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Abstract We propose an analytically tractable approach for studying the transient behavior of multi-
server queueing systems and feed-forward networks. We model the queueing primitives via polyhedral
uncertainty sets inspired by the limit laws of probability. These uncertainty sets are characterized by
variability parameters that control the degree of conservatism of the model. Assuming the inter arrival
and service times belong to such uncertainty sets, we obtain closed form expressions for the worst case
transient system time in multi-server queues and feed-forward networks with deterministic routing. These
analytic formulas offer rich qualitative insights on the dependence of the system times as a function of the
variability parameters and the fundamental quantities in the queueing system. To approximate the average
behavior, we treat the variability parameters as random variables and infer their density by using ideas from
queues in heavy traffic under reflected Brownian motion. We then average the worst case values obtained
with respect to the variability parameters. Our averaging approach yields approximations that match the
diffusion approximations for a single queue with light-tailed primitives and allows to extend the framework
to heavy-tailed feed-forward networks. Our methodology achieves significant computational tractability and
provides accurate approximations for the expected system time relative to simulated values.

Keywords Transient Queueing Theory · Relaxation Time · Steady State · Robust Optimization · Heavy
Tails · Feed-forward networks · Tandem Queues

1 Introduction

The origin of queueing theory dates back to the beginning of the twentieth century, when [26] published
his fundamental paper on congestion in telephone traffic. Over the past century queueing theory has found
many other applications, particularly in service, manufacturing and transportation industries. In recent
years, new queueing applications have emerged, such as data centers and cloud computing, call centers and
the Internet. These industries are experiencing surging growth rates, with call centers and cloud computing
enjoying respective annual growth of 20% and 38%, according to the 2012 Gartner and Global Industry
Analysts Survey.

Many applications operate under heavy-traffic conditions yielding a slow convergence to steady state,
which may not be reached within the operation time window. Analyzing such queueing systems requires
an understanding of (a) the evolution of the system time over time, and (b) the time it takes the queueing
system to reach steady state. Furthermore, queueing systems that are characterized by heavy tailed arrivals
and/or service times never reach steady state and therefore their behavior is essentially transient. For
instance, heavy tailed arrivals and service times have been reported for the Internet by [43] and [24], for
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call centers by [10], and for data centers by [45] and [12]. A steady state analysis in these situations is not
relevant.

Despite the need for an understanding of the transient behavior, the probabilistic analysis of transient
queues is by and large analytically intractable. For M/M/1 queues, the exact analysis of the queue length
involves an infinite sum of Bessel functions and forM/M/m queues, [36] obtained the transition probabilities
of the Markov chain describing the queue length as functions of Poisson-Charlier polynomials. [6,7] used
double transforms with respect to space and time to describe the transient behavior of an M/M/1 queue.
This analysis was further extended in a series of papers, see [2], [3], [22], [23], [4], to obtain additional insights
on the queue length process. These analyses also provide insights on the usefulness of reflected Brownian
motion approximations for queues. [15] formulate the problem of finding the distribution of the transient
waiting time as a two-dimensional Lindley process and then transform it to a Hilbert factorization problem.
They obtain the solution for GI/R/I, R/G/I queues, where R is the class of distributions with rational
Laplace transforms. Extending these results, [16] use the “method of stages” to study MGEL/MGEM/1
queueing systems, where MGE is the class of mixed generalized Erlang distributions which can approximate
an arbitrary distribution. [46,33] study the transient analysis problem for process sharing Markovian queues
with time-varying rates using a technique known as “uniform acceleration”. As discussed in [51], there
are multiple approximations available but a tractable theory of transient analysis of G/G/m queues is
lacking (see also [32], [35], and [37]). Further complicating the transient analysis is the effect of initial
conditions, which gives rise to a significantly different behaviors as empirically investigated in [38] and [51].
Even numerically, the calculations involve complicated integrals which do not allow sensitivity analysis, an
integral requirement for a system designer managing these systems.

Given these difficulties, a body of work has concentrated on developing approximate numerical solution
techniques to investigate transient behavior (e.g., [40], [49], [47], [53], [30], [21], [41], [31], and [54]). [50],
in his work on the diffusion approximation of GI/G/1 queueing systems under heavy traffic, obtains a
closed-form expression and proposes an order of magnitude estimate of the time required for the transient
effects to become negligible. [48], develops a numerical technique for estimating the transient behavior of
the expected waiting time for M/M/1 and M/D/1 queueing systems on the basis of a recursive relationship
involving waiting times of successive jobs. All of these approaches have focused on improving the efficiency
and accuracy of numerical solution techniques, rather than on using their results to draw conclusions on
general attributes of transient behavior. More recently, based on earlier work by [18], [52] use a semi-definite
optimization approach to obtain qualitative insights on the transient behavior of queues. They derive upper
bounds on the tail distribution of the transient waiting time, and use it to bound the expected waiting time,
for GI/GI/1 queues starting with empty buffer for non-heavy-tailed distributions. [59] use an extension
of the Stochastic Network Calculus framework to propose a temporal network calculus approach to obtain
bounds on delays in internet networks. However, these approaches do not tackle heavy-tailed queues and
the effect of initial buffer conditions.

Motivated by these challenges, we propose an analytically tractable approach for studying the transient
behavior of multi-server queueing systems with heavy-tailed arrival and service processes. Building upon
our earlier work in [9] for queues in steady state, we first model the queueing primitives via polyhedral
uncertainty sets indexed by two parameters which control the degree of conservatism of the corresponding
arrival and service processes. We then consider a robust optimization perspective which yields closed form
formulas for the transient system time. These expressions offer new qualitative insights on the dependence
of the system time as a function of fundamental quantities in the queueing system. We break new ground by
treating the parameters characterizing the uncertainty sets as random variables and infer their density using
ideas from queues in heavy traffic under reflected Brownian motion. We then approximate the expected
behavior via averaging the worst case values over the variability parameters. This averaging approach
achieves significant tractability by reducing the problem of transient analysis to a low dimensional integral.
As a sanity check, we show that our results match the diffusion approximations for a single queue with
light-tailed primitives. Furthermore, we also extend our approach to feed-forward networks with possibly
heavy-tailed arrivals and/or service times.

The motivation behind our idea stems from the rich development of optimization as a scientific field
during the second part of the twentieth century. From its early years ([25]), modern optimization has had
the objective to solve multi-dimensional problems efficiently from a practical point of view. Today, many
commercial codes are available which can solve truly large scale structured (linear, mixed integer and
quadratic) optimization problems. In particular, Robust Optimization (RO), arguably one of the fastest
growing areas in optimization in the last decade, provides, in our opinion, a natural modeling framework for
stochastic systems. For a review of robust optimization, we refer the reader to [11], and [13]. The present
paper is part of a broader investigation to analyze stochastic systems such as market design, information
theory, finance, and other areas via robust optimization (see [8]).
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1.1 Contributions and Structure of the paper

We make the following contributions in this paper:

1. We provide worst case and average case analysis of multi-server queueing systems in the presence of
heavy tails, even when the queues are non-empty to begin with.

2. We extend our approach to tandem networks and feed-forward networks and present a tractable way
to analyze the worst case and average case waiting time.

These contributions extend the robust optimization approach to analyzing queueing networks as introduced
in [17] and [9], by focusing on the analysis of the transient regime rather than the steady state considered
in these papers.

The structure of the paper is as follows. Section 2 provides an overview of our framework. In Section
3, we present our analysis for single multi-server queues with possibly heavy-tailed arrivals and service
times. In Sections 4 and 5, we extend our approach to analyze tandem queueing systems and more complex
feed-forward networks. Section 6 concludes the paper.

2 Proposed Framework

In this section, we present the main components of our framework and describe the main contributions.
Let T = (T1, . . . , Tn) and X = (X1, . . . , Xn) denote the inter-arrival times and service times of n jobs,
respectively. Note that in the traditional probabilistic study of queues, these primitives are modeled via
renewal processes. In a first-come first-serve (FCFS) single-server queue, the waiting time Wn = Wn (T,X)
and the system time Sn = Sn (T,X) are given by the Lindley recursion ([44]) as follows

Sn = Wn +Xn = max (Sn−1 +Xn − Tn, Xn) = max
1≤k≤n

(
n∑
i=k

Xi −
n∑

i=k+1

Ti

)
. (1)

Analyzing the expected waiting and system times, given by

Wn = ET,X [Wn (T,X)] and Sn = ET,X [Sn (T,X)] , (2)

entails the understanding of the complex relationships between the random variables associated with the
inter-arrival and service times. The high dimensional nature of the performance analysis problem makes the
probabilistic analysis by and large intractable, especially in the transient domain. The study of multi-server
queues is even more challenging. Instead, we propose an approximation of the expected system time by

(a) using the modeling framework introduced in [9] to model the uncertainty in the arrival and service
processes via parametrized polyhedral sets,

(b) computing closed-form expressions for the worst case system time under our assumptions, and
(c) taking advantage of the uncertainty dimensionality reduction and leveraging the worst case values to

obtain analytical expressions that approximate the average-case system behavior.

In what follows, we present an overview of our approach in this section and illustrate our methodology
through the case of a single-server queue with light-tailed arrivals and service times. We then extend our
framework to analyze the average behavior of heavy-tailed multi-server queues (Section 3), tandem networks
(Section 4), and feed-forward networks (Section 5).

2.1 Uncertainty Modeling

Given the structure of the Lindley recursion, [9] model the uncertainty around the partial sums of the
inter-arrival and service times in Eq. (1) via uncertainty sets inspired by the Central Limit Theorem. In
particular, [9] constrain the quantities Ti and Xi to take values while satisfying

n∑
i=k+1

Ti −
n− k
λ

√
n− k

≥ −Γa, and

n∑
i=k

Xi −
n− k + 1

µ
√
n− k + 1

≤ Γs, ∀k = 1, . . . , n, (3)

for some parameters Γa and Γs that we use to control the degree of conservatism.
Assumption 1.
We make the following assumptions on the inter-arrival and service times.
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(a) The inter-arrival times (T1, . . . , Tn) belong to the parametrized uncertainty set

Ua = Ua (Γa) =

{
(T1, . . . , Tn)

∣∣∣∣∣
n∑

i=k+1

Ti −
n− k
λ
≥ −Γa

√
n− k, ∀ 0 ≤ k < n

}
,

where 1/λ is the expected inter-arrival time and Γa ∈ R controls the degree of conservatism.
(b) For a single-server queue, the service times (X1, . . . , Xn) belong to the uncertainty set

Us = Us (Γs) =

{
(X1, . . . , Xn)

∣∣∣∣∣
n∑

i=k+1

Xi −
n− k
µ
≤ Γs

√
n− k, ∀ 0 ≤ k < n

}
,

where 1/µ is the expected service time, and Γs ∈ R controls the degree of conservatism.
Note that, in this paper, we allow Γa and Γs to take both negative and positive values. When these
parameters are negative, the constraints on the inter arrival and service times imply

n∑
i=k+1

Ti ≥
n− k
λ

, ∀k ≤ n− 1 ,
n∑

i=k+1

Xi −
n− k
µ
≤ Γs

√
n− k, ∀ k ≤ n− 1,

thus constraining the sums of the inter arrival times to exceed their mean and the sums of the service
times to take values below the mean. This scenario constrains the analysis to realizations with generally
longer inter arrival times and short service times, and therefore the jobs enter service without waiting in
the queue. When these parameters are positive, the constraints on the partial sums of the inter arrival and
service times allow realizations with shorter inter-arrival times and longer service times, and in these cases
jobs may need to wait in the queue before entering service.

2.2 Worst Case Behavior

To characterize the worst case behavior, we formulate the related performance analysis question as a robust
optimization problem. In particular, assuming inter-arrival and service times satisfy Assumption 1, we seek
the worst case waiting and system times defined as

Ŵn = max
Ua×Us

Wn (T,X) and Ŝn = max
Ua×Us

Sn (T,X) . (4)

The maximization problems in Eq. (4) yield simple nonlinear optimization problems.
Unstable Queue: For a light-tailed queue with ρ = λ/µ > 1, Eq. (4) gives rise to a closed form

characterization of the worst case waiting and system times with

Ŝn (Γ ) ≤ Ŵn (Γ ) +

(
1

µ
+ Γs

)
≤
(
Γ
√
n+

ρ− 1

λ
n

)+

+

(
1

µ
+ Γs

)
(5)

where Γ = Γa + Γs denotes the effective variability parameter and the notation a+ = max (0, a). For the
case where ρ > 1, the worst case waiting and system times increase linearly with the value of n.

Stable Queue: For a light-tailed queue with ρ = λ/µ < 1, Eq. (4) gives rise to a closed form charac-
terization of the worst case waiting and system times with

Ŝn (Γ ) ≤ Ŵn (Γ ) +

(
1

µ
+ Γs

)

≤ max


Γ
√
n− 1− ρ

λ
n+

(
1

µ
+ Γs

)
, if n <

λ2
[
Γ+
]2

4(1− ρ)2
,

λ

4
·
[
Γ+
]2

1− ρ +

(
1

µ
+ Γs

)
, otherwise,

(6)

where Γ = Γa + Γs denotes the effective variability parameter and the notation a+ = max (0, a). The
evolution of the worst case behavior is characterized by two distinct states: (a) a transient state where the
behavior is dependent on n with the system time in an initially empty queue increasing at an order of

√
n

when Γ > 0; and (b) a steady state where the behavior is independent of n. When Γ < 0, jobs do not
experience any waiting time, and therefore the worst case system time is equal to the worst case service
time. The characterization of the worst case behavior bears qualitative similarity to the bounds established
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by [52] and [39] for the transient and steady state expected waiting and system times in a GI/GI/1 queue,
respectively,

E [Sn] = E [Wn] +
1

µ
≤


e

2

√
σ2
a + σ2

s

√
n+

1

µ
, if n <

λ2(σ2
a + σ2

s)

e2(1− ρ)2
,

λ

2

(
σ2
a + σ2

s

)
1− ρ +

1

µ
, otherwise,

where e = exp(1) = 2.718. For ease of notation, we rewrite the worst case behavior in Eq. (6) as

Ŝn (Γ ) ≤ Ŝtn (Γ ) · 1 tn (Γ ) + Ŝs (Γ ) · 1sn (Γ ) , (7)

where the terms Ŝtn and Ŝs respectively denote the quantities associated with the transient state and the
steady state, i.e., 

Ŝtn = Γ
√
n− 1− ρ

λ
n+

1

µ
+ Γs

Ŝs =
λ

4
·
[
Γ+
]2

1− ρ +
1

µ
+ Γs

 ,

and the indicator functions 1tn and 1
s
n respectively reflect the condition for the system to be in the transient

state and the steady state, with 
1
t
n (Γ ) = 1, if Γ >

2(1− ρ)

λ
·
√
n,

1
s
n (Γ ) = 1, otherwise.

Note that the worst case values directly depend on the value of Γ . Larger values of Γ yield increasingly
more conservative estimates.

2.3 Average Case Behavior

We next propose to analyze the average case behavior leveraging our worst case analysis. Our approach is
driven by the following two key observations:

1. The expected value of a random variable can be computed by “averaging” its quantiles with appropriate
weights (density).

2. Our worst case analysis provides a way to calculate these quantiles.

We next elaborate on these observations and discuss the details of our approach.
For a given value of n, suppose that the waiting time Wn = Wn (T,X) is governed by a distribution

Fn, and assume that Fn is continuous. Note that, this can be derived from the joint distribution over the
inter-arrival and service times by considering the dynamics of a queue. The expected waiting time is then
given by

Wn =

∫
wdFn(w).

The inverse of Fn (·) then corresponds to the quantile function Qn(·) given by

Qn(p) = F−1
n (p) =

{
q : Fn(q) = p

}
=

{
q : P (Sn ≤ q) = p

}
,

for some probability level p ∈ (0, 1). By a simple variable substitution, we can view the expected value as
an “average” of quantiles, given by

Wn =

∫ 1

0

Qn(p)dp. (8)

Recall that we have obtained an analytic expression of the worst case waiting time as a function of the
variability parameter Γ . We can map each quantile value Qn(p) to a corresponding worst case value Ŵn (Γ ).

Let Gn denote the function that maps p to Γ such that Qn(p) = Ŵn (Γ ), i.e.,

p = P
(
Wn ≤ Ŵn (Γ )

)
= Fn

(
Ŵn (Γ )

)
= Gn (Γ ) . (9)
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In this context, the expected value of the waiting time in Eq. (8) can be written as an average over the
worst case values, with

Wn =

∫
Ŵn (Γ ) dGn (Γ ) = EΓ

[
Ŵn (Γ )

]
. (10)

Philosophically, this approach distills all the probabilistic information contained in the random variables
Xi’s and Ti’s into the parameter Γ , hence allowing a significant dimensionality reduction of the uncertainty.
This in turn yields a tractable approximation of the expected transient waiting time by reducing the problem
to solving a low-dimensional integral.

Note: The knowledge of Gn allows us to compute the expected waiting time Wn exactly, however, this
depends on the knowledge of the waiting time distribution function Fn. This is feasible for simple systems,
e.g., analyzing the steady-state waiting time in an M/M/1 queue. For this particular example, it is well
known that the conditional steady state waiting time W∞ |W∞ > 0 is exponentially distributed with rate
µ(1− ρ). Therefore,

F∞(q) = 1− ρe−µ(1−ρ)q, for q ≥ 0, and Q(p) = − ln ((1− p)/ρ)

µ(1− ρ)
, for p ∈ (0, 1).

In this case, we can derive an exact characterization of the function G∞ and obtain

p = F
(
Ŵ∞ (Γ )

)
= G∞(Γ ) = 1− ρ · exp

(
−λµ

4
·
(
Γ+
)2
)
.

Note that the function G∞ is a cumulative distribution function. Applying Eq. (10) yields∫
Ŵ∞ (Γ ) dG∞ (Γ ) =

∫ ∞
0

λ

4(1− ρ)
· Γ 2 · λµ

2
· Γ · ρ · exp

(
−λµ

4
· Γ 2

)
dΓ =

ρ

µ(1− ρ)
,

which matches the expression of the expected steady state waiting time W∞ in an M/M/1 queue.

2.4 Robust Approximation

However, characterizing Fn (and therefore Gn) is challenging for more complex queueing systems, and
depends directly on the distributions of the inter-arrival and service times. Instead, we propose an ap-
proximation to Gn, which we present next. We consider an initially empty GI/GI/1 queue and employ
conclusions from the theory of diffusion approximations to obtain an approximation of the density Gn.
From applying diffusion approximations to queueing theory, it is known that the waiting time of the nth

job arriving at the queue at time t = n/λ is well approximated by a reflected Brownian motion

Wn ≈
1

µ
RBM

(
n/λ, λ− µ, λ

(
λ2σ2

a + µ2σ2
s

))
, (11)

where RBM
(
t, θ, σ2

)
denotes the state of the reflected Brownian motion with drift θ and variance σ2 at

time t, and (σa, σs) denote the standard deviations associated with the inter-arrival and service times,
respectively (see [1]). Therefore, The distribution of the waiting time can be approximated by

P (Wn ≤ ω) ≈ Φ

(
µω − (λ− µ)n/λ

σ
√
n/λ

)
− Φ

(
−µω − (λ− µ)n/λ

σ
√
n/λ

)
· e2(λ−µ)µω,

where Φ(·) denotes the distribution function of a standard normal and σ2 = λ
(
λ2σ2

a + µ2σ2
s

)
. For heavy

traffic systems, we have ρ→ 1, i.e., λ ≈ µ, thus yielding

P (Wn ≤ ω) ≈ Φ

(
µω

σ
√
n/λ

)
− Φ

(
−µω
σ
√
n/λ

)
≈ 2 · Φ

(
ω√

σ2
a + σ2

s

√
n

)
− 1. (12)

To derive an approximation of Gn, we assume ρ < 1 and focus on the worst case steady-state waiting time
given by

Ŵn (Γ ) =
λ
(
Γ+
)2

4(1− ρ)
, for n >

λ2
(
Γ+
)2

4(1− ρ)2
.

Conditioned on Γ being positive, and applying Eq. (12), we obtain

P
(
Wn ≤ Ŵn (Γ ) |Γ > 0

)
≈ 2 · Φ

(
λΓ 2/4(1− ρ)√
σ2
a + σ2

s

√
n

)
− 1 ≤ 2 · Φ

(
Γ

2
√
σ2
a + σ2

s

)
− 1.
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By differentiating the right hand side of the above expression, we obtain an approximation to the conditional
distribution of Γ , given Γ > 0 as follows

1√
σ2
a + σ2

s

· φ

(
Γ

2
√
σ2
a + σ2

s

)
,

which corresponds to the conditional distribution of a normal random variable Y with zero mean and
standard deviation of 2

√
σ2
a + σ2

s , given Y > 0.
This allows us to obtain an approximation of the expected waiting and system times as

W̃n ≈ EΓ
[
Ŵn (Γ )

]
and S̃n ≈ EΓ

[
Ŝn (Γ )

]
, (13)

where we treat the effective variability parameter as a normally distributed random variable with

Γ ∼ N
(

0, 2
√
σ2
a + σ2

s

)
. (14)

Illustration of our Approach: Recovering Diffusion Approximations: We next show that by
approximating the density of Γ using arguments borrowed from our worst case steady-state analysis, Eq.
(13) yields values that match the standard approximation obtained via diffusion theory for light-tailed
queues. The following approximations prove useful for our analysis (see [57])∫ ∞

a

xφ(x)dx ≈ φ(a) and

∫ ∞
a

x2φ(x)dx ≈ 1− Φ(a) + aφ(a), (15)

where φ (·) and Φ (·) denote the standard normal density and distribution functions.

(a) Proposed Approach: Applying the approximation in Eq. (13) and given the expression of the worst
case waiting time in Eq. (7), we obtain

W̃n ≈ E
[(
Γ
√
n− 1− ρ

λ
n

)
· 1Γ>2

√
n(1−ρ)/λ +

λ

4(1− ρ)
Γ 2 · 10≤Γ≤2

√
n(1−ρ)/λ

]
,

=

∫ ∞
η

(
2
√
σ2
a + σ2

s ·
√
n · x− 1− ρ

λ
n

)
φ(x)dx

+

∫ η

0

λ(σ2
a + σ2

s)

1− ρ · x2φ(x)dx, (16)

where φ (·) and Φ (·) denote the standard normal density and distribution functions, and

η =
1− ρ
λ

√
n

σ2
a + σ2

s
implying n =

λ2(σ2
a + σ2

s)

(1− ρ)2
· η2 =

λ2σ2

4(1− ρ)2
· η2. (17)

Using Eq. (17) and applying the approximations given in Eq. (15),

W̃n ≈
√
σ2
a + σ2

s

√
n · φ (η)− 1− ρ

λ
n · [1− Φ(η)] +

λ
(
σ2
a + σ2

s

)
4(1− ρ)

·
[
Φ(η)− ηφ(η)− 1

2

]
,

=
λ(σ2

a + σ2
s)

1− ρ

[
1

2
−
(
η2 + 1

)
· [1− Φ(η)] + ηφ(η)

]
. (18)

(b) Diffusion Approximation: Given Eq. (11) and applying the results obtained by [1] to analyze the
transient behavior of the reflected Brownian motion, [52] derive the diffusion approximation for Wn as

W̃ diff
n =

λ(σ2
a + σ2

s)

1− ρ

[
1

2
−
(
η2 + 1

)
· [1− Φ(η)] + ηφ(η)

]
,

which matches our approximation given in Eq. (18).

Remark: For unstable queues (ρ > 1) and large n, we approximate the expected waiting time as

W̃n ≈
√
σ2
a + σ2

s

√
n · φ (η)− 1− ρ

λ
n · [1− Φ(η)] ≈ −1− ρ

λ
n

where η is defined in Eq. (17). It is known that, for single-server queues, the expected number of jobs in
the queue is (λ− µ)t at any given time t. So on average, the nth job will have to wait for (λ− µ)n/λ jobs
to clear the queue, which yields

Wn = (λ− µ) · n
λ
· 1

µ
= −1− ρ

λ
n,

which matches our approximation.
Our approach extends beyond the simple example of single-server queues with light-tailed arrivals and

services. Sections 3-6 apply our proposed framework to study multi-server heavy-tailed queueing systems
and feed-forward transient networks, for which standard approximations are not available to the best of
our knowledge.
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3 Extensions to Heavy-Tailed Queues

In this section, we extend our analysis of the worst and average case behavior to study the performance
of a single multi-server queue with possibly heavy-tailed arrivals and services. We restrict our analysis to
an FCFS scheduling policy and consider an m-server queueing system which begins its operation with n0

initial jobs. We show that (a) the worst case approach yields closed form expressions for the worst case
system time, and (b) averaging the worst case values yields a good approximation of the expected system
time.

3.1 Uncertainty Modeling

To model uncertainty in the partial sums of the inter-arrival and service times, we invoke the generalized
Central Limit Theorem reproduced below in Theorem 1.

Theorem 1 Generalized CLT ([55])
Let {Y1, Y2, . . .} be a sequence of independent and identically distributed random variables, with mean µ
and undefined variance. Then, the normalized sum

n∑
i=1

Yi − nµ

Cαn1/α
∼ Y, (19)

where Y is a stable distribution with a tail coefficient α ∈ (1, 2] and Cα is a normalizing constant.

With the insight from Theorem 1, we adapt the uncertainty sets to handle possibly heavy-tailed arrivals
and service times.

Assumption 2.:

We make the following assumptions on the inter-arrival and service times.

(a) The inter-arrival times (Tn0+1, . . . , Tn) belong to the parametrized uncertainty set

Ua (Γa) =

{
(Tn0+1, . . . , Tn)

∣∣∣∣∣
n∑

i=k+1

Ti −
n− k
λ
≥ −Γa(n− k)1/αa ,∀n0 ≤ k ≤ n

}
,

where 1/λ is the expected inter-arrival time, n0 is the initial buffer in the queue, Γa ∈ R controls the degree
of conservatism, and 1 < αa ≤ 2 is a tail coefficient modeling possibly heavy-tailed inter-arrival times.

(b) For a single-server queue, the service times (X1, . . . , Xn) belong to the uncertainty set

Us (Γs) =

{
(X1, . . . , Xn)

∣∣∣∣∣ ∑̀
i=k+1

Xi −
n− k
µ
≤ Γs (n− k)1/αs , ∀ 0 ≤ k ≤ n

}
,

where 1/µ is the expected service time, Γs ∈ R controls the degree of conservatism, and 1 < αs ≤ 2 is a
tail coefficient modeling possibly heavy-tailed service times.

(c) For an m-server queue, m ≥ 2, we let ν be a non-negative integer such that ν = b(n − 1)/mc,
where n is the index corresponding to the nth arriving job. We partition the job indices into sets Ki =
{k ≤ n : b(k − 1)/mc = i}, for i = 0, . . . , ν, i.e.,

K0 = {1, . . . ,m} ,K1 = {m+ 1, . . . , 2m} , . . . ,Kν = {νm+ 1, . . . , n, . . . , (ν + 1)m} . (20)

Let ki ∈ Ki denote the index that selects a job from set Ki, for i = 0, . . . , ν. The service times for a
multi-server queue belong to the parameterized uncertainty set

Um (Γm) =

{∑
i∈I

Xki
− |I|

µ
≤ Γm |I|1/αs , ∀ ki ∈ Ki, i ∈ I ⊆ {0, . . . , ν} ,

}
,

where 1/µ is the expected service time, Γm ∈ R controls the degree of conservatism, and 1 < αs ≤ 2 is a
tail coefficient modeling possibly heavy-tailed service times. Note that Um ⊂ Us for the case of m = 1

We next study the worst case system time using the approach developed by [9].
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3.2 Worst Case Behavior

Let Cn denote the completion time of the nth job, i.e., the time the nth job leaves the system (including
service), and C(n) denote the time of the nth departure from the system. In general, the following recursions
describe the dynamics in a multi-server queue ([42])

Cn = max
(
An, C(n−m)

)
+Xn,

Sn = Cn −An = max
(
C(n−m) −An, 0

)
+Xn, (21)

where An =
∑n
i=1 Ti denotes the time of arrival of the nth job.

It is well known that the central difficulty in analyzing multi-server queues lies in the fact that overtaking
may occur, i.e., the nth departure may not correspond to the nth job arriving to the queue. However, as
noted in [9], taking a worst case approach allows us to overcome the challenges of multi-server queue
dynamics and obtain an exact characterization of the worst case system time for the nth job, for any T.
Proposition 1 presents an exact bound on the worst case system time in an m-server queue, for all possible
realizations of the inter-arrival times.

Proposition 1 (Worst Case System Time in a Multi-Server Queue)
In an m-server queue under Assumption 2(c), the worst case system time for the nth job for any realization

of T is given by

Ŝn (T) = max
Um(Γm)

Sn (T,X)

≤ max
Um(Γ+

m)
Sn (T,X)

≤ max
0≤k≤ν

 max
Um(Γ+

m)

ν∑
i=k

Xr(i) −
n∑

i=r(k)+1

Ti

 , (22)

where ν = b(n− 1)/mc and r(i) = n− (ν − i)m and Γ+
m = max (0, Γm).

The proof of Proposition 1 can be easily adapted from [9]. We next present our worst case analysis for
initially empty and nonempty heavy-tailed queues.

Initially Empty Queues

Given Assumption 2, we bound Eq. (22) by the following one-dimensional optimization problem

Ŝn ≤ max
0≤k≤ν

{
ν − k + 1

µ
+ Γ+

m (ν − k + 1)1/αs − m(ν − k)

λ
+ Γa [m (ν − k)]1/αa

}
. (23)

This bound can be computed efficiently for the general case where αs 6= αa by solving a simple constrained
non-linear optimization problem. Furthermore, we can obtain a closed form expression for the upper bound
on the worst case system time for the special case where the arrival and service tail coefficients are equal,
i.e., αa = αs, as shown in Theorem 2.

Theorem 2 (Highest System Time in an Initially Empty Heavy-Tailed Queue)
In an initially empty m-server FCFS queue satisfying Assumptions 2, with αa = αs = α and ρ < 1, the
worst-case system time is given by

Ŝn (Γ ) ≤


Γ · ν1/α − m(1− ρ)

λ
· ν +

(
1

µ
+ Γ+

m

)
, if ν <

(
λΓ/m

α(1− ρ)

)α/(α−1)

,

α− 1

αα/(α−1)
· λ

1/(α−1) · Γα/(α−1)

[m(1− ρ)]1/(α−1)
+

(
1

µ
+ Γ+

m

)
, otherwise,

(24)

where ν = b(n− 1)/mc and Γ = m1/αΓa + Γ+
m > 0.

Note that, for the case where Γ ≤ 0, the function in Eq. (24) is increasing in k over the interval k ∈ [0, ν],
for ρ = λ/(mµ) < 1. It is therefore maximized at k = ν, which yields

Ŝn = max
Um

Xn ≤
1

µ
+ Γ+

m.

In this case, the nth job does not experience a waiting time before entering service. This is due to the fact
that the condition Γ ≤ 0 involves typically long inter arrival times and short service times.
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Initially Nonempty Queues

We next analyze the case where n0 > 0. For a single-server queue, and given that Ti = 0 for all i = 1, . . . , n0,
the system time in Eq. (1) reduces to

(a) for n ≤ n0 : Sn = max
1≤k≤n0

n∑
i=k

Xi =
n∑
i=1

Xi (25)

(b) for n > n0 : Sn = max

{
n∑
i=1

Xi −
n∑

i=n0+1

Ti, max
n0+1≤k≤n

(
n∑
i=k

Xi −
n∑

i=k+1

Ti

)}
. (26)

We note that Eqs. (25) and (26) involve the terms
n∑
i=1

Xi and
n∑
i=1

Xi −
n∑

i=n0+1

Ti, respectively. While the

constraints in Assumption 1 allow us to obtain upper bounds on these terms, the resulting bound is not

tight, since Γa and Γs bound all of the sums
n∑

i=k+1

Ti and
n∑

i=k+1

Xi, for all values of k. To obtain tighter

bounds, we introduce the parameters γa and γs which equal the sums

n∑
i=n0+1

Ti −
n− n0

λ

(n− n0)1/αa
= −γa and

n∑
i=1

Xi −
n

µ

n1/αs
= γs, (27)

where the parameters γa and γs are such that γa ≤ Γa and γs ≤ Γs. Similarly, for an m-server queue, we
introduce the parameter γm ≤ Γm where

ν∑
i=0

Xki
− ν + 1

µ

(ν + 1)1/αs
≤ γm, ∀ ki ∈ Ki, (28)

where the set Ki is defined as Ki = {k ≤ n : b(k − 1)/mc = i}, for i = 0, . . . , ν.
Now, for an m-server queue, let φ = b(n0−1)/mc. The first m jobs in the queue are routed immediately

to the servers without any delays. For n > m, and given that Ti = 0 for all i = 1, . . . , n0, we rewrite Eq.
(22) as

(a) for n ≤ n0 : Ŝn (T) ≤ max
Um

(
max

0≤k≤ν≤φ

ν∑
i=k

Xr(i)

)
= max
Um

ν∑
i=0

Xr(i) (29)

(b) for n > n0 : Ŝn (T) ≤ max



max
Um

ν∑
i=0

Xr(i) −
n∑

i=n0+1

Ti,

max
φ<k≤ν

max
Um

ν∑
i=k

Xr(i) −
n∑

i=r(k)+1

Ti




, (30)

where r = r(0) = n−νm and ν = b(n−1)/mc. By applying Assumption 2 and the inequalities in Eqs. (27)
and (28), we can bound Eqs. (29) and (30) and obtain an exact characterization of the worst case system
time in an initially nonempty queue with heavy tails, where for n ≤ n0

Ŝn ≤
(
ν + 1

µ
+ γm(ν + 1)1/αs

)+

, (31)

and for n > n0

Ŝn ≤ max


(
ν − k + 1

µ
+ γm (ν − k + 1)1/αs

)+

− n− n0

λ
+ γa (n− n0)1/αa ,

max
φ<k≤ν

(
ν − k + 1

µ
+ Γ+

m (ν − k + 1)1/αs − m(ν − k)

λ
+ Γa [m(ν − k)]1/αa

)
 . (32)

As for initially empty queues, the optimization problem in Eq. (32) can be computed efficiently for the
general case where αa 6= αs. Theorem 3 provides a closed form expression for the upper bound on the worst
case system time for the special case where αa = αs.
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Theorem 3 (Highest System Time in an Initially Nonempty Heavy-Tailed Queue)
In an m-server FCFS queue under Assumption 2 with n0 ∈ Kφ, where, φ = b(n0 − 1)/mc, αa = αs = α

and ρ < 1, the worst case system time for Γ = m1/αΓa + Γ+
m > 0 is given by

Ŝn (Γ ) ≤ max



(
ν + 1

µ
+ γm (ν + 1)1/α

)+

− n− n0

λ
+ γa (n− n0)1/α ,


Γ (ν − φ)1/α − m(1− ρ)

λ
(ν − φ) +

(
1

µ
+ Γ+

m

)
, if ν − φ <

(
λΓ/m

α(1− ρ)

)α/(α−1)

,

α− 1

αα/(α−1)

λ1/(α−1) · Γα/(α−1)

[m(1− ρ)]1/(α−1)
+

(
1

µ
+ Γ+

m

)
, otherwise.




.(33)

Note that, for the case where Γ ≤ 0, the worst case system time

Ŝn (Γ ) ≤ max

{(
ν + 1

µ
+ γm(ν + 1)1/αs

)+

− n− n0

λ
+ γa(n− n0)1/αa ,

1

µ
+ Γ+

m

}
.

In this case, the nth job experiences a waiting time only due to the buildup effect left by the initial jobs. For
big enough n, this effect becomes negligible and the system time eventually becomes equal to the service
times, stabilizing at the value 1/µ+ Γ+

m.

Implications and Insights

In a multi-server queue, the worst case system time is characterized by two distinct states of behavior: (a)
a transient state where the system time is dependent on n, and (b) a steady state where the system time
is independent of n. Figure 3 shows a graphical representation of the evolution of the worst case system
time under our modeling assumptions.
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Fig. 1 Worst case system time for a single-server queue with ρ = 0.95, Γa = 0 and Γs = 0, 1 (respectively curves (1) and
(2)), for (a) zero initial jobs, i.e., n0 = 0, and (b) 5 initial jobs, i.e., n0 = 5. The dotted lines indicate the phase change
from transient to steady state.

In the queueing literature, the time it takes the system to reach steady state is referred to as relaxation time.
We define the robust relaxation time as the number of jobs observed by the queue before reaching steady
state in the worst case setting. Table 3 summarizes the effect of the traffic intensity on the steady-state
system time and the robust relaxation time.
Remark: Under probabilistic assumptions, heavy-tailed queues are characterized by an infinitely long
transient state as they never reach steady state (see [20]). However, in our robust framework, we attribute
a steady state value, even for queues with heavy-tailed arrivals/services. The concept of a worst case steady
state for systems with heavy tails stems from the assumptions of boundedness of the inter-arrival and
service times implied by Assumption 2, which involve a truncation of the tails. Specifically, under the worst
case paradigm, lower tail coefficients, and therefore heavier tails, yield an increase in both the relaxation
and steady state system times as suggested by Table 1. To illustrate this, we consider an instance with
ρ = 0.95, m = 1 and Γ = 1. By incrementally decreasing the tail coefficient from α = 2 to α = 1.75 and
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Table 1 Effect of traffic intensity and heavy tails on worst case behavior of multi-server queues.

Worst Case Steady System Time∗ Robust Relaxation Time∗

O

( (
Γ+
)α/(α−1)

m(1− ρ)1/(α−1)

)
O

(
m ·

[
Γ+

m(1− ρ)

]α/(α−1)
)

∗ Γ = m1/αΓa + Γm.

from α = 1.75 to α = 1.5, the steady state worst case system time experiences an respective increase by
115% and 420%, and the relaxation time increases by 190% and 680% respectively. Our averaging technique
allows us to reconcile our approach with the conclusions from probabilistic queueing theory.

For ease of notation, we express the worst case system time in Eq. (33) as

max

{
Ŝ bn (γa, γm) , Ŝtn (Γ ) · 1 tn (Γ ) + Ŝs (Γ ) · 1sn (Γ )

}
, (34)

where Ŝ bn , Ŝ tn, and Ŝs denote the quantities associated with the system time effected by the initial buffer
n0, the transient state and the steady state, respectively, i.e.,

Ŝ bn =

(
ν + 1

µ
+ γm (ν + 1)1/α

)+

− n− n0

λ
+ γa (n− n0)1/α ,

Ŝ tn = Γ (ν − φ)1/α − m(1− ρ)

λ
(ν − φ) +

(
1

µ
+ Γ+

m

)
,

Ŝs =
(α− 1)

αα/(α−1)

λ1/(α−1) · Γα/(α−1)

[m(1− ρ)]1/(α−1)
+

(
1

µ
+ Γ+

m

)
,


,

and the indicator functions 1tn and 1
s
n reflect the condition for the system to be in the transient state and

the steady state, respectively. For αa = αs = α, the indicator functions are such that
1
t
n (Γ ) = 1, if Γ >

αm(1− ρ)

λ
·
[
bn/mc − bn0/mc

](α−1)/α
,

1
s
n (Γ ) = 1, otherwise.

3.3 Average Case Behavior

To analyze the average behavior of a multi-server queue, we treat the parameters (γa, Γa), and (γm, Γm)
(correspondingly (γs, Γs) for a single-server queue) as random variables and compute the expected value of
the worst case system time

S̃n = E
[
Ŝn
]
.

Similarly to the case of a single-server queue with light-tailed primitives, we propose to approximate the
density of the variability parameters by invoking the limit laws of probability and leveraging the charac-
terization of the effective variability in Eq. (14) to fit the analysis for multi-server queues with possibly
heavy-tailed arrivals and services.

Choice of Variability Distribution

From Eq. (27), the parameters γa and γs can be viewed as normalized sums of the random variables
{Tn0+1, . . . , Tn} and {X1, . . . , Xn}. Specifically,

γa = −


n∑

i=n0+1

Ti −
n− n0

λ

(n− n0)1/αa

 ∝ −Za and γs =


n∑
i=1

Xi −
n

µ

n1/αs

 ∝ Zs. (35)

By the limit laws of probability, γa and γs approximately behave as a random variable following a limiting
distribution.

0011871
Highlight



Robust Transient Analysis of Feed-forward Networks 13

(a) Light Tails: For large enough n, γa and γs can be well approximated as normally distributed random
variables by the central limit theorem. Specifically, γa ∼ N (0, σa) and γs ∼ N (0, σs), where σa and
σs denote the standard deviations associated with the inter-arrival and service processes, respectively.

(b) Heavy Tails: By Theorem 1, the normalized sum of heavy-tailed random variables with tail coefficient
α follows a stable distribution Sα (ψ, ξ, φ) with a skewness parameter ψ = 1, a scale parameter ξ = 1
and a location parameter φ = 0. Therefore, γa and γs as expressed in Eq. (35) are such that

γa ∼ Sαa (−1, Cαa , 0) and γs ∼ Sαs (1, Cαs , 0) ,

where Cα is a normalizing constant as introduced in Eq. (19). As a concrete example, for Pareto
distributed inter-arrivals and service times,

Cα = [Γ (1− α) cos (πα/2)]1/α ,

where Γ (·) denotes the Gamma function. Note that, unlike the case of light tails, the distributions of
γa and γs are asymmetrical. More specifically, the skewness of γa is negative since γa = −Za, where
Za = Sαa (1, Cαa , 0).

In a multi-server queue, and assuming without loss of generality that n = (ν + 1)m, we obtain

γs =

(ν+1)m∑
i=1

Xi −
(ν + 1)m

µ

[(ν + 1)m]1/α
=

1

m1/αs
·
m∑
j=1


ν∑
i=0

Xj+im −
ν + 1

µ

(ν + 1)1/αs

 =
1

m1/αs
·
m∑
j=1

γm,

where the last inequality is due to Eq. (28). We can therefore express γm as

γm =
1

m(αs−1)/αs
· γs.

We next discuss how we choose the distribution of the effective parameter Γ . Since the exact characterization
of the density of Γ is challenging, as we have observed in Section 2, we propose an approximation. Recall
that for a single-server queue with light-tailed arrival and service times, we have proposed to treat Γ as

Γ ∼ N
(

0, 2
√
σ2
a + σ2

s

)
. (36)

Put differently, we view Γ = Γa+Γs, where Γa = θγa and Γs = θγs with θ = 2. We take a similar approach
for multi-server queues and model the variability parameters as functions of γa, γs and γm as follows

Γa = θγa and Γm = θγm = θ
γs

m(αs−1)/αs
,

and then inform the choice of the scaling parameter θ via known conclusions on the behavior of the system
time (e.g., the bound on the steady-state behavior by [39]).

(a) Light Tails: We select θ so that the average worst case steady-state system time matches the bound
provided by [39]. In other words, we ensure that

λ

4(1− ρ)
· E
[(
θγ+

)2
]

=
λ

2(1− ρ)
·
(
σ2
a + σ2

s/m
2
)
, (37)

where γ = γa + γ+
m/m

1/2 = γa + γ+
s /m and the expected value E

[(
γ+
)2] ≈ P (γ ≥ 0) ·

(
σ2
a + σ2

s/m
2
)
.

By rearranging the terms in Eq. (37), we obtain

θ =

[
2
(
σ2
a + σ2

s/m
2
)

E
[
(γ+)2]

]1/2

≈
(

2

P (γ ≥ 0)

)1/2

. (38)

(b) Heavy Tails: The steady state in heavy-tailed queues does not exist. Instead, we propose to extend
the formula in Eq. (38). For αa = αs = α, we select the scaling parameter as

θ ≈
(

α

P (γ ≥ 0)

)(α−1)/α

. (39)

where the probability can be efficiently computed numerically. For asymmetric tails, we propose to
model the variability parameters Γa = θaγa and Γm = θsγm, with

θa ≈
(

αa
P (γ ≥ 0)

)(αa−1)/αa

and θs ≈
(

αs
P (γ ≥ 0)

)(αs−1)/αs

. (40)
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By expressing Γa and Γm in terms of γa and γs, we can approximate S̃n by

S̃n ≈ Eγa,γs

[
max

{
Ŝ bn (γa, γs) , Ŝ

t
n (γa, γs) · 1 tn (γa, γs) + Ŝs (γa, γs) · 1sn (γa, γs)

}]
.

The above double integral can be efficiently computed using numerical integration. A key feature of our
approximation approach is its computational tractability. Computing the average system time involves
computing double integrals, which we compute by discretization the space of γa and γs. The average
runtime to compute S̃n for a given value of n is of the order of milli-seconds, irrespective of the system
parameters: traffic ratio (ρ), number of servers (m), and light or heavy tailed nature (α). We contrast the
computational requirement of our approach relative to simulations.

(a) Computational Complexity: When using simulation to calculate E[Sn], it is required to simulate
all the jobs until n, requiring us to simulate an O(n)–dimensional random vectors of inter-arrival times
and service times. On the other hand, in our approach, we are required to perform only a double
integration, which is significantly faster.

(b) Effect of Heavy Tails and Heavy Traffic: It is well known that the number of sample paths required
grows for heavy traffic as well as heavy tailed systems (see [27,5,19]). In our approach, even for heavy
tails and heavy traffic, we use the same level of discretization to calculate the double integrals.

(c) Simulation of Multi-Server Systems: A key step in simulating FCFS multi-server queues consists
of sorting the workloads at each server to assign the next job to the first available server. This sorting
process is required for each sample path. On the other hand, our approach provides a closed form
expression for multi-server queues which does not involve sorting.

We next compare the performance of the proposed approximation with simulated values.

3.4 Computational Results

We investigate the performance of our approach relative to simulation and examine the effect of the system’s
parameters (traffic intensity, initial buffer and number of servers) on its accuracy. We run simulations for
single and multi-server queues with N = 5, 000 job arrivals and compute the expected system time for each
job using 20,000 simulation replications. We pre-specify the arrival rate at the queue to be λ = 0.1 for all
simulation instances, while varying the traffic intensity, the variances associated with the inter-arrival and
service processes, the number of servers in the queue, and the number of initial jobs. We further consider
a host of light-tailed distributions and simulate queues with normal, exponential, log-normal, and uniform
inter-arrival and service times (including the service times for the initial jobs at the queue). To compare

the simulated values Sn with our approximation S̃n, we report the average percent error defined as

Average Percent Error =
1

Ñ
·
Ñ∑
n=1

∣∣∣∣∣Sn − S̃nSn

∣∣∣∣∣× 100%,

where

Ñ = min (N, ñr) , (41)

andñr denotes the number of jobs the queue observes until our approximation reaches steady state, i.e.,

ñr = min
(
n : S̃n = S̃∞

)
.

We next present our results for multi-server queues with (a) light-tails (αa = αs = 2), (b) symmetric
heavy tails (αa = αs = α), and (c) asymmetric tails (αa 6= αs).

Light Tails: Table 2 reports the average percent error between simulation and our approximation for
queues with normally distributed inter-arrival and service times. Note that the choice of the mean and
standard deviations ensures that no more than 0.6% of values are negative. Whenever we obtain a negative
value, we truncated at zero. Our approach generally yields percent errors within 10% relative to simulation.
Figure 2 compares our approximation (dotted line) with simulation (solid line) for a single-server queue
(top panels) and a 20-server queue (bottom panels) with normally distributed primitives.

As shown by simulations and empirical studies performed by [51] on light-tailed queueing systems, the
expected transient system time has broadly four different behaviors depending on the initial jobs. Our
averaging approach is capable of capturing these behaviors.

(a) The first behavior occurs when the system is initially empty. The average system time function is
monotonic and concave in n. This behavior is detected in Figures 2(a),(d).
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Table 2 Errors (%) relative to simulations for multi-server queues with normally distributed primitives.

1 Server∗ 10 Servers† 20 Servers‡

ρ n0 = 0 n0 = 5 n0 = 10 n0 = 0 n0 = 20 n0 = 50 n0 = 0 n0 = 50 n0 = 100

σ
a

=
2
.5 .95 5.14 3.32 6.82 1.06 3.04 2.19 0.87 1.53 1.03

.97 4.04 2.26 5.98 0.44 3.12 2.25 0.60 1.99 1.10

.99 3.54 1.54 8.77 2.35 4.98 2.73 1.27 2.89 0.62

σ
a

=
4
.0 .95 2.23 2.57 6.44 0.64 3.28 3.59 1.21 2.60 2.11

.97 1.75 2.16 7.65 1.49 4.14 4.85 0.59 3.33 3.39

.99 5.05 4.09 8.51 4.47 7.70 5.31 2.83 5.08 1.50

∗ Instances with single-server queues with (a) σa = σs = 2.5 and (b) σa = σs = 4.0
† Instances with 10-server queues with (a) σa = 2.5 and σs = 10, and (b) σa = 4.0 and σs = 20
‡ Instances with 20-server queues with (a) σa = 2.5 and σs = 20, and (b) σa = 4.0 and σs = 40
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Fig. 2 Simulated (solid line) versus approximated values (dotted line) for a queue with normally distributed primitives
with σa = 4.0 and ρ = 0.97. Panels (a)–(c) show a single-server queue with σs = 4.0 and n0 = 0, 5, 10. Panels (d)–(f) show
a 20-server queue with σs = 40 and n0 = 0, 50, 100.

(b) The second behavior occurs when the number of initial jobs is small creating an initial system time S̃n0

that is below the steady state value. The system time in this case initially decreases and subsequently
increases until reaching steady state, as seen in Figure 2(b).

(c) The third behavior occurs when the number of initial jobs creates an initial system time S̃n0 that is
higher than the steady state value. In this case, the average system time is convex in n and decreases
exponentially until reaching steady state, as detected in in Figure 2(c).

(d) The fourth behavior occurs when the initial buffer creates an initial system time S̃n0 that is substantially
larger than the steady state value. The initial decrease is approximately linear with jobs leaving the
system at the rate of µ− λ, as seen in Figures 2(e),(f).

Table 3 reports the average percent error between simulation and our approximation for queues with various
combinations of light-tailed distributions (with λ = 0.1 and σa = 10). We consider in particular three pairs
of distributions: (A) exponential arrivals and log-normal service times, (B) log-normal arrivals and service
times, and (C) uniform arrivals and log-normal service times. We also vary the coefficients of variation
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associated with the inter-arrival times (ca = λσa) and the service times (cs = µσs). Our approach yields
errors within 10% relative to simulation. Figure 3 compares our approximation (dotted line) with simulation
(solid lines) for an initially empty (a) single-server queue, (b) 10-server queue, and (c) 20-server queue for
the various combination of distributions.

Table 3 Errors (%) relative to simulation for queues with light-tailed primitives.

1 Server 10 Servers 20 Servers
Instance∗ ρ = .95 ρ = .97 ρ = .99 ρ = .95 ρ = .97 ρ = .99 ρ = .95 ρ = .97 ρ = .99

c a
=
c s

A∗ 5.18 3.10 2.26 7.48 4.78 3.99 10.2 7.80 5.91
B† 2.64 2.06 2.62 9.06 5.46 4.10 10.9 8.76 7.04
C‡ 3.75 2.52 1.50 6.97 4.37 3.55 9.45 7.58 6.05

c a
=

2
c s A 8.14 4.66 2.82 3.39 2.23 2.98 5.37 2.71 2.03

B 6.21 4.36 3.44 5.42 1.96 2.85 6.34 3.50 1.88
C 4.70 3.14 1.17 2.11 2.52 2.97 4.25 1.72 1.87

c a
=

5
c s A 4.17 3.63 1.71 5.81 2.51 2.09 6.18 3.77 1.48

B 9.17 5.87 3.33 7.80 3.88 1.95 7.33 4.65 2.08
C 0.71 0.82 1.43 3.76 1.34 1.89 4.88 2.67 1.63

∗ Instances with exponential arrivals and log-normal service times.
† Instances with log-normal arrivals and service times
‡ Instances with uniform arrivals and log-normal service times

Heavy Tails: Table 4 reports the average percent error between simulation and our approximation for
queues with Pareto distributed inter-arrival and service times with αa = αs = α. Our approach yields per-
cent errors within 10% relative to simulation for single-server queues. While errors are higher for multi-server
queues, our approximation still captures the heavy-tailed behavior. Figure 4 compares our approximation
(dotted line) with simulation (solid line) for a single-server queue (top panels) and a 20-server queue (bottom
panels) with Pareto distributed primitives (αa = αs = 1.6).
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Fig. 3 Simulated (solid line) versus predicted values (dotted line) for a queue with ρ = 0.97. Panel (a) shows a single-
server queue with exponential arrivals and log-normal service times with ca = cs. Panel (b) shows a 10-server queue with
log-normal arrivals and service times with ca = 2cs. Panel (c) shows a 20-server queue with uniform arrivals and log-normal
service times with ca = 5cs.

Note that our averaging technique allows us to reconcile our conclusions with probabilistic queueing theory
for single server queues and for multi-server queues in heavy-traffic regime. In particular, it is well known
([20,58]) that for single server queues under heavy tailed service distributions, the expected steady state
waiting time is infinite. Additionally, [28,29] have obtained a similar result for multi server queues under
heavy traffic. We are able to match these results. In particular, from Table 1, the average system time

is proportional to E
[
(Γ+)α/(α−1)

]
. For heavy-tailed primitives, the effective variability parameter Γ is

governed by a heavy-tailed distribution (concluded for the stable law). This implies that the moments of Γ
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Fig. 4 Simulated (solid line) versus predicted values (dotted line) for a single queue with Pareto distributed primitives
(αa = αs = 1.6) and ρ = 0.97. Panels (a)–(c) correspond to an instance with m = 1 and n0 = 0, 50, 200. Panels (d)–(f)
correspond to an instance with m = 20 and n0 = 0, 50, 200.

higher than or equal to the second moment are infinite. As a result, E
[
(Γ+)α/(α−1)

]
is infinite for α < 2.

The average steady-state system time S̃∞ and the relaxation time are therefore infinite.However, note that
for multi-server queues under low ρs, we are only able to provide upper bounds.

Table 4 Errors relative to simulations for multi-server queues with Pareto distributed primitives.

1 Server 10 Servers 20 Servers
ρ n0 = 0 n0 = 50 n0 = 200 n0 = 0 n0 = 50 n0 = 200 n0 = 0 n0 = 50 n0 = 200

α
=

1
.6 0.95 9.59 7.18 1.78 12.5 9.49 13.9 17.9 15.9 25.5

0.97 4.86 1.49 5.98 12.1 9.56 13.7 19.6 17.8 28.6
0.99 2.59 2.08 6.63 11.9 11.9 15.6 24.5 22.6 29.3

α
=

1
.7 0.95 9.59 7.18 1.78 9.22 7.85 5.44 21.6 18.5 17.4

0.97 8.75 3.14 2.92 12.7 9.63 9.76 21.7 17.7 19.8
0.99 5.72 1.17 3.66 13.9 13.5 11.4 24.4 20.3 20.4

Asymmetric Tails: Figure 5 compares our approximation (dotted line) with simulation (solid lines)
for a single-server queue with ρ = 0.97 and asymmetric tail coefficients. In particular, we consider three
instances: (a) Pareto arrivals (αa = 1.6 and exponential service times, (b) exponential arrivals and Pareto
service times (αs = 1.6), and (c) Pareto arrivals and services (αa = 1.5, αs = 1.7).

Remark

Note that the accuracy of our approach depends on the accuracy of limit laws, which depend on the value
of n. However, in the heavy traffic transient regime, the relevant values of n are indeed high (at least in
100s) and in this regime CLT is a good approximation. In particular, as we observe in Table 4, the errors
are indeed smaller in heavy traffic, but higher (still under 10%) for a single server queue.
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Fig. 5 Simulated (solid line) versus predicted values (dotted line) for an initially empty single-server queue with ρ = 0.97
and (a) Pareto arrivals (αa = 1.6) and exponential service times, (b) exponential arrivals and Pareto service times (αs =
1.6), and (c) Pareto arrivals and services (αa = 1.5 and αs = 1.7). Percent errors with respect to simulation are 6.50%,
2.82%, and 3.23%, respectively.

4 Extensions to Tandem Networks

In this section, we extend our analysis of single queues to the analysis of tandem queues. We consider a
network of J queues in series and study the expected overall system time Sn given by

Sn = E
[
S (1)
n + . . .+ S (J)

n

]
=

J∑
j=1

E
[
S(j)
n

]
=

J∑
j=1

S
(j)
n ,

where S
(j)
n is the system time of the nth job in the jth queue. Similarly to the analysis of a single queue,

we assume the inter-arrival and service times belong to polyhedral sets which allow us to study the worst
case system time. We then leverage the worst case values to perform an average case analysis.

We assume that the inter arrival times T = (T1, . . . , Tn) to the tandem network belong to the uncertainty

set Ua, and the service times X(j) =
{
X

(j)
1 , . . . , X

(j)
n

}
at each queue j, for j = 1, . . . , J satisfy the

uncertainty sets as described in Assumption 2. We summarize the assumptions on the service times as
follows.
Assumption 3.:
We make the following assumptions on the service times in a tandem queue.

(a) For a single-server queue j, the service times belong to the uncertainty set

Usj =


(
X

(j)
1 , . . . , X(j)

n

)
∣∣∣∣∣∣∣∣∣∣

n∑
i=1

X
(j)
i − n/µj ≤ γ

(j)
s n1/α(j)

s ,

∑̀
i=k+1

X
(j)
i − `− k

µj
≤ Γ

(j)
s (`− k)1/α(j)

s , ∀ 0 ≤ k < ` ≤ n

 ,

where the parameters γ
(j)
s , Γ

(j)
s ∈ R control the degree of conservatism, and 1 < α

(j)
s ≤ 2 is a tail

coefficient modeling possibly heavy tailed service times.
(b) For an m-server queue j, the service times belong to the uncertainty set

Umj =


(
X

(j)
1 , . . . , X(j)

n

) ∣∣∣∣∣∣∣∣∣
ν∑
i=0

X
(j)
ki
− ν + 1

µj
≤ γ

(j)
m (ν + 1)1/α(j)

s , ∀ ki ∈ Ki∑
i∈I

X
(j)
ki
− |I|
µj
≤ Γ

(j)
m |I|1/α

(j)
s , ∀ ki ∈ Ki, and i ∈ I ⊆ {0, . . . , ν} ,

 .

where ν = b(n − 1)/mc, the set Ki =
{
im + 1, . . . , (i + 1)m

}
, the parameters γ

(j)
m , Γ

(j)
m ∈ R control

the degree of conservatism, and 1 < α
(j)
s ≤ 2 is a tail coefficient modeling possibly heavy tailed service

times.

In a single-server tandem network, the system time of the nth job at the jth queue is given by

S (j)
n = max

0≤kj≤n

 n∑
i=kj

X
(j)
i −

n∑
i=kj+1

T
(j)
i

 ,
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where T(j) =
(
T

(j)
1 , . . . , T

(j)
n

)
denote the inter arrival times to queue j. Note that T(j) is exactly the vector

of inter departure times D(j−1) from queue j − 1, which are given by

n∑
i=kj+1

T
(j)
i =

n∑
i=kj+1

D
(j−1)
i =

n∑
i=kj+1

T
(j−1)
i + S (j−1)

n − S (j−1)
kj

.

Recursively, the inter arrival times to queue j can be expressed as a function of the inter arrival times T
to the network and the service times X(1) through X(j−1).

[9] show that the inter-departure times belong to the inter-arrival uncertainty set Ua, under the assump-
tion of adversarial servers (see Theorem 4). Specifically, [9] view each queue j from an adversarial perspec-
tive, where the servers act so as to maximize the system time of the nth job, for all possible sequences of

inter-arrival times. In other words, the servers choose their adversarial service times X̂(j) =
(
X̂

(j)
1 , . . . , X̂

(j)
n

)
to achieve Ŝ

(j)
n (T), for all T.

Theorem 4 (Passing through a Queue With Adversarial Servers)

For a multi-server queue j with inter-arrival times T(j) ∈ Ua, adversarial service times X̂(j), and ρ < 1,
the inter-departure times D = (D1, . . . , Dn) belongs to the set Ud satisfying

Ud ⊆ Ua =

(D1, D2, . . . , Dn)

∣∣∣∣∣∣∣∣∣∣

n∑
i=k+1

Di −
n− k
λ

(n− k)1/αa
≥ −Γa, ∀ 0 ≤ k ≤ n− 1

 . (42)

The characterization Ud ⊆ Ua is true for all values of n, though its tightness improves for increasing
values of n. Consequently, Theorem 4 is only tight under steady-state conditions and is therefore akin to
Burke’s theorem. We next discuss the implications of this result on our steady-state and transient analysis
of tandem networks and illustrate our points using a simple example of single-server queues in tandem with

αa = α
(j)
s = α, for all j = 1, . . . , J .

Steady-State Analysis: To compute the overall system time under steady-state, [9] decomposed the
queueing networks and obtained formulas to compute the effective arrival rate λj and the effective parameter

Γ
(j)
a observed at each queue j in the network.

For a tandem queueing network, λj = λ and Γ
(j)
a = Γa for all j = 1, . . . , J . By Theorem 2, the worst

case steady-state system time at queue j can then be expressed as

Ŝ (j)
∞ =

(α− 1)

αα/(α−1)

λ
1/(α−1)
j ·

(
Γ (j)+

)α/(α−1)

(1− ρ)1/(α−1)
+

(
1

µ
+ Γ (j)

s

)
, (43)

where Γ (j) = Γa +Γ
(j)
s , for all j = 1, . . . , J . For light-tailed queues, we compute S̃

(j)
∞ as in Section 3.2, and

approximate the overall expected steady-state system time value by

S∞ ≈ S̃∞ =
J∑
j=1

E
[
Ŝ (j)
∞

]
=

J∑
j=1

S̃ (j)
∞ =

J∑
j=1

λ

[
σ2
a +

(
σ

(j)
s

)2
]

2(1− ρ)
+

1

µj
. (44)

In particular, when µj = µ and σ
(j)
s = σs for all j = 1, . . . , J , the steady-state system time becomes

S∞ ≈ J ·

[
λ
(
σ2
a + σ2

s

)
2(1− ρ)

+
1

µ

]
. (45)

Note that this case is a special case of a feed-forward with equal coefficient of variation for all service
times. [34] have shown that approximating the behavior of such systems under heavy traffic assumptions
can be done through a reflected Brownian motion with a product-form stationary distribution. This im-
plies a decoupling of the queues in steady-state, which is in agreement with our findings. Given that our
approximations at each station match those obtained by diffusion theory, our approach yields the same
conclusions of [34], and further apply to more complex Jackson networks in steady-state as shown in [9].

Transient Analysis: As noted earlier, the characterization of the inter-departure times in [9] holds
for transient regimes, however, it generates loose upper bounds for smaller values of n. Consequently,
decoupling the queues and taking a similar approach to the one we took for the steady-state analysis does
not generate approximations that are close to simulated values. Figure 6 illustrates our point.
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Instead of decomposing the network, we propose to use the recursive formulas that define the dynamics
in a network of queues in series to study the overall system time. [14] obtain an exact characterization of
the system time for single-server queues in series, with

Sn = S(1)
n + . . .+ S(J)

n = max
1≤k1≤...≤kJ≤n

 k2∑
i=k1

X
(1)
i +

k3∑
i=k2

X
(2)
i + . . .+

n∑
i=kJ

X
(J)
i −

n∑
i=k1+1

Ti

 . (46)

Given Eq. (46), we analyze the worst case system time and leverage these values to approximate the average
behavior. Our approximations are comparable with simulations (see Figure 7).
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Fig. 6 Simulated (solid line) versus approximation via network decomposition (dotted line) for initially empty tandem

networks with normally distributed primitives, ρ = ρj = 0.96 and σa = σ
(j)
s = 4.0 for all j = 1, . . . , J , where (a) J = 10,

(b) J = 25, and (c) J = 50.
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Fig. 7 Simulated (solid line) versus our approximation (dotted line) for initially empty tandem networks with normally

distributed primitives, ρ = ρj = 0.96 and σa = σ
(j)
s = 4.0 for all j = 1, . . . , J , where (a) J = 10, (b) J = 25, and (c)

J = 50. The average percent errors between simulation and our approximation are (a) 2.49% (Ñ = 5, 000), (b) 5.02%

(Ñ = 10, 000), and (c) 5.01% (Ñ = 15, 000).

4.1 Worst Case Performance

Under the worst case approach, and applying the adversarial service times at each queue, the worst case
system time of the nth job for any realization of T is given by

Ŝn (T) = max
1≤k1≤...≤kJ≤n

max
Us

1

k2∑
i=k1

X
(1)
i + max

Us
2

k3∑
i=k2

X
(2)
i + . . .+ max

Us
J

n∑
i=kJ

X
(J)
i −

n∑
i=k1+1

Ti

 . (47)

Proposition 2 provides a similar result for multi-server queues in series, under the assumption that each
queue acts in an adversarial manner to maximize its system time, for all T.
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Proposition 2 (Worst Case System Time in a Tandem Queue with Multiple Servers)
In a network of J multi-server queues in series satisfying Assumption 3(b), the overall system time of the
nth job for all T is given by

Ŝn (T) = max
0≤k1≤...≤kJ≤ν

max
Um

1

k2∑
i=k1

X
(1)
r(i) + max

Um
2

k3∑
i=k2

X
(2)
r(i) + . . .+ max

Um
J

n∑
i=kJ

X
(J)
r(i) −

n∑
i=r(k1)+1

Ti

 ,(48)

where r(i) = n− (ν − i)m.

The proof is presented in Appendix 1. By minimizing the partial sum of the inter-arrival times, we obtain
an exact characterization of the worst case system time in a tandem queue as

Ŝn = max
0≤k1≤...≤kJ≤ν

max
Um

1

k2∑
i=k1

X
(1)
r(i) + . . .+ max

Um
J

n∑
i=kJ

X
(J)
r(i) −min

Ua

n∑
i=r(k1)+1

Ti

 . (49)

Initially Empty Queues in Tandem

By Assumption 1, the worst case system time is bounded by

Ŝn ≤ max
0≤k1≤...≤kJ≤ν

{
J∑
j=1

kj+1 − kj + 1

µj
+ Γ (j)+

m (kj+1 − kj + 1)1/α(j)
s − m(ν − k1)

λ
+ Γa [m (ν − k1)]1/αa

}
,(50)

which involves a J-dimensional nonlinear optimization problem. Theorem 5 provides a closed form upper
bound on the worst case system time in an initially empty network of J identical queues in tandem, with

µ1 = . . . = µJ and αa = α
(1)
s = . . . = α

(J)
s = α.

Theorem 5 (Highest System Time in an Initially Empty Tandem Queue)
In an initially empty network of J multi-server queues in series satisfying Assumptions 1(a) and 3(b), with

αa = α
(1)
s = . . . = α

(J)
s = α, µ1 = . . . = µJ , ρ < 1, and Γ = m1/αΓa + Γm > 0, where

Γm =

 J∑
j=1

(Γ (j)+
m )α/(α−1)

(α−1)/α

, (51)

the worst-case system time of the nth job with ν = b(n− 1)/mc is given by

Ŝn ≤


Γ · ν1/α − m(1− ρ)

λ
ν +

(
J

µ
+

J∑
i=1

Γ (i)+
m

)
, if ν ≤

[
λΓ

αm(1− ρ)

]α/(α−1)

(α− 1)

αα/(α−1)
· λ

1/(α−1) · Γα/(α−1)

[m(1− ρ)]1/(α−1)
+

(
J

µ
+

J∑
i=1

Γ (i)+
m

)
, otherwise.

(52)

The case where Γ = m1/αΓa + Γm ≤ 0 arises when Γa < 0, since Γm > 0 as defined in Eq. (51). This
scenario is characterized by long inter-arrival times yielding zero waiting times. The worst case system time
therefore reduces to

Ŝn =
J∑
j=1

X̂(j)
n ≤ J

µ
+

J∑
j=1

Γ (j)+
m .

Note that this scenario becomes less likely with an increased number of queues in series.
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Initially Nonempty Queues in Tandem

We next analyze the case where n0 > 0 and let φ = b(n0− 1)/mc. The first m jobs in the queue are routed
immediately to the servers of the first queue without any delays. We are interested in the behavior for
n0 > m. Since Ti = 0 for all i = 1, . . . , n0, we can rewrite Eq. (49) as

(a) for n ≤ n0 :

Ŝn = max
0≤k1≤...≤kJ≤ν≤φ

max
Um

1

k2∑
i=k1

X
(1)
r(i) + . . .+ max

Um
J

n∑
i=kJ

X
(J)
r(i)

 (53)

(b) for n > n0 :

Ŝn = max



max
0≤k1≤...≤kJ≤ν

k1≤φ

max
Um

1

k2∑
i=k1

X
(1)
r(i) + . . .+ max

Um
J

n∑
i=kJ

X
(J)
r(i)

−min
Ua

n∑
i=n0+1

Ti,

max
φ<k1≤...≤kJ≤ν

max
Um

1

k2∑
i=k1

X
(1)
r(i) + . . .+ max

Um
J

n∑
i=kJ

X
(J)
r(i) −min

Ua

n∑
i=r(k1)+1

Ti




. (54)

By Assumption 1, the worst case system time involves solving J-dimensional nonlinear optimization prob-
lems. Theorem 6 provides a closed form bound on the worst case system time in an initially nonempty

network of J queues in tandem, with αa = α
(1)
s = . . . = α

(J)
s = α and µ1 = . . . = µJ .

Theorem 6 (Highest System Time in an Initially Nonempty Tandem Queue)
In an initially nonempty network of J multi-server queues in series satisfying Assumptions 1(a) and 3(b),

with n0 > m , µ1 = . . . = µJ , αa = α
(1)
s = . . . = α

(J)
s = α, ρ < 1, and Γ = m1/αΓa + Γm > 0, where Γm

is defined in Eq. (51), the worst-case system time for n > n0 is given by

Ŝn ≤ max



ν + J

µ
+

J∑
j=1

Γ (j)+
m + Γm · ν1/α − n− n0

λ
+ γa (n− n0)1/α ,


Γ (ν − φ)1/α − m(1− ρ)

λ
(ν − φ) +

(
J

µ
+

J∑
i=1

Γ (i)+
m

)
, if (ν − φ) <

[
λΓ/m

α(1− ρ)

]α/(α−1)

,

(α− 1)

αα/(α−1)

λ1/(α−1) · Γα/(α−1)

[m(1− ρ)]1/(α−1)
+

(
J

µ
+

J∑
i=1

Γ (i)+
m

)
, otherwise.




.(55)

Note that, for the case where Γ = m1/αΓa + Γm ≤ 0, the worst case system time is given by

Ŝn ≤ max

ν + J

µ
+ Γm · ν1/α +

J∑
j=1

Γ (j)+
m − n− n0

λ
+ γa (n− n0)1/α ,

J

µ
+

J∑
j=1

Γ (j)+
m

 .

In this case, the nth job experiences a waiting time only due to the buildup effect left by the initial jobs.
For big enough n, this effect becomes negligible and the system time eventually becomes equal to the sum
of the service times.

For ease of notation, we express the worst case system time in Eq. (55) as

max

{
Ŝ bn (γa, Γm) , Ŝtn (Γ ) · 1 tn (Γ ) + Ŝs (Γ ) · 1sn (Γ )

}
, (56)

where Ŝ bn , Ŝ tn, and Ŝs denote the quantities associated with the system time effected by the initial buffer
n0, the transient state and the steady state, respectively, and the indicator functions 1tn and 1

s
n reflect the

condition for the system to be in the transient state and the steady state, respectively. For αa = αs = α,
the indicator functions are such that

1
t
n (Γ ) = 1, if Γ >

αm(1− ρ)

λ
·
[
bn/mc − bn0/mc

](α−1)/α
,

1
s
n (Γ ) = 1, otherwise.
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4.2 Average Case Behavior

To analyze the average behavior of a multi-server queue, we treat the variability parameters as random
variables and compute the expected value of the worst case system time

S̃n = E
[
Ŝn
]
.

Similarly to the case of a single-server queue with light-tailed primitives, we propose to approximate the
density of the variability parameters by invoking the limit laws of probability and leveraging the character-
ization of the effective variability in Eq. (14) to fit the analysis for tandem queueing networks with possibly
heavy-tailed arrivals and services.

Choice of Variability Distributions

For a network of J queues in series, we express the parameters

Γa = θaγa , Γ
(j)
s = θsγ

(j)
s and Γ (j)

m = θsγ
(j)
m = θs

γ
(j)
s

m(α−1)/α
,

where γa and γ
(j)
s follow limiting distributions as defined in the case of a single queue, for j = 1, . . . , J .

More specifically, γa ∼ N (0, σa) and γ
(j)
s ∼ N

(
0, σ

(j)
s

)
for light-tailed primitives, γa ∼ Sα (−1, Cα, 0) and

γ
(j)
s ∼ S (1, Cα, 0) for heavy-tailed primitives. Note that the effective parameter Γm is a function of Γ

(j)
m s,

for j = 1, . . . , J . Specifically, by Eq. (51),

Γm =

 J∑
j=1

(Γ (j)+
m )α/(α−1)

(α−1)/α

= θs ·
γ+
s

m(α−1)/α
, where γ+

s =

 J∑
j=1

(γ(j)+
s )α/(α−1)

(α−1)/α

. (57)

We next propose to approximate the distribution of γ+
s by fitting a generalized extreme value distribution

to the sampled distribution with a shape parameter ψs, scale parameter ξs and a location parameter φs.
This approximation is motivated by observing that γ+

s is the α
α−1 th norm of the vector of random variables

{γ(j)+
s }Jj=1 and by invoking Theorems 2.1 to 2.4 in [56]. In [56], the authors show that the norms of vectors

of random variables Xi distributed according to F , are also approximately distributed according to F ; for
distributions such as Normal, Weibull, Frechet etc. This step, although an approximation, allows us to
reduce the computational effort to obtain S̃n from solving a (J + 1)-dimensional integral with respect to

γa and γ
(j)
s to a double integral with respect to γa and γ+

s .
Table 5 summarizes the parameters defining the generalized extreme value distribution for light-tailed

service times with σ
(1)
s = . . . = σ

(J)
s = 1 and heavy-tailed queues for J = 10, 25 and 50. Figure 8 shows

that this fit provides a good approximation of the sampled distribution for J = 25.

Table 5 Generalized extreme value distributions for γ+
s for light (σs = 1) and heavy-tailed services.

10 Queues 25 Queues 50 Queues
Parameters α = 2 α = 1.6 α = 1.7 α = 2 α = 1.6 α = 1.7 α = 2 α = 1.6 α = 1.7

ψs -0.20 0.32 0.42 -0.21 0.36 0.44 -0.22 0.42 0.50
ξs 0.76 1.70 1.95 0.77 2.34 2.94 0.78 3.10 4.10
φs 1.78 2.36 2.37 3.13 4.63 4.92 4.65 7.89 7.89

We next inform the choice of the scaling parameters (θa, θs) via known conclusions on the behavior of
the system time in tandem queueing networks.

(a) Light Tails: We select the value of the scaling parameter θ so that the average worst case steady-state
system time matches the steady-state bound obtained in Eq. (45). We ensure that

λ

4(1− ρ)
· E
[(
γ+
)2
]

=
λ

2(1− ρ)
·
J∑
j=1

[
σ2
a +

(
σ(j)
s

)2
/m2

]
, (58)

where γ = θaγa + θsγ
+
s /m and γ+

s is defined in Eq. (57). We approximate the expected value

E
[(
γ+
)2
]
≈ P (γ ≥ 0) ·

θ2
aσ

2
a + θ2

s

J∑
j=1

(
σ(j)
s

)2
/m2

 .
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Fig. 8 Sampled distribution and fitted generalized extreme value distribution for the effective service parameter γ+
s for

the case of J = 25 queues in series with (a) α = 2, (b) α = 1.7, and (c) α = 1.6.

By rearranging the terms in Eq. (58), we obtain

θa ≈
(

2J

P (γ ≥ 0)

)1/2

and θm ≈
(

2

P (γ ≥ 0)

)1/2

, (59)

where the probability P (γ ≥ 0) = P
(
J1/2 · γa + γ+

s /m ≥ 0
)

can be efficiently computed numerically.

(b) Heavy Tails: The steady state in heavy-tailed queues does not exist. Instead, we propose to extend
the formula in Eq. (59). For αa = αs = α, we select the scaling parameter as

θa ≈
(

αJ

P (γ ≥ 0)

)(α−1)/α

and θs ≈
(

α

P (γ ≥ 0)

)(α−1)/α

, (60)

where the probability P (γ ≥ 0) = P
(
J(α−1)/α · γa + γ+

s /m ≥ 0
)

can be efficiently computed numeri-

cally given the distributions of γa and γ+
s .

4.3 Computational Results

We investigate the performance of our approach relative to simulation and examine the effect of the system’s
parameters on its accuracy. We run simulations for tandem queueing networks with N = 20, 000 job arrivals
and compute the expected system time for each job using 20,000 simulation replications. We pre-specify
the arrival rate at the queue to be λ = 0.1 for all simulation instances, while varying the traffic intensity,
the variances associated with the inter-arrival and service processes, the number of servers in the queue,
and the number of initial jobs. To compare the simulated values Sn with our approximation S̃n, we report
the average percent error

Average Percent Error =
1

Ñ
·
Ñ∑
n=1

∣∣∣∣∣Sn − S̃nSn

∣∣∣∣∣× 100%,

where Ñ = min (N, ñr) and ñr denotes the number of jobs the queue observes until our approximation

reaches steady state, i.e., ñr = min
(
n : S̃n = S̃∞

)
. We next present our results for tandem networks with

(a) light-tails (αa = αs = 2), and (b) symmetric heavy tails (αa = αs = α).
Light Tails: Table 6 reports the average percent error between simulation and our approximation for

tandem queues with normally distributed inter-arrival and service times. Our approach generally yields
percent errors within 10% relative to simulation. Figure 9(a)-(d) compare our approximation (dotted line)
with simulation (solid line) for tandem networks of queues with normally distributed primitives. Note that,
for n0 > 0, the system exhibits slower recovery from the initial perturbation than for a single queue.

Heavy Tails: Table 7 reports the average percent error between simulation and our approximation for
tandem queues with Pareto distributed inter-arrival and service times. Our approach generally yields percent
errors within 10% relative to simulation, with occasional outliers. Figure 9(e)-(f) compare our approximation
(dotted line) with simulation (solid line) for tandem networks of queues with Pareto distributed primitives.

Note that, since the effective variability parameter Γ is heavy-tailed distributed, E
[
(Γ+)α/(α−1)

]
is infinite

for α < 2, suggesting that heavy-tailed tandem queueing systems never reach steady state.
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Table 6 Errors for multi-server tandem queues with normally distributed primitives.

10 Queues? 25 Queues† 50 Queues‡

ρ n0 = 0 n0 = 20 n0 = 50 n0 = 0 n0 = 50 n0 = 0 n0 = 100

σ
a

=
σ
s

=
2
.5

0.90 4.44 2.85 5.61 0.76 1.61 0.85 2.39
0.92 4.85 2.82 5.58 0.81 1.96 0.82 2.41
0.94 4.67 3.07 5.77 1.05 2.02 0.81 2.33
0.96 5.04 3.42 4.59 1.41 3.20 0.77 2.26

σ
a

=
σ
s

=
4
.0

0.90 1.23 2.38 7.65 1.74 2.64 1.77 2.62
0.92 2.02 1.65 5.91 2.28 3.14 1.73 2.32
0.94 2.95 2.86 3.93 2.45 4.37 1.80 2.23
0.96 3.12 3.81 3.07 2.46 4.74 4.39 5.74

?m = 1 for 10 tandem queues, †m = 10 for 25 tandem queues, ‡m = 20 for 50 tandem queues.

Note: Simulating the expected overall system time of the nth job in a tandem queue requires simulating
each queue in the system for all n jobs, yielding run-times which highly depend on the number of queues
J in the system. Our approach, on the other hand, involves (a) running a simulation to fit a generalized
extreme value distribution to γ+

s as defined in Eq. (57) for a given α, and (b) computing double integrals
with respect to γa and γ+

s . Both steps can be computed efficiently for both single and multi-server tandem
queues irrespective of the magnitude of J , with similar run-times to those observed for a single queue.
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Fig. 9 Simulated (solid line) versus predicted values (dotted line). Panels (a)-(d) correspond to normally distributed queues
in series with σa = 2.5 and ρ = 0.90 with J = 10, m = 1, and n0 = 0, 20 (panels (a) and (b), respectively) and J = 25,
m = 10, and n0 = 0, 50 (panels (c) and (d), respectively). Panels (e) and (f) correspond to a tandem network with J = 50
single-server queues with Pareto distributed primitives (αa = αs = 1.7), ρ = 0.90, and n0 = 0 and n0 = 5000, respectively.

5 Extensions to Feed-forward Networks

In this section, we extend our approach to analyze open feed-forward queueing networks with no feedback.
In feed-forward queueing networks, a job can visit a queue at most once before exiting the network. We
consider a feed-forward network with a set of queueing nodes J with

(a) external arrival processes with parameters (λj , αa) that arrive at queue j ∈ J ,
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Table 7 Errors for single-server tandem queues with Pareto distributed primitives.

10 Queues 25 Queues 50 Queues
ρ n0 = 0 n0 = 2000 n0 = 0 n0 = 3500 n0 = 0 n0 = 5000

α
a

=
α
a

=
1
.6 0.90 9.80 5.11 2.89 2.31 4.88 4.77

0.92 4.30 3.52 7.88 1.82 3.13 1.81
0.94 2.40 2.10 7.94 2.95 16.6 7.84
0.96 2.82 2.54 14.7 5.22 16.5 6.71

α
a

=
α
s

=
1
.7

0.90 24.3 7.79 5.61 2.17 5.31 3.93
0.92 15.8 6.69 2.85 1.04 10.0 2.82
0.94 11.6 4.72 3.45 2.77 12.6 5.91
0.96 6.34 3.92 5.67 3.55 11.6 5.92

(b) service processes with parameters (µj , α
(j)
s ) with the number of servers mj at queue j ∈ J ,

(c) a routing matrix F = [fij ], i, j ∈ J , where fij denotes the fraction of the jobs passing through queue
i which are routed to queue j. The fraction of jobs leaving queue i is 1−

∑
j fij .

We study the expected overall system time of the nth job passing through the network. Let P be the set of
all possible paths that job n may take and fP denote the probability that a job n takes a particular path
P ∈ P. The expected overall system time can the be expressed as

Sn =
∑
P∈P

fP · E
[
SPn

]
=
∑
P∈P

fP · S
P
n ,

where SPn denote the system time of the nth job when traversing the network through path P . Since it is
challenging to analyze the expected system time using traditional probabilistic approaches, we propose a
similar approach to the one undertaken for single and tandem queues.

To make the exposition clear, we assume that the network starts operation without any initial jobs, i.e.,
n0 = 0 at all queues. We let Li denote the set of jobs departing from queue i, and Eij the set of jobs routed
from queue i to queue j (see Figure 6 for an illustration). Under a probabilistic routing scheme, these sets
are not known until after an instance of the network is realized. For the purpose of our analysis, we propose
to approximate the dynamics of a probabilistic feed-forward network as follows.

Fig. 10 Feed-forward network with deterministic routing.

(a) Deterministic Routing: We consider a deterministic approximation of probabilistic routing. Suppose
that fij and fik denote the fraction of the jobs leaving from queue i that are routed to queues j and
k, respectively, while the remaining jobs exit the system. We assume that the fractions fij and fik are
rational and given by

fij =
pij
qi

and fik =
pik
qi
,

where pij , pik ≥ 0 and qi > 0 are integers, with pij + pik ≤ qi. This assumption of rationality is not
restrictive, since any irrational number can be arbitrarily closely approximated by a rational number.
Under deterministic routing, the jobs are routed as follows. We divide the set of jobs Li departing
queue i into qi sets of jobs

Bit = {t, t+ qi, t+ 2qi, . . .} , ∀t = 1, . . . , qi,
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and then route jobs from the jobs in sets Eij and Eik to queues j and k, respectively, where

Eij = Bi1 ∪ . . . ∪ Bipij
and Eik = Bipij+1 ∪ . . . ∪ Bipik

.

Note that, with this deterministic routing scheme, for a large number of jobs, approximately a fraction
fij and fik of jobs are routed to queues j and k, respectively. To illustrate, consider queue 2 in Figure
6, and suppose L2 = {2, 3, 5, 7, 10, 11, 14, 15}, f24 = 1/3 and f25 = 2/3. Then, by our routing scheme,

E24 = {2, 7, 14} and E25 = {3, 5, 10, 11, 15} .

(b) External Arrivals: We assume that the external arrivals emanate from a single node a0. In other
words, we assume jobs enter the network at node a0 with rate λ =

∑
j∈J λj and tail coefficient αa.

The arrivals are then routed to the nodes j ∈ J such that

f0j =
λj
λ
, ∀ j ∈ J .

Note: The number of jobs passing through some queue j ∈ J is a subset of all the jobs that are routed
through the network. We let φj denote the fraction of jobs passing through queue j, which is computed
recursively using the routing matrix F as

φj =
∑
i∈J

φi · fij . (61)

Furthermore, under steady-state, the traffic intensity observed by queue j is equal to the ratio of the arrival
rate it experiences and its service rate. Given the fraction of jobs φj that pass by queue j, the traffic
intensity observed is

ρj =
λj
µj

=
λ · φj
µj

. (62)

We further assume that the inter arrival times T to node a0 satisfy the uncertainty set Ua as defined in
Assumption 1(a) and that the service times X(j) at node j satisfy Usj in case of a single server (Umj in case
of multiple servers) as defined in Assumption 1, for all j ∈ J .

Steady-State Analysis: [9] have studied this network’s steady-state behavior using the robust framework.
In particular, [9] show that the inter-departure times belong to the inter-arrival uncertainty set Ua. This
characterization is akin to Burke’s theorem and is particularly tight under steady-state conditions. This
allows [9] to study the phenomena of merging and splitting with a queueing network. Specifically, the
effective inter-arrival times T(j) to some queue j satisfy the uncertainty set

Uaj =

{(
T

(j)
1 , . . . , T (j)

n

) ∣∣∣∣∣
n∑

i=k+1

T
(j)
i − n− k

λj
≥ −Γ (j)

a (n− k)1/αa , ∀ 0 ≤ k ≤ n

}
,

where λj = λ · φj and Γ
(j)
a = Γa/φ

1/αa

j , for all j ∈ J . By this network decomposition, the worst case
steady-state system time of a job passing by queue j can be expressed as

Ŝ (j)
∞ =

(α− 1)

αα/(α−1)

λ
1/(α−1)
j ·

(
Γ (j)+

)α/(α−1)

(1− ρj)1/(α−1)
+

(
1

µj
+ Γ (j)+

s

)
, (63)

where αa = α
(j)
s = α and Γ (j) = Γa/φ

1/α
j + Γ

(j)
m , for all j ∈ J . For light-tailed queues, obtaining S̃

(j)
∞ as

in Section 3.2., we approximate the overall expected steady-state system time value by

S∞ ≈ S̃∞ =
∑
P∈P

fP
∑
j∈P

S̃ (j)
∞

=
∑
P∈P

fP
∑
j∈P

[
λφj

2(1− ρj)
E
[
σ2
a/φj +

(
σ(j)
s

)2
/m2

]
+

1

µj
+ E

[
Γ (j)+
m

]]
. (64)

Transient Analysis: While the characterization of the inter-departure times in [9] holds for transient
regimes, it however provides loose bounds. Obtaining an exact transient characterization of the inter-
departure process is challenging. Instead of decomposing the network, we propose to obtain a recursive
formula that defines the dynamics in a feed-forward network similarly to the one obtained for tandem
queues in Eq. (46). To make the exposition clear, we consider the case of a feed-forward network with
single-server queues. To illustrate how we derive a characterization of the system time for the nth job in
a feed-forward network with deterministic routing, we consider the network instance depicted in Figure 6.



28 Chaithanya Bandi et al.

Suppose that job n exits the system at node 6 after passing through queue 1 and queue 4, i.e., n ∈ E46 and
n ∈ E14. The overall system time of the nth job is given by

Sn = S(1)
n + S(4)

n + S(6)
n .

The system time of the nth job at queue 6 is given by

S(6)
n = max

1≤k6≤n

 n∑
i=k6
i∈L6

X
(6)
i −

n∑
i=k6+1
i∈L6

T
(6)
i

 ,

where T (6) denotes the inter arrival times of jobs entering queue 6. Job k6 could have either come from
queue 4, i.e., k6 ∈ E46, or from queue 5, i.e., k6 ∈ E56.

(a) If k6 ∈ E46, and given that n ∈ E46, the time between the arrivals of jobs k6 and n to queue 6 is the
same as the time between the departures of jobs k6 and n from queue 4, i.e.,

n∑
i=k6+1
i∈L6

T
(6)
i =

n∑
i=k6+1
i∈L4

D
(4)
i =

n∑
i=k6+1
i∈L4

T
(4)
i + S(4)

n − S(4)
k6
,

where D(4) denotes the inter departure times from queue 4. Similarly to a tandem queue, the system
time spent by the nth job at queues 4 and 6 is given by

S(4)
n + S(6)

n = max
1≤k4≤k6≤n

 k6∑
i=k4
i∈L4

X
(4)
i +

n∑
i=k6
i∈L6

X
(6)
i −

n∑
i=k4+1
i∈L4

T
(4)
i

 .

(1) If k4 ∈ E14, and since n ∈ E14, the overall system time is given by

Sn = max
1≤k1≤k4≤k6≤n

 k4∑
i=k1
i∈L1

X
(1)
i +

k6∑
i=k4
i∈L4

X
(4)
i +

n∑
i=k6
i∈L6

X
(6)
i −

n∑
i=k1+1
i∈L1

T
(1)
i

 .

(2) If k4 ∈ E24, then the time between the arrivals of jobs k4 and n to queue 4 is equal to the time
between the departures of jobs k4 and n from queues 2 and 1, respectively, i.e.,

n∑
i=k4+1
i∈L4

T
(4)
i =

n∑
i=1
i∈L1

D
(1)
i −

k4∑
i=1
i∈L2

D
(2)
i =

 n∑
i=1
i∈L1

T
,(1)
i + S(1)

n

−
 k4∑
i=1
inL2

T
,(2)
i + S

(2)
k4

 .

Under this scenario, the overall system time of the nth job becomes

Sn = max
1≤k2≤k4≤k6≤n

 k4∑
i=k2
i∈L2

X
(2)
i +

k6∑
i=k4
i∈L4

X
(4)
i +

n∑
i=k6
i∈L6

X
(6)
i −

n∑
i=1
i∈L1

T
(1)
i +

k2∑
i=1
i∈L2

T
(2)
i

 .

(b) If k6 ∈ E56, and by similar arguments to those presented in part (a),

(1) If k5 ∈ E25, then Sn = max
1≤k2≤k5≤k6≤n

 k5∑
i=k2
i∈L2

X
(2)
i +

k6∑
i=k5
i∈L5

X
(5)
i +

n∑
i=k6
i∈L6

X
(6)
i −

n∑
i=1
i∈L1

T
(1)
i +

k2∑
i=1
i∈L2

T
(2)
i

,

(2) If k5 ∈ E35, then Sn = max
1≤k3≤k5≤k6≤n

 k5∑
i=k3
i∈L3

X
(3)
i +

k6∑
i=k5
i∈L5

X
(5)
i +

n∑
i=k6
i∈L6

X
(6)
i −

n∑
i=1
i∈L1

T
(1)
i +

k3∑
i=1
i∈L3

T
(3)
i

.
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Note that the arrival times of jobs to queues 1, 2 and 3 is equal to the time of arrival at node a0, since
there is no service delay at node a0, which yields

k∑̀
i=1
i∈L`

T
(`)
i =

k∑̀
i=1

Ti, for all jobs k` arriving at queue ` = 1, 2, 3.

Consequently, for job n ∈ L6 leaving the system at queue 6, combining parts (a) and (b) gives us the
following characterization of the overall system time

Sn (P6) = max
P∈P6

 max
1≤ka1≤...≤k6≤n
kaj+1∈Eajaj+1

 ka2∑
i=ka1
i∈La1

X
(a1)
i + . . .+

n∑
i=k6
i∈L6

X
(6)
i −

n∑
i=ka1

Ti


 , (65)

where P6 = {(1, 4, 6) , (2, 4, 6) , (2, 5, 6) , (3, 5, 6)} is the set of all the paths P = (a0, a1, a2, . . . , `) that leave
the network at queue 6. Proposition 3 presents the characterization of the overall system time of the nth

job in a generalized feed-forward network with deterministic routing.

Proposition 3 (System Time in Feed-Forward Networks with Deterministic Routing)
In a feed-forward network composed of single-server queues with service times X(j), j ∈ J and external
inter-arrivals T, the overall system time of the nth job exiting at node ` is given by

Sn (P`) = max
P ∈P`

 max
1≤ka1≤ka2≤...≤k`≤n

kaj+1∈Eajaj+1

 ka2∑
i=ka1
i∈La1

X
(a1)
i +

ka3∑
i=ka2
i∈La2

X
(a2)
i + . . .+

n∑
i=k`
i∈L`

X
(`)
i −

n∑
i=ka1+1

Ti


 ,

(66)
where P` denotes the set of all paths P = (a0, a1, a2, . . . , `) that leave the network at node `.

A detailed proof of Proposition 3 is provided in Appendix 2. Similarly to the analysis of a single and tandem
queue, we propose an analysis of the worst case overall system time in a feed-forward network. We then
leverage the analytic expressions of the worst case system time to understand the behavior of feed-forward
networks with deterministic routing.

5.1 Worst Case Behavior

To analyze the worst case behavior of the system time in the feed-forward network, we apply the bounds
on the inter-arrival and service times presented in Assumptions 1(a) and 3(a) and obtain

Ŝn (P`) = max
P ∈P`

 max
1≤ka1≤...≤k`≤n

kaj+1∈Eajaj+1⊆Laj+1

max
Us

a1

ka2∑
i=ka1
i∈La1

X
(a1)
i + . . .+ max

Us
`

n∑
i=k`
i∈L`

X
(`)
i −min

Ua

n∑
i=ka1+1

Ti


 ,

(67)
where P` denotes the set of all paths P = (a0, a1, a2, . . . , `) that leave the network at node `. By Assumptions
1, Eq. (67) involves solving a |P |-dimensional optimization problem for every path P ∈ P`, which can be
computed efficiently. Theorem 7 provides a closed form upper bound for the worst case system time of the

nth job exiting the network at node ` in a feed-forward network with αa = α
(j)
s = α, for all j ∈ J .

Theorem 7 (Highest System Time in a Feed-Forward Network)
In a feed-forward network composed of single-server queues satisfying Assumptions 1(a) and 3(a) with

αa = α
(j)
s = α, for all j ∈ J , the set P` containing all paths P = (a0, a1, a2, . . . , `) that leave from node `,

and

ρP =
λ

min
j∈P

µj/φj
and ΓP = Γa +

 ∑
j∈P

(
Γ (j)+
s · φ1/α

j

)α/(α−1)

(α−1)/α

> 0, (68)

the overall system time of the nth job exiting the network at node ` is bounded by

0011871
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Ŝn (P`) ≤ max
P∈P`



ΓP · n1/α − 1− ρP
λ

n+
∑
j∈P

(
1

µj
+ Γ (j)+

s

)
, if n ≤

[
λΓP

α(1− ρP )

]α/(α−1)

,

(α− 1)

αα/(α−1)
·
λ1/(α−1) · Γα/(α−1)

P

(1− ρp)1/(α−1)
+
∑
j∈P

(
1

µj
+ Γ (j)+

s

)
, otherwise.

(69)

The bound presented in Theorem 7 is particularly tight for the special case where ρj = ρ (i.e., µj = λ ·φj/ρ)
for all j ∈ J for some value ρ. This yields ρP = ρ for all P ∈ P`. For this case, a higher value of the effective
parameter ΓP results in a higher system and relaxation times, as suggested by Eq. (69). The worst case

system time Ŝn (P`) therefore corresponds to

Γ (P`) = max
P∈P`

ΓP .

Theorem 8 provides the analytic expression of the worst case system time of the nth job exiting the network

at node ` in a feed-forward network with αa = α
(j)
s = α and ρj = ρ for all j ∈ J .

Theorem 8 (Highest System Time in a Feed-Forward Network for Fixed Traffic Rate)
In a feed-forward network composed of single-server queues satisfying Assumptions 1(a) and 3(a) with

αa = α
(j)
s = α, and ρj = ρ (i.e., µj = λ · φj/ρ) for all j ∈ J , and given the set P` containing all paths

P = (a0, a1, . . . , `) that leave the network at node `, and

Γ (P`) = Γa + Γs (P`) = Γa + max
P∈P`

 ∑
j∈P

(
Γ (j)+
s · φ1/α

j

)α/(α−1)

(α−1)/α

> 0, (70)

the overall system time of the nth job exiting the network at node ` is given by

Ŝn (P`) ≤



Γ (P`) · n1/α − 1− ρ
λ

n+
∑
P∈P`

∑
j∈P

(
1

µj
+ Γ (j)+

s

)
, if n ≤

[
λΓ (P`)
α(1− ρ)

]α/(α−1)

,

(α− 1)

αα/(α−1)
· λ

1/(α−1) · Γ (P`)α/(α−1)

(1− ρ)1/(α−1)
+
∑
P∈P`

∑
j∈P

(
1

µj
+ Γ (j)+

s

)
, otherwise.

(71)

The case where Γ (P`) ≤ 0 arises when Γa < 0. This scenario is characterized by long inter-arrival times
yielding zero waiting times. The worst case system time therefore reduces to

Ŝn (P`) ≤ max
P∈P`

∑
j∈P

(
1

µj
+ Γ (j)+

s

)
≤
∑
P∈P`

∑
j∈P

(
1

µj
+ Γ (j)+

s

)
.

We next extend our averaging approach to analyze feed-forward queueing networks with αa = α
(j)
s = α

and ρj = ρ (i.e., µj = λ · φj/ρ) for all j ∈ J .

5.2 Average Case Behavior

The expected system time spent by the nth job in the feed-forward network can be computed as

Sn =
∑
P∈P

fP · S
P
n =

∑
`∈J

p` · Sn (P`) , (72)

where P denotes the set of all possible paths that can be taken by jobs passing through the network, fP
denotes the probability of taking a certain path P , S

P
n denotes the expected system time of the nth job

that is routed through the network via path P , Sn (P`) denotes the expected system time of the nth job
that leaves from node ` (i.e., job n takes any path P ∈ P`), and p` denotes the probability of a job exiting
the network at node `, i.e.,

p` = φ` ·

1−
∑
j∈J

f`j

 .

Instead of taking the expectation of the system time over the random variables T and X to obtain Sn (P ),
for all paths P ∈ P or Sn (P`), for all ` ∈ J , we propose to compute the expected value of the worst
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case system time with respect to the parameters Γa and Γs (P`) which we treat as random variables.
Mathematically, we compute

S̃n =
∑
`∈J

p` · S̃n (P`) =
∑
`∈J

p` · E
[
Ŝn (P`)

]
.

Given Theorem 8, we can express Ŝn (P`) as a function of Γa and Γs (P`) as follows

Ŝn ≤


Ŝ tn (Γa, Γs (P`)) , if n <

[
λ (Γa + Γs (P`))+

α(1− ρ)

]α/(α−1)

,

Ŝs (Γa, Γs (P`)) , otherwise,

(73)

where Γs (P`) is defined in Eq. (70) in terms of Γ
(j)
m , for j ∈ J , and Ŝ tn, and Ŝs denote the quantities

associated with the transient state and the steady state, respectively. We rewrite Eq. (73) as

Ŝtn (Γa, Γs (P`)) · 1 tn (Γa, Γs (P`)) + Ŝs (Γa, Γs (P`)) · 1sn (Γa, Γs (P`)) ,

where the indicator functions 1tn and 1
s
n reflect the condition for the system to be in the transient state

and the steady state, respectively, with
1
t
n (Γa, Γs (P`)) = 1, if Γa + Γs (P`) >

α(1− ρ)

λ
· n(α−1)/α,

1
s
n (Γa, Γs (P`)) = 1, otherwise.

By positing some assumptions on the distributions of Γa and Γs (P`), we express S̃n as

S̃n = E
[
Ŝtn (Γa, Γs (P`)) · 1 tn (Γa, Γs (P`)) + Ŝs (Γa, Γs (P`)) · 1sn (Γa, Γs (P`))

]
,

which can be efficiently computed via numerical integration. We next discuss our choice of the parameter
distributions.

Choice of Variability Distributions

We propose to express the parameters Γa = θaγa and Γ
(j)
s = θsγ

(j)
s , where γa and γ

(j)
s follow limiting

distributions for all j ∈ J . More specifically, γa ∼ N (0, σa) and γ
(j)
s ∼ N

(
0, σ

(j)
s

)
for light-tailed primi-

tives, γa ∼ Sα (−1, Cα, 0) and γ
(j)
s ∼ S (1, Cα, 0) for heavy-tailed primitives. Note that the effective service

parameter Γs (P`) is a function of Γ
(j)
s s, for j ∈ J . Specifically, by Eq. (70),

Γs (P`) = θsγ
+
s (P`) where γ+

s (P`) = max
P∈P`

 ∑
j∈P

(
γ(j)+
s · φ1/α

j

)α/(α−1)

(α−1)/α

. (74)

Similarly to our approach for tandem queues, we propose an approximation of the distribution of γ`+s by
fitting generalized extreme value distribution to the sampled distribution.

For light-tailed queues, by Theorem 8, the expected value of the overall worst case steady-state system
time for a feed-forward network is given by

S̃∞ =
∑
`∈J

p`S̃∞ (P`) =
∑
`∈J

p` ·
λ

4(1− ρ)
· E
[(
γ (P`)+

)2
]

+
∑
`∈J

p`
∑
P∈P`

∑
j∈P

(
1

µj
+ E

[
Γ (j)+
m

])
,

=
∑
`∈J

p` ·
λ

4(1− ρ)
· E
[(
γ (P`)+

)2
]

+
∑
P∈P

fP
∑
j∈P

(
1

µj
+ E

[
Γ (j)+
m

])
, (75)

where γ (P`) = θaγa + θsγ
+
s (P`) and γ+

s (P`) is defined in Eq. (74). The expected value in Eq. (75)

E
[(
γ (P`)+

)2
]
≈ P (γ (P`) ≥ 0) · E

[
γ (P`)2

]
= P (γ (P`) ≥ 0) ·

(
θ2
aσ

2
a + θ2

s E
[
γ+
s (P`)2

] )
.

Similarly to the case of a single light-tailed queue, we select the parameters θa and θm to ensure S̃∞ = S∞.
Finding S∞ in a general feed-forward network is however challenging. Instead, we ensure that the expression
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in Eq. (75) matches the approximation of the expected steady-state system time obtained via network
decomposition, presented in Eq. (64). We then choose θa and θs as

θa ≈


2
∑
P∈P

fP · |P |∑
`∈J

P (γ (P`) ≥ 0)


1/2

and θs ≈


2
∑
P∈P

fP
∑
j∈P

φj
(
σ(j)
s

)2

∑
`∈J

P (γ (P`) ≥ 0) · E
[
γ+
s (P`)2

]


1/2

. (76)

Note: We introduce the parameter Γ ` = θaγa + θsγ
`+
s , where

γ`+s =

 ∑
P∈P`

∑
j∈P

(
γ(j)+
s · φ1/α

j

)α/(α−1)

(α−1)/α

. (77)

Notice that γ`+s ≥ γ+
s (P`), and therefore the parameter Γ ` ≥ Γ (P`), for all ` ∈ J . Since a higher parameter

value yields higher system and relaxation time, we can bound Ŝn (P`) = Ŝn (Γ (P`)) by Ŝn
(
Γ `
)
, and hence

we can bound S̃n by

S̃n =
∑
`∈J

p` · S̃n (P`) ≤
∑
`∈J

p` · S̃n
(
Γ `
)

=
∑
`∈J

p` · E
[
Ŝn
(
Γ `
)]
.

We next show that the choice of the parameters θa and θs for the above approximation allows for simpler
computations.

(a) Light-Tailed Primitives: By using the upper bound S̃n
(
Γ `
)

introduced above, the expected value of
the overall worst case steady-state system time in Eq. (75) can be bounded by

S̃∞ ≤
∑
`∈J

p` ·
λ

4(1− ρ)
· E
[(
γ+
`

)2
]

+
∑
P∈P

fP
∑
j∈P

(
1

µj
+ E

[
Γ (j)+
m

])
, (78)

where γ` = θaγa + θsγ
`+
s and γ`+s is defined in Eq. (77). The expected value in Eq. (78)

E
[(
γ+
`

)2
]
≈ P (γ` ≥ 0) · E

[
γ2
`

]
= P (γ` ≥ 0) ·

(
θ2
aσ

2
a + θ2

s E
[(
γ`+s

)2
])

,

where, the second moment of γ`+s can be expressed as

E
[(
γ`+s

)2
]

=
∑
P∈P`

∑
j∈P

φj · E
[(
γ(j)+
s

)2
]

= P
(
γ(1)
s ≥ 0

)
·
∑
P∈P`

∑
j∈P

φj ·
(
σ(j)
s

)2
.

We proceed by performing an additional bounding procedure to help simplify the computations. Specif-
ically, we propose to bound the expression∑

`∈J

P (γ` ≥ 0) ·
∑
P∈P`

∑
j∈P

φj ·
(
σ(j)
s

)2
≤
∑
`∈J

P (γ` ≥ 0) ·
∑
`∈J

∑
P∈P`

∑
j∈P

φj ·
(
σ(j)
s

)2
,

=
∑
`∈J

P (γ` ≥ 0) ·
∑
P∈P

∑
j∈P

φj ·
(
σ(j)
s

)2
. (79)

To match the approximation of the expected steady-state system time obtained via network decompo-
sition presented in Eq. (64) and the resulting upper bound on S̃∞ from combining Eqs. (78) and (79),
we choose θa and θs as

θa ≈


2
∑
P∈P

fP · |P |∑
`∈J

P (γ` ≥ 0)


1/2

and θs ≈

 2∑
`∈J

P (γ` ≥ 0) · P
(
γ(1)
s ≥ 0

)


1/2

. (80)

The above expressions reduce to Eq. (59) for the case of a tandem queue, where P = (a0, . . . , |J |).
Note that, given that γ

(1)
s is a normally distributed distributed random variable centered around the

origin, we have P
(
γ

(1)
s ≥ 0

)
= 1/2. Also,

P (γ` ≥ 0) = P
(
θaγa + θsγ

`+
s ≥ 0

)
= P

({∑
P∈P

fP · |P |
}1/2 · γa + P(γ(1)

s ≥ 0)−1/2 · γ+
s ≥ 0

)
,

which can be efficiently computed numerically.
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(b) Heavy-Tailed Queues: Since the steady state does not exist for heavy-tailed queues, we propose to
extend the formulas for θa and θs and obtain

θa ≈


α
∑
P∈P

fP · |P |∑
`∈J

P (γ` ≥ 0)


(α−1)/α

and θs ≈

 α∑
`∈J

P (γ ≥ 0) · P
(
γ(1)
s ≥ 0

)


(α−1)/α

, (81)

where γ = θaγa + θmγ
+
s /m, γ+

s is defined in Eq. (77) . Note that the probability P
(
γ

(1)
s ≥ 0

)
and

P (γ ≥ 0) = P
({∑

P∈P
fP · |P |

}(α−1)/α · γa + P(γ(1)
s ≥ 0)−(α−1)/α · γ`+s ≥ 0

)

can be efficiently computed numerically given the distributions of γa and γ`+s .

Insights and Computational Tractability

The insights we draw from our analysis of light-tailed and heavy-tailed feed-forward queueing networks
queues are similar to the ones obtained for single and tandem queues. Furthermore, simulating the ex-
pected overall system time of the nth job in a feed-forward network requires simulating all queues in every
path P ∈ P in the system for all n jobs. Our approach, on the other hand, involves (a) running a simulation
to fit the distribution of γ`+s as defined in Eq. (77), and (b) computing double integrals with respect to γa
and γ`+s , for all nodes ` ∈ J . Note that extending the results to multi-server feed-forward networks does
not affect the efficiency of our approach.

6 Concluding Remarks: Limitations and Future Directions

In this paper, we studied the problem of analyzing the transient system time in multi-server queueing
systems and feed-forward networks. For such queueing systems, we presented an analytically tractable
approach to analyzing the transient behavior with general, possibly heavy-tailed, arrival and service pro-
cesses. This is achieved by modeling the system’s inter-arrival and service times via polyhedral sets which
are characterized by parameters that control the degree of conservatism. We obtain closed-form expressions
for the worst case system time revealing qualitative insights on the dependence of the system time on the
traffic intensity and the tail behavior of the inter-arrival and service times. We propose a novel algorithm
to approximate the expected system time by averaging the worst case system times by treating the param-
eters characterizing the uncertainty sets as random variables. This proposed methodology provides a novel
framework to study stochastic systems that combines the computational tractability of optimization and
the notion of dimensional reduction of uncertainty.
As observed from the numerical results, this methodology yields accurate predictions with low errors relative
to simulation, especially for queueing systems with general light-tailed primitives. However, the approxi-
mation errors are higher for the following systems which also leads to suggest future directions:

– Exploring alternate approximations for multi-server queueing systems with heavy tailed services or ar-
rivals: Our approach currently suggests that the expected waiting time for multi server queues with
heavy tailed primitives is infinite, which is not true for all multi server systems.

– Exploring alternate ways to analyze early transient behavior : Our approach, which is based on limit
laws, leads to relatively higher errors when analyzing early transient regime of multi-server queueing
systems.

– Obtain performance bounds on the tail probability of the performance measure of interest : Our approach
allows us to analyze quantiles and expected values of the waiting times, but does not provide a direct way
to calculate tail probabilities. Our approach could potentially be used for this purpose by constructing
constraints implied by bounds on the tail probabilities of the underlying stochastic processes.

– Analyze queueing systems with feedback : In this paper, we analyzed queueing networks with feed-forward
structure. A natural extension would be to also consider queueing networks where some of the customers
are fed back into the system.

Overall, we believe that we are just beginning to understand the application of robust optimization based
approaches to analyze the expected behavior of stochastic systems and we certainly expect that our approach
can be strengthened and extended in various directions as discussed above.
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Appendix: All Proofs

Proof of Theorem 2. Since (ν − k + 1)1/α ≤ (ν − k)1/α + 1, and given Γ+
m ≥ 0, we bound Eq. (23) by

Ŝn ≤ max
0≤k≤ν

{
ν − k
µ

+ Γ+
m (ν − k)1/α − m(ν − k)

λ
+ Γa [m (ν − k)]1/α

}
+

(
1

µ
+ Γ+

m

)
.

By making the transformation x = ν − k, where x ∈ N, we can represent this problem as

max
0≤x≤ν,x∈N

(
β · x1/α − δ · x

)
≤ max

0≤x≤ν,x∈R

(
β · x1/α − δ · x

)
, (82)

where β = m1/αΓa+Γ+
m and δ = m(1−ρ)/λ > 0, given ρ < 1. If β ≤ 0, the function h(x) = β ·x1/α−δ·x ≤ 0

for all values of x, implying Ŝn = 1/µ+Γ+
m. For β > 0, the function h is concave in x with an unconstrained

maximizer

x∗ =

(
β

αδ

)α/(α−1)

=

(
λ(Γm +m1/αΓa)

αm(1− ρ)

)α/(α−1)

. (83)

Maximizing the function h(·) over the interval [0, ν] involves a constrained one-dimensional concave maxi-
mization problem whose solution gives rise to closed-form solutions.

(a) If x∗ ∈ [0, ν], then x∗ is the maximizer of the function h over the interval [0, ν], leading to an expression
that is independent of ν,

Ŝn ≤ β
(
β

αδ

)1/(α−1)

− δ
(
β

αδ

)α/(α−1)

+

(
1

µ
+ Γ+

m

)
=

(α− 1)

αα/(α−1)
· β

α/(α−1)

δ1/(α−1)
+

(
1

µ
+ Γ+

m

)
. (84)

(b) If x∗ > ν, the function h is non-decreasing over the interval [0, ν], with h(ν) ≥ h(x) for all x ∈ [0, ν],
leading to an expression that is dependent on ν,

Ŝn = β(ν)1/α − δ(ν) +

(
1

µ
+ Γ+

m

)
. (85)

We obtain Eq. (24) by substituting β and δ by their expressions in parts (a) and (b). ut
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Proof of Theorem 3. To bound the maximization problem in Eq. (32), we take a similar approach to that
presented in the proof of Theorem 2 and cast the problem in the form

max
0≤x≤ν−φ,x∈R

(
β · x1/α − δ · x

)
=


β · (ν − φ)1/α − δ · (ν − φ), if ν − φ ≤

(
β
αδ

)α/(α−1)
,

(α− 1)

αα/(α−1)
· β

α/(α−1)

δ1/(α−1)
, otherwise,

where β = m1/αΓa + Γ+
m and δ = m(1 − ρ)/λ. Substituting the terms β and φ by their respective values

in the above expression yields the desired result. ut

Proof of Theorem 5.From Eq. (50), we have that the worst case system time is given by

Ŝn =
J

µ
+ max

0≤k1≤...≤kJ≤ν


[
Γ

(1)+
m (k2 − k1 + 1)1/α + . . .+ Γ

(J)+
m (ν − kJ + 1)1/α

]
+

Γa [m (ν − k1)]1/α − m(1− ρ)

λ
(ν − k1)

 .

Furthermore, since (kj+1 − kj + 1)1/α ≤ (kj+1 − kj)1/α + 1, for all j=1,. . . , J, we obtain

Ŝn ≤
J

µ
+

J∑
j=1

Γ (j)+
m + max

0≤k1≤...≤kJ≤ν


[
Γ

(1)+
m (k2 − k1)1/α + . . .+ Γ

(J)+
m (ν − kJ)1/α

]
+

Γa [m (ν − k1)]1/α − m(1− ρ)

λ
(ν − k1)

 .

We will isolate the problem of maximizing
[
Γ

(1)+
m (k2 − k1)1/α + . . .+ Γ

(J)+
m (ν − kJ)1/α

]
for fixed values

of k1, ν, and make the transformations x1 = k2 − k1, . . . , xJ = ν − kJ , where xj ∈ N, for all j = 1, . . . , J .
With these transformations, the optimization problem simplifies to

max
0≤k1≤ν,k1∈N

m1/αΓa (ν − k1)1/α − m(1− ρ)

λ
(ν − k1) +


max

[
Γ (1)+
m x

1/α
1 + . . .+ Γ (J)+

m x
1/α
J

]
s.t. x1 + . . .+ xJ = ν − k1

xj ∈ N, ∀j = 2, . . . , J


 .(86)

The optimal solution to the inner optimization problem satisfies

Γ (1)+
m (x∗1)1/(α−1) = Γ (2)+

m (x∗2)1/(α−1) = . . . = Γ (J)+
m (x∗J)1/(α−1),

by the first order optimality conditions. Using the additional condition that
∑J
j=1 x

∗
j = ν − k1, the optimal

solution can be found analytically as

x∗i =
(Γ

(i)+
m )α/(α−1)

J∑
j=1

(Γ (j)+
m )α/(α−1)

· (ν − k1) ∀i = 1, 2, . . . , J,

leading to an optimal value of

Γ (1)+
m (x∗1)1/α + . . .+ Γ (J)+

m (x∗1)1/α = (ν − k1)1/α·

 J∑
j=1

(Γ (j)+
m )α/(α−1)

(α−1)/α

(87)

Substituting the optimal solution of the inner problem in Eq. (86), the performance analysis reduces to
solving the following one-dimensional optimization problem

max
0≤k1≤ν


m1/αΓa +

 J∑
j=1

(Γ (j)+
m )α/(α−1)

(α−1)/α
 · (ν − k1)1/α − m(1− ρ)

λ
(ν − k1)

 , (88)

which can be cast in the form of the optimization problem in Eq. (82), with

β = m1/αΓa +

 J∑
j=1

(Γ (j)+
m )α/(α−1)

(α−1)/α

and δ =
m(1− ρ)

λ
.
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Referring to the proof of Theorem 2, the solution to Eq. (88) is

max
0≤x≤ν

β · x1/α − δ · x =


β · ν1/α − δ · ν, if ν ≤

(
β
αδ

)α/(α−1)

(α− 1)

αα/(α−1)
· β

α/(α−1)

δ1/(α−1)
, otherwise.

We obtain the desired result by substituting β and δ by their respective values. ut

Proof of Theorem 6. We maximize both terms in Eq. (54) separately as follows.

(a) By Assumption 1 and applying similar arguments to those presented in the proof of Theorem 5, the
first term in Eq. (54) is bounded by

max
0≤k1≤φ,
k1∈N

ν − k1

µ
+


max

[
Γ (1)+
m x

1/α
1 + . . .+ Γ (J)+

m x
1/α
J

]
s.t. x1 + . . .+ xJ = ν − k1

xj ∈ N, ∀j = 2, . . . , J


+

J

µ
+

J∑
j=1

Γ (j)+
m − n− n0

λ
+ γa(n− n0)1/α. (89)

The optimal objective function of the inner optimization problem in Eq. (89) is given by Eq. (87).
Hence, the bound on the first term in Eq. (54) becomes

max
0≤k1≤φ

(
ν − k1

µ
+ Γm · (ν − k1)1/α

)
+
J

µ
+

J∑
j=1

Γ (j)+
m − n− n0

λ
+ γa(n− n0)1/α,

where Γm is defined in Eq. (51). Since Γm ≥ 0, the term x/µ+ Γmx
1/α is increasing in x, yielding

max
0≤k1≤φ

(
ν − k1

µ
+ Γm · (ν − k1)1/α

)
=
ν

µ
+ Γm · ν1/α.

(b) To bound the second term in Eq. (54), we take a similar approach to that presented in the proof of
Theorem 5 and cast the problem in the form

max
0≤x≤ν−φ,x∈R

(
β · x1/α − δ · x

)
=


β · (ν − φ)1/α − δ · (ν − γ) if ν − φ ≤

(
β
αδ

)α/(α−1)

(α− 1)

αα/(α−1)
· β

α/(α−1)

δ1/(α−1)
otherwise

 .

Substituting β = m1/αΓa + Γm and δ = m(1− ρ)/λ yields the desired result.
ut

Proof of Theorem 7. The desired result is obtained by maximizing the system time for each path P ∈ P`.
In order to apply the bounds on the system times from Assumption 1 to the quantity in Eq. (67), we need
to account for the number of jobs that pass through node aj between the arrivals of job kaj which belongs
to Eaj−1aj ⊆ Laj and job kaj+1 which belongs to Eajaj+1 ⊆ Laj . Mathematically, we let ∆aj denote this
number, i.e.,

∆aj =

∣∣∣∣ {k : kaj ≤ k ≤ kaj+1 , k ∈ Laj

} ∣∣∣∣. (90)

By Eq. (61), the fraction of jobs passing through queue aj is φaj , yielding

∆aj = φaj ·
(
kaj+1 − kaj + 1

)
.

By Assumption 1, and given that Γ̃
(j)
s ≤ Γ̃ (j)+

s , for all j ∈ J , we bound the service times by

max
Us

aj

kaj+1∑
i=kaj

X
(aj)
i =

∆aj

µaj

+ Γ
(aj)+
s ·∆1/α

aj
=
φaj ·

(
kaj+1 − kaj + 1

)
µaj

+ Γ
(aj)+
s ·

[
φaj ·

(
kaj+1 − kaj + 1

)]1/α
.
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By applying Assumptions 1, Eq. (67) becomes

max
P∈P`

∑
j∈P

(
1

µ̃j
+ Γ̃ (j)+

s

)
+ max

1≤ka1≤...≤k`≤n


ka2 − ka1

µ̃a1

+ Γ̃ (a1)+
s · (ka2 − ka1)1/α + . . .+

n− k`
µ̃`

+

Γ̃
(`)+
s · (n− k`)1/α − n− ka1

λ
+ Γa(n− ka1)1/α


 ,(91)

where µ̃j = µj/φj and Γ̃
(j)
s = Γ

(j)
s · φ1/α

j , for all j ∈ J . We let µ̃P = min
{
µ̃aj , aj ∈ P

}
, ρP = λ/µ̃P . By

making the change of variable xaj = kaj+1 − kaj , for all aj ∈ P , we bound the maximization problem in
Eq. (91) by

max
1≤ka1≤n

(
Γa (n− ka1)1/α − 1− ρP

λ
(n− ka1) +

{
max

[
Γ̃

(a1)+
s · x1/α

a1 + . . .+ Γ̃
(`)+
s · x1/α

aJ

]
s.t. xa1 + . . .+ x` = n− ka1

})
. (92)

The optimal objective function for the inner optimization problem is given in Eq. (87). The performance
analysis reduces to solving the following one-dimensional optimization problem

max
1≤ka1≤n


Γa +

 ∑
j∈P

(
Γ̃ (j)+
s

)α/(α−1)

(α−1)/α
 · (n− ka1)1/α − 1− ρP

λ
(n− ka1)

 , (93)

which can be cast in the form of the optimization problem in Eq. (82), with

β = Γa +

∑
j∈P

(
Γ̃ (j)+
s

)α/(α−1)

(α−1)/α

and δ =
1− ρP
λ

.

Referring to the proof of Theorem 2, the solution to Eq. (93) is

max
0≤x≤n

β · n1/α − δ · n =


β · n1/α − δ · n, if n ≤

(
β
αδ

)α/(α−1)

(α− 1)

αα/(α−1)
· β

α/(α−1)

δ1/(α−1)
, otherwise.

We obtain the desired result by substituting β and δ by their respective values. ut

Proof of Proposition 2. We prove the result using the technique of mathematical induction.

(a) Initial Step: As presented in [9], the system time in an m-server queue

Ŝn (T) = Ŝ (1)
n (T) = max

0≤k1≤ν

 max
X(1)∈Us

m

ν∑
i=k1

X
(1)
r(i) −

n∑
i=r(k1)+1

Ti

 ,

and therefore the result holds for J = 1.

(b) Inductive Step: We now suppose that the result holds for J − 1 queues in series, which expresses the
system time across queues 2 through J as

Ŝ (2)
n (T) + . . .+ Ŝ (J)

n (T) = max
0≤k2≤...≤kJ≤ν

max
Us

2

k3∑
i=k2

X
(2)
r(i) + . . .+ max

Us
J

n∑
i=kJ

X
(J)
r(i) −

n∑
i=r(k2)+1

T
(2)
i

 ,

(94)

where T (2) =
{
T

(2)
1 , . . . , T

(2)
n

}
denotes the sequence of inter-arrival times to the second queue. Note that

the arrival to the second queue is simply the departure from the first queue, and therefore, denoting the

inter-departure times from the first queue by D(1) =
{
D

(1)
1 , . . . , D

(1)
n

}
, we have

∑
i=r(k2)+1

T
(2)
i =

∑
i=r(k2)+1

D
(1)
i =

n∑
i=(k2)+1

Ti + Ŝ (1)
n (T)− Ŝ (1)

r(k2) (T) , (95)
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where the last equality is due to the fact that no overtaking occurs at the first queue in the worst case
approach. Combining Eqs. (94)-(95), we obtain

Ŝn (T) = Ŝ(1)
n (T) + Ŝ(2)

n (T) + . . .+ Ŝ(J)
n (T)

= max
0≤k2≤...≤kJ≤ν

max
Us

2

k3∑
i=k2

X
(2)
r(i) + . . .+ max

Us
J

n∑
i=kJ

X
(J)
r(i) −

n∑
i=r(k2)+1

T
(2)
i + Ŝ

(1)
r(k2) (T)

 . (96)

Since no overtaking occurs in the first queue, and given that br (k2) /mc = k2, the system time of the
r (k2)th job can be expressed as

S
(1)
r(k2) (T) = max

0≤k1≤k2

max
Us

1

k2∑
i=k1

X
(1)
r(i) −

r(k2)∑
i=r(k1)+1

Ti

 .

Substituting the above expression in Eq. (96), the overall system time becomes

Sn = max
0≤k2≤...≤kJ≤ν

max
Us

2

k3∑
i=k2

X
(2)
r(i) + . . .+ max

Us
J

n∑
i=kJ

X
(J)
r(i) −

n∑
i=r(k2)+1

Ti + max
0≤k1≤k2

max
Us

1

k2∑
i=k1

X
(1)
r(i) −

r(k2)∑
i=r(k1)+1

Ti

 .

Rearranging the terms in the above expression proves the inductive result. This concludes the inductive
step, and by mathematical induction, we have the desired result. ut

Proof of Proposition 3. We use the principle of mathematical induction to prove this result. Specifically,
we assume that the result is true for any job j ≤ n − 1 passing by some node q from the feed-forward
network (disregarding where the jth job goes next in the network after q), i.e.,

Sj (Pq) = max
P∈Pq

 max
1≤ka1≤ka2≤...≤kq≤j

ki+1∈Eaiai+1

 ka2∑
i=kb1
i∈La1

X
(a1)
i +

ka3∑
i=ka2
i∈La2

X
(a2)
i + . . .+

j∑
i=kq

i∈Lq

X
(q)
i −

j∑
i=ka1+1

Ti


 , (97)

where Pq denotes the set of all paths P = (a0, a1, . . . , q) that pass by q (disregarding the network after q).
We next proceed to show that the result holds for job n exiting the network at queue `.

The system time of the nth job at queue ` can be expressed as

S(`)
n = max

1≤k`≤n
k`∈L`

 n∑
i=k`
i∈L`

X
(`)
i −

n∑
i=k`+1
i∈L`

T
(`)
i

 (98)

Suppose k` ∈ Eq`, i.e., job k` enters queue ` from queue q, and without loss of generality, suppose that job
n enters queue ` from queue r, i.e., n ∈ Er`. Then,

n∑
i=k`+1
i∈L`

T
(`)
i =

(
n∑
i=1

Ti + Sn (Pr)

)
−

(
k∑̀
i=1

Ti + Sk`
(Pq)

)
. (99)

Combining Eqs. (98) and (99), we obtain

S(`)
n +Sn (Pr) = max

1≤k`≤n
k`∈L`

 n∑
i=k`
i∈L`

X
(`)
i + Sk`

(Pq)−
n∑
i=1

Ti +

k∑̀
i=1

Ti

 = max
1≤k`≤n
k`∈L`

 n∑
i=k`
i∈L`

X
(`)
i + Sk`

(Pq)−
n∑

i=k`+1

Ti


By the induction hypothesis, we substitute the value of Sk`

(Pq) in the above equation and obtain

S(`)
n + Sn (Pr) = Sn (Pr`) = max

P∈Pq`

 max
1≤ka1≤...≤kq≤k`≤n

ki+1∈Eaiai+1

 ka2∑
i=ka1
i∈La1

X
(a1)
i + . . .+

k∑̀
i=kq

i∈Lq

X
(q)
i +

n∑
i=k`
i∈L`

X
(`)
i −

n∑
i=kb1+1

Ti


 ,
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where Pr` and Pq` are the sets of paths that end at node r and q, respectively, and then feed in to node `
(disregarding what comes next in the network). Given that q and r were chosen arbitrarily, the result holds
for any nodes q and r that feed into queue `, i.e. for all q, r ∈ P`. Hence,

Sn (P`) = max
P∈P`

 max
1≤ka1≤...≤kq≤k`≤n

ki+1∈Eaiai+1

 ka2∑
i=ka1
i∈La1

X
(a1)
i + . . .+

k∑̀
i=kq

i∈Lq

X
(q)
i +

n∑
i=k`
i∈L`

X
(`)
i −

n∑
i=ka1+1

Ti


 . (100)

This concludes the inductive step and proves the result for job n. Next considering the base case of n = 1,
it is trivial to check the validity of inductive hypothesis. Therefore, the result follows from induction. This
concludes the proof. ut




