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Abstract We study a single-unit deteriorating system under condition monitoring for which collected signals

are only stochastically related to the actual level of degradation. Failure replacement is costlier than preventive

replacement and there is a delay (lead time) between the initiation of the maintenance setup and the actual

maintenance, which is closely related to the process of spare parts inventory and/or maintenance setup activities.

We develop a dynamic control policy with a two-dimensional decision space, referred to as a warning-replacement

policy, which jointly optimizes the replacement time and replacement setup initiation point (maintenance ordering

time) using online condition monitoring data. The optimization criterion is the long-run expected average cost per

unit of operation time. We develop the optimal structure of such a dynamic policy using a Partially Observable

Semi-Markov Decision Process (POSMDP) and provide some important results with respect to optimality and

monotone properties of the optimal policy. We also discuss how to find the optimal values of observation/inspection

interval and lead time using historical condition monitoring data. Illustrative numerical examples are provided to

show that our joint policy outperforms conventional suboptimal policies commonly used in the literature.

Keywords Real-time Analytics, partially observable semi-Markov decision process, condition monitoring,

deteriorating systems

1 Introduction

Mechanical systems often tend to deteriorate over time and with usage due to some underlying degradation

processes, random shocks, and the effects of internal and external factors (e.g., load, stress, environmental factors).

One of the most important decisions that many companies face is when to turn off mechanical equipment in order

to perform preventive maintenance. Considering wind farm maintenance for instance (similar problems occur for

oil drilling equipment and electrical feeders, etc.), it is much more cost effective to shut a turbine off before it

fails than to repair extensive damage caused by a failure. The goal then becomes one of prediction: if we stop the

turbine too early before it would have failed, we lose valuable operating time. If we stop it too late, the turbine

may have sustained a catastrophic failure that is expensive to repair. Recent advances in sensor technology and

condition monitoring (CM) frameworks have enabled manufacturing systems to monitor the health of operating

components continuously without having to suspend the operation of such systems for inspection. For example, like

many other types of large mechanical equipment (e.g., oil drilling equipment, electrical feeders), wind turbines are

usually equipped with supervisory control and data acquisition (SCADA) sensors that record various measurements

of the dynamic environment every few minutes. The information collected through CM, which can be in the form

of SCADA data, vibrations measurements, oil analysis, etc., often gives only partial (imperfect) information with

regards to the true degradation state.
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A long-standing problem in operations management and maintenance optimization literature is how to use real-

time CM data collected over time for decision-making. The important decision variables we are faced with can be

categorized into (i) dynamic decision variables that are correlated with real-time CM data and (ii) static decision

variables that are fixed and can be determined offline. The main dynamic decision variables are the replacement

time and the warning time (that is the time of the initialization of the replacement setup), and the main static

decision variables are the observation/inspection interval (sampling frequency), and the lead time for maintenance

setup. It is clear that the above variables are strongly interconnected and should be optimized simultaneously.

Although, many research work has been devoted to investigate how to employ real-time information to find the

optimal solution of the above variables, very few works regarding the joint optimization of multiple decision

variables have been published, particularly for partially observable degrading systems under condition monitoring.

In this paper, we study a condition-monitored deteriorating system with properties that are widely accepted

and applicable in the domain of reliability and maintenance. The CM signals (which may only provide partial in-

formation with regards to the degradation level) are collected at discrete time points with interval δ, which varies

depending on the system and the type of the sensor used for data collection. It is obvious that the smaller the δ,

the more CM signals we collect over time, which can potentially lead to better accuracy for system diagnostics

and prognostics but higher computational complexity due to the fact the more data needs to be processed. The

system is operating until it fails or preventively replaced. Replacement costs include the cost of a new spare plus

the additional failure cost (extra labor, damage to the rest of the system, etc.). Since replacement requires some

maintenance setup activities, such as gathering tools, materials, labors, ordering spares, labors, the slack time to

the generation of work orders, there is a delay (lead-time or maintenance setup time) between the initiation of

maintenance setup and the actual start of maintenance. This lead time, denoted by l, which is closely related to

the process of spare parts inventory and maintenance setup activities, will influence the downtime of the system.

The terms lead time and maintenance setup time are used interchangeably throughout the paper. Spare part

ordering (which can be considered as one important step of maintenance setup) with a positive lead time, along

with maintenance scheduling, is a crucial decision-making issue in the prognostics and health management (PHM)

field. This kind of system is usually expensive and operates singly, and not more than one spare part is kept

in stock at the same time (Wang et al, 2015). The existence of the positive lead time between the maintenance

initiation point and actual maintenance makes the maintenance setup initiation point a decision variable, which is

referred to as the warning time or ordering time in this paper. There is a cost associated with a late warning (costs

related to the unavailability of the system or missed profit while the system is waiting for maintenance setup to

complete) and early warning (opportunity costs related to maintenance setup finished too early, holding the spare

in inventory, depreciation, etc.). In addition, decisions are made at certain decision epochs. The decision interval

can be smaller than observation interval. It is a-clear that the maintenance setup initiation time can affect the

replacement time and thus these variable are highly correlated and represent two distinct and dependent actions.

We first develop a dynamic, joint warning-replacement policy using partially observable semi-Markov decision

process, which has a rich mathematical framework. The proposed decision policy is a two-dimensional control

policy that employ the history of collected CM data to determine two types of actions at each decision epoch,

(i) whether or not to initiate maintenance setup and (ii) whether or not to terminate the operation and replace
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the degraded system with a new one (or wait until the maintenance setup is complete). We then describe simple

approaches that can be used to find the best set of observation interval and lead time among available alternatives.

The results obtained from this paper can also be used to determine the effectiveness of a condition monitoring

system with respect to a condition-based maintenance with direct inspection data or no monitoring data at all. This

work is motivated by the increased interest of the wind turbine industry to use the SCADA (Supervisory Control

And Data Acquisition) measurements, which may give only partial information with respect to the degradation

process of a wind turbine, to issue better timed warnings (maintenance setup initiation points) and to determine

the optimal time to terminate the operation for maintenance. In the context of inventory management, our model

can be considered as a dynamic joint ordering-replacement policy in a single-unit inventory system, considering

that there is a delay between the placement of the order and delivery of the spare (i.e., positive ordering lead

time). When warning corresponds to ordering, early warning cost is related to inventory holding costs and late

warning cost is related to shortage costs. In this paper, the terms ordering and warning are used interchangeably.

We should point out that the results of this paper are applicable only if the cost of early warning and/or late

warning is non-zero, that is completing maintenance setup early or late (whether it relates to spare part inventory

or other maintenance setup activities) incur a considerable cost. Fig. 1 shows a simulated CM signal and two

decision points of warning and replacement. In this example, warning and replacement points are both before

the actual failure point. In addition, the warning point plus the lead time is right before the replacement point

and therefore the system does not have to wait until the setup is finished. It is obvious that warning point and

replacement point are highly correlated. The goal of this paper is to develop a method that can use this type of

online CM signal to make decisions that help avoid too late and too early warnings (start of maintenance setup

or ordering) and also avoid too early or two late replacements.
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Fig. 1: Sample online CM data and decision points.

The remainder of the paper is organized as follows: In §2, we review some of the relevant literature on CBM

optimization, joint inventory-maintenance optimization models, and partially observable degrading systems, and

summarize our contributions made in this paper. The preliminaries and the problem setting are discussed in §3.

In §4, we present our dynamic control model for the joint optimization of warning time and replacement time.

In §5, the structure of the optimal policy is analyzed. In §6, how to find static decision variables from multiple

alternatives is discussed. We also describe important special cases with regards to the availability of condition

monitoring data. A numerical example is given in §7 to illustrate our model and its possible benefits. Finally,

concluding remarks and future extensions are outlined in §8.
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2 Literature Review

Optimization of parameters of inventory and maintenance of deteriorating systems is a well-studied problem in

the literature. One of the earliest works on joint warning-replacement policy is the series of papers by Armstrong

and Atkins (1996, 1998) where they examined an age-based replacement and ordering decisions, for a single-

unit system with a lifetime following a known probability density function (PDF). The long-run average costs

were minimized by searching the optimal combination of replacement time and ordering time. With respect to

optimization parameters, most of the literature have focused on equipment replacement time and spare part

inventory ordering time. A large body of literature has been devoted to either optimizing one variable at a time

or optimizing sequentially all decision variables. Examples of models that focused only on replacement time can

be found in Rosenfield (1976); Ivy and Pollock (2005); Maillart (2006); Chen and Wu (2007); Kurt and Kharoufeh

(2010) and examples of models that focused only on ordering time can be found in Louit et al (2011); Godoy et al

(2013). For a comprehensive review of the available literature on this topic, interested readers may refer to the

work of Van Horenbeek et al (2013).

Most of the conventional models in the literature, which falls in the category of age-based maintenance (e.g.,

Armstrong and Atkins, 1996) and block-based or periodic preventive maintenance (e.g., Brezavscek and Hudoklin,

2003), has the limitation that the maintenance actions are set for all components regardless of the actual degrada-

tion pattern and failure history each may experience while in operation. This shortcoming can potentially lead to

too many unnecessary maintenance actions, unexpected failures, and too early/too late orders (warnings). That

is what motivates researchers in recent years to combine CBM and optimization of inventory and maintenance

parameters in order to cover more realistic situations. The concept of CBM has been applied extensively in the

domain of reliability and maintenance (e.g., Jardine et al, 2006; Zhang et al, 2006; Peng et al, 2010; Ahmad

and Kamaruddin, 2012). Although using CM data for decision-making seems to be the case in many application

settings, very few have considered using online CM data to jointly optimize the maintenance and inventory policies.

An example of CM sensor-driven prognostic models for joint inventory-maintenance decision-making is the

work of Elwany and Gebraeel (2008) under which the optimal replacement time is first optimized followed by the

optimal ordering time. In other words, once the optimal replacement time has been computed, it is used to decide

when to order a spare part. Their work is the extension of the well-known work of Armstrong and Atkins (1996),

with the difference that sensor measurements (which directly reflect the degradation level) are used to update

the remaining lifetime distribution over time. It has been shown by many researchers (e.g., in Kabir and Farrash,

1996) that sequential optimization does not guarantee global optimality. Our work is different from Elwany and

Gebraeel (2008), as (i) we do not assume that CM data give perfect information with regards to the degradation

process, (ii) we jointly optimize ordering time and replacement time using dynamic programming, and (iii) we

develop the structure of the optimal policy. In addition, our model is more general with respect to the degradation

process and we do not assume a known threshold for failure in terms of observed signals.

Panagiotidou (2014) studied the joint maintenance and ordering problem for more than one identical items with

Markovian degradation, which are under periodic inspection that could reveal the true state of the system perfectly.

At each inspection point, the system is restored to an as-good-as-new condition. Two ordering policies namely a

periodic review policy (a multiple of the inspection interval) and a continuous review policy (order when available
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spares reach a predefined limit) were investigated. They did not investigate the structure of the joint optimal policy.

Their model is useful only when the lead-time is smaller than the inspection interval. Wang et al (2008a) proposed

a cost-effective condition-based order-replacement policy to jointly optimize the inspection interval, the ordering

threshold, and the preventive replacement threshold for a single unit system with monotonically increasing but

completely observable degradation process with a known structure for the degradation process. They suggested a

fixed threshold policy in which the ordering time and replacement time were determined based on the observed level

of degradation. They extended their model in Wang et al (2008b) to a system with multiple identical units and used

Monte Carlo (MC) simulation to evaluate the cost rate. Finally, in Wang et al (2009), they presented a condition-

based replacement policy with periodical inspections for deteriorating systems with a number of identical units.

They combined the condition-based replacement policy with periodical inspections and the (S, s) type inventory

where preventive replacement threshold was defined in terms of the deterioration levels of units and ordering was

defined in terms of the level of inventory. Our work is different from all of the above as we develop a dynamic

decision process that simultaneously optimizes both the warning time and replacement time where only partial

information is available with regards to the degradation process. Also, in our model we investigate the structure

of the optimal policy as opposed to having a pre-determined structure for the optimal policy.

With regards to the observation process, most of the literature on CBM has assumed a completely observable

systems in which the CM signals obtained at predetermined monitoring/inspection points either directly reflect

the level of degradation or provide perfect information with respect to the degradation state (e.g., Lam and Yeh,

1994; Yeh, 1997). For example in the well-known work of Banjevic et al (2001), the authors have assumed that the

covariate measurements, which are observable at certain discrete points over time reflect the level of degradation

directly. Many extensions of this work and this assumption have been published including the recent work of Wu

and Ryan (2014) and Qian and Wu (2014). Our work is different from this group of literature, as we consider a

more realistic case under which condition monitoring data provide only partial information with regards to the

degradation process and are only stochastically related to the underlying system state. For a review of CBM models

on partially observable degrading systems, interested readers may refer to Jardine et al (2006). We should remind

here that the degrading system with perfect CM information can be considered as a particular case of partially

observable degrading systems.

The models developed in this paper contributes both to the advancement of reliability analysis and condition-

based maintenance for degrading systems and the advancement of partially observed Markov and semi-Markov

decision processed with dependent decision variables. The contribution made in this paper is three-fold. First, we

develop a dynamic control policy using a partially observable semi-Markov decision process that provides a series

of optimal actions for replacement and warning (ordering) for a single-unit condition-monitored device. Unlike

most of the reported works in this area, we investigate the structure of the optimal policy. Second, we assume a

more generic assumption with regards to condition monitoring data, that is, condition monitoring data give only

partial information with regards to the actual degradation process. The history of collected CM data is employed

at each decision epoch to dynamically update the health status of the system. In terms of the degradation process,

we consider a very general structure that is widely used and accepted in the literature. To our knowledge, this is

the first time that a dynamic decision model is introduced that can employ online CM data for joint optimization
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of warning time and replacement time. Third, we describe a simple approach to investigate optimal monitor-

ing/inspection time and optimal lead time from several alternatives. In addition to the above, our model can be

used to analyze the two extreme cases of a) perfect CM obtained by inspection, and b) no CM at all. Such analyses

can be employed to determine whether or not monitoring the health of the system over time is beneficial. We

also discuss special cases, where we have to deal with missing data, outliers, large monitoring intervals, and fully

observable degradation processes. We develop a partially observable semi-Markov decision process and present

some structural properties of the optimal policy, such as monotonicity and control-limit form. We should point

out that unlike most of available literature (e.g., Armstrong and Atkins, 1996; Elwany and Gebraeel, 2008), we do

not force the ordering time plus lead time to be smaller than the replacement time, instead we let the dynamic

model determine the decision variables.

3 Preliminaries & Problem Settings

In this section, the main characteristics of the degradation process, the observation process, cost elements, decision

variables, and the assumptions made throughout the paper are described.

3.1 Evolution of the Degradation Process

The deteriorating system considered in this paper is associated with a single unit that operates until it fails or

preventively replaced. The degradation process considered here has a very general form that is widely accepted and

frequently used for degradation modeling (for example in Banjevic et al, 2001; Banjevic and Jardine, 2006). Let

Z = {Z(t) : t ∈ R+} be a continuous-time stochastic process with discrete, finite state space E = {0, 1, · · · , N} that

is related to the overall state of health of the system and can influence the total hazard rate. States are ordered to

reflect the relative degrees of deterioration of the system. The process Z(t) can also be a diagnostic covariate that

reflects directly or indirectly different levels of degradation. For multidimensional values of Z, the total state space

can be defined based on all possible combinations of individual states (Louit et al, 2011). Examples of multi-state

stochastic processes that reflect degradation are the 5-state (sharp, normal wear, micro fracture, macro wear, and

breakage) degradation process for a friction drilling device used in Hsu and Shu (2010) and the 4-state (baseline,

contamination 1, contamination 2, failure) degradation process defined for hydraulic pump health monitoring in

Teng et al (2011). A very common approach to deal with process Z(t) is to assume that it changes only at discrete

points of time denoted by {0, δ, 2δ, ...}. Then the right continuous jump process Zk, k ∈ N0 = {0, 1, 2,··· } can be

used as the approximation of the stochastic process Z(t), t ∈ R+, where Zk is the value of the stochastic process Z

at time kδ. The evolution of the stochastic process Zk in discrete domain is governed by a stochastically increasing

matrix P(k) = [pij(k)], i, j ∈ E , k ∈ N0, where pij(k) is the conditional probability of transition from state i to

state j at time kδ, given that the system has survived until time kδ. This probability can be constant or covariate-

dependent (e.g., time-dependent, state dependent). Now, let us also define λ(t, Z(t)) as the conditional hazard

rate (failure rate) at time t, given Z(t). It is very common in the literature of hazard modeling that this hazard

function is represented in terms of a baseline hazard function λ0(t) and a link function that depends on the state

of the stochastic covariate process Z (e.g., Makis and Jardine, 1992). Then the following holds true for the joint

conditional distribution of the lifetime and the state of the process in the discrete domain, given that the system

has survived up to time kδ:

Pr(ζ > (k + 1)δ, Zk+1 = j|ζ > kδ, Zk = i) = exp
{
−
∫ (k+1)δ
kδ λ(t, Z(t))dt

}
pij(k + 1),
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where ζ is the random variable denoting the life of the system. Now the conditional reliability function R(t|kδ, i) =

Pr(ζ > t|ζ > kδ, Zk = i) given the state of the system Zk can be defined as

R(t|kδ, i) =


exp

(
−

t∫
kδ

λ(τ, i) dτ

)
, t ≤ (k + 1)δ

exp

(
−

(k+1)δ∫
kδ

λ(τ, i) dτ

) ∑
j∈E

pij(k + 1)R(t|kδ + δ, j), t > (k + 1)δ

. (1)

The results presented in this paper are based on the assumptions given in Ohnishi et al (1994) that (i) the state

of the process Z is stochastically increasing in time and as the degradation level becomes higher, it is more likely

to make a transition to a higher degradation level (i.e., P is totally positive of order 2 or TP2 in short), and

(ii) the hazard function λ(t, Z(t)) is a nondecreasing function in t and the state of the process Z(t), that is, the

system is more likely to fail at a higher level of Z and t. These assumptions are commonly used in the literature

for non-repairable systems under gradual degradation. We should point out that our model can be applied to

any deteriorating system where it is possible to represent hazard rate and probability of transition in terms of a

combination of time, degradation level, and other measurable covariates.

3.2 The Observation Process (Condition Monitoring Process)

As stated earlier, the process Z is not directly observable, and only partial information can be inferred from it

with respect to the state of the system. The observation process Yk, k ∈ N0, which takes values from the finite set

Y = {1, 2, ...,M} and is sampled at discrete points {0, δ, 2δ, ...}, is stochastically dependent on the true state of the

system. Examples of the observation signal used to monitor degradation are in Dong and He (2007) where vibration

signals were fused based on the importance of sensors data to monitor the degradation of hydraulic pumps and in

Sun et al (2012) where a single health index (HI) is inferred from a set of sensor signals to characterize the hidden

health state of the system for turbofan engine degradation. While the system is in state i, the probability that

output j is observed is bi(j), which belongs to a known distribution B = [bi(j)], i ∈ E , j ∈ Y, referred to as the

state-observation matrix (information matrix). This form of observation matrix has been considered many times

in the literature (see for instance Ghasemi et al, 2010; Kim and Makis, 2013). Let us define θik as the conditional

probability of being in state i given the series of observation signals y1, y2, ..., yk. Then we have

θik = Pr(Zk = i|Y1 = y1, Y2 = y2, ..., Yk = yk) =
Pr(Zk = i, Yk = yk|Y1 = y1, Y2 = y2, ..., Yk−1 = yk−1)

Pr(Yk = yk|Y1 = y1, Y2 = y2, ..., Yk−1 = yk−1)
(2)

=

∑
j∈E

Pr(Zk−1 = j|Y1 = y1, Y2 = y2, ..., Yk−1 = yk−1)× pji(k)× bi(yk)∑
i∈E

∑
j∈E

Pr(Zk−1 = j|Y1 = y1, Y2 = y2, ..., Yk−1 = yk−1)× pji(k)× bi(yk)
,

with the initial state condition θ0 = [θ10,··· , θ
N
0 ], where θi0 = Pr(Z0 = i), ∀i ∈ E . Now, given that the series

{y1, y2, ..., yk} is fully observed, the conditional reliability in terms of θk = [θ1k, · · · , θNk ] can be computed as

R(t|kδ,θk) = Pr(ζ > t|ζ > kδ, Y1 = y1, Y2 = y2, ..., Yk = yk) =
∑
i∈E

θikR(t|kδ, i). (3)

Based on the results given in Ghasemi et al (2007), we also assume that R(t|kδ,θk) is non-increasing in k and θ,

that is larger age and larger distribution of the deterioration level in the sense of stochastic ordering are likely to

yield higher (or equal) probability of failure. Similar to Ohnishi et al (1994) and Ghasemi et al (2007), it is also

assumed that B is TP2, which means that higher degradation level yields higher degradation signal stochastically.
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3.3 Cost Elements

The replacement of the device (either a failure replacement or a preventive replacement) costs cr. There is an

additional cost for a failure replacement at state i denoted by cif , which covers all relevant charges including extra

labour, repair of damage to the rest of the system, cost of downtime, etc. The failure cost vector cf = [c1f , · · · , cNf ]

is assumed to be nondecreasing (c1f ≤ c2f ≤ · · · ≤ cNf ), that is, the failure cost is larger for a higher degradation

level. The system is monitored at discrete time points referred to as observation epochs (δ, 2δ,··· ), where δ is the

observation interval. For simplicity, we assume that decision-making interval is equal to the observation interval,

however we later explain how to relax this assumption. There is a delay (lead time) between the start of the

maintenance setup (which will be referred hereafter as the warning point) and the completion of the replacement

setup, denoted by l. This replacement setup can be related to spare ordering or maintenance initiation setup. If

the system is unavailable because the replacement setup is not ready (e.g., when the spare order is not delivered),

a shortage cost of cs, per unit time representing missing profit or downtime cost is incurred. On the other hands,

if the maintenance setup is ready (or if the spare order is ready) before the system fails, a holding cost of ch per

unit time is incurred. This cost can represent the opportunity cost of capital, depreciation of the spare, or the

cost of having maintenance setup earlier than needed. It is assumed that the fixed cost of ordering or maintenance

setup (per unit) when the lead time is l is cl. For notational convenience, we define function Cl(t, d) as the cost of

ordering at time d and termination of the operation for replacement at time t as

Cl(t, d) = cs(d+ l − t)1{t≤d+l} + ch(t− d− l)1{t≥d+l}. (4)

Based on the above definition, if the warning process starts exactly l units before the failure (that is when

t − d = l), then Cl(t, d) becomes zero. In summary, the following reasonable assumptions are made in this cost

function: (i) if the warning is issued l units before the failure, then the cost of the warning process is zero, (ii)

both late warning and early warning are costly, that is, it takes cs and ch for each units of delay warning and early

warning, respectively, (iii) late warning is more costly than early warning (cs > ch), and (iv) the cost of warning

at failure is greater than the cost of warning at time zero, that is, early warnings are preferred over late warnings.

We used this form of cost function due to its mathematical simplicity, high interpretability, and its common use in

the literature. Examples of cost function in the same form as ours in the context of joint ordering and replacement

can be found in Elwany and Gebraeel (2008); Panagiotidou (2014).

3.4 Decision Variables

The model developed in this paper can be used to optimize two types of decision variables. The first type, which

is the main focus of this paper, includes dynamic decision variables, namely, warning time (which can be related

to either the spare part ordering or maintenance initiation setup) and replacement time, which are determined

through the series of actions chosen at decision epochs δ, 2δ, ...., at which samples of the observation signal are

taken. The second group deals with static decision variables including the observation interval and the lead time.

In Phase I (described in §4), the structure of the dynamic control model to find the series of actions associated

with dynamic decision variables is described. Then in Phase II (described in §6), a simple approach to find the

best set of static decision variables among available alternatives is described.

4 The Semi-Markov Control Model for the Development of Joint Warning-Replacement Policy

The proposed dynamic control model has 3 elements: state space, maintenance actions, and a control policy.
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4.1 State Space

The measurable state of the system at the kth decision point, denoted by πk, is defined as a 4-dimensional vector

that can fully represent all information needed for decision making. The element of πk are (1) the age of the

system, (2) the belief state θk, (3) the status of the warning generation process (ok), and (4) the working status

of the system (υk). The first element of πk is the age of the process, which can influence the decision process as

well as the evolution of covariate Z and failure rate λ. In a regular case, the age of the system at the kth decision

epoch is kδ, but to allow more flexibility, we can let the age be any positive value. As the process Z is not directly

observable over time, we cannot not include it in the state space of the decision process. Instead, we employ the

belief state (information vector). The set of all possible belief states is called the belief space Θ as defined below

θk ∈ Θ =

{
{a1, · · · , aN} ; ai ∈ R+, 0 ≤ ai ≤ 1,∀ i ∈ E ,

N∑
i=1

ai = 1

}
,∀k = 1, 2,··· .

The second element of πk is the belief state θk = [θ1k, θ
2
k,··· , θ

N
k ] as the conditional probability distribution of the

degradation level at time kδ (see Eq. (2)). We should remind that this so-called belief state is fully observable over

time (measurable), since it is a function of the known initial distribution and the observation process. We also

define ok(ok ∈ {N ∪∞}) as an element of the state indicating the time point at which the warning is issued. By

definition, ok = o means that the warning was issued at the oth decision point. If the warning has not been issued

yet, then we let ok =∞. The last element of the state of the process is the overall status of the system indicating

whether the system is available or failed. We define υk (Υk ∈ {1, 0}), where 0 means failure and 1 means working.

For example, state (20, (0.2, 0.7, 0.1), 10, 1) means the age of the system is 20 units, the probability of being at

states 1-3 are 0.2, 0.7, and 0.1, respectively, the warning has been issued at the 10 decision point, and the system

is still operating. Based on the above elements of the state, the fully observable state of the decision process at

time kδ denoted by vector πk has N + 3 elements from which N are for the belief state and 3 are for age, warning

time, and working status. Therefore, the state space S is

(k,θ, o, υ) ∈ S = N0 ×Θ × {N0 ∪ {∞}} × {1, 0} ,where N0 = {0, 1, 2,··· }.

As the conditional state probability θ is fully defined through the observation process, which is finite by definition,

the space S (if only feasible points are considered) can be converted to a countably finite set with possibly many

states. In Section §5.5, we describe how we can manually discretize the interval [0,1] for the belief state, so that S

becomes a much smaller finitely countable discrete space. It will be shown later that πk is a sufficient statistic for

the dynamic control of the replacement and warning processes.

4.2 The Set of Possible Control Actions

The control set or action space includes four 2-dimensional vectors U = {(1, 1), (0, 1), (1, 0), (0, 0)}. For each

uk = {u1
k, u

2
k} ∈ U , u1

k is the action made at the kth decision point corresponding to the warning generation

process (0 means issue warning immediately and 1 means do nothing, that is wait until the next decision point)

and u2
k is the action corresponding to the replacement process (0 means replace immediately and 1 means wait

until the next decision point). Some of these actions are not admissible/feasible for certain states. The list of

admissible actions under different state conditions is given below. For example, the action (1, 0) is not meaningful

when the warning is not issued yet (that is, warning time should not exceed the replacement time). At a decision
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point, if the system is found to be failed, then it is replaced immediately and the warning is issued if not issued

yet.

Admissible actions for state (k,θ, o, υ) :



{(1, 1), (0, 1), (0, 0)}, if {o =∞, υ = 1}

{(1, 1), (1, 0)}, if {o 6=∞, υ = 1}

(0, 0), if {o =∞, υ = 0}

(1, 0), if {o 6=∞, υ = 0}

, ∀ (k,θ, o, υ) ∈ S.

4.3 Control Policy

A control policy (or strategy) represents decision rules that specify how controls (actions) are applied at each

decision epoch. In other words, it is a function from decision space S to action space U that transforms each

state in the state space to an action in the associated admissible actions for that state. Since the control policy is

2-dimensional, we use γ = {γ1, γ2} as the decision rule that indicates the ordering action γ1(π) and replacement

action γ2(π) when the current state is π. The data available for decision makers at the kth decision epoch prior to

action uk being applied is {y1, (u1
1, u

2
1), y2, (u

1
2, u

2
2), · · · , yk} from which πk is fully obtainable. We will show that

the quantity πk represents sufficient information for decision-making at the kth decision point.

4.4 The relationship between State Space, Control Actions, and Control Policy

The evolution of the decision process is governed by πk, uk, and γ as described below. At the kth decision point,

the state of the system πk is fully known. Then the policy γ determines the 2-dimensional action uk based on

πk. Then πk and uk together determine the so-called per-stage cost denoted by C(πk,uk). This cost includes

instantaneous cost plus all costs incurring before the next decision point including the cost of replacement, failure,

and warning. We will decompose this cost function in terms of π and u in §5.1. The system will then move to a

new state πk+1 with a probability that also depends on πk and uk. This probability, which is defined through a

set of transition laws, specifies the evolution of the state space given the previous state and control as a transition

probability with the Markovian property as

Pr(πk+1|π0,··· ,πk,uk) = Pr(πk+1|πk,uk).

By definition, if the action replace immediately is chosen at a decision point, the state at the next decision point

is always (0,θ0,∞, 1) with probability 1, regardless of the current state, that is, the system goes back to an as-

good-as-new condition. For other cases where the action do nothing is chosen with respect to replacement, we can

use the Baye’s theorem to find the posterior distribution of the belief state θ̂k+1(m) = [θ̂1k+1(m), · · · , θ̂Nk+1(m)]

conditional on observation yk+1 = m and the fact that the action at the kth decision epoch is no replacement.

This leads to

θ̂jk+1(m) = Pr(Zk+1 = j|θk, yk+1 = m) =

N∑
i=1

θik × pij(k + 1)× bj(m)

N∑
i=1

N∑
j=1

θik × pij(k + 1)× bj(m)

, ∀m ∈ Y, ∀j ∈ E . (5)

The posterior ôk+1, which shows the status of the system at the (k + 1)th decision epoch in terms of the warning

generation process can be determined given ok and the warning control action u1
k, as

ôk+1(u1
k) =


∞ if ok =∞, u1

k = 1

k if ok =∞, u1
k = 0

d if ok = d < k

. (6)



Joint Optimization of Ordering and Maintenance with Condition Monitoring Data 11

Equation (6) states that for the cases that warning has not been issued yet (ok = ∞), if the warning control at

time k is do-nothing (u1
k = 1), the next state of warning remains ∞. However, if the warning control is immediate

warning (u1
k = 0), then the next state of warning becomes k, meaning that the warning is issued at the kth decision

epoch. For the cases that warning is already issued at time d (ok = d, d < k), the next warning state remains d. If

the replacement control is to replace-immediately, then the system goes back to state 0 and the warning state at

the next decision point becomes ∞. Note that the generation of the observation process at the (k + 1)th point is

also affected by the current state of the system and the chosen control for replacement as follows

Pr(yk+1 = m|θk, u2
k) =


N∑
i=1

N∑
j=1

θik × pij(k + 1)× bj(m), ifu2
k = 1

N∑
j=1

θj0 × bj(m), ifu2
k = 0

∀m ∈ Y. (7)

Note that the choice of warning control has no impact on the next observation signal. It can now be summarized

that (i) if the action no replacement is selected for state πk = (k,θk, ok, 1) , the system moves with probability

R(kδ + δ|kδ,θk) Pr(yk+1 = m|θk, 1) to state (k + 1, θ̂k+1(m), ôk+1, 1), ∀m ∈ Y , and moves with probability

(1 − R(kδ + δ|kδ,θk)) to state (0,θ0,∞, 1) , and (ii) if the action replace immediately is chosen, the system

moves to state (0,θ0,∞, 1) with probability 1. Because the interval length between two decision points are not

necessarily fixed, we need to define the sojourn time distribution an element of a semi-Markov decision process.

This distribution depends only on the replacement control since the choice of control for the warning process

cannot influence the sojourn time distribution. By definition, if option replace immediately is selected, the system

is brought back to the initial condition and therefore the sojourn operating time is theoretically zero. In all other

cases, the expected value of the sojourn time depends on the conditional reliability function as follows

τ̄(δ|k,θk) =

kδ+δ∫
kδ

R̄(dx|kδ,θk) + δ R(kδ + δ|kδ,θk) =

kδ+δ∫
kδ

R(x|kδ,θk)dx. (8)

The graphical model of the described semi-Markov control and its elements are shown in Figure 2.

πk

yk

πk+1

yk+1uk

C(πk,uk)

τ̄(πk,uk)

Fig. 2: Graphical model of the associated semi-Markov control and the evolution of the decision process

4.5 Decision-Making Cost Criterion

The objective of this paper is to develop an optimal policy that can minimize the expected long-run average cost

per unit time. According to the renewal theory, for an infinite time span, minimizing the expected long-run average

cost is equivalent to minimizing the expected cost rate of a maintenance cycle, which is the time interval between
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two successive replacements (Yeh, 1997). Therefore, the cost function can be defined as the expected cost of one

cycle divided by the expected cycle length as defined below.

Definition 1 Let T1,γ and T2,γ be the warning time and the replacement time associated with policy γ, where

T1,γ ≤ T2,γ . The expected average cost per unit time of this policy is

g(γ) =

cr +
∑
i
cif × E

[
Pr(ζ ≤ T2,γ , Z(ζ) = i)

]
+ E [Cl(min(ζ, T2,γ),min(ζ, T1,γ))]

E[min(ζ, T2,γ)]
, (9)

where E is the conditional expectation operation, E[Pr(ζ ≤ T2,γ , Z(ζ) = i)] is the expected probability of a failure

replacement at state i within a replacement cycle, min(ζ, T2,γ) is the effective replacement time, min(ζ, T1,γ)

is the effective warning time, E [Cl(min(ζ, T2,γ),min(ζ, T1,γ))] is the expected cost of the warning process, and

E[min(ζ, T2,γ)] is the expected cycle duration. The expected probability of a failure replacement in a cycle can be

calculated as
N∑
i=1

E
(

Pr(ζ ≤ T2,γ , Z(ζ) = i)

)
.

The objective of the decision policy is to find the optimal policy γ∗ such that g∗ := infγ g(γ) = g(γ∗). The

optimal average cost function g∗ := inf
γ∈Γ

g(γ) and a policy γ∗ is said to be average cost optimal if g∗ = g(γ∗) (i.e.,

γ∗ = argmin
γ

g(γ)).

Remark 1 If an optimal policy exists, then its average cost is bounded by

cr

E(ζ)
≤ g∗ ≤ min

{ cr +
∑
i
cifE (Pr(ζ ≤ T2,γ , Z(ζ) = i)) + cs × l

E(ζ)
,

cr +
∑
i
cifE (Pr(Z(ζ) = i)) + E (C (ζ, 0))

E(ζ)

}
,

where E(ζ) is the expected age of the system, and E (C (ζ, 0)) is the expected cost of the warning generation process

if the warning is issued at time 0 and replacement is done at the failure point.

Proof The proof is given in the Appendix.

We will use the upper bound given above as an initial point to find the optimal policy. Decision makers can take

the difference between the lower bound and the upper bound as the maximum possible improvement in the average

cost function after applying a joint warning-replacement policy. The difference does not necessarily represents the

actual improvement, it is just an indicator of the maximum potential of the joint policy in terms of reducing the

average cost reduction. If the actual improvement (by applying the proposed optimal policy) equals this theoret-

ical improvement, then we have reached a 100% perfect or an ideal policy. This is extremely unlikely due to the

stochastic nature of the degradation and observation processes. This remarks also shows that if the costs of failure

and ordering are zero, then the optimal policy is do nothing as the two bounds become the same.

5 Structure of the Optimal Policy

In the previous section, we developed the structure of the semi-Markov model associated with the decision process.

In this section, we investigate the structural properties of the optimal policy and develop a simple control-based

policy that can be used for the joint determination of warning time and replacement time.

5.1 Structure of the Dynamic Equations

As noted earlier, a warning-replacement policy is a 2-D mapping function from each state π ∈ S to an action

u ∈ U . Let Vγ(π) be the value function (or the expected relative cost) associated with policy γ in an infinite
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horizon, given that the decision process starts from π ∈ S. Whenever the system is still operating, the optimality

equation at πk becomes

Vγ(πk) = min
u=[u1,u2]

{
E {C(πk,u)} − g(γ)τ̄(δ|k,θk) +

[
M∑
m=1

Pr(yk+1 = m|θk, u2)Vγ(k + 1, θ̂k+1(m), ôk+1(u1), 1)

]
R (δ|kδ,θk)

(10)

+ Vγ(π0)(1−R(kδ,θk))

}
, ∀ {πk = [k,θk, ok, 1] ∈ S},

where E {C(πk,u)} and τ̄(δ|k,θk) are the expected cost and expected sojourn time at the current decision point

given action u = [u1, u2]. The 2nd line is the expected value function associated with the case that the system

does not fail within the next period and the 3rd line is associated with the case where the system fails and it is

brought back to state zero at the beginning of the next period. The optimal average cost satisfies the following

optimality equation if the system is at the failure state at the kth decision epoch:

Vγ(πk) = E {C(πk, γ(πk))}+ Vγ(π0),∀ {πk = [k,θk, ok, υk] ∈ S, υk = 0]}, (11)

where π0 = (0,θ0,∞, 1). The expected cost at this state is the sum of the cost of replacement, the expected cost

of failure, and the cost of warning (depending on weather or not a warning has been issued already). The optimal

policy at this state is deterministic, that is replace immediately and issue warning if not been issued already. A pair

(g, V (·)), is said to be the optimal average cost solution if (10) holds true for all πk ∈ S. Note that Equation (11)

is the simplified version of (10) when the system is at the failure state. In the rest of this section, we develop the

dynamic equations associated with (10) and simplify it based on possible actions u = [u1, u2]. By definition, we

know that there are only three actions available at the kth decision epoch when the warning process has not been

issued yet, that is when the state of the system is (k,θk,∞, 1). These actions are (1) do nothing (u = [1, 1]), (2)

warning immediately (u = [0, 1]), and (3) replace and warning immediately (u = [0, 0]). The simplified version of

the value functions of these cases are denoted by V 0
γ (k,θk,∞, 1), V 1

γ (k,θk,∞, 1), and V 2
γ (k,θk,∞, 1), respectively.

Therefore, we get

Vγ(πk) = min
{
V 0
γ (πk), V 1

γ (πk), V 2
γ (πk)

}
,πk = (k,θk,∞, 1). (12)

For the action do nothing with the value function V 0
γ (πk), if the system fails within the next interval while it

is in state i, then the total cost of replacement is cr + cif . Therefore the expected cost of replacement becomes∑
i

cr + cifθ
i
k R̄(kδ + δ|kδ, i) and it goes back to state π0 with the initial relative cost of Vγ(π0). Therefore

[cr + Vγ(π0)]× R̄(kδ + δ|kδ,θk) +
∑
i

cifθ
i
k R̄(kδ + δ|kδ, i)

is the expected replacement cost of the action do nothing, where R̄(kδ + δ|kδ,θk) is the conditional probability of

failure (1-reliability) within the next decision interval given θk. The expected cost of the warning process if failure

occurs within the next inspection interval (kδ ≤ x ≤ kδ + δ) given that the maintenance action is do nothing is
kδ+δ∫
kδ

Cl(x, x)R̄(dx|kδ,θk). For the action warning immediately with the value function V 1
γ (πk), the costs are the

same except for the cost of warning, which becomes
kδ+δ∫
kδ

Cl(x, kδ)R̄(dx|kδ,θk). Finally for the action replace and

warning immediately with the value function V 2
γ (k,θk,∞, 1), the expected cost of replacement process is only cr
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while the expected cost of the warning process becomes Cl(kδ, kδ) = cs × l. We can now simplify all of the above

to

V 0
γ (πk) = [cr + Vγ(π0)]× R̄(kδ + δ|kδ,θk) +

∑
i

cifθ
i
k R̄(kδ + δ|kδ, i) +

kδ+δ∫
kδ

Cl(x, x)R̄(dx|kδ,θk) (13)

− g(γ)τ̄(δ|k,θk) +

[
M∑
m=1

Pr(yk+1 = m|θk, 1)× Vγ(k + 1, θ̂k+1(m),∞, 1)

]
R(kδ + δ|kδ,θk),

V 1
γ (πk) = [cr + Vγ(π0)]× R̄(kδ + δ|kδ,θk) +

∑
i

cifθ
i
k R̄(kδ + δ|kδ, i) +

kδ+δ∫
kδ

Cl(x, kδ)R̄(dx|kδ,θk) (14)

− g(γ)τ̄(δ|k,θk) +

[
M∑
m=1

Pr(yk+1 = m|θk, 1)× Vγ(k + 1, θ̂k+1(m), k, 1)

]
R(kδ + δ|kδ,θk) ,

V 2
γ (k,θk,∞, 1) = cr + Cl(kδ, kδ) + Vγ(π0). (15)

In the case that warning has been already issued at time d (0 < d < k), there are only two possible maintenance

actions: (1) do nothing and (2) replace immediately. Therefore we have

Vγ(πk) = min
{
V 3
γ (πk), V 4

γ (πk)
}
,πk = (k,θk, d, 1), (16)

where V 3
γ (πk) and V 4

γ (πk) respectively refer to the expected costs of do nothing (u = [1, 1]) and replace imme-

diately (u = [1, 0]) assuming that the warning has already been issued at the dth decision epoch (d < k). By

simplifying (10), we get

V 3
γ (πk) = [cr + Vγ(π0)]× R̄(kδ + δ|kδ,θk) +

∑
i

cifθ
i
k R̄(kδ + δ|kδ, i) +

kδ+δ∫
kδ

Cl(x, dδ)R̄(dx|kδ,θk) (17)

− g(γ)τ̄(δ|k,θk) +

[
M∑
m=1

Pr(yk+1 = m|θk, 1)× Vγ(k + 1, θ̂k+1(m), d, 1)

]
R(kδ + δ|kδ,θk),

V 4
γ (πk) = cr + Cl(kδ, dδ) + Vγ(π0). (18)

Note that the following holds true between the relative costs of replace immediately under the two cases of warning

has already been generated and no warning has been issued as:

V 2
γ (k,θk,∞, 1) = V 4

γ (k,θk, d, 1) + [Cl(kδ, kδ)− Cl(kδ, dδ)] . (19)

Now, given the state of the system and the replacement policy (γ), we will show that it is possible to compare

the cost of three possible options V 0
γ (k,θk,∞, 1), V 1

γ (k,θk,∞, 1), and V 2
γ (k,θk,∞, 1), and two possible actions

V 3
γ (k,θk, d, 1), and V 4

γ (k,θk, d, 1) when d > 0 using some interesting properties of the value functions. After

comparing all of these functions, we will end up with a control policy, which can determine what action is better

depending on the state of the system.

5.2 Structural Properties of the Value Functions

This section presents how the set of controls can be determined for a policy γ with cost g(γ). By mutually

comparing the value functions associated with every two actions, we will show that at the kth decision point,

the belief-dependent state πk is sufficient to determine whether or not to (i) issue a warning and (ii) replace a

degraded device. As the number of control actions is different depending on whether or not the warning has been
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issued, we perform our mutual comparison separately for the case of 0 < d <∞ and d =∞. We introduced some

important Lemmas on the structure of the value functions (see the Appendix), which will be used in Theorem 1-4

and the development of the optimal policy. The following four Theorems provide useful results for the relationships

between the expected costs of possible maintenance actions for a policy γ when the state of the system is πk. The

proofs for these Theorems are given in the Appendix.

Theorem 1 The following holds true for any πk = (k,θk,∞, 1) ∈ S:

V 1
γ (πk) ≤ V 2

γ (πk), if Φ1
γ(πk) ≤ 0 and Vγ(πk) < V 1

γ (πk), if Φ1
γ(πk) > 0, where

Φ1
γ(πk) =

∑
i

cifθ
i
k R̄(kδ + δ|kδ, i)− Cl(kδ + δ, kδ)R̄(kδ + δ|kδ,θk)− g(γ)τ̄(δ|k,θk) (20)

− cs +

kδ+δ∫
kδ

Cl(x, kδ)R̄(dx|kδ,θk).

This theorem shows one of the conditions under which warning and no replacement becomes better than warning

and replacement. It also shows a condition under which warning and no replacement is not an optimal option. It

can be observed from this Theorem that we can compare two actions under a policy γ, only if we know the average

cost of this policy denoted by g(γ). The rest of Φ1
γ(πk) is fully known over time.

Theorem 2 The following holds true for any πk = (k,θk,∞, 1) ∈ S:

V 0
γ (πk) ≤ V 2

γ (πk), if Φ2
γ(πk) ≤ 0 and Vγ(πk) < V 0

γ (πk), if Φ2
γ(πk) > 0, where

Φ2
γ(πk) =

∑
i

cifθ
i
k R̄(kδ + δ|kδ, i)− g(γ)τ̄(δ|k,θk). (21)

It is to be noted that this Theorem is compatible with the one-dimensional control policy developed in Ghasemi

et al (2007) to compare the cost of do nothing with the cost of replacement, when there are only two possible

actions and c1f = c2f = · · · = cNf .

Theorem 3 The following holds true any any πk = (k,θk,∞, 1) ∈ S:

V 0
γ (πk) ≤ V 1

γ (πk), if Φ3
γ(πk) ≤ 0 and V 0

γ (πk) > V 1
γ (πk), if Φ3

γ(πk) > 0,where

Φ3
γ(πk) = Cl(kδ, kδ)(1−R(kδ + δ|kδ,θk))−

kδ+δ∫
kδ

Cl(x, kδ)R̄(dx|kδ,θk) (22)

+

(
Em

[
Vγ(k + 1, θ̂k+1(m),∞, 1)

]
− Em

[
Vγ(k + 1, θ̂k+1(m), k, 1)

])
R(kδ + δ|kδ,θk).

This Theorem reveals the condition under which do nothing works better than warning immediately.

Theorem 4 The following holds true for any πk = (k,θk, d, 1) ∈ S:

V 3
γ (πk) ≤ V 4

γ (πk), if Φ4
γ(πk) ≤ 0 and V 3

γ (πk) > V 4
γ (πk), if Φ4

γ(πk) > 0,where
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Φ4
γ(πk) =

∑
i

cifθ
i
k R̄(kδ + δ|kδ, i)− g(γ)τ̄(δ|k,θk) (23)

+ [Cl(kδ + δ, dδ)R(kδ + δ|kδ,θk)− Cl(kδ, dδ)] +

kδ+δ∫
kδ

Cl(x, dδ)R̄(dx|kδ,θk).

This Theorem reveals the condition under which do nothing is better than replace immediately, when the warning

has already been issued.

Remark 2 For all πk = (k,θk,∞, 1) ∈ S, Φ1
γ(πk) ≤ Φ2

γ(πk) .

Proof The proof is given in the Appendix. This property will be used later as part of the development of the optimal

policy. For example, if Φ1
γ(πk) > 0, then according to this remark Φ2

γ(πk) > 0, and therefore from Theorems 1-2,

we have Vγ(πk) = V 2
γ (πk), which means warning and replace immediately is the best action.

5.3 Form of the Control Policy

Based on the mutual comparison we made between the relative costs of each two actions in the previous section,

we can develop a control policy with eight control rules as given in Remark 3. These control rules are the output

of comparing the functions at each decision point kδ, k ∈ N using Theorems 1-4. These control rules determine

which option to choose based on the state of the system.

Remark 3 The optimal joint warning-replacement policy γ is characterized by 4 critical control measures

Φ1
γ(πk), Φ2

γ(πk), Φ3
γ(πk), Φ4

γ(πk) for πk = (k,θk, ok, υk) as defined in Eqs. (20)-(23). In particular, at the kth

decision epoch with state-belief of πk ∈ S, the following 8 control rules (CR), referred to as CR1-CR8 can be used

for warning generation and replacement decision-making:

γ(πk) =



(0, 0), if υk = 0, ok =∞ → CR1

(1, 0), if υk = 0, ok 6=∞→ CR2,

(0, 0), if υk = 1, ok =∞, Φ1
γ(πk) > 0 , Φ2

γ(πk) > 0→ CR3,

(0, 1), if υk = 1, ok =∞, Φ1
γ(πk) < 0 , Φ2

γ(πk) > 0→ CR4

(1, 1), if υk = 1, ok =∞, Φ2
γ(πk) < 0 , Φ3

γ(πk) ≤ 0→ CR5

(0, 1), if υk = 1, ok =∞, Φ2
γ(πk) < 0 , Φ3

γ(πk) > 0→ CR6

(1, 1), if υk = 1, ok = d 6=∞, Φ4
γ(πk) ≤ 0→ CR7

(1, 0), if υk = 1, ok = d 6=∞, Φ4
γ(πk) > 0→ CR8,

. (24)

Proof The proof can be directly obtained from Theorems 1-4 and Remark 2. Note that, the device is replaced at

failure regardless of its state (CR1-CR2). In such a condition, if the warning has not been issued yet, it is issued

immediately (CR1). When the system is available and the warning has not been issued yet, there are 4 control

rules (CR3-CR6), for which the control actions are directly determined from Theorems 1-2. On the other hands,

when the warning has already been issued at the dth decision point, there are two control rules (CR7-CR8), which

are originated from Theorems 3-4. It can be seen by carefully looking at Eq. (24) that the eight control rules

correspond to eight mutually exclusive conditions, thus, the system is at exactly one of these conditions at any

point of time.

The above control rules can be visualized as simple control charts, which are more intuitive for decision makers.

From Remark 3, T1,γ and T2,γ can be found as

T1,γ = min

{
ζ, inf

{
kδ ∈ R+ : Φ2

γ(k,θk,∞, 1) > 0 ∨ Φ2
γ(k,θk,∞, 1)Φ3

γ(k,θk,∞, 1) < 0

}}
, (25)
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T2,γ = min

{
ζ, inf

{
kδ ∈ R+ : Φ2

γ(k,θk,∞, 1) > 0 ∨ Φ4
γ(k,θk, d, 1) > 0

}}
. (26)

The above equations verify that the warning will be issued as soon as one of the conditions given in Eq. (25) is

satisfied or the system fails, whichever occurs first. Also, the system will be replaced as soon as one of the two

conditions given in Eq. (26) is satisfied or the system fails, whichever occurs first.

Remark 4 The introduced control policy has a monotonic behavior for k1 ≤ k2 as follows:

γ2(k1,πk1 , ok1 , υk1 ) ≤ γ2(k2,πk2 , ok2 , υk2 ).

Proof The above Remark states that the actions chosen at future decision epochs are not weaker than the action

chosen at the current decision epoch. For example, if the action at the current time is to replace immediately

but we let the system continue working, then the action suggested at any point in future will also be to replace

immediately regardless of the state of the system given that the system does not self heal. This property can be

proved by comparing the control indices provided in Remark 3. It can be easily shown that Φ1
γ , Φ

2
γ , and Φ4

γ are

monotonically nondecreasing in k and θ, for all θ ∈ Θ under the monotonicity assumption for the conditional

reliability function. We omit the proof for its simplicity.

5.4 Finding the Optimal Policy

It is clear that the only unknown element of Φ1
γ − Φ4

γ is g(γ), which is the average cost of policy γ. Therefore, in

order to find the optimal policy, we should find the cost of the optimal policy first. In order to find the optimal

strategy, one may transform it to an equivalent parameterized stochastic control problem with an additive objective

function as described in Aven and Bergman (1986) and Kim and Makis (2013) or use other standard approaches,

such as policy iteration and value iteration (Bertsekas and Tsitsiklis, 1996). The former approach is known as

the lambda-minimization technique and its theory was developed in the excellent paper of Aven and Bergman

(1986). Based on this technique, denoting MT and ST as the expected cost and cycle of a policy, λ∗ which is

the solution of CTλ = MT − λST is the optimal expected average cost for the stochastic control problem. In this

paper, we employed the policy iteration approach as it gives nice structural properties and easier to implement for

our framework. Policy iteration, which is a well-known algorithm used to solve dynamic programming problems,

is an iterative procedure that operates in a way that an initial policy is improved until no further improvement is

possible. Policy iteration has two main steps, referred to as policy evaluation and policy improvement. Starting from

an initial policy, we compute the value functions by solving the dynamic system of equations (policy evaluation

step). Then, we find the new set of actions and a new policy using the updated value functions (policy improvement

step). The policy iteration stops when further improvement is impossible. Directly applying the policy iteration for

solving the partially observable semi-Markov process is computationally intractable due to the number of states

and the size of the system of dynamic equations. To be able to apply the policy iteration technique, we can modify

its steps in the sense that the policy improvement and policy evaluation steps can be performed without having to

deal with solving directly the associated dynamic equations. We have already shown all the steps needed for the

policy improvement in §5.2. In §5.4.1, we show how the average cost function can be calculated for a given policy

(policy evaluation). We summarize our results in §5.6.
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5.4.1 Steps for Policy Evaluation

Now that the structure of the warning-replacement policy is determined (policy improvement step), the remaining

step of the policy iteration is to perform the policy evaluation step, which evaluates a policy and finds a cost

associated with it accordingly. In order to do this, we define the terms W̄γ(πk), Q̄γ(πk, i), and C̄γ(πk), which

respectively denote the expected remaining time to replacement, the expected probability of failure replacement

at state i, and the expected cost of the warning process, given the current state of the system (k,θk, ok, υk) and

policy γ. The average cost function given in (9) can then be evaluated given that,

E(min(ζ, T2,γ)) = W̄γ(π0),E
(

Pr(ζ ≤ T2,γ , Z(L) = i)

)
= Q̄γ(π0, i), and

E (Cl(min(ζ, T2,γ),min(ζ, T1,γ))) = C̄γ(π0).

Let use also define Dγ(πk,m, u
1
k) as the next state of the system given that the next observation is m, the device

will survive until time (k + 1)δ, and the warning control is u1
k. Then we have

Dγ(πk,m, u
1
k) = (k + 1, θ̂jk+1(m), ôk+1(u1

k), 1),

and therefore the following holds true:

W̄γ(πk) = γ2(πk)

(
τ̄(δ|k,θk) +R(kδ + δ|kδ,θk)

M∑
m=1

Pr(yk+1 = m|θk, 1) W̄γ
(
Dγ(πk,m, u

1
k)
)
γ2
(
Dγ(πk,m, u

1
k)
))

, (27)

Q̄γ(πk, i) = γ2(πk)

(
θikR̄(kδ + δ|kδ, i) +R(kδ + δ|kδ,θk)

M∑
m=1

Pr(yk+1 = m|θk, 1) Q̄γ
(
Dγ(πk)

)
γ2
(
Dγ(πk,m, u

1
k)
))

. (28)

The above equations imply that when the replacement control at the kth decision epoch is to replace immediately

(i.e.,γ2(πk) = 0), then the expected time to failure and expected probability of failure within a cycle are zero.

However, if the decision is do nothing, then these elements depend on the posterior evolution of states, observation

signals, and the actions associated with them. For the expected cost of the warning process, we should note that

if the decision at the kth decision epoch is to replace immediately, then the cost depends on whether or not the

warning has already been issued (i.e., Cl(kδ, ôk+1(u1
k)). However, if the decision is do nothing, the expected cost of

warning equals the expected cost of warning given that the system fails during the next interval, plus the expected

cost of warning if the system survives until time point kδ + δ. Thus

C̄γ(πk) = (1− γ2(πk))Cl(kδ, ôk+1(u1
k)) + γ2(πk) (29)

×

 kδ+δ∫
kδ

Cl(x, ôk+1(u1
k))R̄(dx|kδ,θk) +R(kδ + δ|kδ,θk)

M∑
m=1

Pr(yk+1 = m|θk, 1) C̄γ

(
Dγ(πk,m, u

1
k)

) .
In order to find the above measures for any policy, a backward recursive procedure should be designed in the sense

that it is computationally feasible. To do this, we can first find the time point at which the reliability function is

approximately zero as the start of the backward process. This is theoretically the time point that the warning and

replacement immediately are imposed regardless of the state of the system. This time point can be considered as

a starting point of the backward recursive procedure. Algorithm 1 given in the Appendix describes the details of

the Backward Recursive Process to find Q̄, W̄ , and C̄ for a given policy γ.



Joint Optimization of Ordering and Maintenance with Condition Monitoring Data 19

5.5 Shrinking the State Space from S to S′

As the infinite horizon solution of the described POSMDP with continuous state space is computationally in-

tractable, we discretize the belief space Θ, so that the state space becomes finite and discrete based on the

discretization step σ (0 ≤ σ ≤ 1) as shown below

Θ̃σ =

{{
a1, · · · , aN

}
; 0 ≤ ai ≤ 1, ai = qiσ, ∀qi ∈ N0,∀ i ∈ E , N,

N∑
i=1

ai = 1

}
.

It is important to note that some of the above states might be totally unreachable. The belief state θk =

{a1, a2,··· , a
N} is unreachable if there exists no observation sequence {y1, · · · , yk} that yields θk. One can run

a simple empirical forward process to simulate multiple run-to-failure CM sequences in order to compute the

reachable belief space before running the policy iteration algorithm. Another possible way to decrease the size of

the state space is to define Tmax as the time point at which the system is definitely replaced. Therefore, all states

πk, where kδ > Tmax are not reachable when the degrading system is under control.

5.6 Summary of the Development of the Optimal Control Policy

The following summarizes the steps needed to develop the optimal policy. The decision process has two phases,

which are training phase and implementation phase. In the training phase, the structure of the optimal warning-

replacement policy and its associated cost are determined (Policy Improvement and Policy Iteration). In the

implementation phase, using real-time condition monitoring data, the trained decision policy is used for online

maintenance decision-making using CM data. The summary of steps for each phase is illustrated in Algorithms

2-3. These algorithms generate an improving sequence of policies and terminates with an optimal policy.

Algorithm 2: Policy Iteration Algorithm to Develop a Warning-Replacement Policy

Step 1. Initialization. Set n := 0 and choose a tolerance limit ε > 0. Define γ(0) as the policy do-nothing with its

associated cost g(γ(0)) given in the upper bound in Remark 1.

Step 2. Policy Improvement. For each π ∈ S′ (where S′ is the discretized state space), determine the control

actions using Remark 3. The resulting optimal actions for each π ∈ S′ obtained from Remark 3, yields the new

policy γ(n+1).

Step 3. Policy Evaluation. Find the cost associated with policy γ(n+1) using the results in §5.4.1.

Step 4. Iteration: If |g(γ(n+1))− g(γ(n))| < ε, then γ(n+1) is the optimal replacement policy with associated cost

g∗ = g(γ(n+1)), γ∗ = γ(n+1). Otherwise, set n := n+ 1 and move back to Step 2.

Algorithm 3: Implementation Steps for Online Decision-Making

Step 1 : Set k := 0. The decision action at this point (time zero with state π0) is do nothing (DN).

Step 2 : Set k := k + 1. Collect the condition monitoring signal (yk) and update (πk).

Step 3 : Determine the set of control actions using Remark 3. If γ2(πk) = 0, then replace the system and move

back to Step 1, otherwise move back to Step 2. The summary of the decision process is shown in Figure 3.

6 Search for Optimal Static Decision Variables

As stated before, our static decision variables can be determined offline. In the rest of this section, the steps for

finding the solution of the two static decision variables, namely, monitoring interval and lead time are discussed.

Let us assume that the unit cost of condition monitoring is cm1(δ) per unit of operation time and the cost per

monitoring signal is cm2(δ), where δ is the time interval between two monitoring points. It should be pointed out

that for many systems, cm1(δ) and cm1(δ) may be negligible compared to the costs of replacement and failure.
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Fig. 3: Decision-making flowchart for warning and replacement (Implementation Phase)

Note that the costs of ordering and monitoring were not included in the average cost function as they do not

influence the dynamic variables T1,γ and T2,γ . The full average cost function per time unit can be rewritten as

follows:

g(γ, l, δ) = g(γ) + cm1(δ) +
cm2(δ)

δ
+

co(l)

E(min(ζ, T2,γ))
,

where cm1(δ) + cm2(δ)
δ is the cost of condition monitoring per unit of time, co(l)

E(min(ζ,T2,γ))
is the cost of ordering per

unit of time, and g(γ) is the regular average cost of control given in (9).

6.1 Algorithm to Find the Optimal Monitoring Interval

In this section, we propose a simple approach to compare policies with different observation intervals when cm1(δ)+

cm2(δ) > 0. Consider situations where instead of monitoring every δ units of time, the signals are collected every

∆ units of time where ∆ = jδ, j ∈ N. While the decision can still be made at hδ, h ∈ N, the observation vector

is updated only every ∆ units of time. As the number of transitions within each observation interval ∆ can be

more than one, the distributions of the hazard rate, reliability, and sojourn time are different from the case with

smaller monitoring intervals δ. Let us define y′ as a time-dependent dummy observation output with the following

stochastic relationship with the Z process:

Pr(Yk = y′|Zk = i) = bi(y
′) = 1, ∀{k : kδ 6= h∆, h ∈ N}.

The above relationship states that at any decision point that is not a signal collection point, the observation process

generates an artificial output y′, which has the same distribution among all states. Therefore, this observation does

not add any information to decision makers and is stochastically equivalent to having no observation signal. A

sample sequence of observations when the observation interval equals ∆ is {y′, y′, · · · , y∆, y′, y′, · · · }. Now, we can

simply assume that the system is still under monitoring at decision epochs δ, 2δ,···, but the monitoring process at

hδ 6= ∆,h ∈ N, has no cost and it generates y′, which does not add any useful information for decision-making. In

order to incorporate this in the development of the optimal policy, we need to modify the observation matrix, in

a sense that it becomes a time-varying observation matrix B(t) as follows:
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B(t) =


[B0 0N×1] ∀{t : t = h∆, h ∈ N}

[0N×M 1N×1] ∀{t : t = hδ, t 6= h∆, h ∈ N}

, (30)

where B0 is the original observation matrix. According to (30), at any observation point t = h∆, h ∈ N, the

observation probability matrix works the same as the original observation matrix, however, at other monitoring

points, the system generates output y′ with probability 1. In the development of the optimal policy, we need to

replace bi(j) with its associated value from the above equation. The following summarizes how to find the optimal

inspection interval ∆ from a set of alternatives in a set ∆ = {∆1,··· ,∆F }:

Step 1. Update B(t) using (30).

Step 2. Find the optimal warning-replacement cost g(γ∗, l,∆).

Now by comparing the cost of each option, the optimal interval, which is the one with the minimum cost, can be

found as ∆∗ = arg min
∆∈∆

g(γ∗, l,∆). Given the steps described above, our model can be used (i) to find the optimal

inspection/monitoring interval from a set of alternatives, (ii) to compare a system under condition monitoring with

a system under inspection and with a system under no inspection and monitoring, and (iii) to analyze cases where

monitoring/inspection intervals are large (not necessarily equal to the decision interval). Similar to any other type

of investment, having an online monitoring system needs to be evaluated economically in order to find out whether

or not the investment is worth it and how suitable it is in a given application. The factors that need to be taken

into account are the cost saving per unit time using the online monitoring tool, the investment cost of this system,

the maintenance cost associated with this system, and other important non-monetary factors. In order to figure

out whether or not a condition monitoring framework is worth it, we can compare the full average cost associated

with this system with the one obtained from a fully observable degradation process with inspection. This will be

shown by a numerical example in §7.

6.2 Optimal Lead Time

The assumption we have had so far was the lead time (whether it related to maintenance setup or spare part

ordering) is fixed and already known. In this subsection, we explain how we can find the optimal lead time only

if there is a flexibility to reduce it if we pay more. A useful application of this model is when emergency or-

dering or emergency maintenance setup, which has a shorter lead time and a higher cost than a regular one is

possible. The search for the optimal lead time is very straightforward. If the cost of ordering is zero, then the

ideal lead time is its minimum possible value. However, if the cost of ordering for lower lead times is greater than

its cost for higher lead times, then the search for the optimal lead time is reasonable. Let L = {l1, l2,··· , lI} be

set of alternatives for the lead time with associated cost {co(l1), co(l2),··· , co(lI)}. Then the optimal lead time is

l∗ = argmin
l∈L

g(γ∗, l, δ). It should be pointed out that if the cost of early warning is zero, the optimal warning

policy is to issue warning immediately regardless of l. Similarly, if the cost of late warning is zero (which is often

not the case in practice), then the optimal warning policy is to issue warning at failure regardless of l. In addition

to the above, decision makers may choose to run an emergency order or emergency maintenance setup when

T1,γ = T2,γ . This is possible only if there exists a maintenance setup option with lead time x < l and cost co(x)

under which the the cost of warning and ordering is less than the original cost of warning and ordering based on
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lead time l, that is cs × x+ co(x) < csl + co(l). If an x < l satisfying the above inequality exists, decision makers

may run an emergency setup/order.

6.3 Special Cases

This section provides some useful results for important special cases with respect to the observation process.

I. Completely observable process: Since a degrading system may be completely observable over time (e.g., inspec-

tions are periodically held every ∆ time units, during which the true state of the system is identified), we briefly

explain how our model can be used for such cases. The first step is to assume that there exists an observation

process with outputs {1,··· , N}, which perfectly reveal the process Z. In other words, the observation probability

matrix is an identity matrix with size N , i.e., B(t) = IN . Now, we use this matrix as an input to develop the

optimal policy. In the implementation phase, we generate artificially an observation process based on B and the

observed true states and use it for decision-making. This result can also be used to compare a system under con-

dition monitoring with a system under full inspection. Remember, the system can still be controlled every δ time

units. A sample sequence of observations follows the form {y′, y′, · · · , Z(∆), y′, y′, · · · }.

II. Missing points: Dealing with missing point in our model is very simple. We can assume a dummy observation

value y′ with the corresponding column vector 1N×1 in B(t) similar to (30). Then, we can simply replace all

missing points with an equivalent dummy signal y′ that does not add any information for decision-making.

III. Large monitoring intervals: One of the common assumptions made in the literature for monitoring/inspection

interval is that it is small enough so that at most one transition may occur within each interval. Our model can

still be used for decision-making even when the monitoring interval is large (∆). This can be done by adding

a dummy observation and updated B, we can implement the decision process by assuming that the decision

interval is still δ, but the observation interval is ∆ (δ ≤ ∆). A sample sequence of observations follows the form

{y′, y′, · · · , y∆, y′, y′, · · · }.

IV. Outliers: As the observation process is evolved according to sensor measurements, it is always possible that

we observe an output deviated markedly from other observations in the sample. We detect outliers by comparing

the posterior observation distribution given in (7) with a pre-defined critical point η, 0 < η < 1. In other words,

if the probability of observing the outcome yk is less than the critical point η, then the observed outcome yk is

considered to be outlier and can be treated as a missing point (see II in Special Cases).

6.4 Shortcoming of the Proposed Model

The results provided in this paper are subject to three main shortcomings: (i) scalability, (ii) multiple CM signals,

and (iii) model structure. In terms of the scalability and computational complexity, our model may not perform

well if the number of states is very large. We should point out that since the policy iteration steps are conducted

offline and most multi-state frameworks have few states that represent the overall health of the system, this issue

is not of a significant drawback of our work. To deal with such an issue, we have two options: (i) use the results

given in Section 5.5 to shrink the state space, and (ii) run the model training phase for a longer time. If we have

a very large number of states (which is often not the case in the reliability domain) and none of the two given

solutions works, then our approach may not be scalable. The second drawback is the ability of our model to deal

with system where multi-dimensional condition monitoring signals exist and feature fusion models are not effective

to combine them to one signal. Although this is not addressed in this paper, one can extend the results to cover
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multi-dimensional observation process without much effort as long as the assumptions made remain valid. The

other shortcoming is the assumption that the structure of the degradation process and observation processed are

already trained with data and the trained structure is a reasonable representative of the dynamics of the system.

If one or more of the assumptions of the model are violated, then our model may give misleading results.

7 Numerical Experiments

In this section, a set of numerical experiments is given to show how the proposed control model can be used to

employ condition monitoring data for decision-making of two types: (1) when to issue a warning and (2) when to

stop the operation for replacement. We also illustrate the possible benefit of our model with respect to traditional

models. Consider a three-state deterioration system with the following transition probability matrix (P) and state

observation matrix (B):

P =


0.80 0.19 0.01

0 0.77 0.23

0 0 1

 ,B =


0.60 0.30 0.05 0.05 0

0.10 0.20 0.40 0.20 0.10

0 0.05 0.05 0.30 0.60

 .
The failure rate is λ(t, Z(t)) = (4.5/18)(t/18)3.5 exp(1.6 (Z(t) − 1)), where Z(t) ∈ [1, 2, 3]. Except for the failure

state, the degradation level of the system is assumed to be not observable and only stochastically related with the

actual level of degradation defined through B. For simplicity, we have assumed that the failure cost is constant

over all states (i.e., c1f = c2f = · · · = cNf = cf ). We should point out here that in this paper, we have assumed

that all parameters associated with the degradation and observation processes are fully known. Thus, parameter

estimation is out of the scope of this work. Interested readers are referred to Ghasemi et al (2010) and references

therein for parameter estimation. For all our computational tests, we used Matlab on an Intel Corel i7, 2.7 GHz

with 16GB RAM in all of numerical experiments. We discretized the belief state with σ = 0.01. We set Tmax = 30,

as the point at which the probability of failure is almost 1.

7.1 Development of the Optimal Policy

We first set cr = 10, ch = 0.1, and l = 2, and found the optimal cost function for several combinations of cf/cr,

and cs/ch, as given in Table 1. From this table, we can observe that as expected, the optimal average cost function

increases when cf/cr and cs/ch increase, but the rate of change is much more sensitive to cf/cr. The optimization

procedure starts with an initial policy of do nothing with the average cost calculated from Remark 1 (upper bound

of g) and ends when the policy iteration cannot further improve it. In almost all cases, the optimal solution was

found within the first 6 iterations. Figure 4 shows the output of the policy iteration for a case where cf/cr = 5,

and cs = cr. For this example, the average cost function is 1.93, the expected probability of a failure replacement is

3.87%, and the expected replacement cycle is 6.2. The lower bound shown here is cr
E(ζ)−δ , which is the average cost

per unit time if the policy yields no failure replacement, no late or early warnings, and yields maximum possible

operating time.

Table 1: Optimal average cost for various combinations of cf/cr and cs/ch

cs/ch
cf/cr

0 1 5 10

1 1.04 1.50 1.93 2.17
10 1.05 1.51 1.95 2.18
50 1.06 1.53 1.95 2.19
100 1.09 1.89 1.96 2.19
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Fig. 4: An example of the development of the optimal policy using policy iteration

7.2 Construction of the Optimal Control Charts

As discussed earlier, the proposed control policy can be used for the joint optimization of the warning time and the

replacement time using online CM measurements. To do this, one can convert the control indices given in Remark

3 to simple control charts to be used for online decision-making. We do this for one sample with a lifetime of

9.37. To generate the decision process, we simulate the degradation process and its associated observation process

and then based on that calculate the state of the system at each decision epoch. As discussed earlier, when the

warning has not been issued, we have three possible options of do nothing, warning immediately, and warning and

replacement. Therefore, Φ1
γ∗(πk) - Φ3

γ∗(πk) can be used for decision making as shown in Figure 5. However, after

the warning is issued, the operator has only two options, whether to do nothing or replace immediately. Here,

the control index Φ4
γ∗(πk) should be used for this purpose as given in Figure 6. From these control charts, we

observe that for this sample, the optimal warning time and the optimal replacement time are respectively 6 and

9. Therefore, we have a preventive replacement, and one unit early warning time (the time between warning and

replacement is 3, but the lead time is 2). For this example, the operators could potentially prevent failures and

issue warning reasonably on time (one unit early). These control charts are very practical as they are intuitively

very easy to understand and monitor and can be used directly for decision-making.
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Fig. 5: Control charts before the warning is being issued

7.3 Comparison with Other Policies

In this subsection, we compare through several numerical examples and parameter settings the performance of our

proposed joint optimal policy with other policies used in the literature for the same purpose. We should point out

that our goal here is not to prove that our model outperforms others (this has already been proved as our model

provides the optimal policy), but to show that how a joint optimization of decision variables using online CM data
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Fig. 6: The control chart after the warning is being issued

can help in preventing unexpected failures and unnecessary maintenance actions. Since our paper investigated the

optimal policy, it should give better or equal results compared to any other policies. We compare our model with

three other policies, Do-nothing policy, (T1, T2) policy, and sequential policy. The Do-nothing policy forces the

warning and replacement time to be equal to the failure time. Therefore, the system is always subject to a failure

replacement and too late warning. The (T1, T2) policy is the traditional age-based policy, which does not take into

account the condition monitoring data and works based on the distribution of the time to failure (Armstrong and

Atkins, 1996). Based on this policy, the system is replaced every T2 time units or at failure whichever occurs first,

and the warning is generated at time T1 or the replacement time, whichever occurs first (T1 ≤ T2). The value

of T1 and T2 can be obtained analytically or through simulation. A dynamic sequential policy is a policy, which

(i) uses CM data to update the cost function over time, (ii) first optimizes the replacement time, and then (iii)

finds the warning time accordingly. One recent example of such a policy is the one of Elwany and Gebraeel (2008),

in which the replacement time is first found by optimizing the cost function using the revised remaining useful

life distribution updated continuously according to real-time condition-based degradation signals. In other words,

at each decision epoch, without considering the ordering process and its associated cost, the replacement time is

determined. Then the computed optimal replacement time is incorporated into a full cost function to compute

the optimal inventory ordering time. The sequential policy we consider here is similar to the above except that

the replacement time is determined according to the optimal replacement policy for a system under condition

monitoring given by Ghasemi et al (2007). Although, this type of sequential policy has not been considered in the

literature before for partially observable degrading systems, we consider it here for comparison as it is naturally a

reasonable alternative for the joint policy.

We considered three combinations of cost parameters and reported the average cost per unit time on 20,000

simulated samples from the structures given earlier. We also report the average probability of a failure replacement,

the average replacement interval, and the average percentage of on-time, late, and early warnings associated with

all policies as given in Table 2. It can be observed from Table 2 that our model outperforms all others in terms of

average cost functions. It provides worse performance in terms of the warning generation process compared to the

age-based policy. The reason is that in the age-based policy, the optimal replacement time was exactly l units larger

than the warning time (i.e. T ∗2 = T ∗1 + l), therefore we never have an early warning. However, age-based policy has

a higher cost, higher percentage of failure replacements (except for one case), and smaller operation interval. The

joint policy also outperforms the sequential policy in terms of the average cost function. Particularly, the joint policy

performs much better in terms of the warning generation process. In addition, as expected, all of these policies
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Table 2: Comparison with other policies

cf Measure Do Nothing Policy Age-based Policy Sequential Policy Joint Policy

10

g∗ 2.84 1.69 1.73 1.64
Failure Maintenance (%) 100 12.83 15.11 16.99
Operating Interval 9.87 6.85 7.71 7.60
On time warning (%) 0 75.83 21.19 59.33
Late warning (%) 100 24.17 41.57 12.90
Early warning (%) 0 0 37.24 27.77

50

g∗ 6.89 2.17 2.17 2.10
Failure Replacement (%) 100 5.63 4.15 4.25
Operating Interval 9.87 5.94 6.25 6.13
On time warning (%) 0 94.38 27.42 57.90
Late warning (%) 100 5.63 30.44 13.10
Early warning (%) 0 0 42.15 29.00

100

g∗ 11.96 2.44 2.44 2.36
Failure Replacement (%) 100 2.12 2.71 2.07
Replacement Interval 9.87 4.98 5.81 5.42
On time warning (%) 0 97.88 22.04 57.54
Late warning (%) 100 2.12 22.40 9.66
Early warning (%) 0 0 55.57 32.80

perform better than do-nothing. We should also take into account that a dynamic policy that uses online CM data

for decision-making is subject to the cost of sampling and implementing a condition monitoring framework. In

order to be able to make an accurate comparison between different maintenance strategies, such factors should be

taken into account when the decision is one of the capital investment. In terms of the computational complexity,

our model is the most expensive one due to its large state space and the many steps needed to find the optimal

structure of the joint warning-replacement policy. However, since such steps are often offline, this issue is not of

our concern in this work.

7.4 Investigating the Optimal Values of Static Variables

As discussed earlier, the result of this paper can be used to find the optimal values of lead time and observation

interval if they are flexible. In this subsection, we show with a simple numerical example, how such an investigation

can be done. Let us first assume that there is flexibility in terms of lead time (l) if we are willing to pay more

to make it shorter. It is expected that by increasing the lead time, the cost of ordering decreases, but the cost

of control (warning + replacement) increases. Therefore, by checking the total cost, which is the sum of the cost

of control and the cost of ordering itself, one can choose the optimal lead time. An example of such investigation

is shown in Figure 7 for cs=1, ch=0.1, cf=50, and co(l) = {2, 1, 0.5, 0.3, 0.1, 0.1} for l ∈ {1, 2, 3, 4, 5, 6}. For this

particular setting, the optimal lead time is 4. Such analysis gives a practical tool for maintenance decision makers

to analyze the effect of lead time on the cost of the system. The 2nd decision variable, which can be determined

1 2 3 4 5 6
1.9

2

2.1

2.2

2.3

2.4

Lead time

a)
 U

ni
t C

os
t o

f 
co

nt
ro

l 

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

Lead time

b)
 U

ni
t C

os
t o

f 
or

de
ri

ng

1 2 3 4 5 6

2

2.1

2.2

2.3

Lead time

a+
b

Fig. 7: Investigating the optimal lead time among 6 alternatives

offline is the observation interval. Let us assume that the fixed cost of sampling cm2(δ) is 0.1 and cm2(δ) is zero.
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Now, as shown in Figure 8, as the observation interval becomes wider, the cost of sampling decreases, but the cost

of control increases (less monitoring data is available). For this numerical setting, the optimal observation interval

is 5. This type of analysis gives decision makers a tool to compare different maintenance strategies in terms of

cost, likelihood of failure, replacement interval, and the percentage of late and early warning.
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Fig. 8: Investigation for the optimal observation interval

7.5 Full Inspection Policy

One the most common maintenance strategies used in industry is the full inspection policy under which the

operation is terminated for inspection. The data observed from inspection truly reflect the degradation level and

therefore decision-making under full inspection is more efficient. However, inspection requires system shutdown and

also is subject to other technical costs. Therefore, one should investigate the tradeoff between the cost of inspection

and the cost of control in order to determine the best maintenance strategy. For cs = 1, ch = 1, cf = 50, l = 4,

we can observe from Figure 9 that inspection every 9 days has the lowest cost (unit cost of control + unit cost of

inspection). Then, one can compare the best possible cost obtained from inspection with the cost of the condition

monitoring framework, and then determine whether the condition monitoring framework is economically justifiable.

We should point out here that, our proposed structure can perform such a comparison with using only historical

condition monitoring data and without actual inspection data, which are usually very expensive to collect.
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Fig. 9: Investigation for the optimal inspection interval for a Full Inspection Policy

8 Concluding Remarks and Future Research

In this paper, we developed a two-dimensional decision model, which jointly optimizes the ordering (warning) time

and the maintenance time using online condition monitoring data. The objective was to utilize online condition

monitoring data, which only give partial information with regards to the degradation process, for maintenance

decision-making in order to minimize the expected long-run average cost per unit of operation time. A partially
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observable semi-Markov decision process was developed and some interesting properties of the optimal policy

were discussed. In addition, simple approaches to find the optimal observation interval and optimal lead time

were suggested. Future direction of this work will be on decision-making at the system level, where more than

one failure modes and one components exist in the system. In addition, considering ordering size and partially

observable inventory is an opportunity for further investigation.

A Proofs of Lemmas and Theorems

In this appendix, the proofs of Remark 1, Lemmas 1 - 5, Theorems 2 - 4, and Remark 2 are given.

Proof (of Remark 1) The lower bound is the expected average cost of an ideal policy under which (i) there is no

failure replacement, (ii) there is no early or late warnings, and (iii) the replacement time is as close as possible to

the failure time (one decision epoch before failure. Under such a policy, the system pays only for the mandatory

replacement cost cr and the expected replacement cycle is E(ζ). Achieving this ideal lower bound is very hard in

practice due to the stochastic nature of degradation and observation process and not guaranteed, as it requires a

100% perfect policy. The upper bound is calculated based on the fact that if an optimal policy exists, it should

be at least better than (or equivalent to) the two trivial policies, (i) warning and replacement at failure and (ii)

warning at time 0 and replace at failure. Therefore the cost associated with an optimal policy should be larger

than or equal to the minimum of the expected costs of these two policies. In the first case, we have to pay for the

cost of replacement, the cost of failure, and the cost of warning (cs × l) while the duration of a cycle is qual to

E(ζ). For the 2nd case, we have to pay for replacement and the cost of failure the same as case 1, however, since

we issue warning at time zero, the expected cost of ordering becomes

E (C (ζ, 0)) =

l∫
0

cs(l − x) Pr(ζ = x)dx+

∞∫
l

ch(x− l) Pr(ζ = x)dx.

Therefore, the optimal average cost is bounded, which completes the proof.

Before providing the proofs of the Theorems, we introduce some important lemmas. Using these Lemmas, we

provide important results with regards to the form of decision controls, which can be used to compare two actions.

Lemma 1 For k < d+ l, the following term is nondecreasing in θ and k:

∫ kδ+δ

kδ

Cl(x, dδ)R̄(dx|kδ,θ) + [Cl(kδ + δ, dδ)]R(kδ + δ|kδ,θ)− Cl(kδ + δ, dδ).

Lemma 2 The following holds true for all k, d ∈ N0, d ≤ k, and θ ∈ Θ:

[
Vγ(k + 1,θ, d, 1)− Cl(kδ + δ, dδ)

]
≥
[
Vγ(k,θ, d, 1)− Cl(kδ, dδ)

]
.

Lemma 3 If θ1 ≤st θ2, where ≤st means stochastically increasing (see Ohnishi et al, 1994), then the following

holds true for all k, d ∈ N0, d ≤ k, and θ1,θ2 ∈ Θ :

Vγ(k,θ2, d, 1) ≥ Vγ(k,θ1, d, 1).

Lemma 4 The value function Vγ(k,θ,∞, 1) is nondecreasing in (k,θ) for any k ∈ N0, and θ ∈ Θ.

Lemma 5 The following holds true for all k, d ∈ N0, d ≤ k, and θ ∈ Θ:
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[
Vγ(k + 1,θ, k, 1)− Cl(kδ + δ, kδ)

]
≥
[
Vγ(k,θ,∞, 1)− Cl(kδ, kδ)

]
.

Proof (of Lemma 1) This lemma also states that the given term is approximately constant in k and θ for k > d+ l.

By simplifying Cl(kδ, dδ) and Cl(kδ + δ, dδ) for k < d+ l, the term in the lemma becomes

−csδ
∫ kδ+δ

kδ
R(dx|kδ,θ) − cskR(kδ + δ|kδ,θ) + cs(k + 1)δ,

which is nondecreasing in θ and k. We can also show that for small δ and k > d + l, if we assume that we issue

warning at the decision epochs only, we have

∫ kδ+δ

kδ
Cl(x, dδ)R̄(dx|kδ,θ) ≈ Cl(kδ + δ, dδ)R̄(kδ + δ|kδ,θ), and thus

≈ Cl(kδ + δ, dδ)R̄(kδ + δ|kδ,θ) + [Cl(kδ + δ, dδ)]R(kδ + δ|kδ,θ)− Cl(kδ + δ, dδ) = 0.

Proof (of Lemma 2) Since the minimum of two nondecreasing functions is nondecreasing, we prove this Lemma

separately for V 3
γ and V 4

γ . It follows from (17) that

V 4
γ (k + 1,θ, d, 1)− V 4

γ (k,θ, d, 1) = Cl((k + 1)δ, d)− Cl(kδ, dδ),

which satisfies Lemma 2 if Vγ(k,θ, d, 1) = V 4
γ (k,θ, d, 1). Now, it is sufficient to prove that

[
V 3
γ (k + 1,θ, d, 1)− Cl(kδ + δ, dδ)

]
≥
[
V 3
γ (k,θ, d, 1)− Cl(kδ, dδ)

]
.

For a large k̂ where R(k̂δ + δ|k̂δ,θ) ≈ 0 , that is when we definitely impose a preventive replacement, we have

V 3
γ (k̂ + 1,θ, d, 1) ≈ cr +

∑
i

cifθ
i
k R̄(kδ + δ|kδ, i) + Vγ(π0) + Cl(k̂δ + δ, dδ)

V 4
γ (k̂ + 1,θ, d, 1) ≈ cr + Vγ(π0) + Cl(k̂δ + δ, dδ).

Therefore, V 4
γ (k̂,θ, d, 1) < V 3

γ (k̂,θ, d, 1) is always true for large k, which means Vγ(k̂,θ, d, 1) = V 4
γ (k̂, θ, d, 1).

This implies that Lemma 1 holds true for sufficiently large k. Now, by induction hypothesis, let us assume that

[Vγ(k + 1,θ, d, 1)− Cl(kδ + δ, dδ)] is nondecreasing for k + 1 where 1 < k + 1 < k̂. It follows by the definition of

the value function that (
Vγ(k + 1, θ̂k+1(m)− cr − Vγ(π0)− Cl(kδ + δ, dδ)

)
≤ 0→(

M∑
m=1

Pr(yk+1 = m|θ, u2
k)× Vγ(k + 1, θ̂k+1(m), d, 1)− cr − Vγ(π0)− Cl(kδ + δ, dδ)

)
≤ 0,

is also nondecreasing in k. By adding ±Cl(kδ + δ, dδ)R(kδ + δ|kδ,θk) to V 3
γ (k,θk, d, 1), we get
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V 3
γ (k,θk, d, 1) = [cr + Vγ(π0)] R̄(kδ + δ|k,θk) +

∑
i

cifθ
i
k R̄(kδ + δ|kδ, i) +

kδ+δ∫
kδ

Cl(x, dδ)R̄(dx|kδ,θk) − g(γ)τ̄(δ|k,θk)

+

(
M∑
m=1

Pr(yk+1 = m|θk, 1)× V (k + 1, θ̂k+1(m), d, 1)

)
R(kδ + δ|kδ,θ)± Cl(kδ + δ, dδ)R(kδ + δ|kδ,θk)

= (cr + Vγ(π0)+) R̄(kδ + δ|k,θk) +
∑
i

cifθ
i
k R̄(kδ + δ|kδ, i) +

kδ+δ∫
kδ

Cl(x, dδ)R̄(dx|kδ,θk) − g(γ)τ̄(δ|k,θk)

+

(
M∑
m=1

Pr(yk+1 = m|θk, 1)× V (k + 1, θ̂k+1(m), d, 1)− cr − Vγ(π0)− Cl(kδ + δ, dδ)

)
︸ ︷︷ ︸

(∗)

R(kδ + δ|kδ,θk)

+ Cl(kδ + δ, dδ)R(kδ + δ|kδ,θk).

As (∗) is nondecreasing and negative, and R(kδ+ δ|kδ,θ) is nonincreasing and positive in k, we can conclude that

(∗)×R(kδ + δ|kδ,θ) is also nondecreasing in k. Recalling Lemma 1 and the fact that R and τ̄ are nondecreasing

in k, we conclude that V 3
γ (k,θk, d, 1)− Cl(kδ, dδ) is nondecreasing in k. This completes the proof.

Proof (Proof of Lemma 3) It is clear that V 4
γ (k,θ, d, 1) is constant wrt θ and therefore is nondecreasing in θ. The

rest of the proof is to show that V 3
γ (k,θ, d, 1) is nondecreasing in θ. Following the same steps as we did in Lemma

2 , we get

V 3
γ (k,θ2, d, 1)− V 3

γ (k,θ1, d, 1) ≥
[∫ kδ+δ

kδ
Cl(x, dδ)R̄(dx|kδ,θ) + [Cl(kδ + δ, dδ)]R(kδ + δ|kδ,θ)

] ∣∣∣∣∣
θ2

θ1

≥ 0.

This completes the proof. This Lemma implies that if the decision process starts from a state that is stochastically

more deteriorated in the sense of the stochastic ordering, it will be incurred a higher or equal cost in future.

Proof (of Lemma 4) We first show the proof for k. The proof simply includes verifying that all elements in the

right-hand side of (12) (V 0
γ (k,θ,+∞, 1) − V 2

γ (k,θ,+∞, 1)) are nondecreasing functions in k given the fact that

the minimum of nondecreasing functions is also nondecreasing. From (13)-(15), we can show that for a sufficiently

large k̂ (where R(kδ + δ|kδ,θ) ≈ 0), we have

V iγ (k̂,θ,∞, 1) ≈


cr +

∑
i
cifθ

i R̄(kδ + δ|kδ, i) + Vγ(π0) + Cl(k̂δ, k̂δ), i = 0, 1

cr + Vγ(π0) + Cl(k̂δ, k̂δ), i = 2

.

Therefore, the statement V 2
γ (k̂,θ,+∞, 1) < min{V 0

γ (k̂,θ,+∞, 1), V 1
γ (k,θ,+∞, 1)} is always true regardless of θ.

This implies that when the age of the device is very high in the sense that it is very likely to fail during the next

observation interval (given that the warning has not been generated), the best decision is to replace immediately.

It is also obvious that [cr + csl + Vγ(π0)] is constant in k and therefore V 2
γ (k,θ,+∞, 1) is nondecreasing in k.

Therefore Vγ(k,θ,∞, 1) is constant and nondecreasing for sufficiently large k. The rest of the proof is to show that

V 0
γ (k,θ,+∞, 1) and V 1

γ (k,θ,+∞, 1) are both nondecreasing in k for all k < k̂. Let us first assume by induction

hypothesis that Vγ(k + 1,θ,+∞, 1) is nondecreasing in k. It follows by definition that[
M∑
m=1

Pr(yk+1 = m|θ, 1)× Vγ(k + 1, θ̂k+1(m),∞, 1)

]
− [cr + csl + Vγ(π0)] ≤ 0.

Since R(kδ + δ|kδ,θ) and Vγ(k + 1, θ̂k+1(m),∞, 1) are nondecreasing in k, then

(∗∗) =

[
M∑
m=1

Pr(yk+1 = m|θ, 1)× Vγ(k + 1, θ̂k+1(m),∞, 1)− [cr + csl + Vγ(π0)]

]
R(kδ + δ|kδ,θ),

is also nondecreasing in k. Also, from (13), we know that
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V 0
γ (k,θ,∞, 1) = (∗∗) + cr + Vγ(π0) +

∑
i

cifθ
i R̄(kδ + δ|kδ, i)− g(γ)τ̄(δ|k,θ, 1) + Cl(kδ, kδ).

Since all of the above elements are nondecreasing in k, therefore V 0
γ (k,θ,+∞, 1) is nondecreasing in k. Implement-

ing the same procedures as we did above and considering Lemma 2, which states that Vγ(k + 1, θ̂k+1(m), k, 1)−

Cl(kδ + δ, kδ) is nondecreasing in k, we have

(∗ ∗ ∗) =

[
M∑
m=1

Pr(yk+1 = m|θ, 1)× Vγ(k + 1, θ̂k+1(m), k, 1)− [cr + Cl(kδ + δ, kδ) + Vγ(π0)]

]
≤ 0,

which is also nondecreasing in k. From (13), we have

V 1
γ (k,θ,+∞, 1) = (∗ ∗ ∗)R(kδ + δ|kδ,θk) +

∑
i

cifθ
i R̄(kδ + δ|kδ, i)− g(γ)τ̄(δ|k,θ)

+ Cl(kδ + δ, kδ)R(kδ + δ|kδ,θ) +

kδ+δ∫
kδ

Cl(x, kδ)R̄(dx|kδ,θk) + cr + V (π0).

As all of the above terms are nondecreasing in k, then V 1
γ (k,θ,+∞, 1) is also nondecreasing in k. Considering

that V iγ (k,θ,+∞, 1) is a nondecreasing function in k for i ∈ {0, 1, 2}, we can conclude that Vγ(k,θ,∞, 1) is also

nondecreasing in k. This completes the proof for k. To prove that Vγ(k,θ,∞, 1) is nondecreasing in θ, we can

implement the same steps as we did for the case of k, except that we use Lemma 3 to show that (∗ ∗ ∗) and

(∗ ∗ ∗)R(kδ + δ|kδ,θk) are nondecreasing in θ. We have removed the rest of the proof for its simplicity. This

completes the proof.

Proof (of Lemma 5) From (14) and (17), we have V 1
γ (k,θk,∞, 1) = V 3

γ (k,θk, k, 1) . From the results given in the

proof of Lemma 2, we know that

Vγ(k,θk,∞, 1) ≤ V 3
γ (k,θk, k, 1) ≤ V 3

γ (k + 1,θk, k, 1)− [Cl(kδ + δ, kδ)− Cl(kδ, kδ)] .

Recall from (15) that

Vγ(k,θk,∞, 1) ≤ cr + Cl(kδ, kδ) + Vγ(π0) = V 4
γ (k1,θk, k, 1). By adding ± [Cl(kδ + δ, kδ)− Cl(kδ, kδ)] to the

right-hand side of the above inequality, we have

Vγ(k,θk,∞, 1) ≤ V 4
γ (k + 1,θk, k, 1)− [Cl(kδ + δ, kδ)− Cl(kδ, kδ)] .

Recalling that Vγ(k + 1,θk, k, 1) = min{V 3
γ (k + 1,θk, k, 1), V 4

γ (k + 1,θk, k, 1)}, we get

[Vγ(k + 1,θ, k, 1)− Vγ(k,θ,∞, 1)] ≥ [Cl(kδ + δ, kδ)− Cl(kδ, kδ)] ,

which completes the proof.

Proof (of Theorem 1) From (14)-(15), we have

V 1
γ (πk)− V 2

γ (πk) =
∑
i

cifθ
i
k R̄(kδ + δ|kδ, i)− Cl(kδ, kδ)R̄(kδ + δ|kδ,θk) +

kδ+δ∫
kδ

Cl(x, kδ)R̄(dx|kδ,θk)− g(γ)τ̄(δ|k,θk)

+

[
M∑
m=1

Pr(yk+1 = m|θk, 1)× Vγ(k + 1, θ̂k+1(m), k, 1)− V 2
γ (k,θk,∞, 1)

]
R(kδ + δ|kδ,θk).

Replacing V 2
γ (k + 1,θk+1,∞, 1) by V 4

γ (k + 1,θk+1, k, 1) + cs from (19) and adding Cl(kδ + δ, kδ)− Cl(kδ, kδ), we

get
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V 1
γ (πk)− V 2

γ (πk) =
∑
i

cifθ
i
k R̄(kδ + δ|kδ, i)− Cl(kδ + δ, kδ)R̄(kδ + δ|kδ,θk)− g(γ)τ̄(δ|k,θk)−cs +

kδ+δ∫
kδ

Cl(x, kδ)R̄(dx|kδ,θk)

(31)

+

[
M∑
m=1

Pr(yk+1 = m|θk, 1)× Vγ(k + 1, θ̂k+1(m), k, 1)− V 4
γ (k + 1, θ̂k+1(m), k, 1)

]
R(kδ + δ|kδ,θk). (32)

Recall from (16) that Vγ(k + 1, θ̂k+1(m), k, 1) ≤ V 4
γ (k + 1, θ̂k+1(m), k, 1), and thus

M∑
m=1

Pr(yk+1 = m|θk, 1)Vγ(k + 1, θ̂k+1(m), k, 1) ≤
M∑
m=1

Pr(yk+1 = m|θk, 1)V 4
γ (k + 1, θ̂k+1(m), k, 1)

≤ V 4
γ (k + 1, θ̂k+1(m), k, 1),

which follows that the last term in (31) is non-positive. Therefore if Φ1
γ(πk) is non-positive, then V 1

γ (πk) ≤ V 2
γ (πk),

that is warning immediately and no replacement is better than immediate warning and immediate replacement.

Now we show that if Φ1
γ(k,θk,∞, 1) > 0, then Vγ(πk) = V 1

γ (πk) cannot be true. Let us assume that Φ1
γ(πk) > 0

and Vγ(πk) = V 1
γ (πk). Then we have

Vγ(k + 1,θk, k, 1)− Vγ(πk) = V (k + 1,θk, k, 1)− V 1
γ (πk)

= −Φ1
γ(πk) +

[
Vγ(k + 1,θk, k, 1)− cr − Cl(kδ + δ, kδ)− Vγ(π0)

]
(1−R(kδ + δ|kδ,θk))

+

[
Vγ(k + 1,θk, k, 1)−

M∑
m=1

Pr(yk+1 = m|θk, 1)× Vγ(k + 1, θ̂k+1(m), k, 1)

]
R(kδ + δ|kδ,θk)− cs.

From Lemma 5, we know that the left-hand side is greater than Cl(kδ + δ, kδ) − Cl(kδ, kδ). Therefore, since

−Φ1
γ(πk) < 0, the second term on the right-hand side (see Equation (16)), and the third term on the right-hand

side (see Lemma 3) are less than zero, then the right-hand side of the above equation is less than Cl(kδ + δ, kδ)−

Cl(kδ, kδ) = −cs. Thus, the above equation cannot be true as the sign of the two sides of the equation does not

match. This means that if Φ1
γ(πk) > 0, then Vγ(πk) < V 1

γ (πk) cannot be true.

Proof (of Theorem 2) From (13)-(14), we have

V 0
γ (k,θk,∞, 1)− V 2

γ (k,θk,∞, 1) =
∑
i

cifθ
i
k R̄(kδ + δ|kδ, i)− g(γ)τ̄(δ|k,θk)︸ ︷︷ ︸

Φ2
γ(t,θk,∞,1)

+

[∑
m

Pr(yk+1 = m|θk, 1)× Vγ(k + 1, θ̂k+1(m),∞, 1)− V 2
γ (k + 1, θ̂k+1(m),∞, 1)

]
R(kδ + δ|kδ,θk).

As the second term of the above is nonpositive, it is obvious that if Φ2
γ(k,θk,∞, 1) ≤ 0, then V 0

γ (k,θk,∞, 1) ≤

V 2
γ (k,θk,∞, 1), that is, the do nothing is a better action. Now, we can show that if Φ2

γ(k,θk,∞, 1) > 0, then

Vγ(k,θk,∞, 1) = V 0
γ (k,θk,∞, 1) cannot be true. Thus, if πk = (k,θk,+∞, 1) and πk+1 = (k + 1,θk,+∞, 1),

then
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Vγ(πk+1)− Vγ(πk) = Vγ(πk+1)− V 0
γ (πk) > 0

= Vγ(πk+1)− Φ2
γ(πk)− [cr + Cl(kδ, kδ) + Vγ(π0)](1−R(kδ + δ|kδ,θk))

−

[
M∑
m=1

Pr(yk+1 = m|θk, 1)× Vγ(k + 1, θ̂k+1(m),∞, 1)

]
R(kδ + δ|kδ,θk)× Vγ(k + 1,θk,+∞, 1)

= −Φ2
γ(πk) + [Vγ(πk+1)− cr − Cl(kδ, kδ)− Vγ(π0)](1−R(kδ + δ|kδ,θk))

+

[
Vγ(πk)−

M∑
m=1

Pr(yk+1 = m|θk, 1)× Vγ(k + 1, θ̂k+1(m),∞, 1)

]
R(kδ + δ|kδ,θk).

As −Φ2
γ(πk) < 0, and the second and the third terms are also nonpositive, we can conclude that the above equation

cannot be true. Therefore, if Φ2
γ(πk) > 0 , then Vγ(πk) = V 0

γ (πk) cannot be true.

Proof (of Theorem 3) Using (13)-(14), we have

V 0
γ (πk)− V 1

γ (πk) = Cl(kδ, kδ)(1−R(kδ + δ|kδ,θk))−
kδ+δ∫
kδ

Cl(x, kδ)R̄(dx|kδ,θk)

+

[
M∑
m=1

Pr(yk+1 = m|θk, 1)× [Vγ(k + 1, θ̂k+1(m),∞, 1)− Vγ(k + 1, θ̂k+1(m), k, 1)]

]
R(kδ + δ|kδ,θk).

(33)

The comparison between the value function of these two options requires evaluation of the last term of the above

equation, which can be rewritten as

[
Em

[
Vγ(k + 1, θ̂k+1(m),∞, 1)

]
− Em

[
Vγ(k + 1, θ̂k+1(m), k, 1)

] ]
R(kδ + δ|kδ,θk),

where Em is the expectation operation wrt to m, given that the replacement control is to do nothing. To calculate

the above term, we use the property of the value function as

Vγ(k + 1, θ̂k+1(m),∞, 1, γ)− Vγ(k + 1, θ̂k+1(m), k, 1) =
∑
i

cif ×
(
Q̄γ(k + 1, θ̂k+1(m),∞, 1|i)− Q̄γ(k + 1, θ̂k+1(m), k, 1|i)

)
+
(
C̄γ(k + 1, θ̂k+1(m),∞, 1)− C̄γ(k + 1, θ̂k+1(m), k, 1)

)
− g(γ)

(
W̄γ(k + 1, θ̂k+1(m),∞, 1)− W̄γ(k + 1, θ̂k+1(m), k, 1)

)
.

where W̄γ(πk), Q̄γ(πk|i), and C̄γ(πk) (see §5.4.1) are the expected remaining time to replacement, the expected

probability of failure at state i, and the expected cost of the warning process, given the state πk and a policy γ

with cost g(γ). Now, the statement given in Theorem 3 follows.

Proof (of Theorem 4) As shown earlier, when the warning has already been issued, there are only two maintenance

options to compare at the policy improvement step. Thus, if we assume πk = (k,θk, d, 1), we get

V 3
γ (πk)− V 4

γ (πk) = [cr + Vγ(π0)] (R̄(kδ + δ|kδ,θk)) +
∑
i

cifθ
i
k R̄(kδ + δ|kδ, i) +

kδ+δ∫
kδ

Cl(x, dδ)R̄(dx|kδ,θk)

− g(γ)τ̄(δ|k,θk) +

(
M∑
m=1

Pr(yk+1 = m|θk, 1)× Vγ(k + 1, θ̂k+1(m), d, 1)

)
R(kδ + δ|kδ,θk)

− [cr + Cl(kδ, dδ) + Vγ(π0)] .
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By adding ±Cl(kδ + δ, dδ)R(kδ + δ|kδ,θk) to the above, we get

V 3
γ (πk)− V 4

γ (πk)

=
∑
i

cifθ
i
k R̄(kδ + δ|kδ, i)− g(γ)τ̄(δ|k,θk) + [Cl(kδ + δ, dδ)R(kδ + δ|kδ,θk)− Cl(kδ, dδ)] +

kδ+δ∫
kδ

Cl(x, dδ)R̄(dx|kδ,θk)

︸ ︷︷ ︸
Φ4
γ(k,θk,d,1)

+

[
M∑
m=1

Pr(yk+1 = m|θk, 1)× Vγ(k + 1, θ̂k+1(m), d, 1)− V 4
γ (k + 1,θk+1, d, 1)

]
R(kδ + δ|kδ,θk)︸ ︷︷ ︸

(∗∗∗∗)

.

It follows from (16) that Vγ(k + 1, θ̂k+1(m),∞, 1) ≤ V 4
γ (k + 1,θk+1, d, 1), and thus

M∑
m=1

Pr(yk+1 = m|θk, 1)× Vγ(k + 1, θ̂k+1(m),∞, 1) ≤
M∑
m=1

Pr(yk+1 = m|θk, 1)V 4
γ (k + 1,θk+1, d, 1),

which means (∗ ∗ ∗∗) < 0. Therefore, if Φ4
γ(πk) ≤ 0, then V 3

γ (πk)− V 4
γ (πk) < 0, that is the optimal policy is do

nothing. The rest of the proof is devoted to show that if Φ4
γ(πk) > 0, then V 3

γ (πk)− V 4
γ (πk) < 0 cannot be true

and therefore V 3
γ (πk) > V 4

γ (πk), that is the optimal policy is to replace immediately. It follows from Lemma 2

that Vγ(k + 1,θ, d, 1)− V (πk) > [Cl(kδ + δ, dδ)− Cl(kδ, dδ)] and then

Vγ(k + 1,θ, d, 1)− Vγ(πk) = Vγ(k + 1,θ, d, 1)− V 3
γ (πk)

= Vγ(k + 1,θ, k, 1)− V 3
γ (πk) + [Vγ(k + 1,θ, d, 1)R(kδ + δ|kδ,θ)− Vγ(k + 1,θ, d, 1)R(kδ + δ|kδ,θ)]

= −Φ4
γ(k,θ, d, 1) + [Cl(kδ + δ, dδ)R(kδ + δ|kδ,θ)− Cl(kδ, dδ)]

+ [Vγ(k + 1,θ, d, 1)− cr − Vγ(π0)](1−R(kδ + δ|kδ,θ))

+ Vγ(k + 1,θ, d, 1)R(δ|k, θ)−

[
M∑
m=1

Pr(yk+1 = m|θ, 1)× Vγ(k + 1, θ̂k+1(m), d, 1)

]
R(kδ + δ|kδ,θk).

By adding Cl(kδ + δ, dδ)− Cl(kδ + δ, dδ) to the above, we get

Vγ(k + 1,θ, d, 1)− Vγ(πk) = −Φ4(k,θ, d, 1)︸ ︷︷ ︸
<0

+[Cl(kδ + δ, dδ)− Cl(kδ, dδ)]

+ [Vγ(k + 1,θ, d, 1)− cr − Cl(kδ + δ, dδ)− Vγ(π0)](1−R(kδ + δ|kδ,θ))

+

[
Vγ(k + 1,θ, d, 1)−

M∑
m=1

Pr(yk+1 = m|θ, 1)× Vγ(k + 1, θ̂k+1(m), d, 1)

]
R(kδ + δ|kδ,θ).

Therefore, as the last two terms of the above are nonpositive, if Φ4
γ(πk) > 0, we have sharp inequality, which is a

contradiction. From the above we can conclude that V 3
γ (πk) > V 4

γ (πk), that is the optimal decision is to replace

immediately. This completes the proof.

Proof (of Remark 2) By taking the difference between Φ1
γ and Φ2

γ , we get

Φ1
γ(k,θk,∞, 1)− Φ2

γ(k,θk,∞, 1) = Cl(kδ + δ, kδ)− Cl(kδ, kδ) ≤ 0,

which completes the proof.

Algorithm 1: The Backward Recursive Process to find Q̄, W̄ , and C̄ for a given policy γ

Step 1. Using the unconditional reliability function, find Tmax as a time point at which the reliability is ap-

proximately 0. This makes Φ1-Φ4 greater than zero with probability 1. Set k := dTmax/δe, and move to Step

2.
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Step 2. For d := 0 : k, and each θk ∈ Θ̃σ, update πk. If γ2(πk) = 1, calculate W̄γ(πk), Q̄γ(πk, i),∀i, and C̄γ(πk),

and if γ2(πk) = 0, calculate C̄γ(πk) only.

Step 3. Set k := k − 1. If k ≥ 0, move back to Step 2, otherwise go to Step 4.

Step 4. Let dk = Tmax/δe. For d =∞ and θk ∈ Θ̃ε, update πk. If γ2(πk) = 1, calculate W̄γ(πk), Q̄γ(πk, i), and

C̄γ(πk), and if γ2(πk) = 0, calculate C̄γ(πk) only.

Step 5. Set k := k − 1. If k ≥ 0, move to Step 4, otherwise terminate the algorithm and compute g(γ) from (9).
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