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Abstract

In this note we prove that the level-set flow of the topologist’s sine curve is a smooth closed curve.
In [14] it was shown by the second author that under the level-set flow, a locally-connected set in the
plane evolves to be smooth, either as a curve or as a positive area region bounded by smooth curves. Here
we give the first example of a domain whose boundary is not locally-connected for which the level-set
flow is instantaneously smooth. Our methods also produce an example of a non path-connected set that
instantly evolves into a smooth closed curve.

1 Introduction

The mean curvature flow of a compact hypersurface necessarily develops a singularity in finite time. At that
point the classical solution ceases to exist and several so-called weak solutions have been defined that allow
the evolution to be extended. One such example is the level-set flow (see Section 2 for a definition), which
was first investigated independently by Chen-Giga-Goto [4] and Evans-Spruck [8]. The level-set flow exists
for any compact initial data and agrees with smooth mean curvature flow whenever the latter is defined.

While the main use of the level-set flow is certainly to analyze and flow through singularities it is
nevertheless interesting to consider nonsmooth initial data which do no occur in this context. In this paper
we study the level-set flow of the standard topologist’s sine curve, which we denote by Tt. For any given
t > 0 elementary geometric arguments can be used to show that Tt has Lebesgue measure zero and that the
complement of Tt has two connected components. However, these arguments cannot rule out the possibility
that the characteristic topological properties of the topologist’s sine curve are preserved. The main result of
this paper is the following:

Theorem 1.1. Tt is a unique smooth curve shortening flow for t > 0.

In fact what we show here is that Tt instantly becomes locally-connected. At that point we make use of
the classification proved by the second author in [14]. One restatement of that result is the following:

Theorem 1.2. ([14], Theorem 1.1) Let K ⊂ R2 be locally-connected, connected and compact. Then for
each t > 0, ∂Kt is a (perhaps empty) finite union of smooth closed curves.

In Theorem 1.2 there are essentially three possibilities: The first is that Kt instantly evolves as a smooth
closed curve, the second is that Kt is a positive area set with smooth boundary and the third is that Kt

vanishes instantly.
The question of nonsmooth initial data for mean curvature flow has been studied extensively: Ecker

and Huisken [6] first proved that Lipschitz entire graphs have a smooth evolution and later [7] showed that
the same is true for curves that satisfy a uniform local Lipschitz condition. In her thesis, Clutterbuck [5]
proved the existence of a smooth evolution for bounded graphs which were merely continuous. In [14] the
case of planar curves was studied. There the first examples were given of sets with Hausdorff dimension
> 1 (the Koch snowflake for example) that evolve to be smooth under the level-set flow. More recently
Hershkovits [11] has given the first examples of this behaviour in arbitrary dimensions by studying (ε, R)-
Reifenberg sets for ε sufficiently small.

∗The first author was supported by the Marianna Polonsky Slocum Memorial Fund.
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Figure 1: The topologist’s sine curve.

1.1 Overview

In this section we give an outline of the proof of Theorem 1.1. As usual when studying nonsmooth initial
data for a parabolic PDE the proof proceeds by establishing uniform estimates on a sequence of smooth
approximations.

We begin by defining the initial data:

Definition 1.3 (Topologist’s sine curve). A topologist’s sine curve T is the union of the graph of y = sin(1/x)
for x ∈ (0, β), the line segment V = {0}× [−1, 1], and a smooth arc (disjoint from the first two pieces except
at its endpoints) connecting these two pieces. See Figure 1.

The exact definition, i.e. how much of the graph y = sin(1/x) is taken and which arc is used to connect
the end of it back to V , is not important. Indeed, it will be clear from the argument that Theorem 1.1 is
valid for any diffeomorphic image of T as long as the compactifying segment remains linear.

In Section 2 we recall that the level-set flow of T is determined by two sequences of smooth approximations,
one contained in each of the two components of R2 \ T . Let γn be one such sequence. Since γn is chosen
so as to Hausdorff converge to T it follows that the lengths, denoted L(γn), are unbounded. Indeed, this is
even true locally for x ∈ V . In that case for any ε > 0

sup
n∈N
{L(γn ∩Bε(x))} =∞,

where Bε(x) = {y | |x− y| < ε}. The main step in the proof of Theorem 1.1 is showing that the supremum
above is finite if one evolves the approximations simultaneously for a short time. Namely, we prove the
following:

Theorem 1.4. For each t > 0 and x ∈ R2, there exists ε = ε(x, t) > 0 such that

sup
n∈N
L((γn)t ∩Bε(x)) <∞.

And since the ε in Theorem 1.4 does not depend on n the following Corollary is immediate:

Corollary 1.5. For each t > 0
sup
n∈N
L((γn)t) <∞.

In Section 5 we show that Corollary 1.5 implies that H1(∂Tt) < ∞ for t > 0, where H1 denotes the
Hausdorff 1-measure, and hence that ∂Tt is locally-connected (See for example [9]). By Theorem 1.2 this
implies that ∂Tt is smooth. At this point we have essentially proved the existence portion of Theorem 1.1
but have made no claim of uniqueness as it is a priori possible the boundary components defined by the two
sequences of approximations are distinct. But Theorem 1.1 then follows from the observation, see Lemma 2.6,
that Tt has Lebesgue measure zero.
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Figure 2: The grim reaper initially contains V in its convex hull. The width, which is inversely proportional
to its speed, is chosen so that the evolution passes through V before t = t0.

1.2 The proof of Theorem 1.4

The proof of Theorem 1.4 requires two separate arguments. For x /∈ V the conclusion of Theorem 1.4 holds
at t = 0 and a simple argument counting intersections with a grid of static transverse lines shows that the
uniform finiteness persists.

For x ∈ V the argument is more involved. In this case we instead count intersections with a translating
solution to curve shortening flow, the so-called grim reaper. We choose the initial data u such that u∩V = ∅
and yet ut passes through V before time t0. This can be done since by parabolic scaling one can construct
a grim reaper which is arbitrarily thin, and hence arbitrarily fast. See Figure 2.

In Lemma 4.2 we show that |u∩ T |, and hence |u∩ γn| are bounded and use the fact that the number of
intersections is non-increasing under curve shortening flow to conclude that |(γn)t0 ∩ ut0 | is also uniformly
bounded. We then choose ε > 0 small enough so that the subset of u that passes through Bε(x) is nearly
horizontal. At t0 we have that (γn)t0 ∩ Bε(x) has a bounded number of intersections with each leaf in two
transverse foliations of Bε(x). The vertical foliation is exactly linear while the horizontal one is C1-close to
linear. The result then follows since the bi-Lipschitz constant needed to map the pair of foliations to the
standard grid is well-controlled.

1.3 Organization of Paper

In Section 2 we review the definition of the level-set flow and specify the properties we require in an ap-
proximating sequence. In Section 3 we compute a simple length estimate for transformations that will be
used twice in Section 4, where we prove Theorem 1.4. In Section 5 we verify that Theorem 1.4 implies that
the boundary components of Tt have finite H1-measure when t > 0, which in turn implies that they are
locally-connected. In Section 6 we complete the proof of Theorem 1.1.

2 The level-set flow and approximating sequences

Mean curvature flow was first studied by Brakke [3] in the context of geometric measure theory and later
Huisken [12] developed the following classical formulation for smooth hypersurfaces:

Definition 2.1 (Mean curvature flow). Let {Mt}t∈(a,b) be an evolving family of hypersurfaces in Rn+1. We
say that Mt is moving by mean curvature flow if it satisfies the nonlinear parabolic equation

∂

∂t
x = ~H(x), x ∈Mt, t ∈ (a, b),

where ~H(x) is the well-defined mean curvature vector at the point x.

As discussed in the Introduction the existence of finite-time singularities has led to several definitions
of a weak solution, one of which is the level-set flow. In this section we review some basic facts about
the level-set flow and the smooth approximations that determine the flow in the specific case of R2. The
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geometric formulation in terms of weak-set flows given below is due to Ilmanen [13]. For further background
see [4] [8].

Definition 2.2. (Weak-set flow) Let K ⊂ Rn+1 be compact, and let {Kt}t≥0 be a 1-parameter family of
compact sets with K0 = K, such that the space-time track ∪(Kt × {t}) ⊂ R2 is closed. Then {Kt}t≥0 is a
weak-set flow for K if for every smooth mean curvature flow Σt defined on [a, b] ⊂ [0,∞] we have

Ka ∩ Σa = ∅ → Kt ∩ Σt = ∅

for each t ∈ [a, b].

We are interested in one particular weak set flow:

Definition 2.3. (Level-set flow) The level-set flow of a compact set K ⊂ Rn+1 is the maximal weak-set
flow. That is, a weak set flow Kt such that if K̂t is any other weak set flow, then K̂t ⊂ Kt for all t ≥ 0.

The existence of the level-set flow is established by taking the closure of the union of all weak set flows.
If the initial data is a smooth hypersurface then the level-set flow agrees with mean curvature flow up to
the first singular time. On the other hand there is behaviour very different from smooth flows, the classic
example being the figure eight which instantly fattens into a smooth region with three boundary components.
Fattening in this context should be interpreted as non-uniqueness.

In R2 the uniform existence of solutions to curve shortening flow, i.e. that the extinction time is propor-
tional to the area bounded by the initial data, allows for a simple explicit definition. The reason we do this
here is that Lemma 2.6 immediately implies the uniqueness portion of Theorem 1.1, which is much more
involved in higher dimensions, see [11] for example.

Let Ω ⊂ R2 be a bounded domain with topological boundary K = ∂Ω. Let αn, βn be sequences of
smooth closed curves contained in Ω and R2 \ Ω respectively such that

lim
n→∞

dH(αn,K)→ 0, lim
n→∞

dH(βn,K)→ 0,

where dH represents the Hausdorff distance on compact sets. Then for each t > 0 and n ∈ N define (An)t
to be the smooth annulus with boundary {(αn)t, (βn)t}, where (αn)t and (βn)t denote the evolution of αn
and βn by curve shortening flow. We then have the following:

Lemma 2.4. For all t > 0
Kt =

⋂
n

(An)t.

Proof. Since K ⊂ int((An)0) the definition of weak-set flow implies Kt ⊂ int(An)t for each t > 0 and hence
that Kt ⊂

⋂
(An)t. On the other hand it is easily checked that ∩n(An)t is itself a weak-set flow, which

provides the opposite containment.

Remark 2.5. The same construction can be used to determine the level-set flow of an arbitrary compact
set. In that case there is one approximating sequence in each component of R2 \K. In order to generalize
Lemma 2.4 to higher dimensions one must first produce curvature bounds that imply that the evolution of
such sequences exist on a uniform time interval.

Using Lemma 2.4 it is easy to prove that the evolution of the topologist’s sine curve has Lebesgue measure
zero, which in particular implies that Tt does not fatten. Let m(·) denote the two-dimensional Lebesgue
measure.

Lemma 2.6. m(Tt) = 0 for all t > 0.

Proof. Since m(T0) = 0 it follows that limn→∞m(An) = 0. Under curve shortening flow the area bounded
by a smooth curve decreases at a constant rate [10] and hence the area contained in an evolving annulus is
constant. Thus limn→∞m((An)t) = 0 for each t > 0 and the result follows by Lemma 2.4.

In general the sequences (αn)t and (βn)t may have distinct Hausdorff limits. Indeed this happens in the
case of a positive area Jordan curve which instantly evolves into a smooth annulus [14]. In the case of the
topologist’s sine curve we show that each sequence limits onto a smooth curve and so Lemma 2.6 implies
that the two limits coincide.
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2.1 Approximations

For the remainder of the paper we work with a sequence satisfying the following properties:

Definition 2.7. [Allowable approximations] For the Topologist’s sine curve T = ∂Ω we define a sequence of
smooth closed curves γn with the following properties:

1. γn ⊂ Ω,

2. the regions bounded by γn form an increasing sequence of sets,

3. dH(γn, T )→ 0 as n→∞,

4. for any ε > 0, γn converges smoothly to T \Bε(V ), and

5. there exists ω ∈ Z+ such that each γn is an ω-graph, where by ω-graph we mean a curve with at most
ω points lying above each element of the x-axis.

Remark 2.8. As discussed in the paragraph preceding Lemma 2.4 it is also necessary to consider a similarly
defined sequence in R2\Ω. It is clear from the proof that Theorem 1.4 is valid for either type of approximating
sequence.

The final property above asserts that γn intersects each vertical line at most ω times. For the standard
picture in Figure 1 each γn can be chosen to be a double graph, but in general ω will depend on the arc
added to connect the origin to the sin(1/x) portion of T .

The way in which we use the fourth property above is the following:

Lemma 2.9. Let ` be a line in R2 \ V . Then

|γn ∩ `| ≤ 2|T ∩ `|

for n sufficiently large.

Here the absolute value indicates the cardinality of the intersection, which is eventually finite due to the
smooth convergence in Definition 2.7 (4). The two appears on the right-hand side due to the fact that γn
will eventually intersect ` either 0,1 or 2 times near a tangential intersection in (T \ V ) ∩ `.

Remark 2.10. In general all conclusions regarding the sequence γn hold only for sufficiently large n.
Throughout the rest of the paper we assume that the sequence has been appropriately modified and ignore this
point.

3 The length of a curve with bounded intersections

In this section we establish the following elementary estimate which is used in two separate instances in
Section 4. Let Bε = {x | |x| < ε} ⊂ R2.

Theorem 3.1. Given ε,M > 0 and d > 1 suppose that f : Bε → R2 fixes the origin, is invertible,
differentiable and that

d−1 < ‖Jac(f)‖2 < d.

If γ is the intersection of a smooth curve with Bε (which may consist of a disjoint union) and |`∩f(γ)| ≤M
for each horizontal or vertical line `, then

L(γ) ≤ 4Md2ε

Remark 3.2. Here ‖Jac(f)‖2 denotes the (Euclidean) operator norm of the Jacobian of f .

Theorem 3.1 follows easily from the following Lemma which gives a bound on the length of a curve based
on the maximum number of times it intersects a horizontal or vertical line:
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Lemma 3.3. Let ε > 0 and γ be a differentiable curve in R2 that intersects each vertical and horizontal line
in B = (−ε, ε)2 at most M times. Then

L(γ ∩B) ≤ 4Mε.

Proof of Theorem 3.1. Observe that ‖Jac(f)‖2 < d and the fact that f(0) = 0 imply that

f(Bε) ⊂ Bdε.

Thus Lemma 3.3 applied to f(γ) yields
L(f(γ)) < 4Mdε,

and the result follows by taking the inverse.

The proof of Lemma 3.3, which we include for completeness, goes as follows: 1) decompose the given
curve into a minimal number of monotone segments, 2) bound the length of each such segment, and 3) bound
the sum of the lengths of their projections. The third step is carried out in Lemma 3.4.

Lemma 3.4. Let {Ii = [ai, bi]}1≤i≤N ⊆ [0, L] be a collection of intervals and M ∈ Z+. If for all x ∈ [0, L],

x ∈ Ii for at most M choices of i, then
N∑
i=1

L(Ii) ≤ML.

Proof. Let U =
N⋃
i=1

{ai, bi} be the set of endpoints. The elements of U partition [0, L] into at mostK ≤ 2N + 1

intervals J1, . . . , JK . Then

N∑
i=1

L(Ii) =
N∑
i=1

K∑
j=1

L(Ii ∩ Jj) =
K∑
j=1

N∑
i=1

L(Ii ∩ Jj)

≤
K∑
j=1

ML(Jj) = ML

where the inequality follows from the fact that x ∈ Ii for at most M different choices of i.

We are now ready to complete the proof of Lemma 3.3:

Proof of Lemma 3.3. Let {uλ} be a minimal partition of γ ∩B into intervals such that uλ is the graph of a
monotone function for each λ.

For a given λ let (aλ1 , bλ1) and (aλ2 , bλ2) be the endpoints of uλ and w.l.o.g assume that aλ2 > aλ1 and
bλ2 > bλ1 so that uλ is the graph of an increasing function. Then

L(uλ) =
∫ aλ2

aλ1

√
1 + u′λ(x)2 dx

≤
∫ aλ2

aλ1

1 + u′λ(x) dx

≤ |aλ2 − aλ1 |+ |bλ2 − bλ1 |.

Then by Lemma 3.4 ∑
λ

|aλ2 − aλ1 | ≤ 2Mε and
∑
λ

|bλ2 − bλ1 | ≤ 2Mε,

and hence
L(γ ∩B) =

∑
λ

L(u
λ
) ≤ 4Mε.
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4 Proof of Theorem 1.4

In this section we prove Theorem 1.4. There are two cases depending on whether or not x ∈ V . The x ∈ V
case is rather simple since the conclusion of Theorem 1.4 holds at t = 0 and it is enough to count the number
of intersections with static lines. In the second case, we instead count the number of intersections with the
so-called grim reaper, a translating solution to curve shortening flow.

Definition 4.1 (Grim reaper). For any λ, c > 0 the translating graph

uλ(x, t) =
1
c

ln(cos(cx)) + 3 + λ− ct, −π
2c

< x <
π

2c

is a solution to curve shortening flow.

As exact solutions are hard to produce the grim reapers have been used extensively in barrier arguments
in curve shortening flow. But they also appear naturally. While the shrinking circle is the only singularity
for embedded curves, grim reapers do occur as a blow-up in the immersed case [2].

The vertical shift of 3+λ in Definition 4.1 guarantees that uλ(·, 0)∩V = ∅. See Figure 2. The arguments
of this section rely on the fact that regardless of how large we choose c to be, i.e. how thin the grim reaper
is, the number of intersections with T is bounded. Let Γ be the graph of sin(1/x)|(0,1]. We then have the
following:

Lemma 4.2. If c > 1 and 0 ≤ λ ≤ 6 then |uλ(·, 0) ∩ Γ| = 1.

Proof. Let 0 < x1 < x2 be such that (x1, 1) and (x2,−1) lie on the graph of u = uλ(·, 0). Then all
intersections occur on the interval [x1, x2]. Setting u = ±1 and solving explicitly we obtain

x1 =
arccos(e(−2−λ)c)

c
, x2 =

arccos(e(−4−λ)c)
c

.

Now,

min
x∈[x1,x2]

|u′(x)| = |u′(x1)| = tan(arccos(e(−2−λ)c)) =

√
1− e(−4−λ)c

e(−2−λ)c
>

1
2
e2c,

and

max
x∈[x1,x2]

|Γ′| = max
x∈[x1,x2]

| cos(1/x)|
x2

≤ 1
x1

2
=
( c

arccos(e(−2−λ)c)

)2

<
16
π2
c2.

In both cases the final inequality uses the fact c > 1. Thus

min
x∈[x1,x2]

|u′| > max
x∈[x1,x2]

|Γ′|

which proves the result.

We now turn to the proof of Theorem 1.4.

Proof of Theorem 1.4. Case 1: Let p ∈ R2\V , and let `1 6= `2 be distinct lines through p such that `i∩V = ∅
for i = 1, 2. Let

ε =
d(`1 ∪ `2, V )

2
,

and let θ = 6 (`1, `2). Note that ε and θ are necessarily small when p is close to V .
For each i = 1, 2 we define a family of lines as follows: let Li be the subset of lines parallel to `i which

intersect Bε(p) is a non-empty set. Since the definition of ε implies that each line in Li is disjoint from V
there exists a constant C > 0 such that each line intersects T at most C times.

Lemma 2.9 implies that |γn ∩ ζ| ≤ 2C for each line ζ ∈ Li. Hence for each t > 0 we have |(γn)t ∩ ζ| ≤ 2C
since ζ is a static solution to curve shortening flow and the number of intersections is non-increasing in time.

By translating and rotating we may assume that p is the origin and that the lines in L1 are parallel to
the x-axis. Then the linear map

A : (x, y) 7→ (x tan θ − y, y)
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takes each line in L2 to a vertical line and sends each horizontal line onto itself. A simple calculation yields

‖A‖2, ‖A−1‖2 ≤ 2 max{tan θ, (tan θ)−1} =: d(θ)

and hence by Theorem 3.1 we conclude that

L((γn)t ∩Bε(p)) < 4Cd(θ)2ε,

which proves the result. Notice that in this case the constant on the right-hand side is independent of time.
Case 2: Now suppose p ∈ V . Lemma 4.2 and the choice of γn implies that there exists a constant C > 0

such that for each 0 ≤ λ ≤ 6 we have
|γn ∩ uλ| ≤ C.

For the topologist’s sine curve in Figure 1 we have C = 4, but we allow for the possibility that the arc added
to join the sin(1/x) portion back to the origin introduces a higher number of intersections.

Given t0 > 0 define c = 6
t0

so that the grim reaper defined by

u(x, t) =
1
c

ln(cos(cx)) + 3− ct

passes completely through V by t0.
Now fix α � 1 and choose ε > 0 such that |u′(x)| < α for all x ∈ [−ε, ε]. Restricting the family of

curves uλt0 to Bε(p) we obtain a foliation by vertical translates. Using Lemma 4.2 and the fact that the
number of intersections does not increase under curve shortening flow we have for each 0 ≤ λ ≤ 6

|(γn)t0 ∩ uλt0 | ≤ C.

Moreover, by Definition 2.7, γn, and hence (γn)t0 , intersect each vertical line at most ω times.
The map f : (x, y) 7→ (x, y− u(x)) sends each vertical line onto itself, each curve uλt0 to a horizontal line,

and since u′(x) is small f satisfies the hypothesis of Theorem 3.1 with d = 2. Thus

L((γn)t0 ∩Bε(p)) < 4 max{C,ω}ε.

5 Finite H1-measure at positive times

We begin this section by reviewing the definition of the Hausdorff 1-measure.

Definition 5.1 (H1). Let K be compact. For any δ > 0 we first define

H1
δ(K) = inf

{∑
n

diam(Un) | Un open,K ⊂
⋃
n

Un, diam(Un) < δ

}
.

As δ → 0 the quantity above is monotonic and hence the limit exists, although it may be infinite.

H1(K) = lim
δ→0+

H1
δ(K).

In general the convergence properties of the Hausdorff measure under Hausdorff convergence are quite
poor. Indeed, any compact set is the limit of finite sets of points and hence the H1-measure may jump in
the limit. Nevertheless, in the present situation we do obtain finite H1-measure of the limit.

Lemma 5.2. Let Ω ⊂ R2 be a bounded simply-connected domain and suppose that {Ei} is a sequence of
smooth disks satisfying E1 ⊂ E2 ⊂ E3 ⊂ . . . and ∪En = Ω. If

sup
n
{H1(∂Ei)} <∞

then H1(∂Ω) <∞.
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Proof. Let γn = ∂En, L = supn{H1(γn)} and fix n ∈ N. Given ε > 0, let x1, x2, . . . be an ordered sequence
of points along γn such that

1. d(xi, xi+1) = ε
2 , and

2. the open arc connecting xi to xi+1 is contained in B ε
2
(xi).

The first condition implies that the number of points xi is at most
⌈

2L
ε

⌉
and the second guarantees that

B ε
2
(γn) ⊂

⋃
i

Bε(xi).

Now, if n is sufficiently large then ∂Ω ⊂ B ε
2
(γn). Thus

H1
ε (∂Ω) ≤ 2ε

⌈
2L
ε

⌉
< 4L+ 1

and the result follows by taking ε→ 0.

6 Proof of Theorem 1.1

We now complete the proof of Theorem 1.1:

Proof. Let γn be a sequence of approximations satisfying Definition 2.7 and let Kt be the Hausdorff limit
of the sequence (γn)t. Then Kt ⊂ ∂(Tt). Theorem 1.4 and Theorem 2.6 imply that H1(Kt) <∞ and hence
that Kt is locally-connected [9]. Theorem 1.2 then implies that Kt is a smooth curve shortening flow for
t > 0.

If one chooses instead an approximating sequence in R2 \ Ω then the same conclusion holds. Thus for
positive times ∂(Tt) is the union of two smooth curves, but Lemma 2.6 implies that Tt has measure zero and
hence that the two curves coincide. This completes the proof.
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