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Abstract We consider the maximum likelihood estimation of sparse inverse co-
variance matrices. We demonstrate that current heuristic approaches primarily
encourage robustness, instead of the desired sparsity. We give a novel approach that
solves the cardinality constrained likelihood problem to certifiable optimality. The
approach uses techniques from mixed-integer optimization and convex optimization,
and provides a high-quality solution with a guarantee on its suboptimality, even if
the algorithm is terminated early. Using a variety of synthetic and real datasets,
we demonstrate that our approach can solve problems where the dimension of the
inverse covariance matrix is up to 1, 000s. We also demonstrate that our approach
produces significantly sparser solutions than Glasso and other popular learning
procedures, makes less false discoveries, while still maintaining state-of-the-art
accuracy.
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1 Introduction

Estimating inverse covariance (precision) matrices is a fundamental task in modern
multivariate analysis. Applications include undirected Gaussian graphical models
[Lauritzen, 1996], high dimensional discriminant analysis [Cai et al., 2011], portfolio
allocation [Fan et al., 2008, 2012], complex data visualization [Tokuda et al., 2011],
amongst many others, see Fan et al. [2014] for a review. For example, in the
context of undirected Gaussian graphical models, estimating the precision matrix
corresponds to inferring the conditional independence structure on the related
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graphical model; zero entries in the precision matrix indicate that variables are
conditionally independent.

Sparsity of the true precision matrix is a prevailing assumption [Yuan and
Lin, 2007, Bickel et al., 2008, Lam and Fan, 2009, El Karoui, 2010, Rigollet and
Tsybakov, 2012] for two reasons.

1. The covariance matrix is often estimated empirically using the maximum
likelihood estimator:

Σ =
1
n

n∑

i=1

(x(i) − x̄)(x(i) − x̄)T , (1)

where the number of samples n can be lower than the space dimension p. When
this is the case, it is known that the empirical covariance matrix1 Σ is singular,
and thus does not accurately model the true covariance matrix. Moreover, the
empirical covariance matrix can not be inverted to obtain an estimate of the
precision matrix. Assuming sparsity of the true precision matrix is required for
the precision matrix estimation problem to be well-defined.

2. In many applications, we use models to improve our knowledge of a given
phenomenon and it is fair to admit that humans are limited in their ability to
understand complex models. As Rutherford D. Roger said ‘We are drowning
in information but starving for knowledge’. Models which only involve a small
number variables, i.e. sparse models, are inherently simple. Sparse models with
high predictive power can thus be extremely valuable in practice. We refer
skeptic readers to the first chapter of Hastie et al. [2015], which makes a strong
case for sparsity in statistical learning.

The most common method for encouraging sparsity in precision matrix estimation
involves solving a `1-regularized maximum likelihood problem. The problem is
convex and can be solved in high dimensions. Though this approach is tractable,
solutions suffer from similar drawbacks as Lasso solutions in linear regression
[Bertsimas et al., 2016]. For example, one drawback is the `1-penalty introduces
extra bias when estimating nonzero entries in the precision matrix with large
absolute values [Lam and Fan, 2009].

In this paper, we seek to confront these drawbacks by solving the cardinality
constrained optimization problem for which the `1-regularized problem is a convex
surrogate. The cardinality constrained problem parallels the relation the best subset
selection (or feature selection) problem plays in linear regression with Lasso. The
main goal of this work is to solve the cardinality constrained problem for problem
sizes of interest, and compare the solutions with current approaches. A summary
of the contributions in this paper is given below.

1. Recent results in linear regression establish that Lasso can be viewed as a robust
optimization problem for an appropriately chosen uncertainty set [Xu et al.,
2009, Bertsimas et al., 2011]. In a seminal paper on precision matrix estimation,
[Banerjee et al., 2008] already uncovered a similar connection, suggesting that
the `1-regularization approach is primarily encouraging robustness and that

1 Note that Σ is not the only estimate of the covariance matrix. In particular, n
n−1Σ is a

widely-used unbiased estimator of the covariance matrix. In this paper, we will only consider
Σ, which we might refer to as the empirical or sample covariance matrix.
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sparsity is a fortunate by-product. We generalize their result and show that a
wide family of regularization can indeed be viewed as a robust version of the
inverse covariance estimation problem.

2. We formulate the cardinality constrained maximum likelihood problem for
the inverse covariance matrix as a binary optimization problem. We show
that the resulting discrete optimization problem is non-smooth in general, but
that adding some well-chosen regularization penalty leads to a smooth convex
discrete optimization problem. In particular, we show that the well-known
big-M formulation or the Ridge regularization term satisfy this property.

3. We propose a combination of outer-approximation algorithm and first-order
methods to solve the mixed-integer convex problem. To our knowledge, this
is the first time in which such a scheme is used to solve a mixed-integer
nonlinear optimization problem with semidefinite constraints. It is well-known
that problems of this type are notoriously hard to solve, and we observe that
our approach significantly outperforms available mixed-integer nonlinear solvers.
An advantage of our approach over existing approaches is that it provides near
optimal solutions fast, and a guarantee on the solutions suboptimality if the
method is terminated early.

4. We report computational results with both synthetic and real-world datasets
that show that our proposed approach can deliver near optimal solutions in
a matter of seconds, and provably optimal solutions in a matter of minutes
for p in the 100s and k in the 10s. The algorithm also provides high-quality
solutions to problems in the 1, 000s, but a certificate of optimality is more
computationally expensive for those sizes.

5. We investigate empirically statistical properties of solutions for the cardinality
constrained problem. We compare solutions with `1-regularized estimates and
other popular learning procedures, and observe that cardinality-constrained
estimates recover the sparsity pattern of the true underlying precision matrix
with comparable accuracy as state-of-the-art but significantly better false
detection rate and predictive power.

6. Finally, we show the modeling power of our framework and illustrate how it
can be easily adapted to estimate Gaussian graphical with more structural
information.

The structure of the paper is as follows: In Section 2, we describe the problem of
interest and provide a more detailed overview of relevant results from the literature.
We generalize existing results about the equivalence between regularization and
robustness. From this perspective, `1-regularized approaches primarily encourage
robustness instead of sparsity, which could explain the known drawbacks of these
techniques. In Section 3 (supplemented by Appendix A), we provide a mixed-
integer formulation for the cardinality-constrained problem. Though non-smooth in
general, we show that adding big-M constraints or a ridge penalty term turns the
problem into a smooth convex integer optimization problem, for which we propose
an efficient cutting-plane procedure. We also discuss practical implementation and
parameter tuning in Section 3.4 and Appendix B. In Section 4, we describe and
numerically compare first-order and coordinate descent methods to solve variants
of the covariance selection problem, used in our algorithm to provide valid cuts.
We perform a variety of computational tests in Section 5 and Appendix C, and use
synthetic and real datasets to assess the algorithmic and statistical performance
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of our approach. Section 6 illustrates the modeling power of our approach by
discussing extensions to cases where structural information about the correlation
structure is available. In Section 7, we provide concluding remarks.

2 Overview and Preliminaries

In this section, we provide a description of the problem formulation and an overview
of current approaches for inducing sparsity in inverse covariance estimation. Pre-
vious work [Banerjee et al., 2008] showed that the `1-regularization approach is
equivalent to a robust optimization problem with an appropriately chosen un-
certainty set. We generalize their result and discuss practical implications. In
particular, this equivalence suggests that current approaches are primarily encour-
aging robustness, not sparsity.

2.1 Problem Description

Let us consider a Gaussian random variable X ∼ N(µ,Σ) with unknown mean
µ ∈ Rp and covariance Σ ∈ Sp++, where Sp++ denotes the set of symmetric positive
definite matrices in Rp×p. Given a random sample x(1), ..., x(n) of X, we seek to
estimate the precision matrix Σ−1. Let Σ ∈ Rp×p be the empirical covariance
matrix corresponding to the n observations as defined in (1). The maximum
likelihood estimate of Σ−1 is the solution of the optimization problem

min
Θ�0

〈Σ,Θ〉 − log det Θ, (2)

where the expression 〈·, ·〉 is the usual trace inner product 〈Σ,Θ〉 = tr(Σ>Θ) and
the objective function in (2) is the negative Gaussian log-likelihood of the data
[Yuan and Lin, 2007].

As mentioned in introduction, a more interesting problem in practice is the
cardinality-constrained version of (2)

min
Θ�0

〈Σ,Θ〉 − log det Θ s.t. ‖Θ‖0 6 k, (3)

where k ∈ Z+, and ‖Θ‖0 :=
∑
i>j 1Θij 6=0 counts the number of nonzero entries in

the strictly lower triangular part of Θ.
Problem (3) parallels the role best subset selection plays in the context of

linear regression. Like best subset selection, the cardinality constraint makes it
computationally challenging and indeed NP-hard [Chickering, 1996]. There is also
the extra difficulty that the problem is a minimization over positive definite matrices
Sp++. To our knowledge, the problem has yet to be considered in the literature as
a discrete optimization problem over positive definite matrices. Thus, this paper
provides the first provably exact optimization approach for solving Problem (3).
Closest to our approach are recent works for approximately solving a variant of
Problem (3) with an `0 penalty instead of a constraint. Marjanovic and Hero [2015]
propose a coordinate descent method to find good stationary solutions. Liu et al.
[2016] approximate the `0 pseudo-norm by a series of ridge penalties and implement
a variant of the alternating direction method of multipliers.
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At the core of our methodology is the exploitation of novel techniques in discrete
optimization. Recently, best subset selection and other cardinality constrained
problems have been solved in high dimensions, using discrete optimization [Bertsi-
mas and Mazumder, 2014, Bertsimas et al., 2016, Bertsimas and Van Parys, 2017].
These approaches exploit the significant progress in mixed-integer optimization in
the past decades and motivate our approach.

2.2 Notations

In the remaining of the paper, we will use bold characters to denote matrices or
matrix-valued functions. Unless otherwise stated, all norms on matrices are vector
norms and matrices are p× p matrices.

Let us recall some linear algebra identities, which will be useful in Section 4.3.
For any invertible matrix A and vectors u, v, we can compute the determinant of
A + uvT [Meyer, 2000, Eqn. 6.2.3]

det(A + uvT ) = det(A) (1 + vTA−1u),

and its inverse [Woodbury-Sherman-Morrison Formula in Meyer, 2000, Eqn. 3.8.2]

(A + uvT )−1 = A−1 − 1
1 + vTA−1u

A−1uvTA−1.

By default, all vectors are p-dimensional vectors. We will denote by ei, i =
1, . . . , p the unit vectors with 1 at the ith coordinate and zero elsewhere, and e the
vector of all ones.

2.3 Current Approaches

A variety of convex and nonlinear based optimization methods have been proposed
to induce sparsity using the maximum likelihood problem [Fan et al., 2016]. Many
of these methods can be interpreted as convex relaxation for Problem (3), the most
common of which being the `1-regularized negative log-likelihood minimization

min
Θ�0

〈Σ,Θ〉 − log det Θ + λ‖Θ‖1, (4)

where ‖Θ‖1 :=
∑
i,j |Θij | is the `1 vector norm. In practice, it has been observed

that the penalty term shrinks the coefficients of Θ towards zero, and produces a
sparse solution by setting many coefficients equal to zero. Problem (4) was originally
motivated by the development and successes of Lasso as a convex surrogate for the
best subset selection problem [Yuan and Lin, 2007]. The problem is well-studied in
the literature [Yuan and Lin, 2007, Banerjee et al., 2008, Friedman et al., 2008,
Rothman et al., 2008, Scheinberg and Rish, 2009] and solved efficiently with a
block coordinate descent procedure. Banerjee et al. [2008] originally proposed the
block coordinate descent schema and solved each sub-problem using Nesterov’s
first-order method. Friedman et al. [2008] then suggested a modified version of the
algorithm, commonly referred to as Graphical Lasso or Glasso for each sub-problem
is reformulated as a Lasso regression problem and solved as such. Mazumder
and Hastie [2012a,b] then further improved the Glasso algorithm through smart
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feature screening rules. More recently, Krishnamurthy et al. [2011] used coordinate
descent to solve each sub-problem and released an R package which can solve (4)
for a whole regularization path in a short amount of time - within a minute for
p = 1, 000. Coordinate descent [Scheinberg and Rish, 2009], alternating linearization
[Scheinberg et al., 2010], quadratic approximation and Newton’s method [Hsieh
et al., 2011, Oztoprak et al., 2012, Hsieh et al., 2013], and stochastic proximal
methods [Atchadé et al., 2015] have also been explored.

In earlier work, Meinshausen et al. [2006] proposed an efficient algorithm to
discover the sparsity pattern of Σ−1 by fitting a Lasso model to each variable, using
the others as predictors. It has later been shown [Banerjee et al., 2008, Friedman
et al., 2008] that their approach can be viewed as an approximation of Problem (4).
More recently, Fattahi and Sojoudi [2017] proposed a simple thresholding heuristic
and explored its connection with the graphical lasso (4)

Though the problem is tractable, it shares in the statistical shortcomings of
its motivator, Lasso. Problem (4) leads to biased estimates because the `1-norm
penalty term penalizes large entries more than the smaller entries [Lam and Fan,
2009]. Accordingly, upon increasing the degree of regularization, (4) sets more
entries of Θ to zero but leaves true predictors outside of the support. Thus, as
soon as certain regularity conditions on the data are violated, Problem (4) becomes
suboptimal as a variable selector and in terms of delivering a model with good
predictive performance. In contrast, Problem (3) chooses variables to enter the
active set without shrinking the entries in Θ. Lam and Fan [2009] discuss other
statistical shortcomings of (4).

To address these shortcomings, other relaxation of (3) have been proposed using
smooth nonconvex penalties such as smoothly clipped absolute deviation (SCAD)
[Fan and Li, 2001] and minimax concave penalty (MCP) [Zhang et al., 2010], which
are folded concave penalties that do not introduce extra bias for estimating nonzero
entries with large absolute values. Theoretical properties of these methods are well
studied [Rothman et al., 2008, Lam and Fan, 2009]. However, these formulations
are nonconvex and cannot provide a guarantee on how close their optimal solution
is to the optimal solution of Problem (3).

Estimators and approaches other than using maximum likelihood have also
been proposed for inducing sparsity. Two such estimators are the constrained
`1-minimization for inverse matrix estimation (CLIME) estimator [Cai et al., 2011]
and the graphical Dantzig selector [Yuan, 2010]. Rank and factor based methods
have also been proposed; for a more complete survey of the different methods, see
Fan et al. [2016].

From an optimization perspective, mixed-integer semi-definite optimization
(MI-SDP) has received a lot of attention in recent years, for they naturally appear in
robust optimization problems with ellipsoidal uncertainty sets [Ben-Tal et al., 2009]
or as reformulations of combinatorial problems [Sotirov, 2012]. Problem-specific
MI-SDP strategies have been developed for problems such as binary quadratic
programming [Helmberg and Rendl, 1998], robust truss topology [Yonekura and
Kanno, 2010] or the max-cut problem [Rendl et al., 2010]. More recently, rounding
and Gomory cuts [Çezik and Iyengar, 2005, Atamtürk and Narayanan, 2010], branch-
and-bound [Gally et al., 2018] and outer-approximation schemes [Lubin et al., 2018]
have also been developed, in an attempt to provide the same level of general-purpose
solvers for MI-SDP as there are for mixed-integer linear optimization. Our approach
is similar to the outer-approximation procedure described by Lubin et al. [2018]
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but leverages the specific dependency between the binary and continuous variables
in our problem. It also disconnects the combinatorial aspect of the problem from
its SDP component, allowing us to benefit both from advances in mixed-integer
linear optimization and tailor-made semidefinite strategies.

2.4 Equivalence between Regularization and Robustness

As originally enunciated by Banerjee et al. [2008], the `1-regularization in (4) is
the aftermath of a robust optimization problem. Indeed, one can prove a clear
equivalence between regularization and robustification in the case of sparse inverse
covariance problems:

Theorem 1.A For any vector norm ‖ · ‖,

min
Θ�0

〈Σ,Θ〉 − log det Θ + λ‖Θ‖ = min
Θ�0

max
U:‖U‖?6λ

〈Σ + U,Θ〉 − log det Θ,

where ‖ · ‖? denotes the dual norm of ‖ · ‖.

Theorem 1.B For any (p, q)-induced norm ‖ · ‖(p,q),

min
Θ�0

〈Σ,Θ〉 − log det Θ + λ‖Θ‖(p,q) = min
Θ�0

max
U∈U(p,q)

〈Σ + λU,Θ〉 − log det Θ,

with U(p,q) :=
{
uvT : ‖u‖p = 1, ‖v‖q? = 1

}
and q? defined such that 1/q + 1/q? = 1.

Let us recall that for any matrix A and p, q ∈ Z+ ∪ {∞}, the (p, q)-induced
norm of A is defined as

‖A‖(p,q) := max
u:‖u‖p=1

‖Au‖q.

In particular, the operator norm or the largest singular value of A is equal to its
(2, 2)-induced norm.

Proof Theorem 1.A follows directly from the definition of the dual norm

‖Θ‖ = max
U:‖U‖?61

〈U,Θ〉.

Theorem 1.B follows from the fact that the dual norm of the `q-norm is the
`q? -norm, so that:

‖A‖(p,q) = max
u:‖u‖p=1

‖Au‖q = max
u:‖u‖p=1

max
v:‖v‖q?=1

vTAu.

In the result above, the matrix U should be interpreted as the amount of noise on
the covariance matrix Σ one wishes to be protected against. Similar equivalence
results have been proved in a wide range of other statistical settings [Bertsimas
and Copenhaver, 2018]. From a Bayesian perspective, regularization can also be
derived by imposing some prior distribution on the entries of Θ and there is a one-
to-one correspondence between the class of prior distributions, the corresponding
uncertainty set in the robust perspective and the resulting penalty.

In addition to this robustness property, the `1-norm is fortunately sparsity-
inducing. Killing two birds with one stone, `1-regularization has naturally received
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a lot of attention from the statistical community. Yet, it is fair to admit that the
robustness interpretation of the `1-norm has been neglected and that many variants
of (4) use the `1-norm solely for sparsity, even though it makes little sense from
a robust perspective. For instance, diagonal entries of Θ should be nonzero - a
consequence of Hadamard’s inequality and the constraint Θ � 0. This motivates
the fact that diagonal entries are excluded from the cardinality constraint in (3).
Similarly, many derivatives of (4) exclude diagonal entries from the `1-penalty,
which, from a robust point of view, is equivalent to considering that diagonal entries
of Σ are noiseless. To avoid such unrealistic assumptions, robustness and sparsity
should, in our opinion, be considered as two distinct properties and be treated as
such.

3 Integer Optimization Perspective

We first formulate Problem (3) as binary optimization problem in Section 3.1, and
prove that it is non-smooth in general. In practice, introducing big-M constants
is a simple way to linearize such mixed-integer bilinear problems. Yet, choosing
the right big-M values is hard, making these reformulations not always amenable
for computation. We show in Section 3.2 that big-M formulations can be viewed
as a special case of regularization. With regularization as a unifying perspective,
we prove that a certain class of penalty functions leads to smooth convex integer
optimization problems and propose a general cutting-plane algorithm to solve
them in Section 3.3. We believe our approach provides a novel perspective on the
big-M paradigm. In particular, we regard big-M more as a smoothing technique
than a simple modeling trick and reveal promising alternatives, such as ridge
regularization.

3.1 Problem Formulation

Let us introduce binary variables Zij to encode the support of the inverse covariance
matrix Θ. The set of feasible supports is

Skp =



Z ∈ {0, 1}p×p : ∀i, Zii = 1 and ∀i > j, Zij = Zji and

∑

i,j>i

Zij 6 k



 .

The first set of constraints allows diagonal elements of Θ to take nonzero values.
The second set of constraints follows from the fact that Θ is symmetric. With
these notations, we formulate the cardinality constrained Problem (3) as the
mixed-integer optimization problem

min
Z∈Sk

p ,Θ�0
〈Σ,Θ〉 − log det Θ s.t. Θij = 0 if Zij = 0 ∀(i, j),

which can be considered as a binary-only optimization problem

min
Z∈Sk

p

h(Z), (5)
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with the objective function

h(Z) := min
Θ�0

〈Σ,Θ〉 − log det Θ s.t. Θij = 0 if Zij = 0 ∀(i, j). (6)

The inner-minimization problem defining h(Z) is a so-called covariance selection
problem [Dempster, 1972], which is a well-studied problem in the literature, and
can be efficiently solved. In Section 4, we discuss more details of how the problem
can be solved using tailored first-order methods [Dahl et al., 2008] or coordinate
descent schemes [Scheinberg and Rish, 2009, Krishnamurthy et al., 2011]. Note that
the problem is always feasible since the identity matrix satisfies all the constraints.
Fortunately, as a function of Z, h(Z) is convex (see proof in Appendix A). However,
h(Z) is piece-wise constant and exhibits strong discontinuities. In the following
subsection, we explore techniques to reformulate or approximate h(Z) in a smooth
convex way, through the unifying lens of regularization.

3.2 Smoothing through regularization

In this section, we explore a regularized version of (6),

h̃(Z) := min
Θ�0

〈Σ,Θ〉 − log det Θ +Ω(Θ) s.t. Θij = 0 if Zij = 0 ∀(i, j),

where Ω is regularizer, that is, a convex function of Θ. In particular, we are
interested in two special cases:

Big-M regularization: A traditional way to express the dependency between Z and
Θ in (6) is to use big-M constraints

h̃(Z) := min
Θ�0

〈Σ,Θ〉 − log det Θ s.t. |Θij | 6 MijZij ∀(i, j).

Mij ∈ R+ are constants chosen sufficiently large such that if Θ∗ is a minimizer
for Problem (3), then |Θ∗ij | 6 Mijzij . In this case, minZ h̃(Z) = minZ h(Z), i.e., h
and h̃ have the same minimum with

Ω(Θ) =

{
0 if |Θij | 6 Mij ,

+∞ otherwise.

Ridge (or `22) regularization: One can choose

Ω(Θ) =
1

2γ
‖Θ‖22 =

1
2γ

∑

i,j

Θ2
ij ,

for some positive constant γ. Whatever γ > 0, Ω(Θ) > 0, so h̃ is not a reformulation
but an upper-approximation of h. Ideally, one would like to minimize h̃ for 1/γ → 0.
However, as previously seen, regularization induces desirable robustness properties,
so having 1/γ > 0 may be beneficial from a statistical perspective.

Under some weak assumptions on Ω, which are satisfied in the special cases of
big-M and ridge regularization, one can reformulate h̃(Z) using strong duality:
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Theorem 2 For any Z ∈ {0, 1}p×p such that Zii = 1 for all i = 1, . . . , p,

h̃(Z) := min
Θ�0

〈Σ,Θ〉 − log det Θ +Ω(Θ) s.t. Θij = 0 if Zij = 0 ∀(i, j),

= max
R:Σ+R�0

p+ log det(Σ + R)− 〈Z,Ω?(R)〉,

where Ω? is some generalization of the Fenchel conjugate for Ω [see Boyd and
Vandenberghe, 2004, chap. 3.3].

An explicit statement of the assumptions and proof of the theorem can be found
in Appendix A. Theorem 2 calls for a few observations:

1. h̃(Z) is a point-wise maximum of linear, hence convex, functions of Z. As a
result, h̃ is a convex function.

2. With the dual reformulation, it is easy to see that h̃(Z) remains bounded.
3. For the big-M regularization, Theorem 2 reduces to

h̃(Z) = min
Θ�0

〈Σ,Θ〉 − log det Θ s.t. |Θij | 6 MijZij ,

= max
R:Σ+R�0

p+ log det(Σ + R)−
∑

i,j

MijZij |Rij |.

4. For the `22-regularization, Theorem 2 reduces to

h̃(Z) = min
Θ�0

〈Σ,Θ〉 − log det Θ +
1

2γ
‖Θ‖22 s.t. Θij = 0 if Zij = 0,

= max
R:Σ+R�0

p+ log det(Σ + R)− γ

2

∑

i,j

ZijR
2
ij .

5. Given a feasible support Z, we denote by R?(Z) the associated dual variable,
i.e., h̃(Z) = p + log det(Σ + R?(Z)) − 〈Z,Ω?(R?(Z))〉. Then for any feasible
Z′, we have

h̃(Z′) > h̃(Z) + 〈Z′ − Z,Ω?(R?(Z))〉. (7)

The inequality above provides a linear lower-approximation of h̃ which coincides
with h̃ at Z. In particular, it proves that −Ω?(R?(Z)) is a subgradient of h̃
at Z. This observation plays a central role in devising a numerical strategy to
solve (5).

3.3 Cutting-plane algorithm

Instead of solving the non-smooth integer optimization Problem (5), we consider
its regularized proxy

min
Z∈Sk

p

h̃(Z), (8)

with

h̃(Z) = min
Θ�0

〈Σ,Θ〉 − log det Θ +Ω(Θ) s.t. Θij = 0 if Zij = 0 ∀(i, j), (9)

= max
R:Σ+R�0

p+ log det(Σ + R)− 〈Z,Ω?(R)〉,
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as studied in the previous section. Our numerical approach substitutes h̃ in (8) by
a piece-wise linear lower-approximation and iteratively refines this approximation.
This process is equivalent to constraint generation: Applying the inequality (7) at
all feasible supports, h̃ can indeed be seen as a piece-wise linear convex function
with an exponential number of pieces:

h̃(Z′) = max
{
h̃(Z) + 〈Z′ − Z,Ω?(R?(Z))〉 : Z ∈ Skp

}
, ∀Z′ ∈ Skp ,

and the algorithm iteratively includes new pieces. The method is referred to in
the literature as outer-approximation [Duran and Grossmann, 1986] or generalized
Benders decomposition (GBD) and described in pseudo-code in Algorithm 3.1.

Algorithm 3.1 Cutting-plane algorithm

Require: Initial point Z(1) ∈ Skp , sample covariance matrix Σ, sparsity parameter k, and
tolerance ε.
t← 1
repeat

Compute Zt+1, ηt+1 solution of

min
Z∈Sp

k ,η
η s.t. η > h̃(Zi) + 〈Z− Zi,Ω?(R?(Zi))〉, ∀i = 1, . . . , t. (10)

Compute R?(Zt+1), h̃(Zt+1) by solving (9).
t← t+ 1

until ηt < h̃(Zt)− ε
return Zt

We summarize some important observations, properties, and connections to the
literature for the above algorithm.

1. Generalized Benders decomposition is a method that can be used to solve
convex mixed-integer optimization problems. In this context, Problem (10) is
often referred to as the master problem, and Problem (9) is referred to as
the (separation) subproblem. The GBD algorithm converges in this context
in a finite number of steps because subproblems (9) are convex and satisfy
Slater’s condition, and the set Skp is finite (see Theorem 2.4 in [Geoffrion, 1972]).
Thus, the above algorithm converges to an optimal solution for the cardinality
constrained Problem (8) in a finite number of steps.

2. Note that at each iteration the algorithm supplies a feasible solution Zt, an
upper bound h̃(Zt), and a lower bound ηt on the optimal solution. Current
heuristic approaches do not offer such a certificate of suboptimality.

3. Algorithm 3.1 requires to solve a large mixed-integer linear optimization problem
each time a new constraint is added. Thus, a branch and bound tree is built at
each iteration of the algorithm. Lazy constraint callbacks provide an alternative
to building a new branch and bound tree at each iteration of the algorithm.
When a constraint is added, instead of resolving the problem, the constraint is
added to all active nodes in the current branch-and-bound tree. This enables
the same tree to be used for all iterations. This saves the rework of building a
new tree every time a mixed-integer feasible solution is found. Lazy constraint
callbacks are a relatively new type of callback. CPLEX 12.3 introduced lazy
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constraint callbacks in 2010 and Gurobi 5.0 introduced lazy constraint callbacks
in 2012. To date, the only mixed-integer solvers which provide lazy callback
functionality are CPLEX [ILOG, 2012], Gurobi [Gurobi Optimization, 2015],
and GLPK (see http://gnu.org/software/glpk/).

4. The algorithm can greatly benefit from the choice of a good initial solution Z(1).
In practice, we initialize the algorithm with the support returned by Glasso or
Meinshausen and Bühlmann’s [Meinshausen et al., 2006] local neighborhood
selection method.

3.4 Implementation considerations and cross-validation

In this section, we describe the grid-search procedure to tune the value of the
sparsity level, k, and the regularization parameter, M or γ.

Two alternatives have been considered in the literature for parameter tuning.
The first approach is cross-validation: Before any computation, the data is divided
into a training and a validation set, typically with a ratio of 2 : 1. Inverse covariance
matrices are computed using the training data only and evaluated out-of-sample on
the validation data. We pick the parameter values that lead to the best out-of-sample
performance in terms of negative log-likelihood. Though simple, cross-validation
does not generally have consistency properties for model selection [Shao, 1993].
Its“leave-one-out” or “multi-fold” variants are computationally more expensive
for they repeat this process on multiple training / validation splits. The second
approach consists in using an in-sample information criterion, such as the extended
information criterion from Foygel and Drton [2010]

BIC1/2(Θ) = n
[
〈Σ,Θ〉 − log det Θ

]
+ ‖Θ‖0 logn+ 2‖Θ‖0 log p,

which balances goodness of fit and complexity of the model. This criterion is
satisfying for it can be computed in-sample and is asymptotically consistent.
Consistency results, however, only hold asymptotically and under some assumptions
on the data. We will compare those two approaches numerically in Section 5.

We test different values of k in a grid search manner. Let us remark that the
sparsity k only impacts the feasible set of Problem (8) and that all linear lower
approximations of h̃ generated from solving a particular instance of Problem (8)
are valid for any value of k. Practically speaking, we solve a series of problems
(8) for decreasing values of k, where each new problem is constructed from the
previous one by adding a tighter cardinality constraint. In such a way, each new
problem benefits from the cuts generated for previous problems.

Regarding the regularization parameter, we inspect values which are uniformly
log-distributed, starting from M0 = p/‖Σ‖1 for the big-M regularization and
γ0 = 4p/‖Σ‖22 for the ridge regularization. Those values follow from bounds on the
norm of Θ?, the optimal solution of Problem (8), which we prove in Appendix A.3.
For the big-M formulation, we describe an optimization-based approach to find
valid M values from any feasible solution in Appendix B.

4 Covariance selection problem

In this section, we investigate numerical strategies to efficiently solve separation
subproblems of the form (9). We provided both primal and dual formulations for
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the separation Problem (9). In Section 4.1, we discuss the main advantages of
solving the primal vs. the dual formulation. In Section 4.2 and 4.3 we describe
two families of numerical algorithms. In Section 4.4, we compare empirically those
algorithms.

4.1 Comparisons between primal and dual approaches

The overall cutting-plane algorithm 3.1 requires at each iteration not only the opti-
mal value h(Z) but also the associated dual variables R?(Z), which are eventually
needed to obtain the subgradients −Ω?(R?(Z)). For that matter, solving the dual
formulation in (9) appears attractive.

In the end, the variables of interest are the primal ones, i.e., the sparse precision
matrix. Optimal primal and dual variables satify the KKT conditions Σ + R? −
(Θ?)−1 = 0 (see proof of Theorem 2 in Appendix A.2). So, primal variables can be
reconstructed from the dual variables at the cost of a p× p matrix inversion. Due
to numerical errors however, inverting R?(Z) might not lead to a sparse matrix. To
that extent, it might be favorable to solve the primal formulation in (9), and obtain
dual variables by inverting Θ?(Z). This computation might be computationally
expensive (O(p3)) , but Θ? is sparse, it involves at most p+ 2k nonzero coefficients,
a pattern which numerical algorithms could exploit.

All in all, the primal and dual formulations seem equally attractive. Moreover,
both objective functions involve the log-determinant. As a result, any gradient-based
method will require updating the decision variable, as well as its inverse. Matrix
inversion is thus the computational bottleneck for both primal and dual methods.
Based on these observations, we identified two streams of relevant numerical
strategies:

1. The first stream of algorithms implements standard first- or second-order
methods to solve the primal problem, leveraging the structure of the sparsity
pattern defined by Z to efficiently compute and update the inverse of Θ [Dahl
et al., 2008].

2. The second stream consists in coordinate descent methods for either the primal
[Scheinberg and Rish, 2009] or the dual formulation [Krishnamurthy et al.,
2011], where each iteration leads to low-rank update of the matrix and its
inverse.

4.2 Gradient-based methods for the primal formulation

Dahl et al. [2008] proposed an efficient gradient-based algorithm for solving the
unregularized covariance selection Problem (6). The gradient of the objective
function is

Σ−Θ−1.

However, thanks to the constraints that Θij = 0 if Zij = 0, only the p + 2k
coordinates Θij with (i, j) such that Zij = 1 are to be updated. In this context,
Dahl et al. [2008] showed how a particular kind of sparsity patterns - patterns
whose clique graph is chordal [see Dahl et al., 2008, Section 3 for a definition] -
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could enable smart block structure decomposition of both Θ and its inverse and
fast computations of Θij and Θ−1

ij for the coordinates (i, j) of interest. They also
generalize their approach to sparsity patterns which are not chordal, through the
use of so-called chordal embeddings. For large and sparse matrices, Dahl et al. [2008]
report speedups in runtime of two to three orders of magnitude for computing the
inverse, and hence the gradient of the objective function. In a similar fashion, their
method can accelerate Hessian updates as well. They publicly released CHOMPACK,
a library which implements sparse matrix computations leveraging chordal sparsity
patterns [Vandenberghe et al., 2015].

Lastly, Dahl et al. [2008] report that a limited-memory Broyden-Fletcher-
Goldfarb-Reeves (BFGS) method significantly outperforms other first order meth-
ods, such as conjugate gradient, for the covariance selection Problem (6). Surpris-
ingly, the authors mention but do not numerically compare with coordinate descent
methods, which will be the topic of the next section.

In the case of the regularized covariance selection Problem (9), their approach
can easily be adapted:

– For big-M regularization, one simply needs to project the iterates to ensure
the constraints |Θij | 6 Mij are satisfied throughout the algorithm.

– Ridge regularization adds a 1
γΘ term to the gradient, which raises no additional

computational difficulty.

4.3 Coordinate descent methods

Coordinate descent methods are one of the most widely used and highly scalable
methods in statistical learning problems. Indeed, as previously mentioned, the most
successful methods for `1-regularized inverse covariance estimation (4) all involve a
block coordinate descent strategy for the dual formulation and differ only in the
algorithm used to solve the subproblem associated with each block. The caveat
in coordinate descent methods often resides in an efficient update step, combined
with a good rule for picking the coordinate to update. As noted by many authors
in similar contexts [Dahl et al., 2008, Scheinberg and Rish, 2009, Krishnamurthy
et al., 2011], the update step can be computed in closed-form in our case, which
makes coordinate descent methods very attractive.

For clarity, we illustrate the main ingredients of these methods on the primal
formulation with `22-regularization only, but the same ideas can be applied to the
dual formulation and to big-M regularization as well. For a given feasible support
Z, we solve

min
Θ�0

〈Σ,Θ〉 − log det Θ +
1

2γ
‖Θ‖22 s.t. Θij = 0 if Zij = 0.

4.3.1 Coefficient updates

Given Θ � 0, we first consider the update of the (i, j)th coefficient with i 6= j,
that is, Θij ← Θij + t for some t ∈ R. In matrix form, this can be written as
Θ← Θ + t(eieTj + eje

T
i ). Denoting W := Θ−1 the inverse of Θ, we have

log det(Θ + teie
T
j + teje

T
i ) = log det Θ + log

(
1 + 2Wijt+ (W 2

ij −WiiWjj)t2
)
,
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so that the best update is obtained by minimizing

2Σijt− log
(

1 + 2Wijt+ (W 2
ij −WiiWjj)t2

)
+ 1

γ (Θij + t)2.

Setting the derivative to zero, we find the best update t? as the unique solution of
the equation

2Σij −
2Wij + 2(W 2

ij −WiiWjj)t
1 + 2Wijt+ (W 2

ij −WiiWjj)t2
+ 2

γ (Θij + t) = 0,

which satisfies 1 + 2Wijt + (W 2
ij −WiiWjj)t2 > 0. The above equation can be

reduced into a cubic equation in t.
Regarding diagonal coefficients, the best update for the (i, i)th coefficient,

Θii ← Θii + 2t, can similarly be found by minimizing

2Σiit− log (1 + 2Wiit) + 1
2γ (Θii + 2t)2,

over t such that 1 + 2Wiit > 0, which boils down to solving a quadratic equation.
In both cases, the value t? for the best update Θ← Θ + t?(eieTj + eje

T
i ) can

fortunately be computed in closed-form, i.e., constant time. After updating Θ, W
can be update in O(p2) steps only, using Woodbury-Sherman–Morrison formula.

Observe that using these one-coordinate updates, the matrix Θ remains positive
definite throughout the algorithm. Indeed, using Shur complements [Zhang, 2006],
Θ + t?(eieTj + eje

T
i ) � 0 if Θ � 0 and 1 + 2Wijt

? + (W 2
ij −WiiWjj) > 0. If the

algorithm is properly initialized by a positive definite matrix, positive definiteness
of the subsequent iterates then follows by induction.

4.3.2 Update rule and computational complexity:

In the case of Glasso, Scheinberg and Rish [2009] successfully suggested a greedy rule:
at each iteration, the algorithm scans through all the coefficients of Θ and compute
the objective decrease resulting from their update. Then, only the coefficient leading
to the largest improvement is updated, as described in Algorithm 4.1. All together,
one iteration of the algorithm updates one coefficient and requires O(p2) operations,
with the update of W as the computational bottleneck. Note that this strategy
is particularly efficient on the primal formulation, since there are only p + 2k
potentially nonzero coefficients, compared with p× (p+ 1)/2 in the dual.

Algorithm 4.1 Greedy coordinate descent algorithm

Require: Support Z ∈ Skp , sample covariance matrix Σ, regularization parameter γ.
repeat

For all (i, j) such that Zij = 1, compute the objective decrease resulting from the update
of the (i, j)th coefficient.
Update Θ← Θ + t?eie

T
j + t?eje

T
i for (i, j) which leads to the biggest improvement.

Update W accordingly
until Stopping criterion
return Θ

Since updating the inverse of Θ remains the challenging part, Krishnamurthy
et al. [2011] suggested a block coordinate approach for solving the dual formulation
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of the Lasso estimator (4). We can adapt their approach to our regularized covari-
ance selection problem, both in primal and dual formulation. From a high level
perspective, at each iteration, a whole row is updated instead of a single coefficient.
The computational cost remains O(p2) steps per iteration, but one might expect
fewer iterations in total. We refer to Krishnamurthy et al. [2011] for a detailed
presentation of the updates and the overall algorithm.

We terminate the algorithm as soon as the duality gap or the objective decrease
is sufficiently small.

4.4 Empirical performance and comparisons

In this section, we compare the computational time required to solve the covariance
selection problem by each method and see how they scale with the problem size
p and the sparsity k. We also investigated how the conditioning of the problem,
through the number of samples n used to compute the empirical covariance matrix
Σ and the regularization parameter M or γ, impacted computational time. However,
we observed little effect and decided not to report those experiments.

4.4.1 Instance generation

As in Yuan and Lin [2007], Friedman et al. [2008], we consider a full precision
matrix Θ0 with Θii = 2 and Θij = 1 for i 6= j, in short Θ0 = Ip + eeT . We then
generate n random samples from the normal distribution N (0,Θ−1

0 ) and compute
the empirical covariance matrix Σ. We randomly sample a feasible support Z from
Skp and solve Problem (9).

The degrees of freedom in our simulations are the dimension p and the sparsity
level t. Based on those quantities, k and n are fixed to

k =
⌊
t
p(p− 1)

2

⌋
,

n = p.

4.4.2 Methods implementation

For both the big-M and the `22 regularization problem, we implement and compare
five methods:

– a BFGS method on the primal formulation (BFGS_primal), using the library
CHOMPACK for sparse matrix computations [Vandenberghe et al., 2015],

– four (block) coordinate descent strategies, denoted CD_primal, CD_dual,
BCD_primal, and CD_dual.

All code is written in Julia 0.6.0 [Lubin and Dunning, 2015], with the exception
of the BFGS algorithm, which is implemented in Python 3.5.3 and integrated
into the main Julia script using the PyCall package. We terminate the algorithms
when the duality gap falls below 10−4 or the objective improvement after one
iteration is less than 10−12.
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Fig. 1: Impact of dimension size p and sparsity level t on computational time, for
the big-M regularization with M = M0 = p/‖Σ‖1.
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Fig. 2: Impact of dimension size p and sparsity level t on computational time, for
the ridge regularization with γ = γ0 = 4p/‖Σ‖22.

4.4.3 Empirical results

Figures 1 and 2 report computational time as a p and t increase for the big-M
and ridge regularization respectively. From these experiments, we can make the
following observations:

1. For (block) coordinate descent methods, solving the primal formulation is more
effective than solving the dual problem.

2. Coordinate descent methods compete with block coordinate descent schemes
when the sparsity level t is very low (less than 1%) but do not scale as well as t
increases.

3. As a result, BCD_primal is often the best method for solving Problem (9).
4. The BFGS_primal algorithm generally takes 50−100 times longer than BCD_primal.

For p > 1000, the algorithm did not terminate after a 12-hour time limit.

5 Computational Results

In this section, we present numerical results on both synthetic (Section 5.1) and
real data (Section 5.2).
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5.1 Synthetic experiments

We follow the methodology described in Banerjee et al. [2008]. We sample precision
matrices of the form Θ0 = δIp + 0.5Z0, where Z0 ∈ Spktrue

and δ is chosen so
that the condition number is equal to p. We then randomly sample n vectors from
a multivariate normal distribution N (0,Θ−1

0 ), compute the empirical covariance
matrix Σ and standardize it. To evaluate the output of the algorithms out-of-
sample, we generate similarly n/2 (resp. 5n) data points for the validation (resp.
test) set.

In this setting, we can assess the feature selection ability of a method in terms
of accuracy A, i.e., the fraction of the ktrue nonzero upper-diagonal coefficients of
Θ0 correctly recovered, and false detection rate FDR, defined as the proportion of
coefficients in the support of the solution which are not in the support of Θ0. We
also compute the negative log-likelihood (−LL) of the returned precision matrix
on the test set.

All discrete optimization problems are terminated once the tolerance gap falls
below 10−4, where the tolerance gap is the percentage difference between the final
lower and upper bounds, or after a 5-minute time limit.

5.1.1 Impact of regularization and sparsity k

First, we consider one problem instance with p = 200, n/p = 1, and sparsity
level ttrue = 1%. The discrete formulation (8) involves two hyper-parameters, the
sparsity k and the regularization parameter M or γ, which needs to be tuned using
grid-search as described in Section 3.4.

The value of the regularization parameter has a crucial impact on the overall
computational time of the cutting-plane algorithm. Figure 3 shows a steep increase
in computational time (top) and in the number of cuts (middle) as the regularization
parameter, for both big-M and ridge regularization, increases. Unfortunately, for
applications of interest in our experiments, we needed to use high values of M
and γ and had to stop the algorithm after a 5-minute time limit. Yet, this early
stopping strategy did not harm the overall performance of our approach. Indeed,
the algorithm is able to find optimal or near-optimal solutions in a short amount
of time but spends most of the time proving optimality. For moderate values of
M/γ, the optimality gap (Figure 3(c)) after five minute is indeed relatively small,
and the algorithm spents a lot of time closing that gap. For large regularization
parameter value, on the other hand, the gap increases significantly (over 100%) and
becomes uninformative. This corresponds to the regime of most of our subsequent
experiments for which we will not report optimality gaps. We provide extensive
computational time experiments on smaller-size problems as n, p and k vary in
Appendix C.

At the end of the grid search, we select the best pair of parameters and compare
the quality of the solution in terms of sparsity, accuracy, false detection and out-of-
sample log-likelihood with solutions returned by Glasso [Friedman et al., 2008] and
Meinshausen and Bühlmann’s approximation scheme [Meinshausen et al., 2006],
implemented in the R package glasso2. We tuned the hyper-parameter ρ in those
formulations through a grid search, testing values which led to similar sparsity level

2 available at https://cran.r-project.org/web/packages/glasso/
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Fig. 3: Impact of the regularization parameter M/M0 for big-M (left), γ/γ0 for
ridge (right) on computational time (top), number of cuts (middle) and relative
optimality gap (bottom). For the big-M regularization, M0 = p/‖Σ‖1. For ridge
regularization, γ0 = 4p/‖Σ‖22.

k as the discrete formulations. Table 1 (resp. Table 2) reports the results when the
hyper-parameters are tuned using the negative log-likelihood on a test set (resp.
the information criterion from Foygel and Drton [2010]).

In both cases, we observe that discrete formulations outperform the other
two methods in terms of resulting sparsity (by at least 40%), false detection
rate (by a factor 4-12) and out-of-sample likelihood (by 11-18%). On the other
hand, Meinshausen and Bühlmann’s approximation (MB in short) is always the
fastest and most accurate method. Actually, we use its solution as a warm-start
to our discrete optimization method. Let us remark that the big-M and the ridge
formulation perform almost identically and that their performance is barely not
impacted by the choice of the criterion. On the contrary, the model selected with
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Glasso and MB highly depends on the cross-validation criterion: with negative
log-likelihood, both methods tend to select the less sparse model, whereas much
sparser models are selected with BIC1/2.

Method big-M Ridge MB Glasso

k? 199 (0) 199 (0) 796 (0) 796 (0)
A 0.9508 (0.0080) 0.9508 (0.0080) 0.9960 (0.0020) 0.9945 (0.0023)
FDR 0.0492 (0.0080) 0.0492 (0.0080) 0.6791 (0.0030) 0.7514 (0.0006)
−LL 141.39 (3.05) 141.37 (3.05) 157.11 (2.47) 162.05 (1.89)
Time (in s) 352.87 (11.12) 203.36 (39.00) 1.10 (0.04) 3.97 (0.31)

Table 1: Average performance on synthetic data with p = 200, n/p = 1, t = 1%
(leading to ktrue = 199), where the hyper-parameters of each formulation is chosen
using the best negative log-likelihood over a validation set. We report the average
performance over 10 instances (and their standard deviation).

Method big-M Ridge MB Glasso

k? 194 (5) 194 (5) 276 (8) 542 (26)
A 0.9317 (0.0081) 0.9317 (0.0081) 0.9890 (0.0037) 0.9814 (0.0047)
FDR 0.0444 (0.0062) 0.0444 (0.0062) 0.2634 (0.0213) 0.6329 (0.0167)
−LLtest 141.78 (3.24) 141.78 (3.24) 167.16 (2.48) 170.22 (2.42)
Time (in s) 349.5 (14.5) 225.2 (43.00) 0.90 (0.05) 2.77 (0.19)

Table 2: Average performance on synthetic data with p = 200, n/p = 1, t = 1%
(leading to ktrue = 199), where the hyper-parameters of each formulation are
chosen using the best in-sample extended Bayesian information criterion BIC1/2.
We report the average performance over 10 instances (and their standard deviation).

5.1.2 Impact of problem size

We now pursue the same comparison for problems with varying characteristics n/p,
t and p.

Number of samples n Information-theoretic intuition suggests that the problem
becomes easier as n increases. For n < p, the empirical covariance matrix is always
singular so its inverse cannot be properly defined without sparsity assumptions. On
the other side of the spectrum, theoretical guarantees exists for many algorithms
[Meinshausen et al., 2006, Santhanam and Wainwright, 2012] in the limit n→∞.
As shown on Figure 4, this intuition is confirmed experimentally with accuracy
(resp. false detection rate) increasing (resp. decreasing) as n/p increases. In addition,
we observe that the conclusions drawn from the previous section hold consistently
for various values of n: the discrete optimization formulations lead to reduced
false detection rate, while being of comparable accuracy with the most accurate
benchmark. They also demonstrate better out-of-sample negative log-likelihood
(Figure 6 in Appendix D) and their performance is robust to the cross-validation
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(b) False detection rate FDR vs. n/p.

Fig. 4: Impact of the number of samples n/p on support recovery. Results are
averaged over 10 instances with p = 200, t = 1%. Hyper-parameters are tuned
using out-of-sample negative log-likelihood.

criterion used (Figure 7 in Appendix D). Note that the other two methods, MB
and Glasso, do not exhibit a decreasing false detection rate when cross-validated
using the BIC1/2 criterion.

Sparsity level t Recall that the sparsity level t relates to the number of nonzero
upper-diagonal coefficients of Θ0 through the relationship

ktrue =
⌊
t
p(p− 1)

2

⌋
.

From Section 4.4, we observed that the separation Problem (9) is increasingly
harder to solve as t increases. In addition, the combinatorics of the master Problem
(8) also increases with t, since the size of the feasible set Sktrue

p grows exponentially
with ktrue as long as ktrue 6 p(p−1)

4 (i.e., t 6 0.5). Figure 5 represents accuracy and
false detection rate as t increases, for all methods, using negative log-likelihood as a
cross-validation criterion. We report negative log-likelihood and results with BIC1/2
as the cross-validation criterion in Appendix D (Figures 8 and 9 respectively).
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(b) False detection rate FDR vs. t.

Fig. 5: Impact of the sparsity level t on support recovery. Results are averaged
over 10 instances with p = 200, n = p. Hyper-parameters are tuned using the
out-of-sample negative log-likelihood.
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Dimension p For n/p and t fixed, the sparse precision matrix estimation problem
should not be statistically more difficult as p increases, but computationally more
expensive. We report results in Appendix D. Figures 10 and 11 report resulting
accuracy and false detection rate as p increases, using negative log-likelihood
and BIC1/2 respectively as a cross-validation criterion. Figure 12 reports the
impact of p on out-of-sample negative log-likelihood, Figure 13 the impact on time.
Interestingly, the big-M formulation is harder to scale than the ridge regularization,
due to the additional constraints. As a result, fewer cuts were generated within the 5-
minute time limit and the resulting precision matrix shows a different accuracy/false
detection trade-off with relatively poorer out-of-sample log-likelihood as p increases.

5.2 Analysis of a Breast Cancer Dataset

We apply our method on a real breast cancer dataset analyzed in [Hess et al.,
2006]. The dataset can be found at http://bioinformatics.mdanderson.org/.
The dataset consists of 22,283 gene expression levels for 133 patients, including
34 with pathological complete response (pCR) and 99 with residual disease (RD).
The pCR subjects are considered to have a high chance of cancer-free survival in
the long term, and thus it is of interest to study the response states of the patients
(pCR or RD) to preoperative chemotherapy. The main objective of this analysis is
to estimate the inverse covariance matrix of the gene expression levels and then
apply linear discriminant analysis (LDA) to predict whether or not a subject can
achieve the pCR state.

The dataset has been studied in [Fan et al., 2009] using Glasso, revised Glasso,
and SCAD. Later the same analysis was performed with the CLIME estimator [Cai
et al., 2011]. For the sake of consistency, we perform the same analysis, but use
our method to estimate inverse covariance matrices when needed. We first briefly
describe how the data is prepared and analyzed. We then present our results and
compare with known results in [Fan et al., 2009, Cai et al., 2011].

The data is first randomly divided into testing and training sets using stratified
sampling. 5 pCR subjects and 16 RD subjects are randomly chosen to constitute the
testing data. The remaining 112 subjects are chosen to constitute the training data.
This process is repeated 100 times and the following data preparation techniques
are used on each of the 100 instances of the training and testing data. A two-sample
t-test is performed between the two groups in the training dataset to determine
the most significant genes; we retain the 113 genes with the smallest p-values as
the variables for prediction and the rest are discarded. The data for each variable
(gene) is then standardized by dividing the data with the corresponding standard
deviation, estimated from the training dataset.

We next perform the linear discriminant analysis. We assume the normalized
gene expression data are normally distributed as N (µk,Σ), where the two groups
have the same covariance Σ, but different means, µk (k = 1 for pCR and k = 2 for
RD). The linear discriminant scores are as follows:

δk(x) = x>Σ̂−1µ̂k −
1
2
µ̂>k Σ̂−1µ̂k + log πk,

where πk = nk/n is the proportion of the number of observations in the training
data belonging to class k, and the classification rule is given by argmaxk δk(x).
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Based on each training dataset, we estimate the mean µ̂k as,

µ̂k =
1
nk

∑

i∈class−k
xi for k = 1, 2,

and the precision matrix Σ̂−1 using the cardinality constrained problem. Since the
sample size is less than the dimension of the matrix, the empirical covariance is
not invertible and can not be used in LDA.

Comparison Metrics Description

Specificity TN
TN+FP

Sensitivity TP
TP+FN

MCC
TP×TN−FP×FN√

(TP+FP )(TP+FN)(TN+FP )(TN+FN)

Table 3: Metrics used for prediction performance comparison for the breast cancer
dataset. TP, TN, FP, and FN are the number of true positives, true negatives, false
positives and false negatives, respectively. Positives correspond to pCR subjects
and negatives correspond to RD subjects.

The classification performance of δk is clearly associated with the estimation
performance of Σ̂−1. Let true positive (TP) be the number of pCR subjects δk
identifies as pCR subjects and let true negative (TN) be the number of RD subjects
δk identifies as RD Subjects. To compare prediction performance, we use comparison
metrics: specificity, sensitivity, and also Matthews Correlation Coefficient (MCC).
They are each defined in Table 3. MCC is widely used in machine learning for
assessing the quality of a binary classifier; it takes true and false, positives and
negatives, into account and is generally regarded as a balanced measure. A larger
MCC value indicates a better classifier [Fan et al., 2009].

Method Specificity Sensitivity MCC NNZ

Glasso 0.768 (0.009) 0.630 (0.021) 0.366 (0.018) 3923 (2)
Adaptive Lasso 0.787 (0.009) 0.622 (0.022) 0.381 (0.018) 1233 (1)

SCAD 0.794 (0.009) 0.634 (0.022) 0.402 (0.020) 674 (1)
CLIME 0.749 (0.009) 0.806 (0.017) 0.506 (0.020) 492 (7)
big-M 0.779 (0.011) 0.717 (0.019) 0.460 (0.019) 436 (3)
Ridge 0.775 (0.011) 0.716 (0.020) 0.453 (0.021) 427 (3)

Table 4: Comparison of estimators on the breast cancer dataset. Data for Glasso,
revised Glasso and SCAD is from [Fan et al., 2009] and data for CLIME is from
[Cai et al., 2011]. Average performance is reported on 100 instances of training and
testing data; standard deviations are included in parentheses. NNZ refers to the
number of nonzero entries in the estimate.

We perform the LDA for each of the 100 instances and report a summary of
average performance in Table 4. For each experiment, we calibrate the parameters
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k and M / γ using the extended Bayesian information criterion on the training
data. We observe that our proposed methods outperform Lasso-based methods on
all aspects. Our discrete optimization formulations are comparable to SCAD and
Clime, yet not dominated nor dominating by either of the two. Big-M and ridge
formulations improve over SCAD in terms of sensitivity and MCC, and over Clime
in terms of specificity. On the contrary, SCAD ranks first on specificity and Clime
on sensitivity and MCC. However, the biggest advantage of discrete formulations
over the others is that they produce sparser estimates. This is especially desirable
in the context of graphical models, when it is desirable to induce sparsity for
explanatory and predictive power.

6 Extension to graphical model estimation with structural information

In this section, we illustrate the modeling power of our mixed-integer formulation.
In graphical models estimation, it is not unusual to have some information or
intuition about the correlation structure between variables [Drton and Maathuis,
2017], information which can easily be encoded in our framework by additional
constraints on the binary variables Z.

Sparsity In this paper, we focused on imposing sparsity on the precision matrix Θ.
This requirement translates into the linear constraint

∑

i>j

Zij 6 k.

Partial knowledge of the support In some settings, the modeler has some partial
knowledge of the correlation structure and can inform the optimization problem
through the additional constraints

Zij = 0, if (i, j) ∈ S0,

Zij = 1, if (i, j) ∈ S1,

where S0 (resp. S1) is a set of indices for which Θijs are known to be 0 (resp. 6= 0).

Degree Information about the degree of each variable in the underlying structure
(or graph) might also be relevant [Ma et al., 2015]. In a protein contact graph for
example, the degree of each node is upper bounded by some constant. With our
framework, the degree of any variable i is given by di :=

∑
j>i Zij , so that adding

the linear constraints

`i 6 di 6 ui, ∀i

would enforce lower (`i) and upper (ui) bounds on the node degrees. In a more
flexible fashion,

∣∣∣∣∣
1
p

∑

i

di − d
∣∣∣∣∣ 6 ε,
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requires the average node degree to be within ε from a given target d. Similarly,
quadratic constraints could be added in order to match second moments. Finally,
many real-world networks, including the network of webpages or some gene regu-
latory networks, involve nodes which have a lot more edges than the others [Tan
et al., 2014]. Our framework can account for such hubs by introducing additional
binary variables yi, i = 1, . . . , p and adding the following constraints

di 6 dlow + (dhigh − dlow)yi, ∀i,∑

i

yi 6 m,

where dhigh (resp. dlow) is the maximum degree of a hub (resp. non-hub) node and
m is an upper-bound on the total number of hubs in the network.

Tree structure Finally, tree-structured graphical models have been extensively
studied in the literature [Chow and Liu, 1968] for they are sparse and allow efficient
inference. Introducing additional binary variables yki,j for all ordered triples (i, j, k)
of pairwise different nodes, Martin [1991] provided an extended formulation for a
spanning tree:

‖Z‖0 = p− 1,

ykij + ykji = Zij , ∀i, j = 1, . . . , p, i < p, ∀k = 1, . . . , p,
∑

j:j /∈{i,k}
ykij = 1− Zik ∀i, k = 1, . . . , p, i < k,

where ykij = 1 if and only if the edge (i, j) is contained in the tree and k is in the
component of j when removing (i, j) from the tree.

7 Summary

In this work, we use a variety of modern optimization methods to provide the
first provably exact algorithm for solving the cardinality-constrained negative
log-likelihood Problem (3). Through the unifying lens of regularization, we show
that the well known big-M constraints are not only a formulation technique but
more importantly a smoothing procedure. On that matter, ridge regularization
can be considered as a fruitful alternative. Our cutting-plane approach has the
additional benefit of treating separately the combinatorial aspect of the problem
from the SDP component of it. The method provides provably optimal solutions,
and delivers near optimal solutions in minutes for p in the 1, 000s and sparsity level
of the order of 1%. Computational experiments on both synthetic and real data
show that such discrete formulations deliver solutions with increased out-of-sample
predictive power and lower false detection rate than existing methods, while being
as accurate.

A Proofs of Theorem 2 and corollaries

In this section, we detail the proof of Theorem 2. We first specify the assumptions required on
the regularizer Ω, prove Theorem 2 and finally investigate some special cases of interest.
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A.1 Assumptions

We first assume that the function Ω is decomposable, i.e., there exist scalar functions Ωij such
that

∀Φ, Ω(Φ) =
∑

i,j

Ωij(Φij). (A1)

In addition, we assume that for all (i, j), Ωij is convex and tends to regularize towards zero.
Formally,

∀ (i, j), min
x

Ωij(x) = Ωij(0). (A2)

Those first two assumptions are not highly restrictive and are satisfied by `∞-norm constraint
(big-M), `1-norm regularization (LASSO) or ‖ · ‖22-regularization, among others.

For any function f , we denote with a superscript ? its Fenchel conjugate [see Boyd and
Vandenberghe, 2004, chap. 3.3] defined as

f?(y) := sup
x
〈x, y〉 − f(x).

In particular, the Fenchel conjugate of any function f is convex. Given Assumption (A1),

Ω?(R) = sup
Φ
〈Φ,R〉 −Ω(Φ),

=
∑

i,j

sup
Φij

ΦijRij −Ωij(Φij),

=
∑

i,j

Ω?ij(Rij).

As a result, it is easy to see that if Ω satisfies (A1) and (A2), so does its Fenchel conjugate.
Let us denote A ◦B the Hadamard or component-wise product between matrices A and

B. Consider a matrix R and a support matrix Z ∈ {0, 1}p×p. The function Z 7→ Ω?(Z ◦R) is
convex in Z, by convexity of Ω?. We now assume that it is linear in Z, that is, there exists a
function Ω? : Rp×p → Rp×p satisfying:

∀ Z ∈ {0, 1}p×p,∀R ∈ Rp×p, Ω?(Z ◦R) = 〈Z,Ω?(R)〉. (A3)

A.2 Proof of Theorem 2

Given Z ∈ {0, 1}p×p such that Zii = 1 for all i = 1, . . . , p, we first prove that under assumptions
(A1) and (A2):

h̃(Z) := min
Θ�0

〈Σ,Θ〉 − log det Θ +Ω(Θ) s.t. Θij = 0 if Zij = 0 ∀(i, j),

= max
R:Σ+R�0

p+ log det(Σ + R)−Ω?(Z ◦R).

Then, Assumption (A3) will conclude the proof.

Proof We decompose the minimization problem à la Fenchel.

h̃(Z) = min
Θ�0

〈Σ,Θ〉 − log det Θ +Ω(Θ) s.t. Θij = 0 if Zij = 0,

= min
Θ�0,Φ

〈Σ,Θ〉 − log det Θ +Ω(Z ◦Φ) s.t. Θij = ZijΦij ,

= min
Θ�0,Φ

〈Σ,Θ〉 − log det Θ +Ω(Z ◦Φ) s.t. Θ = Z ◦Φ.

In the last equality, we omitted the constraint Θ � 0, which is implied by the domain of log det.
Assuming (A1) and (A2) hold, the regularization term Ω(Z ◦Φ) can be replaced by Ω(Φ) and

h̃(Z) = min
Θ�0,Φ

〈Σ,Θ〉 − log det Θ +Ω(Φ) s.t. Θ = Z ◦Φ.
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The above objective function is convex in (Θ,Φ), the feasible set is a non-empty - Θ = Φ = Ip
is feasible - convex set, and Slater’s conditions are satisfied. Hence, strong duality holds.

h̃(Z) = min
Θ�0,Φ

〈Σ,Θ〉 − log det Θ +Ω(Φ) s.t. Θ = Z ◦Φ,

= min
Θ�0,Φ

max
R
〈Σ,Θ〉 − log det Θ +Ω(Φ) + 〈Θ− Z ◦Φ,R〉,

= max
R

min
Θ�0

[
〈Σ + R,Θ〉 − log det Θ

]
+ min

Φ
[Ω(Φ)− 〈Z ◦Φ,R〉] .

For the first inner-minimization problem, first-order conditions Σ + R −Θ−1 = 0 lead to
the constraint Σ + R � 0 and the objective value is p + log det(Σ + R). The second inner-
minimization problem is almost the definition of the Fenchel conjugate:

min
Φ

Ω(Φ)− 〈Z ◦Φ,R〉 = −max
Φ
〈Φ,Z ◦R〉 −Ω(Φ),

= −Ω?(Z ◦R)

Hence,

h(Z) = max
R:Σ+R�0

p+ log det(Σ + R)−Ω?(Z ◦R).

Remark: Notice that we proved that h̃(Z) could be written as point-wise maximum of concave
functions of Z. Assumption (A3) is needed to ensure that the function in the maximization is
convex in Z at the same time.

A.3 Special Cases and Corollaries

A.3.1 No regularization

We first consider the unregularized case of (6) where ∀Φ, Ω(Φ) = 0. Assumptions (A1) and
(A2) are obviously satisfied. Moreover, for any R,

Ω?(R) = sup
Φ
〈Φ,R〉 =

{
0 if R = 0,
+∞ otherwise.

With the convention that 0×∞ = 0, Assumption (A3) is satisfied and Theorem 2 holds:

h(Z) = max
R:Σ+R�0

p+ log det(Σ + R)− 〈Z,Ω?(R)〉,

= max
R:Σ+R�0

p+ log det(Σ + R) s.t. ZijRij = 0, ∀(i, j).

In particular, this reformulation proves that h(Z) is convex3, but that the coordinates of
its sub-gradient −Ω?(R?(Z)) are either 0 or −∞, hence uninformative. Note that the same
conclusion is true for `1-regularization.

From the proof of Theorem 2, one can derive a lower bound on ‖Θ?‖∞ which will be useful
for big-M regularization.

Theorem 3 The solution of (8) satisfies ‖Θ?‖∞ > p
‖Σ‖1

Proof For a feasible support Z, denote the optimal primal and dual variables Θ?(Z) and R?(Z)
respectively. There is no duality gap and KKT condition Θ?(Z)−1 = Σ + R?(Z) holds, so that
〈Σ,Θ?(Z)〉 = p. From Hölder’s inequality, we obtain the desired lower bound.

3 Convexity of h(Z) can also be proved from the primal formulation (6) directly. Take two
matrices Z1 and Z2, λ ∈ (0, 1), Z := λZ1 + (1− λ)Z2, then it follows from the definition (6)
that h(Z) 6 λh(Z1) + (1− λ)h(Z2).
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A.3.2 Big-M regularization

For the big-M regularization,

Ω(Θ) =

{
0 if |Θij | 6 Mij ,

+∞ otherwise
,

is decomposable with Ωi,j(Θij) = 0 if |Θij | 6 Mij , +∞ otherwise. Assumptions (A1) and (A2)
are satisfied. Moreover, for any R,

Ω?(R) = sup
Φ : ‖Φ‖∞6M

〈Φ,R〉 = ‖M ◦R‖1.

In particular, for any binary matrix Z,

Ω?(Z ◦R) =
∑

i,j

|MijZijRij | =
∑

i,j

MijZij |Rij |,

so that Assumption (A3) is satisfied with Ω?(R) = (Mij |Rij |)ij .

A.3.3 Ridge regularization

For the `22-regularization,

Ω(Θ) =
1

2γ
‖Θ‖22,

is decomposable with Ωi,j(Θij) = 1
2γΘ

2
ij . Assumptions (A1) and (A2) are satisfied. Moreover,

for any R,

Ω?(R) = sup
Φ
〈Φ,R〉 − 1

2γ
‖Φ‖22 =

γ

2
‖R‖22

In particular, for any binary matrix Z,

Ω?(Z ◦R) =
γ

2

∑

i,j

(ZijRij)2 =
γ

2

∑

i,j

ZijR
2
ij ,

since Z2
ij = Zij , so that Assumption (A3) is satisfied with Ω?(R) =

(
γ
2R

2
ij

)
ij
.

Moreover, from the proof of Theorem 2, one can connect the norm of Θ?(Z) and γ.

Theorem 4 For any support Z, the norm of the optimal precision matrix Θ?(Z) is bounded
by

γ

2
‖Σ‖2

(√
1 +

4p
γ‖Σ‖22

− 1

)
6 ‖Θ?(Z)‖2 6 √pγ.

Proof There is no duality gap:

〈Σ,Θ?(Z)〉 − log det Θ?(Z) +
1

2γ
‖Φ?(Z)‖22 = p+ log det(Σ + R?(Z)) +

γ

2
‖Z ◦R?(Z)‖22.

In addition, the following KKT conditions hold

Θ?(Z)−1 = Σ + R?(Z),

Φ?(Z) = γZ ◦R?(Z),
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where the second condition follows from the inner minimization problem defining Ω?. All in all,
we have

〈Σ,Θ?(Z)〉+
1
γ
‖Φ?(Z)‖22 = p.

Since Σ and Θ?(Z) are semi-definite positive matrices, 〈Σ,Θ?(Z)〉 > 0. Hence,

‖Φ?(Z)‖2 6 √pγ.

To obtain the lower bound, we apply Cauchy-Schwartz inequality 〈Σ,Θ?(Z)〉 6 ‖Σ‖2‖Θ?(Z)‖2
and solve the quadratic equation

1
γ
‖Φ?(Z)‖22 + ‖Σ‖2‖Θ?(Z)‖2 − p > 0.

In particular, the lower bound in Theorem 4 is controlled by the factor 4p
γ‖Σ‖22

, suggesting an

appropriate scaling of γ to start a grid search with.

B An optimization approach for finding big-M values

In this section, we present a method for obtaining suitable constants M. The approach involves
solving two optimization problems for each off-diagonal entry of the matrix being estimated.
The problems provide lower and upper bounds for each entry of the optimal solution. First we
present the problems, then we discuss how they are solved.

B.1 Bound Optimization Problems

Let Θ̂ be a feasible solution for (3) and define,

u := 〈Θ̂,Σ〉 − log det Θ̂.

A simple way to obtain lower bounds for the ijth entry of the optimal solution is to solve

min
Θ�0

Θij

s.t. 〈Σ,Θ〉 − log det Θ 6 u.
(11)

Likewise, to obtain upper bounds we solve

max
Θ�0

Θij

s.t. 〈Σ,Θ〉 − log det Θ 6 u.
(12)

Note that it is sufficient to find a feasible solution Θ̂ to formulate (11) and (12), and a
feasible solution with a smaller value leads to better bounds.

B.2 Solution Approach

We describe the approach for the lower bound Problem (11) only, the upper bound Problem
(12) being similar.

First, we make the additional assumption that Σ is invertible. We know this assumption
cannot hold in the high dimensional setting where p > n. Numerically, one can always argue
that the lowest eigenvalues of Σ are never exactly equal to zero but should be strictly positive.
In this case however, these eigenvalues should be small and close to machine precision, making
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matrix inversion very unstable. Note that this extra assumption is required for problems (11)
and (12) to be bounded.

Problem (11) is a semidefinite optimization problem and there are p(p + 1)/2 entries to
bound so it is necessary to efficiently solve (11) and avoid solving so many SDPs. Instead, one
can solve the dual of (11) very efficiently. Note an advantage for considering the dual is we do
not need to solve the problem to optimality to obtain a valid bound. Using basic arguments
from convex duality theory similar to the ones invoked in Section A.2, the dual problem for
(11) writes

max
λ>0

{
λ

(
p− u+ log det

(
1

2λ
(eieTj + eje

T
i ) + Σ

))}
(13)

Computationally, problem (13) is easier to solve because it is a convex optimization problem
with a scalar decision variable λ.

Denote g(λ) the objective function in the dual Problem (13). Algebraic manipulations yield

g(λ) := λ

[
p− u+ log det

(
1

2λ
(eieTj + eje

T
i ) + Σ

)]
,

= λ

[
p− u+ log det(Σ) + log

(
1 +

Θij

λ
+
Θ2
ij −ΘiiΘjj

4λ2

)]
,

where Θ = Σ−1. We can then easily derive the first and second derivatives of g and apply
Newton’s method to solve Problem (13).

C Additional material on computational performance of the
cutting-plane algorithm

In this section, we consider the runtime of the cutting-plane algorithm on synthetic problems
as in Section 5.1. In Section 5.1.1, we illustrated how the regularization parameter M or γ
can impact the convergence of the cutting-plane algorithm, so we focus in this section on the
impact of the problem sizes n, p and k.

In particular, we study the time needed by the algorithm to find the optimal solution
(opt-time) and to verify the solution’s optimality (ver-time), as well as the number of cuts
required (laz-cons). We carry out all experiments by generating 10 instances of synthetic data4

for (p, ktrue) ∈ {30, 50, 80, 120, 200} × {5, 10} and different values of n. We solve each instance
of (8) with big-M regularization for k = ktrue, M = 0.5 and report average performance in
Table 5. These computations are performed on 4 Intel E5-2690 v4 2.6 GHz CPUs (14 cores per
CPU, no hyper threading) with 16GB of RAM in total. We chose to fix the value of M = 0.5
in order to isolate the impact of p, k and n on computational time, the specific value 0.5 being
informed by the knowledge of the ground truth.

In general the algorithm provides an optimal solution in a matter of seconds, and a
certificate of optimality in seconds or minutes even for p in the 100s. Optimal verification
occurs significantly quicker when the sample size n is larger because the sparsity pattern of the
underlying matrix is easier to recover. However, we note that finding the optimal solution is not
as affected by the sample size n. As p or k increase, optimal detection also does not significantly
change, but optimal verification generally becomes significantly harder. Similar observations
have been made for mixed-integer formulations of the best subset selection problem in linear
and logistic regression [Bertsimas et al., 2016]. We also observe that changes in k have a more
substantial impact on the runtime than changes in n or p, especially when p is large. Finally,
Meinshausen and Bühlmann’s approximation is used as a warm-start and we observe that is
often optimal, especially when n/p is large.

Thus, the cutting-plane algorithm in general provides an optimal or near-optimal solution
fast, but optimal verification strongly depends on p, k, and n. Nonetheless, we observe that
optimality of solutions can be verified for p in the 100s and k in the 10s in a matter of minutes.

4 For each instance, we generate a sparse precision matrix Θ0 as in Section 5.1 and n samples
from the corresponding multivariate normal distribution



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Certifiably Optimal Sparse Inverse Covariance Estimation 31

p ktrue n ver-time opt-time cut-time laz-cons

30 5
200 2.37 (2.13) 0.0 (0.0) 1.95 (1.74) 28 (17.9)
150 6.33 (7.34) 0.0 (0.0) 2.71 (3.14) 55 (55.8)
100 30.7 (47.96) 0.0 (0.0) 14.46 (28.55) 258 (472.6)

30 10
300 31.11 (23.31) 5.05 (10.69) 14.32 (9.91) 265 (176.6)
250 35.13 (28.89) 11.2 (13.13) 19.93 (14.91) 296 (204.8)
200 33.7 (24.23) 7.75 (12.34) 15.35 (11.15) 290 (196.5)

50 5
200 9.59 (9.06) 0.0 (0.0) 5.23 (3.66) 42 (25.2)
150 29.43 (20.28) 0.0 (0.0) 18.49 (12.98) 153 (107.0)
100 183.7 (243.73) 0.0 (0.0) 99.36 (118.0) 788 (937.8)

50 10
300 24.19 (20.29) 0.0 (0.0) 12.57 (10.37) 98 (80.8)
250 31.37 (18.48) 0.0 (0.0) 15.2 (9.46) 122 (77.8)
200 40.38 (29.27) 0.55 (1.73) 26.14 (19.14) 210 (149.1)

80 5
200 70.12 (106.16) 0.0 (0.0) 51.56 (80.18) 154 (212.2)
150 179.76 (175.22) 0.0 (0.0) 127.19 (110.85) 404 (348.3)
100 988.9 (763.05) 0.0 (0.0) 482.83 (277.33) 1581 (990.9)

80 10
300 37.83 (9.17) 0.0 (0.0) 30.33 (10.11) 85 (25.2)
250 71.4 (24.51) 0.0 (0.0) 47.06 (13.24) 139 (36.3)
200 161.8 (74.35) 9.87 (31.2) 105.48 (41.14) 309 (121.6)

120 5
200 152.54 (113.42) 34.89 (110.34) 119.24 (99.43) 170 (108.9)
150 713.45 (712.74) 251.25 (543.17) 480.18 (407.96) 740 (648.4)
100 1793.67 (445.58) 646.84 (827.53) 1135.33 (320.83) 1671 (412.7)

120 10
300 238.7 (150.61) 0.0 (0.0) 172.75 (99.92) 224 (116.4)
250 704.43 (568.93) 0.0 (0.0) 396.44 (238.16) 560 (348.5)
200 1379.58 (666.52) 0.0 (0.0) 675.81 (248.96) 909 (393.1)

200 5
200 858.4 (770.03) 418.1 (496.15) 662.22 (567.77) 398 (335.0)
150 1453.51 (614.68) 515.58 (548.82) 1023.24 (380.82) 723 (271.4)
100 2000.28 (0.42) 917.42 (596.49) 1427.69 (139.69) 1024 (90.6)

200 10
300 934.55 (428.66) 337.16 (442.36) 646.12 (255.69) 368 (141.1)
250 1792.1 (353.35) 354.84 (362.0) 1062.81 (205.64) 657 (167.6)
200 2000.47 (0.9) 571.71 (571.04) 1198.26 (109.66) 763 (104.5)

Table 5: Average performance on instances of synthetic data with k = ktrue. All
problems are solved to a tolerance gap of 10−4, where the tolerance gap is the
percentage difference between the final lower and upper bounds. Title ver-time and
opt-time refer to the time (in seconds) it takes to verify optimality and to find the
optimal solution respectively, cut-time refers to the amount of time spent solving the
separation problems, and laz-cons refers to the number of lazy constraints generated.
We report average time over 10 random instances (and standard deviation).

D Additional comparisons on statistical performance

We report here additional results from the experiments conducted in Section 5.1.
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D.1 Comparisons for varying sample sizes n/p
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(a) BIC1/2 as a CV criterion.
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Fig. 6: Impact of the number of samples n/p on out-of-sample negative log-likelihood.
Results are averaged over 10 instances with p = 200, t = 1%.
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(b) False detection rate FDR vs. n/p.

Fig. 7: Impact of the number of samples n/p on support recovery. Results are
averaged over 10 instances with p = 200, t = 1%. Hyper-parameters are tuned
using the BIC1/2 criterion.



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Certifiably Optimal Sparse Inverse Covariance Estimation 33

D.2 Comparisons for varying sparsity levels t
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(a) BIC1/2 as a CV criterion.
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(b) −LL as a CV criterion.

Fig. 8: Impact of the sparsity level t on out-of-sample negative log-likelihood.
Results are averaged over 10 instances with p = 200, n = p.
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(a) Accuracy A vs. t.
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(b) False detection rate FDR vs. t.

Fig. 9: Impact of the sparsity level t on support recovery. Results are averaged over
10 instances with p = 200, n = p. Hyper-parameters are tuned using the BIC1/2
criterion.
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D.3 Comparisons for varying dimensions p
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(a) Accuracy A vs. p.
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(b) False detection rate FDR vs. p.

Fig. 10: Impact of the dimension p on support recovery. Results are averaged over
10 instances with n = p, t = 1%. Hyper-parameters are tuned using −LL.
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(b) False detection rate FDR vs. p.

Fig. 11: Impact of the dimension p on support recovery. Results are averaged over
10 instances with n = p, t = 1%. Hyper-parameters are tuned using the BIC1/2
criterion.
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(a) BIC1/2 as a CV criterion.
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Fig. 12: Impact of the dimension p on out-of-sample negative log-likelihood. Results
are averaged over 10 instances with n = p, t = 1%.
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(a) BIC1/2 as a CV criterion.
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Fig. 13: Impact of the dimension p on computational time. Results are averaged
over 10 instances with n = p, t = 1%. Recall that discrete formulations big-M and
ridge are stopped after 5 minutes.
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