event. Since the jet spectrum is steeply falling,

more jets on upward fluctuations are included in the sample than jets on downward fluc-

tuations are excluded resulting in an uncertainty of up to 10% in the measured particle

multiplicity in central PbPb events [10]. This effect is observed to be included in the re-

constructed jet charge measurements in simulation as well, so the difference in this bias

between data and MC is used to calculate the corresponding systematic uncertainty. To

calculate this difference, distributions of the particle multiplicities within cones (∆r < 0.4),

chosen randomly in detector η and φ, are compared between minimum-bias data and MC

events [10, 52] and are found to be in very good agreement with each other. The difference

is propagated through the analysis chain and the resulting deviation from the nominal

results are observed to be negligible.

To assess the effects of the statistical uncertainties from the MC templates on the final

results, 1000 pseudo-experiments are performed by generating smeared jet charge templates

based on its statistical uncertainty and repeatedly fitting the data measurements using

these templates. The distributions of extracted gluon-like jet fractions from the pseudo-

experiment fits have a variance of 3% or less, which is assigned as a systematic uncertainty

due to limited MC event count.

Finally, the effect of fixing the “other flavor” jet fractions in the fitting procedure is

analyzed. The “other flavor” jets, comprising c (2.9%), s (4.7%) and b (1.7%) (anti)quarks,

are each varied by their total amount in the fitting procedure and the resulting deviation

from the nominal fitting result is propagated as a systematic uncertainty.

A summary of the range of systematic uncertainties for results is shown in table 1 for

different selections of κ and track pT threshold values.
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Figure 1. (Upper) Unfolded jet charge measurements shown for inclusive jets in data along with

the extracted fractions of up, and down quark jets, gluon jets, and the “other flavor” jets. The

systematic and statistical uncertainties in the distributions are shown by the shaded regions and

vertical bars, respectively. The jet charge measurements shown here are for the pT-weighting factor

κ = 0.5 and a minimum track pT of 1 GeV. (Lower) Ratio of the jet charge measurements to the

results of template fits.

9 Results

The unfolded jet charge measurements, normalized to the total number of jets in the sample

(Njets), are shown in the upper panels of figure 1 with solid black points for a sample

selection with a minimum track pT of 1 GeV and pT-weighting factor κ = 0.5. The results

are shown for pp and different event centrality bins in PbPb. The extracted fraction

of quark- and gluon-initiated jets is displayed as a set of stacked histograms. Figure 1

also shows the ratio of the data over the template fit results in the lower panels, and no

significant deviation from unity is observed in the entire fitting range. The fractions of up

and down quarks are observed to be significantly different between pp and PbPb collisions,

as expected from an enhanced contribution of valence down quarks in lead collisions (having

126 neutrons and 82 protons in each nucleus). The jet charge measurements and fit results

for other minimum track pT and κ selections are shown in figures 5–7 in the appendix.

The widths (standard deviations) of the unfolded data jet charge distributions in dif-

ferent PbPb event centrality bins and in pp, with various track pT thresholds and κ values,

are shown in figure 2. They are also compared to generator-level predictions from pythia6

with matching track pT and κ selections in figure 2. The data (simulation) results for

κ = 0.3, 0.5, and 0.7, are shown by the blue squares (solid lines), red crosses (dashed

lines), and green diamonds (dotted lines), respectively. The measured standard deviations

tend to increase as a function of the minimum track pT and decrease with increasing κ

value. Theoretical predictions incorporating color-charge dependence into jet energy loss

calculations predict that stronger quenching of gluon jets will result in a reduced frac-

tion of gluon-initiated jets in the observed jet sample from PbPb collisions compared to

that in pp data [27]. The mean of the jet charge distribution for gluon-initiated jets is

consistently predicted to be zero in various MC simulations, while that of quark jets is

nonzero. A decrease in the fraction of gluons in a quenched jet sample would hence lead

to an effective increase in the standard deviation of the measured jet charge distribution.
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Figure 2. The standard deviation of the jet charge distributions with different track pT thresholds

and κ values for pp collisions and in the various event centrality bins for PbPb collisions compared

with the pythia6 prediction. The systematic and statistical uncertainties in the standard deviation

measurements are shown by the shaded regions and vertical bars, respectively.
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Figure 3. Fitting results for the extraction of gluon-like jet fractions in pp and PbPb data shown

for different track pT threshold values and event centrality bins in PbPb collisions. The systematic

and statistical uncertainties are represented by the shaded regions and vertical bars, respectively.

The predictions for the gluon jet fractions from pythia6 are shown in dashed red lines.

Figure 2 summarizes standard deviations measured for all track pT selections and κ values

studied. The generator-level pythia6 predictions agree with the measured widths for pp

events. No strong modifications are observed in the widths of the jet charge distributions

in central PbPb collisions compared to the peripheral events. While the PbPb width re-

sults cannot be directly compared to the pp reference due to different up and down quark

contents in protons and Pb nuclei, generator-level pythia6 predictions adjusted for this

difference reproduce the observed widths of jet charge measurements for all PbPb collision

centralities.

The results for the quark- and gluon-like jet fractions in an inclusive sample are shown

in figure 3 as a function of the track pT threshold. Figure 4 shows the same quantities as a

function of κ for track pT > 1 and >2 GeV, with red circles and blue crosses, respectively.

The systematic uncertainties are shown by the shaded regions while the statistical uncer-

tainties, combined with the fit uncertainties, are shown by the solid vertical bars. Only the

gluon jet fitting results are shown in figures 3 and 4 for clarity but it should be inferred

that the quark jets make up the rest of the inclusive sample.

Previous CMS measurements have shown a strong modification in the distribution of

low-pT tracks relative to the jet axis in PbPb collisions with respect to pp collisions [10, 52].

In-medium gluon radiation and a wake-like response of the QGP to the propagating parton
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Figure 4. Fitting results for the extraction of gluon-like jet fractions in pp and PbPb data shown

for pT-weighting factor κ values of 0.3, 0.5, and 0.7 in different event centrality bins in PbPb. The

markers for track pT > 1 and >2 GeV have been separated horizontally for clarity. The systematic

and statistical uncertainties are represented by the shaded regions and vertical bars, respectively.

The predictions for the gluon jet fractions from pythia6 are shown in dashed red lines.

are two of the proposed explanations for this modification [57], neither of which are expected

to modify the jet charge considerably. From figures 3 and 4, no significant modification is

observed in the relative fractions of the quark- and gluon-like jets in central PbPb collisions

compared to peripheral PbPb and pp collisions. The relative jet fractions are also observed

to be unmodified when calculated using a range of different track pT thresholds or κ values.

10 Summary

Jet charge, defined as the momentum-weighted sum of the electric charges of particles inside

a jet, is measured for the first time in heavy ion collisions and is presented along with pp

results at the same energy. The analysis uses lead-lead (PbPb) and proton-proton (pp)

collision data collected with the CMS detector at a nucleon-nucleon center-of-mass energy

of 5.02 TeV. The unfolded jet charge distributions, measured using the jet constituents

with transverse momentum pT > 1 GeV for jets having pT > 120 GeV and pseudorapidity

|η| < 1.5, are presented. The widths of the jet charge distributions for pp collisions are

in good agreement with predictions from the event generator pythia6 and are shown

to be independent of PbPb collision centrality. The jet charge distributions for quark-

and gluon-initiated jets from pythia6 events are used as fitting templates to estimate the

respective contributions in the measured jet samples. The gluon-like jet fractions extracted

from these template fits are found to be similar between pp data and all studied PbPb

centrality ranges. These are the first measurements in heavy ion collisions which exploit the

electric charge of the initiating parton to discriminate between quark and gluon jets. No

evidence is seen for a significant decrease (increase) in gluon-like (quark-like) prevalence in

a sample of jets with pT > 120 GeV in PbPb collisions. These observations do not support

recent interpretations of other heavy ion results [11, 12], which are based on a decreased

(increased) gluon (quark) fraction caused by color-charge dependent jet quenching.
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Figure 5. (Upper row of each figure) Unfolded jet charge measurements shown for inclusive jets

in data along with the extracted fractions of up, and down quark jets, gluon jets, and the “other

flavor” jets. The systematic and statistical uncertainties in the distributions are shown by the

shaded regions and vertical bars, respectively. The jet charge measurements shown here are for

κ = 0.5 and a minimum track pT of 2, 4, and 5 GeV (top, middle, and bottom, respectively).

(Lower row of each figure) Ratio of the jet charge measurements to the results of template fits.

– 15 –



J
H
E
P
0
7
(
2
0
2
0
)
1
1
5

1− 0 1

 [e]
=0.3κ

Q

0.8

1

1.2

1− 0 1

 [e]
=0.3κ

Q

0.8

1

1.2

1− 0 1

 [e]
=0.3κ

Q

0.8

1

1.2

1− 0 1

 [e]
=0.3κ

Q

0.8

1

1.2

1− 0 1

 [e]
=0.3κ

Q

0.8

1

1.21− 0 10

0.5

1

1.5

2 pp

Data

Fitting results

Gluon

Up quark

Down quark

Other flavors

1− 0 10

0.5

1

1.5

2 50-100% PbPb

1− 0 10

0.5

1

1.5

2 30-50% PbPb

1− 0 10

0.5

1

1.5

2 10-30% PbPb

1− 0 10

0.5

1

1.5

2 0-10% PbPb

 (5.02 TeV)-1bµ, PbPb 404 -1pp 27.4 pbCMS | < 1.5
jet

η > 120 GeV, |
jet

T
 R = 0.4 jets, p

T
anti-k  > 1 GeV

T
 = 0.3, track pκ

 (
d
N

/d
Q

) 
[1

/e
]

je
ts

1
/N

D
a
ta

 /
 F

it

1− 0.5− 0 0.5 1

 [e]
=0.5κ

Q

0.8

1

1.2

1− 0.5− 0 0.5 1

 [e]
=0.5κ

Q

0.8

1

1.2

1− 0.5− 0 0.5 1

 [e]
=0.5κ

Q

0.8

1

1.2

1− 0.5− 0 0.5 1

 [e]
=0.5κ

Q

0.8

1

1.2

1− 0.5− 0 0.5 1

 [e]
=0.5κ

Q

0.8

1

1.21− 0.5− 0 0.5 10

0.5

1

1.5

2 pp

Data

Fitting results

Gluon

Up quark

Down quark

Other flavors

1− 0.5− 0 0.5 10

0.5

1

1.5

2 50-100% PbPb

1− 0.5− 0 0.5 10

0.5

1

1.5

2 30-50% PbPb

1− 0.5− 0 0.5 10

0.5

1

1.5

2 10-30% PbPb

1− 0.5− 0 0.5 10

0.5

1

1.5

2 0-10% PbPb

 (5.02 TeV)-1bµ, PbPb 404 -1pp 27.4 pbCMS | < 1.5
jet

η > 120 GeV, |
jet

T
 R = 0.4 jets, p

T
anti-k  > 1 GeV

T
 = 0.5, track pκ

 (
d

N
/d

Q
) 

[1
/e

]
je

ts
1

/N
D

a
ta

 /
 F

it

0.5− 0 0.5

 [e]
=0.7κ

Q

0.8

1

1.2

0.5− 0 0.5

 [e]
=0.7κ

Q

0.8

1

1.2

0.5− 0 0.5

 [e]
=0.7κ

Q

0.8

1

1.2

0.5− 0 0.5

 [e]
=0.7κ

Q

0.8

1

1.2

0.5− 0 0.5

 [e]
=0.7κ

Q

0.8

1

1.20.5− 0 0.50

0.5

1

1.5

2 pp

Data

Fitting results
Gluon
Up quark
Down quark
Other flavors

0.5− 0 0.50

0.5

1

1.5

2 50-100% PbPb

0.5− 0 0.50

0.5

1

1.5

2 30-50% PbPb

0.5− 0 0.50

0.5

1

1.5

2 10-30% PbPb

0.5− 0 0.50

0.5

1

1.5

2 0-10% PbPb

 (5.02 TeV)-1bµ, PbPb 404 -1pp 27.4 pbCMS | < 1.5
jet

η > 120 GeV, |
jet

T
 R = 0.4 jets, p

T
anti-k  > 1 GeV

T
 = 0.7, track pκ

 (
d
N

/d
Q

) 
[1

/e
]

je
ts

1
/N

D
a
ta

 /
 F

it

Figure 6. (Upper row of each figure) Unfolded jet charge measurements shown for inclusive jets

in data along with the extracted fractions of up, and down quark jets, gluon jets, and the “other

flavor” jets. The systematic and statistical uncertainties in the distributions are shown by the

shaded regions and vertical bars, respectively. The jet charge measurements shown here are for a

minimum track pT of 1 GeV and a κ value of 0.3, 0.5, and 0.7 (top, middle, and bottom, respectively).

(Lower row of each figure) Ratio of the jet charge measurements to the results of template fits.
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Figure 7. (Upper row of each figure) Unfolded jet charge measurements shown for inclusive jets

in data along with the extracted fractions of up, and down quark jets, gluon jets, and the “other

flavor” jets. The systematic and statistical uncertainties in the distributions are shown by the

shaded regions and vertical bars, respectively. The jet charge measurements shown here are for a

minimum track pT of 2 GeV and a κ value of 0.3, 0.5, and 0.7 (top, middle, and bottom, respectively).

(Lower row of each figure) Ratio of the jet charge measurements to the results of template fits.
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P. Connor, S. Consuegra Rodŕıguez, C. Contreras-Campana, V. Danilov, A. De Wit,

M.M. Defranchis, C. Diez Pardos, D. Domı́nguez Damiani, G. Eckerlin, D. Eckstein,

T. Eichhorn, A. Elwood, E. Eren, E. Gallo18, A. Geiser, A. Grohsjean, M. Guthoff,

M. Haranko, A. Harb, A. Jafari, N.Z. Jomhari, H. Jung, A. Kasem17, M. Kasemann,

H. Kaveh, J. Keaveney, C. Kleinwort, J. Knolle, D. Krücker, W. Lange, T. Lenz, J. Lidrych,
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P.J. Fernández Manteca, A. Garćıa Alonso, G. Gomez, C. Martinez Rivero, P. Mar-

– 32 –



J
H
E
P
0
7
(
2
0
2
0
)
1
1
5

tinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, C. Prieels, F. Ricci-Tam, T. Rodrigo,

A. Ruiz-Jimeno, L. Russo44, L. Scodellaro, I. Vila, J.M. Vizan Garcia

University of Colombo, Colombo, Sri Lanka

D.U.J. Sonnadara

University of Ruhuna, Department of Physics, Matara, Sri Lanka

W.G.D. Dharmaratna, N. Wickramage

CERN, European Organization for Nuclear Research, Geneva, Switzerland

T.K. Aarrestad, D. Abbaneo, B. Akgun, E. Auffray, G. Auzinger, J. Baechler, P. Baillon,

A.H. Ball, D. Barney, J. Bendavid, M. Bianco, A. Bocci, P. Bortignon, E. Bossini,

E. Brondolin, T. Camporesi, A. Caratelli, G. Cerminara, E. Chapon, G. Cucciati,

D. d’Enterria, A. Dabrowski, N. Daci, V. Daponte, A. David, O. Davignon, A. De Roeck,

M. Deile, R. Di Maria, M. Dobson, M. Dünser, N. Dupont, A. Elliott-Peisert, N. Em-

riskova, F. Fallavollita45, D. Fasanella, S. Fiorendi, G. Franzoni, J. Fulcher, W. Funk,

S. Giani, D. Gigi, K. Gill, F. Glege, L. Gouskos, M. Gruchala, M. Guilbaud, D. Gulhan,

J. Hegeman, C. Heidegger, Y. Iiyama, V. Innocente, T. James, P. Janot, O. Karacheban19,

J. Kaspar, J. Kieseler, M. Krammer1, N. Kratochwil, C. Lange, P. Lecoq, K. Long,

C. Lourenço, L. Malgeri, M. Mannelli, A. Massironi, F. Meijers, S. Mersi, E. Meschi,

F. Moortgat, M. Mulders, J. Ngadiuba, J. Niedziela, S. Nourbakhsh, S. Orfanelli, L. Orsini,

F. Pantaleo16, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer,

M. Pierini, F.M. Pitters, D. Rabady, A. Racz, M. Rieger, M. Rovere, H. Sakulin,
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44: Also at Università degli Studi di Siena, Siena, Italy

45: Also at INFN Sezione di Paviaa, Università di Paviab, Pavia, Italy, Pavia, Italy
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47: Also at Universität Zürich, Zurich, Switzerland

48: Also at Stefan Meyer Institute for Subatomic Physics, Vienna, Austria, Vienna, Austria

49: Also at Burdur Mehmet Akif Ersoy University, BURDUR, Turkey
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