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2 Goran Banjac et al.

1 Introduction

Operator splitting methods can be used to solve composite minimization prob-
lems where we minimize the sum of two convex, closed, and proper func-
tions. These methods encompass algorithms such as the proximal gradient
method (PGM), Douglas-Rachford splitting (DRS), and the alternating direc-
tion method of multipliers (ADMM) [1], and have been applied to problems
ranging from feasibility and best approximation problems [2, 3] to quadratic
and conic programs [4–6]. Due to their relatively low per-iteration compu-
tational cost and ability to exploit sparsity in the problem data [6], splitting
methods are suitable for embedded [7–9] and large-scale optimization [10], and
have increasingly been applied for solving problems arising in signal process-
ing [11,12], machine learning [13], and optimal control [14].

In order to solve a composite minimization problem, PGM requires dif-
ferentiability of one of the two functions. If a fixed step-size is used in the
algorithm, then one also requires a bound on the Lipschitz constant of the
function’s gradient [10]. On the other hand, ADMM and DRS, which turn out
to be equivalent to each other, do not require any additional assumptions on
the problem beyond convexity, making them more robust to the problem data.

The growing popularity of ADMM has triggered a strong interest in un-
derstanding its theoretical properties. Provided that a problem is solvable and
satisfies certain constraint qualification (see [15, Cor. 26.3] for more details),
both ADMM and DRS are known to converge to an optimal solution [13,15].
The use of ADMM for solving convex quadratic programs (QPs) was ana-
lyzed in [4] and was shown to admit an asymptotic linear convergence rate.
The authors in [16] analyzed global linear convergence of ADMM for solving
strongly convex QPs with inequality constraints that are linearly independent,
and the authors in [17] extended these results to a wider class of optimization
problems involving a strongly convex objective function. A particularly conve-
nient framework for analyzing the asymptotic behavior of such method is by
representing it as a fixed-point iteration of an averaged operator [15,17,18].

The ability to detect infeasibility of an optimization problem is very im-
portant in many applications, e.g., in any embedded application or in mixed-
integer optimization when branch-and-bound techniques are used [19]. It is
well-known that for infeasible convex optimization problems some of the it-
erates of ADMM and DRS diverge [20]. However, terminating the algorithm,
when the iterates become large, is unreliable in practice for several reasons.
First, an upper bound on the allowed norm of the iterates should be sufficiently
large so that the number of false detections of infeasibility is reduced. Second,
divergence of the iterates is observed to be very slow in practice. Finally, such
termination criterion is just an indication that a problem might be infeasible,
and not a certificate of infeasibility.

Aside from [20], the asymptotic behavior of ADMM and DRS for infeasible
problems has been studied only in some special cases. DRS for solving feasi-
bility problems involving two convex sets, that do not necessarily intersect,
was studied in [3,21–24]. The authors in [25] study the asymptotic behavior of
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ADMM for solving convex QPs when the problem is infeasible, but impose full
rank assumptions on certain matrices derived from the problem data. The au-
thors in [5] apply ADMM to the homogeneous self-dual embedding of a convex
conic program, thereby producing a larger problem, which is always feasible
and whose solutions can be used either to produce a primal-dual solution or
a certificate of infeasibility for the original problem. A disadvantage of this
approach in application to optimization problems with quadratic objective
functions is that the problem needs to be transformed into an equivalent conic
program, which is in general harder to solve than the original problem [26,27].

In this paper we consider a class of convex optimization problems, that
includes linear programs (LPs), QPs, second-order cone programs (SOCPs),
and semidefinite programs (SDPs) as special cases. We use a particular version
of ADMM, introduced in [28], that imposes no conditions on the problem data
such as strong convexity of the objective function or full rank of the constraint
matrix. We show that the method either generates iterates for which the vi-
olation of the optimality conditions goes to zero, or produces a certificate of
primal or dual infeasibility. These results are directly applicable to infeasibility
detection in ADMM for the considered class of problems.

We introduce some definitions and notation in Section 2, the problem of
interest in Section 3, and present a particular ADMM algorithm for solving it
in Section 4. Section 5 analyzes the asymptotic behavior of ADMM and shows
that the algorithm can detect primal and dual infeasibility of the problem.
Section 6 demonstrates these results on several small numerical examples.
Finally, Section 7 concludes the paper.

2 Notation

All definitions introduced here are standard and can be found, e.g., in [15,29].
Let N denote the set of natural numbers, R the set of real numbers, R+

the set of non-negative real numbers, R̃ := R ∪ {+∞} the extended real line,
and Rn the n-dimensional real space equipped with inner product 〈·, ·〉, in-
duced norm ‖·‖, and identity operator Id: x 7→ x. We denote by Rm×n the
set of real m-by-n matrices and by Sn (Sn+) the set of real n-by-n symmetric
(positive semidefinite) matrices. Let vec : Sn 7→ Rn2

be the operator mapping
a matrix to the stack of its columns, mat = vec−1 its inverse operator, and
diag : Rn 7→ Sn the operator mapping a vector to a diagonal matrix. For a
sequence {xk}k∈N we define δxk+1 := xk+1 − xk. The proximal operator of a
convex, closed, and proper function f : Rn 7→ R̃ is given by

proxf (x) := argmin
y
{f(y) + 1

2‖y − x‖2}.

For a nonempty, closed, and convex set C ⊆ Rn, we denote the indicator
function of C by

IC(x) :=

{
0, x ∈ C,
+∞, otherwise,



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer Science+Business Media, LLC, part of Springer Nature.

4 Goran Banjac et al.

the distance of x ∈ Rn to C by

distC(x) := min
y∈C
‖x− y‖,

the projection of x ∈ Rn onto C by

ΠC(x) := argmin
y∈C

‖x− y‖,

the support function of C by

SC(x) := sup
y∈C
〈x, y〉 ,

the recession cone of C by

C∞ := {y ∈ Rn : x+ τy ∈ C, x ∈ C, τ ≥ 0},
and the normal cone of C at x ∈ C by

NC(x) := {y ∈ Rn : supx′∈C 〈x′ − x, y〉 ≤ 0}.
Note that ΠC is the proximal operator of IC . For a convex cone K ⊆ Rn, we
denote its polar cone by

K◦ := {y ∈ Rn : supx∈K 〈x, y〉 ≤ 0},
and for any b ∈ Rn we denote a translated cone by Kb := K + {b}.

Let D be a nonempty subset of Rn. We denote the closure of D by clD.
For an operator T : D 7→ Rn, we define its fixed-point set as

FixT := {x ∈ D : Tx = x},
and denote its range by ran(T ). We say that T is nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀(x, y) ∈ D ×D,
and T is α-averaged with α ∈ ]0, 1[ if there exists a nonexpansive operator
R : D 7→ Rn such that T = (1− α) Id +αR.

3 Problem Description

Consider the following convex optimization problem:

min
x

( 1
2x

TPx+ qTx
)

s.t. Ax ∈ C, (1)

with P ∈ Sn+, q ∈ Rn, A ∈ Rm×n, and C ⊆ Rm a nonempty, closed, and convex
set. We make the following assumption on the set C:
Assumption 3.1 The set C is the Cartesian product of a convex and compact
set B ⊆ Rm1 , and a translated closed and convex cone Kb ⊆ Rm2 , where m1
and m2 are non-negative integers and m1 +m2 = m, i.e., C = B × Kb.
Many convex problems of practical interest, including LPs, QPs, SOCPs, and
SDPs, can be written in the form of problem (1) with C satisfying the condi-
tions of Assumption 3.1. We are interested in finding either an optimal solution
to problem (1) or a certificate of either primal or dual infeasibility.
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3.1 Optimality Conditions

We will find it convenient to rewrite problem (1) in an equivalent form by
introducing a variable z ∈ Rm to obtain

min
(x,z)

( 1
2x

TPx+ qTx
)

s.t. Ax = z and z ∈ C. (2)

We can then write the optimality conditions for problem (2) as:

Ax− z = 0 (3a)

Px+ q +AT y = 0 (3b)
z ∈ C, y ∈ NC(z), (3c)

where y ∈ Rm is a Lagrange multiplier associated with the constraint Ax = z.
If there exist x ∈ Rn, z ∈ Rm, and y ∈ Rm that satisfy conditions (3),
then we say that (x, z) is a primal and y is a dual solution to problem (2).
For completeness, we derive the optimality conditions in Lemma A.1 of the
Appendix.

3.2 Infeasibility Certificates

In this section we derive conditions for primal and dual infeasibility. The dual
problem associated with problem (1) is

max
(x,y)

(
− 1

2x
TPx− SC(y)

)
s.t. Px+AT y = −q and y ∈ (C∞)◦ (4)

and its derivation is included in Lemma A.2 of the Appendix.
We will use the following pair of results to certify infeasibility of (1) in

cases where it is primal and/or dual strongly infeasible; we refer the reader
to [30] for more details on strong and weak infeasibility.

Proposition 3.1

(i) If there exists some ȳ ∈ Rm such that

AT ȳ = 0 and SC(ȳ) < 0, (5)

then the primal problem (1) is infeasible.
(ii) If there exists some x̄ ∈ Rn such that

Px̄ = 0, Ax̄ ∈ C∞, and 〈q, x̄〉 < 0, (6)

then the dual problem (4) is infeasible.
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Proof (i): The first condition in (5) implies

inf
x
〈ȳ, Ax〉 = inf

x

〈
AT ȳ, x

〉
= 0,

and the second condition is equivalent to

sup
z∈C
〈ȳ, z〉 < 0.

Therefore, {z ∈ Rm : 〈ȳ, z〉 = 0} is a hyperplane that separates the sets
{Ax : x ∈ Rn} and C strongly [31, Thm. 11.1], meaning that problem (1)
is infeasible.

(ii): Define the set Q := {Px + AT y : (x, y) ∈ Rn × (C∞)◦}. The first two
conditions in (6) imply

sup
s∈Q
〈x̄, s〉 = sup

{ 〈
x̄, Px+AT y

〉
: x ∈ Rn, y ∈ (C∞)◦

}

= sup
x
〈Px̄, x〉+ sup

{
〈Ax̄, y〉 : y ∈ (C∞)◦

}

≤ 0,

where we used the fact that the inner product between vectors in a cone and
its polar is non-positive. Since the third condition in (6) can be written as
〈x̄,−q〉 > 0, this means that {x ∈ Rn : 〈x̄, x〉 = 0} is a hyperplane that
separates the sets Q and {−q} strongly, and thus the dual problem (4) is
infeasible. ut

Note that, if condition (5) in Proposition 3.1 holds, then ȳ also represents
an unbounded direction in the dual problem assuming it is feasible. Likewise,
x̄ in condition (6) represents an unbounded direction for the primal problem
if it is feasible. However, since we cannot exclude the possibility of simulta-
neous primal and dual infeasibility, we will refer to condition (5) as primal
infeasibility rather than dual unboundedness, and vice versa for (6).

In some cases, e.g., when C is compact or polyhedral, conditions (5) and (6)
in Proposition 3.1 are also necessary for infeasibility, and we say that (5)
and (6) are strong alternatives for primal and dual feasibility, respectively.
When C is a convex cone, additional assumptions are required for having strong
alternatives; see, e.g., [32, §5.9.4].

Remark 3.1 Due to Assumption 3.1, the support function of C takes the
following form:

SC(ȳ) = SB(ȳ1) + SKb
(ȳ2),

where ȳ = (ȳ1, ȳ2) with ȳ1 ∈ Rm1 and ȳ2 ∈ Rm2 . Since the support function
of Kb is

SKb
(ȳ2) =

{
〈b, ȳ2〉 , ȳ2 ∈ K◦,
+∞, otherwise,

condition (5) is then equivalent to

AT ȳ = 0, ȳ2 ∈ K◦, and SB(ȳ1) + 〈b, ȳ2〉 < 0. (7)
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Algorithm 1 ADMM for problem (1).
1: given initial values x0, z0, y0 and parameters ρ > 0, σ > 0, α ∈ ]0, 2[
2: Set k = 0
3: repeat
4: (x̃k+1, z̃k+1)← argmin

(x̃,z̃):Ax̃=z̃

1
2 x̃
TP x̃+ qT x̃+ σ

2 ‖x̃− xk‖22 + ρ
2 ‖z̃ − zk + ρ−1yk‖22

5: xk+1 ← αx̃k+1 + (1− α)xk

6: zk+1 ← ΠC
(
αz̃k+1 + (1− α)zk + ρ−1yk

)

7: yk+1 ← yk + ρ
(
αz̃k+1 + (1− α)zk − zk+1)

8: k ← k + 1
9: until termination condition is satisfied

4 Alternating Direction Method of Multipliers (ADMM)

ADMM is an operator splitting method that can be used for solving composite
minimization problems of the form

min
w∈Rp

(f(w) + g(w)) , (8)

where f : Rp 7→ R̃ and g : Rp 7→ R̃ are convex, closed, and proper functions [13].
The iterates of ADMM in application to problem (8) can be written as

w̃k+1 ← proxf (wk − uk) (9a)

wk+1 ← proxg
(
αw̃k+1 + (1− α)wk + uk

)
(9b)

uk+1 ← uk + αw̃k+1 + (1− α)wk − wk+1, (9c)

where α ∈ ]0, 2[ is the relaxation parameter.
We can write problem (2) in the general form (8) by setting

f(x, z) = 1
2x

TPx+ qTx+ IAx=z(x, z), (10a)
g(x, z) = IC(z). (10b)

If we use the norm ‖(x, z)‖ =
√
σ‖x‖22 + ρ‖z‖22 with (σ, ρ) > 0 in the proximal

operators of functions f and g, then ADMM reduces to Algorithm 1, which
was first introduced in [28]. The scalars σ and ρ are called the penalty param-
eters. Note that the strict positivity of both σ and ρ ensure that the equality
constrained QP in step 4 of Algorithm 1 has a unique solution for any P ∈ Sn+
and A ∈ Rm×n.

Unless otherwise stated, we will use 〈·, ·〉 to denote the standard inner
product in the Euclidean space, and ‖·‖ to denote the induced norm. The
dimension of the space will be clear from the context.

4.1 Reformulation as the Douglas-Rachford Splitting (DRS)

It is well-known that ADMM and DRS are equivalent methods [33]. The au-
thors in [34] show that the ADMM algorithm can be described alternatively in
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terms of the fixed-point iteration of the Douglas-Rachford operator, which is
known to be averaged [35]. In particular, the algorithm given by iteration (9)
can alternatively be implemented as

wk ← proxg(s
k) (11a)

w̃k ← proxf (2wk − sk) (11b)

sk+1 ← sk + α(w̃k − wk). (11c)

Similarly, an iteration of Algorithm 1 is equivalent to

(x̃k, z̃k)← argmin
(x̃,z̃):Ax̃=z̃

1
2 x̃

TPx̃+ qT x̃+ σ
2 ‖x̃− xk‖2 + ρ

2‖z̃ − (2ΠC − Id)(vk)‖2

(12a)

xk+1 ← xk + α
(
x̃k − xk

)
(12b)

vk+1 ← vk + α
(
z̃k −ΠC(vk)

)
(12c)

where

zk = ΠC(vk) (13a)

yk = ρ(Id−ΠC)(vk). (13b)

We will exploit the following result in the next section to analyze the asymp-
totic behavior of the algorithm.

Fact 4.1 The iteration described in (12) amounts to

(xk+1, vk+1)← T (xk, vk),

where T : Rn+m 7→ Rn+m is an (α/2)-averaged operator.

Proof Iteration (11) is a special case of iteration (49)–(51) in [34, §IV-C] with
A = Id, B = − Id and c = 0, which is equivalent to

sk+1 ← TDRs
k,

where TDR is the Douglas-Rachford operator given by

TDR = (1− α
2 ) Id +α

2 (2 proxf − Id) ◦ (2 proxg − Id),

which is known to be (α/2)-averaged [17,35]. The result follows from the fact
that iteration (12) is a special case of iteration (11) with f and g given by (10),
and the inner product given by 〈(x1, z1), (x2, z2)〉 = σ 〈x1, x2〉+ ρ 〈z1, z2〉. ut

Due to [15, Prop. 6.46], the identities in (13) imply that in each iteration the
pair (zk, yk) satisfies optimality condition (3c) by construction. The solution to
the equality constrained QP in (12a) satisfies the pair of optimality conditions

0 = Ax̃k − z̃k (14a)

0 = (P + σI)x̃k + q − σxk + ρAT
(
z̃k − (2ΠC − Id)(vk)

)
. (14b)
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If we rearrange (12b) and (12c) to isolate x̃k and z̃k, i.e., write

x̃k = xk + α−1δxk+1 (15a)

z̃k = zk + α−1δvk+1, (15b)

and substitute them into (14), then using (13) we obtain the following relations
between the iterates:

Axk −ΠC(vk) = −α−1 (Aδxk+1 − δvk+1) (16a)

Pxk + q + ρAT (Id−ΠC)(vk) = −α−1 ((P + σI)δxk+1 + ρAT δvk+1) . (16b)

Observe that the right-hand terms of (16) are a direct measure of how far the
iterates (xk, zk, yk) are from satisfying optimality conditions (3a) and (3b).
We refer to the left-hand terms of (16a) and (16b) as the primal and dual
residuals, respectively. In the next section, we will show that the successive
differences (δxk, δvk) appearing in the right-hand side of (16) converge and
can be used to test for primal and dual infeasibility.

5 Asymptotic Behavior of ADMM

In order to analyze the asymptotic behavior of iteration (12), which is equiv-
alent to Algorithm 1, we will rely heavily on the following results:

Lemma 5.1 Let D be a nonempty, closed, and convex subset of Rn and sup-
pose that T : D 7→ D is an averaged operator. Let s0 ∈ D, sk = T ks0, and δs
be the projection of the zero vector onto cl ran(T − Id). Then

(i) 1
ks
k → δs.

(ii) δsk → δs.
(iii) If FixT 6= ∅, then {sk}k∈N converges to a point in FixT .

Proof The first result is [36, Cor. 3], the second is [37, Cor. 2.3], and the third
is [15, Thm. 5.14]. ut

Note that, since ran(T − Id) is not necessarily closed or convex, the projec-
tion onto this set may not exist, but the projection onto its closure always
exists. Moreover, since cl ran(T − Id) is convex [36, Lem. 4], the projection is
unique. Due to Fact 4.1, Lemma 5.1 ensures that ( 1

kx
k, 1
kv

k) → (δx, δv) and
(δxk, δvk)→ (δx, δv).

The core results of this paper are contained within the following two propo-
sitions, which establish various relationships between the limits δx and δv; we
include several supporting results required to prove these results in the Ap-
pendix. Given these two results, it will then be straightforward to extract cer-
tificates of optimality or infeasibility in Section 5.1. For both of these central
results, and in the remainder of the paper, we define

δz := ΠC∞(δv) (17a)
δy := ρΠ(C∞)◦(δv). (17b)
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Proposition 5.1 Suppose that Assumption 3.1 holds. Then the following re-
lations hold between the limits δx, δz, and δy:

(i) Aδx = δz.
(ii) Pδx = 0.
(iii) AT δy = 0.
(iv) 1

kz
k → δz and δzk → δz.

(v) 1
ky

k → δy and δyk → δy.

Proof Commensurate with our partitioning of the constraint set as
C = B × Kb, we partition the matrix A and the iterates into components of
appropriate dimension. We use subscript 1 for those components associated
with the set B and subscript 2 for those associated with the set Kb, e.g.,
zk = (zk1 , z

k
2 ) where zk1 ∈ B and zk2 ∈ Kb, and the matrix A = [A1;A2]. Note

throughout that C∞ = {0} × K and (C∞)◦ = Rm1 ×K◦, and thus

ΠC∞(δv) =
[

0
ΠK(δv2)

]
(18a)

Π(C∞)◦(δv) =
[

δv1
ΠK◦(δv2)

]
. (18b)

(i): Divide (16a) by k, take the limit, and apply Lemma 5.1 to get

Aδx = lim
k→∞

1
kΠC(vk).

Due to Lemma A.4 and the compactness of B, we have
[
A1δx
A2δx

]
= lim
k→∞

[ 1
kΠB(vk1 )
1
kΠKb

(vk2 )

]
=
[

0
ΠK(δv2)

]
. (19)

Combining the equalities above with (18a) and (17a), we obtain

Aδx = lim
k→∞

1
kΠC(vk) = ΠC∞(δv) = δz. (20)

(ii): Divide (16b) by ρk, take the inner product of both sides with δx and
take the limit to obtain

−ρ−1 〈Pδx, δx〉 = lim
k→∞

〈
Aδx, 1

kvk − 1
kΠC(vk)

〉

=
〈
ΠC∞(δv), δv −ΠC∞(δv)

〉

=
〈
ΠC∞(δv),Π(C∞)◦(δv)

〉

= 0,

where we used Lemma 5.1 and (20) in the second equality, and the Moreau
decomposition [15, Thm. 6.29] in the third and fourth. Since P ∈ Sn+, it follows
that

Pδx = 0. (21)
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(iii): Divide (16b) by k, take the limit, and use (21) to obtain

0 = lim
k→∞

1
kρA

T (Id−ΠC)(vk)

= ρAT lim
k→∞

( 1
kv

k − 1
kΠC(vk)

)

= ρAT (δv −ΠC∞(δv))

= AT ρΠ(C∞)◦(δv)

= AT δy,

where we used Lemma 5.1 and (20) in the third equality, the Moreau decom-
position in the fourth, and (17b) in the fifth.

(iv): We first show that the sequence {δzk}k∈N converges to δz. From (15)
we have

−α−1 (δxk+1 − δxk
)

= δxk − δx̃k, (22a)

−α−1 (δvk+1 − δvk
)

= δzk − δz̃k. (22b)

Take the limit of (22a) to obtain

lim
k→∞

δx̃k = lim
k→∞

δxk = δx.

From (14a) we now have δz̃k = Aδx̃k → Aδx. Take the limit of (22b) and use
(20) to obtain

lim
k→∞

δzk = lim
k→∞

δz̃k = Aδx = δz.

We now show that the sequence { 1
kz

k}k∈N also converges to δz. Dividing
(13a) by k and taking the limit, we obtain

lim
k→∞

1
kz

k = lim
k→∞

1
kΠC(vk) = δz,

where the second equality follows from (20).
(v): We first show that the sequence {δyk}k∈N converges to δy. From (13)

we have yk = ρ
(
vk − zk

)
, and thus

lim
k→∞

δyk = ρ lim
k→∞

(
δvk − δzk

)
= ρ (δv −ΠC∞(δv)) = ρΠ(C∞)◦(δv) = δy,

where we used the Moreau decomposition in the third equality, and (17b) in
the last.

We now show that the sequence { 1
ky

k}k∈N also converges to δy. Dividing
(13b) by k and taking the limit, we obtain

lim
k→∞

1
ky

k = ρ lim
k→∞

( 1
kv

k − 1
kΠC(vk)

)
= ρ(δv −ΠC∞(δv)) = δy. ut

Proposition 5.1 shows that the limits δy and δx will always satisfy the sub-
space and conic constraints in the primal and dual infeasibility conditions (5)
and (6), respectively. We next consider the terms appearing in the inequalities
in (5) and (6).
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Proposition 5.2 Suppose that Assumption 3.1 holds. Then the following
identities hold for the limits δx and δy:

(i) 〈q, δx〉 = −σα−1‖δx‖2 − ρα−1‖Aδx‖2.
(ii) SC(δy) = −ρ−1α−1‖δy‖2.

Proof Take the inner product of both sides of (16b) with δx and use Propo-
sition 5.1(ii) to obtain

〈q, δx〉+ ρ
〈
Aδx, (Id−ΠC)(vk)

〉
= −σα−1 〈δx, δxk+1〉− ρα−1 〈Aδx, δvk+1〉 .

Using (19) and then taking the limit gives

〈q, δx〉 = −σα−1‖δx‖2 − ρα−1 〈Aδx, δv〉
−ρ lim

k→∞

〈
ΠK(δv2),ΠK◦(vk2 − b)

〉

= −σα−1‖δx‖2 − ρα−1 〈ΠC∞(δv), δv〉
−ρ lim

k→∞

〈
ΠK(δv2),ΠK◦(vk2 − b)

〉

= −σα−1‖δx‖2 − ρα−1‖ΠC∞(δv)‖2

−ρ lim
k→∞

〈
ΠK(δv2),ΠK◦(vk2 − b)

〉
,

(23)

where we used Lemma A.3(ii) in the first equality, (20) in the second, and
Lemma A.3(iv) in the third.

Now take the inner product of both sides of (16a) with Π(C∞)◦(δv) to
obtain

α−1 〈Π(C∞)◦(δv), δvk+1〉 =
〈
ATΠ(C∞)◦(δv), xk + α−1δxk+1〉

−
〈
Π(C∞)◦(δv),ΠC(vk)

〉
.

According to Proposition 5.1(iii) and (17b), the first inner product on the
right-hand side is zero. Taking the limit we obtain

lim
k→∞

〈
Π(C∞)◦(δv),ΠC(vk)

〉
= −α−1 〈Π(C∞)◦(δv), δv

〉

= −α−1‖Π(C∞)◦(δv)‖2,

where the second equality follows from Lemma A.3(iv). Using (18b), we can
write the equality above as

−α−1‖Π(C∞)◦(δv)‖2 = lim
k→∞

〈
δv1,ΠB(vk1 )

〉
+
〈
ΠK◦(δv2),ΠKb

(vk2 )
〉

= SB(δv1) + 〈ΠK◦(δv2), b〉
+ lim
k→∞

〈
ΠK◦(δv2),ΠKb

(vk2 − b)
〉

= SB(δv1) + SKb
(ΠK◦(δv2))

+ lim
k→∞

〈
ΠK◦(δv2),ΠKb

(vk2 − b)
〉

= SC(Π(C∞)◦(δv)) + lim
k→∞

〈
ΠK◦(δv2),ΠKb

(vk2 − b)
〉
,
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where the second equality follows from Lemma A.3(i) and Lemma A.5, the
third from Lemma A.3(v), and the fourth from (18b). Multiplying by ρ and
using (17b) and the positive homogeneity of SC , we obtain

SC(δy) = −ρα−1‖Π(C∞)◦(δv)‖2 − ρ lim
k→∞

〈
ΠK◦(δv2),ΠK(vk2 − b)

〉
. (24)

We will next show that the limits in (23) and (24) are equal to zero. Sum-
ming the two equalities, we obtain

〈q, δx〉+ SC(δy) + σα−1‖δx‖2 + ρα−1‖δv‖2

= −ρ lim
k→∞

〈
ΠK(δv2),ΠK◦(vk2 − b)

〉

−ρ lim
k→∞

〈
ΠK◦(δv2),ΠK(vk2 − b)

〉
,

(25)

where we used ‖δv‖2 = ‖ΠC∞(δv)‖2 + ‖Π(C∞)◦(δv)‖2 [15, Thm. 6.29].
Now take the inner product of both sides of (16b) with xk to obtain
〈
Pxk, xk

〉
+
〈
q, xk

〉
+ ρ

〈
Axk, (Id−ΠC)(vk)

〉
= −α−1 〈Pδxk+1, xk

〉

−σα−1 〈δxk+1, xk
〉

−ρα−1 〈Axk, δvk+1〉 .
(26)

We can rewrite the third inner product on the left-hand side of (26) as
〈
Axk, (Id−ΠC)(vk)

〉
=
〈
ΠC(vk) + α−1 (δvk+1 −Aδxk+1), (Id−ΠC)(vk)

〉

=
〈
ΠB(vk1 ), vk1

〉
− ‖ΠB(vk1 )‖2

+
〈
ΠKb

(vk2 ), (Id−ΠKb
)(vk2 )

〉

+α−1 〈δvk+1 −Aδxk+1, ρ−1yk
〉

=
〈
ΠB(vk1 ), vk1

〉
− ‖ΠB(vk1 )‖2 +

〈
b,ΠK◦(vk2 − b)

〉

+α−1 〈δvk+1 −Aδxk+1, ρ−1yk
〉
,

where we used (16a) in the first equality, (13b) in the second, and
Lemma A.3(iii) in the third. Substituting this expression into (26), dividing
by k, and taking the limit, we obtain

lim
k→∞

1
k

〈
Pxk, xk

〉
+ 〈q, δx〉+ SC(δy) + σα−1‖δx‖2

= −ρα−1 〈δv −Aδx, ρ−1δy
〉

− ρα−1 〈Aδx, δv〉 ,
(27)

where we used Lemma A.3(v), Lemma A.4, Lemma A.5, Proposition 5.1(ii),
(17b), (18b), and the compactness of B. The sum of inner products appearing
on the right-hand side of (27) can be written as
〈
δv −Aδx, ρ−1δy

〉
+ 〈Aδx, δv〉 =

〈
δv −ΠC∞(δv),Π(C∞)◦(δv)

〉
+ 〈ΠC∞(δv), δv〉

= ‖Π(C∞)◦(δv)‖2 + ‖ΠC∞(δv)‖2

= ‖δv‖2,
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where we used (17b) and (20) in the first equality, and Lemma A.3(iv) and
the Moreau decomposition in the second. Substituting the equality above into
(27), we obtain

〈q, δx〉+ SC(δy) + σα−1‖δx‖2 + ρα−1‖δv‖2 = − lim
k→∞

1
k

〈
Pxk, xk

〉
. (28)

Comparing the identities in (25) and (28), we get the following relation:

lim
k→∞

1
k

〈
Pxk, xk

〉
= ρ lim

k→∞

〈
ΠK(δv2),ΠK◦(vk2 − b)

〉

+ ρ lim
k→∞

〈
ΠK◦(δv2),ΠK(vk2 − b)

〉
.

The positive semidefiniteness of P implies that the sequence on the left-hand
side is term-wise non-negative. Since the two sequences on the right-hand side
involve inner products of elements in K and K◦, each sequence is term-wise
non-positive. Consequently, each of these limits must be zero. Finally, using
(17b) and (20), the claims of the proposition then follow directly from (23)
and (24). ut

5.1 Optimality and Infeasibility Certificates

We are now in a position to prove that, in the limit, the iterates of Algorithm 1
either satisfy the optimality conditions (3) or produce a certificate of strong
infeasibility. Recall that Fact 4.1, Lemma 5.1(ii), and Proposition 5.1(iv)–(v)
ensure convergence of the sequence {δxk, δzk, δyk}k∈N.

Proposition 5.3 (Optimality) If (δxk, δzk, δyk) → (0, 0, 0), then the opti-
mality conditions (3) are satisfied in the limit, i.e.,

‖Pxk + q +AT yk‖ → 0 and ‖Axk − zk‖ → 0.

Proof Follows from (13) and (16). ut

Lemma 5.1(iii) is sufficient to prove that, if problem (1) is solvable, then
the sequence of iterates {xk, zk, yk}k∈N converges to its primal-dual solution.
However, convergence of {δxk, δzk, δyk}k∈N to zero is not itself sufficient to
prove convergence of {xk, zk, yk}k∈N; we provide a numerical example in Sec-
tion 6.3 to show when this scenario can occur. According to Proposition 5.3,
in this case the violation of optimality conditions still goes to zero in the limit.

We next show that, if {δxk, δzk, δyk}k∈N converges to a nonzero value, then
we can construct a certificate of primal and/or dual infeasibility. Note that,
due to Proposition 5.1(i), δz can be nonzero only when δx is nonzero.

Theorem 5.1 (Infeasibility) Suppose that Assumption 3.1 holds.

(i) If δy 6= 0, then problem (1) is infeasible and δy satisfies the primal
infeasibility condition (5).
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(ii) If δx 6= 0, then problem (4) is infeasible and δx satisfies the dual
infeasibility condition (6).

(iii) If δx 6= 0 and δy 6= 0, then problems (1) and (4) are simultaneously
infeasible.

Proof (i): Follows from Proposition 5.1(iii) and Proposition 5.2(ii).
(ii): Follows from Proposition 5.1(i)–(ii) and Proposition 5.2(i).
(iii): Follows from (i) and (ii). ut

Remark 5.1 It is easy to show that δy and δx would still provide cer-
tificates of primal and dual infeasibility if we instead used the norm
‖(x, z)‖ =

√
xTSx+ zTRz in the proximal operators in (9), with R and S

being diagonal positive definite matrices.

5.2 Termination Criteria

We can define termination criteria for Algorithm 1 so that the iterations stop
when either a primal-dual solution or a certificate of primal or dual infeasibility
is found with some predefined accuracy.

A reasonable criterion for detecting optimality is that the norms of pri-
mal and dual residuals are smaller than some tolerance levels εprim > 0 and
εdual > 0, respectively, i.e.,

‖Axk − zk‖ ≤ εprim, ‖Pxk + q +AT yk‖ ≤ εdual. (29)

Since (δxk, δyk) → (δx, δy), a meaningful criterion for detecting primal and
dual infeasibility would be to use δyk and δxk to check that conditions (7)
and (6) are almost satisfied, i.e.,

‖AT δyk‖ ≤ εpinf , distK◦(δyk2 ) ≤ εpinf , SB(δyk1 ) +
〈
b, δyk2

〉
< εpinf , (30)

and
‖Pδxk‖ ≤ εdinf , distC∞(Aδxk) ≤ εdinf , 〈q, δxk〉 < εdinf , (31)

where εpinf > 0 and εdinf > 0. Infeasibility detection based on these vectors
is used in OSQP [28], an open-source operator splitting solver for quadratic
programming. Note that the tolerance levels are often chosen relative to the
scaling of the algorithm’s iterates and the problem data; see [28, Sec. 3.4] for
details.

Although the optimality or infeasiblity conditions are guaranteed to be
satisfied exactly only in the limit, at least one of the termination criteria given
by (29)–(31) will be satisfied after finitely many iterations for any positive
tolerance levels εprim > 0, εdual > 0, εpinf > 0, and εdinf > 0. For weakly
infeasible problems termination criteria for both optimality and infeasibility
will be satisfied for any given accuracy. This means that an infinitesimally
small perturbation to the problem can make it solvable or strongly infeasible.
We provide an example in Section 6.3 illustrating such case.
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Remark 5.2 Even though (δxk, δyk)→ (δx, δy), termination criteria for de-
tecting infeasibility should not be implemented by simply checking that suc-
cessive terms in the sequences {δxk}k∈N and {δyk}k∈N are close together. The
reason is that these sequences can take values which repeat for many iterations
even though they have not reached their limit points, and such repeated val-
ues in these sequences will not necessarily constitute infeasibility certificates.
Instead, we check the infeasibility conditions (30) and (31) directly, with the
understanding that these conditions will necessarily be satisfied in the limit
for infeasible problems.

Remark 5.3 Instead of using δyk in the primal infeasibility criterion (30), we
could instead use the vector

Π(C∞)◦(δyk) =
[

δyk1
ΠK◦(δyk2 )

]
.

Note that the second condition in (30) would then be satisfied by construction.

6 Numerical Examples

In this section, we demonstrate via several numerical examples the different
asymptotic behaviors of the iterates generated by Algorithm 1 for solving
optimization problems of the form (1).

6.1 Parametric QP

Consider the QP
min

(x1,x2)

( 1
2x

2
1 + x1 − x2

)

s.t. 0 ≤ x1 + ax2 ≤ u1
1 ≤ x1 ≤ 3
1 ≤ x2 ≤ u3,

(32)

where a ∈ R, u1 ≥ 0, and u3 ≥ 1 are parameters. Note that the problem above
is an instance of problem (1) with

P =
[
1 0
0 0

]
, q =

[
1
−1

]
, A =




1 a
1 0
0 1


 , C = [l, u], l =




0
1
1


 , u =



u1
3
u3


 ,

where [l, u] := {z ∈ Rm : l ≤ z ≤ u}. Depending on the values of parameters u1
and u3, the constraint set in (32) can be either bounded or unbounded. The
projection onto the set [l, u] can be evaluated as

Π[l,u](z) = max (min(z, u), l) ,

and the support function of the bounded set B = [l, u] as

SB(y) = 〈l,min(y, 0)〉+ 〈u,max(y, 0)〉 ,
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0 10 20 30 40 5010−5

10−4

10−3

10−2

10−1

100

101

Iteration k

‖Axk − zk‖2
‖Pxk + q +AT yk‖2

Fig. 1 Convergence of {xk, zk, yk}k∈N to a certificate of optimality for problem (32) with
a = 1, u1 = 5 and u3 = 3.

where min and max functions should be taken element-wise.
In the sequel we will discuss four scenarios that can occur depending on

the values of the parameters: (i) optimality, (ii) primal infeasibility, (iii) dual
infeasibility, (iv) simultaneous primal and dual infeasibility, and will show
that Algorithm 1 correctly produces certificates for all four scenarios. In all
cases we set the parameters α = ρ = σ = 1 and set the initial iterate
(x0, z0, y0) = (0, 0, 0).

Optimality.
Consider problem (32) with parameters

a = 1, u1 = 5, u3 = 3.

Algorithm 1 converges to x? = (1, 3), z? = (4, 1, 3), y? = (0,−2, 1), for which
the objective value equals −1.5, and we have

Ax? − z? = 0 and Px? + q +AT y? = 0,

i.e., the pair (x?, y?) is a primal-dual solution to problem (32). Figure 1 shows
convergence of {xk, zk, yk}k∈N to a certificate of optimality. Recall that the
iterates of the algorithm always satisfy the optimality conditions (3c).

Primal infeasibility.
We next set the parameters of problem (32) to

a = 1, u1 = 0, u3 = 3.
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‖AT δyk‖2
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−2

−1.8

−1.6

−1.4

−1.2

−1

Iteration k

SC(δyk)

Fig. 2 Convergence of {δyk}k∈N to a certificate of primal infeasibility for problem (32)
with a = 1, u1 = 0 and u3 = 3.

Note that in this case the constraint set is C = {0}×[1, 3]×[1, 3]. The sequence
{δyk}k∈N generated by Algorithm 1 converges to δy = (2/3,−2/3,−2/3), and
we have

AT δy = 0 and SC(δy) = −4/3 < 0.
According to Proposition 3.1(i), δy is a certificate of primal infeasibility for
the problem. Figure 2 shows convergence of {δyk}k∈N to a certificate of primal
infeasibility.

Dual infeasibility.
We set the parameters to

a = 0, u1 = 2, u3 = +∞.
The constraint set has the form C = B × Kb with

B = [0, 2]× [1, 3], K = R+, b = 1,

and the constraint matrix A can be written as

A =
[
A1
A2

]
with A1 =

[
1 0
1 0

]
and A2 =

[
0 1

]
. (33)

The sequence {δxk}k∈N generated by Algorithm 1 converges to δx = (0, 1
2 ),

and we have

Pδx = 0, A1δx = 0, A2δx = 1
2 ∈ K, 〈q, δx〉 = − 1

2 < 0.

According to Proposition 3.1(ii), δx is a certificate of dual infeasibility of
the problem. Figure 3 shows convergence of {δxk}k∈N to a certificate of
dual infeasibility, where distC∞ denotes the Euclidean distance to the set
C∞ = {0} × {0} × R+.
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‖Pδxk‖2
distC∞ (Aδxk)
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−0.8

−0.6

−0.4

−0.2

0

Iteration k

〈q, δxk〉

Fig. 3 Convergence of {δxk}k∈N to a certificate of dual infeasibility for problem (32) with
a = 0, u1 = 2 and u3 = +∞.

Simultaneous primal and dual infeasibility.
We set

a = 0, u1 = 0, u3 = +∞.
The constraint set has the form C = B × Kb with

B = {0} × [1, 3], K = R+, b = 1,

and the constraint matrix A can be written as in (33). The sequences
{δxk}k∈N and {δyk}k∈N generated by Algorithm 1 converge to δx = (0, 1

2 )
and δy = ( 1

2 ,− 1
2 , 0), respectively. If we partition δy as δy = (δy1, δy2) with

δy1 = ( 1
2 ,− 1

2 ) and δy2 = 0, then we have

AT δy = 0, δy2 = 0 ∈ K◦, SB(δy1) + 〈b, δy2〉 = − 1
2 < 0,

and
Pδx = 0, A1δx = 0, A2δx = 1

2 ∈ K, 〈q, δx〉 = − 1
2 < 0.

Therefore, δx and δy are certificates that the problem is simultaneously primal
and dual infeasible. Figure 4 shows convergence of {δyk}k∈N and {δxk}k∈N to
certificates of primal and dual infeasibility, respectively.

6.2 Infeasible SDPs from SDPLIB

We next demonstrate the asymptotic behavior of Algorithm 1 on two infeasible
SDPs from the benchmark library SDPLIB [38]. The problems are given in the
following form

min
(x,z)

qTx s.t. Ax = z and z ∈ Smb ,
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‖AT δyk‖2
‖Pδxk‖2
distC∞ (Aδxk)
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〈q, δxk〉

Fig. 4 Convergence of {δyk}k∈N and {δxk}k∈N to certificates of primal and dual infeasi-
bility, respectively, for problem (32) with a = 0, u1 = 0 and u3 = +∞.

where Sm denotes the vectorized form of Sm+ , i.e., z ∈ Sm is equivalent to
mat(z) ∈ Sm+ , and Smb := Sm + {b}.

Let X ∈ Sm have the following eigenvalue decomposition

X = U diag(λ1, . . . , λm)UT .

Then the projection of X onto Sm+ is

ΠSm
+

(X) = U diag (max(λ1, 0), . . . ,max(λm, 0))UT .

Primal infeasible SDPs.
The primal infeasible problem infp1 from SDPLIB has decision variables
x ∈ R10 and z ∈ S30. We run Algorithm 1 with parameters α = 1 and
ρ = σ = 0.1 from the initial iterate (x0, z0, y0) = (0, 0, 0). Figure 5 shows con-
vergence of {δyk}k∈N to a certificate of primal infeasibility, where distSm(y) de-
notes the spectral norm distance of mat(y) to the positive semidefinite cone Sm+ .

Dual infeasible SDPs.
Dual infeasible problem infd1 from SDPLIB has decision variables x ∈ R10

and z ∈ S30. We run Algorithm 1 with parameters α = 1 and ρ = σ = 0.001
from the initial iterate (x0, z0, y0) = (0, 0, 0). Figure 6 shows convergence of
{δxk}k∈N to a certificate of dual infeasibility.
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Fig. 5 Convergence of {δyk}k∈N to a certificate of primal infeasibility for problem infp1
from SDPLIB.

0 200 400 600 800

10−4

10−3

10−2

10−1

100

101

102

Iteration k

distS30 (Aδxk)

0 200 400 600 800

−40

−20

0

Iteration k

〈q, δxk〉

Fig. 6 Convergence of {δxk}k∈N to a certificate of dual infeasibility for problem infd1 from
SDPLIB.

6.3 Infeasible SDPs with no Certificate

Consider the following feasibility problem [39, Ex. 5]

min
(x1,x2)

0 s.t.



x1 1 0
1 x2 0
0 0 −x1


 � 0, (34)
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noting that it is primal infeasible by inspection. If we write the constraint set
in (34) as




1 0 0
0 0 0
0 0 −1




︸ ︷︷ ︸
A1

x1 +




0 0 0
0 1 0
0 0 0




︸ ︷︷ ︸
A2

x2 +




0 1 0
1 0 0
0 0 0




︸ ︷︷ ︸
A0

� 0

and denote by A = [vec(A1) vec(A2)] and b = − vec(A0), then the constraint
can be written as Ax ∈ S3

b , where S3 denotes the vectorized form of S3
+. If we

define Y := mat(y), then the primal infeasibility condition (5) for the problem
above amounts to

Y11 − Y33 = 0, Y22 = 0, Y12 < 0, Y � 0,

where Yij denotes the element of Y ∈ S3 in the i-th row and j-th column.
Given that Y � 0 and Y22 = 0 imply Y12 = 0, the system above is infeasible as
well. Note that Y = 0 is feasible for the dual of problem (34) and problem (34)
is thus not dual infeasible.

We next show that (δxk, δZk, δY k)→ (0, 0, 0), where δZk := mat(δzk) and
δY k := mat(δyk). Set

xk =
(
(1 + ρσ−1)ε, ε−1) and V k := mat(vk) = diag(ε, ε−1, 0),

where ε > 0. Iteration (12) then produces the following iterates

Zk = V k, x̃k = (ε, ε−1), Z̃k = diag(ε, ε−1,−ε),
and thus we have

δxk+1 = α (x̃k − xk) = α (−ρσ−1ε, 0)

δV k+1 = α (Z̃k − Zk) = α diag(0, 0,−ε).

By taking ε arbitrarily small, we can make (δxk+1, δV k+1) arbi-
trarily close to zero, which according to Lemma 5.1 means that
(δxk, δV k)→ (δx, δV ) = (0, 0), and according to Proposition 5.3 the op-
timality conditions (3) are satisfied in the limit. However, the sequence
{xk, Zk, Y k}k∈N has no limit point; otherwise, such a point would be a cer-
tificate for optimality of the problem. Let T denote the fixed-point operator
mapping (xk, V k) to (xk+1, V k+1). Since (δx, δV ) ∈ cl ran(T − Id) by defini-
tion, and (δx, δV ) /∈ ran(T − Id), this means that the set ran(T − Id) is not
closed, and the distance from (δx, δV ) to ran(T − Id) is zero. In other words,
the set 






x1 1 0
1 x2 0
0 0 −x1


 : (x1, x2) ∈ R2





and the semidefinite cone S3
+ do not intersect, but are not strongly separable.

We run Algorithm 1 with parameters α = ρ = σ = 1 from the initial iterate
(x0, Z0, Y 0) = (0, 0, 0). Figure 7 shows convergence of residuals ‖Axk − zk‖2
and ‖AT yk‖2 to zero.
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Fig. 7 Convergence of residuals ‖Axk − zk‖2 and ‖AT yk‖2 for problem (34).

Remark 6.1 Let ε > 0. Consider the following perturbation to problem (34):

min
(x1,x2)

0 s.t.



x1 1 0
1 x2 0
0 0 −x1


 � −εI.

This problem is feasible since the constraint above is satisfied for x1 = 0 and
x2 = 1/ε− ε.

Consider now the following problem:

min
(x1,x2)

0 s.t.



x1 1 0
1 x2 0
0 0 −x1


 � εI.

This problem is strongly infeasible since the vector ȳ = vec (diag(−1, 0,−1))
satisfies the primal infeasibility condition (5).

These two examples show that an infinitesimally small perturbation to
problem (34) can make the problem feasible or strongly infeasible.

7 Conclusions

We have analyzed the asymptotic behavior of ADMM for a class of convex
optimization problems, and have shown that if the problem is primal and/or
dual strongly infeasible, then the sequence of successive differences of the algo-
rithm’s iterates converge to a certificate of infeasibility. Based on these results,
we have proposed termination criteria for detecting primal and dual infeasi-
bility, providing for the first time a set of reliable and generic stopping criteria
for ADMM applicable to infeasible convex problems. We have also provided
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numerical examples to demonstrate different asymptotic behaviors of the al-
gorithm’s iterates.
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Appendix A Supporting Results

Lemma A.1 The first-order optimality conditions for problem (2) are conditions (3).

Proof We first rewrite problem (2) in the form

min
(x,z)

(
1
2x
TPx+ qT x+ IC(z)

)
s.t. Ax = z,

and then form its Lagrangian,

L(x, z, y) := 1
2x
TPx+ qT x+ IC(z) + yT (Ax− z). (35)

Provided that the problem satisfies certain constraint qualification [15, Cor. 26.3], its solu-
tion can be characterized via a saddle point of (35). Therefore, the first-order optimality
conditions can be written as [29, Ex. 11.52]

z ∈ C
0 = −∇xL(x, z, y) = −(Px+ q +AT y)

NC(z) 3 −∇zL(x, z, y) = y

0 = ∇yL(x, z, y) = Ax− z. ut

Lemma A.2 The dual of problem (1) is given by problem (4).

Proof The dual function can be derived from the Lagrangian (35) as follows:

g(y) := inf
(x,z)

L(x, z, y)

= inf
x
{ 1

2x
TPx+ (AT y + q)T x}+ inf

z∈C
{−yT z}

= inf
x
{ 1

2x
TPx+ (AT y + q)T x} − sup

z∈C
{yT z}.

Note that the minimum of the Lagrangian over x is attained when Px + AT y + q = 0,
and the second term in the last line is SC(y). The dual problem, defined as the problem of
maximizing the dual function, can then be written in the form (4), where the conic constraint
on y is just the restriction of y to the domain of SC [31, p.112 and Cor. 14.2.1]. ut

Lemma A.3 For any vectors v ∈ Rn, b ∈ Rn and a nonempty, closed, and convex cone
K ⊆ Rn,

(i) ΠKb
(v) = b+ ΠK(v − b).

(ii) (Id−ΠKb
)(v) = ΠK◦ (v − b).

(iii)
〈
ΠKb

(v), (Id−ΠKb
)(v)

〉
= 〈b,ΠK◦ (v − b)〉.

(iv) 〈ΠK(v), v〉 = ‖ΠK(v)‖2.
(v) SKb

(ΠK◦ (v)) = 〈b,ΠK◦ (v)〉.
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Proof Part (i) is from [15, Prop. 28.1(i)].
(ii): From part (i) we have

(Id−ΠKb
)(v) = v − b−ΠK(v − b) = ΠK◦ (v − b),

where the second equality follows from the Moreau decomposition [15, Thm. 6.29].
(iii): Follows directly from parts (i) and (ii), and the Moreau decomposition.
(iv): From the Moreau decomposition, we have

〈ΠK(v), v〉 = 〈ΠK(v),ΠK(v) + ΠK◦ (v)〉 = ‖ΠK(v)‖2. ut
(v): Since the support function of K evaluated at any point in K◦ is zero, we have

SKb
(ΠK◦ (v)) = 〈b,ΠK◦ (v)〉+ SK(ΠK◦ (v)) = 〈b,ΠK◦ (v)〉 .

Lemma A.4 Suppose that K ⊆ Rn is a nonempty, closed, and convex cone and for some
sequence {vk}k∈N, where vk ∈ Rn, we denote by δv := limk→∞ 1

k
vk, assuming that the

limit exists. Then for any b ∈ Rn,

lim
k→∞

1
k

ΠKb
(vk) = lim

k→∞
1
k

ΠK(vk − b) = ΠK(δv).

Proof Write the limit as

lim
k→∞

1
k

ΠKb
(vk) = lim

k→∞
1
k

(
b+ ΠK(vk − b)

)

= lim
k→∞

ΠK
(

1
k

(vk − b)
)

= ΠK

(
lim
k→∞

1
k
vk
)
,

where the first equality uses Lemma A.3(i), and the second and third follow from the positive
homogeneity [15, Prop. 28.22] and continuity [15, Prop. 4.8] of ΠK, respectively. ut
Lemma A.5 Suppose that B ⊆ Rn is a nonempty, convex and compact set and for some
sequence {vk}k∈N, where vk ∈ Rn, we denote by δv := limk→∞ 1

k
vk, assuming that the

limit exists. Then

lim
k→∞

1
k

〈
vk,ΠB(vk)

〉
= lim
k→∞

〈
δv,ΠB(vk)

〉
= SB(δv).

Proof Let zk := ΠB(vk). We have the following inclusion [15, Prop. 6.46]

vk − zk ∈ NB(zk),

which, due to [15, Thm. 16.23], and the facts that SB is the Fenchel conjugate of IB and
NB is the subdifferential of IB, is equivalent to

〈
1
k

(vk − zk), zk
〉

= SB
(

1
k

(vk − zk)
)
.

Taking the limit of the identity above, we obtain

lim
k→∞

〈
1
k

(vk − zk), zk
〉

= lim
k→∞

SB
(

1
k

(vk − zk)
)

= SB
(

lim
k→∞

1
k

(vk − zk)
)

= SB(δv), (36)

where the second equality follows from the continuity of SB [15, Ex. 11.2], and the third
from the compactness of B. Since {zk}k∈N remains in the compact set B, we can derive the
following relation from (36):

∣∣∣∣SB(δv)− lim
k→∞

〈
δv, zk

〉∣∣∣∣ =
∣∣∣∣ lim
k→∞

〈
1
k

(vk − zk), zk
〉
−
〈
δv, zk

〉∣∣∣∣

=
∣∣∣∣ lim
k→∞

〈
1
k
vk − δv, zk

〉
− 1
k

〈
zk, zk

〉∣∣∣∣

≤ lim
k→∞

‖ 1
k
vk − δv‖

︸ ︷︷ ︸
→0

‖zk‖+ 1
k
‖zk‖2

= 0,
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where the third row follows from the triangle and Cauchy-Schwarz inequalities, and the
fourth from the compactness of B. Finally, we can derive the following identity from (36):

SB(δv) = lim
k→∞

〈
1
k

(vk − zk), zk
〉

= lim
k→∞

〈
1
k
vk, zk

〉
− 1
k
‖zk‖2
︸ ︷︷ ︸
→0

.

This concludes the proof. ut
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