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Abstract. We partially resolve a conjecture of Meeks on the as-
ymptotic behavior of minimal surfaces in R3 with quadratic area
growth.

1. Introduction

Let Σ be an embedded minimal surface in R3. One of the fundamen-
tal properties of minimal surfaces is the following:

Theorem 1.1 (Monotonicity). [1] Let r > s. Then

A(Σ ∩Br)

r2
− A(Σ ∩Bs)

s2
=

∫
Σ∩Br\Bs

|xN |2

|x|4
≥ 0

Note that if we define the area density as

Θ(r) :=
A(Σ ∩Br)

πr2

then the monotonicity formula implies that Θ is nondecreasing. If

lim
r→∞

Θ(r) = Θ(∞) = k <∞,

we say that Σ has quadratic area growth, or the area growth of k planes.

For surfaces with the growth of 2 planes, there are two canonical
examples: the catenoid (Fig 1), and Scherk’s singly periodic surfaces,
which occur in a one parameter family (Fig 2 and Fig 3), where the
parameter is the angle betwee the two leaves. As the angle goes to
zero, the Scherk surfaces approach a catenoid on compact sets after an
appropriate rescaling. In 2005, Meeks and Wolf proved the following
theorem:
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Figure 1. Catenoid (from http://www.indiana.edu/ minimal)

Figure 2. Scherk Singly Periodic (from
http://www.indiana.edu/ minimal)

Theorem 1.2. [4] Suppose that Σ is an embedded minimal surface in
R3 which has infinite symmetry group and Θ(∞) < 3. Then Σ is either
a catenoid or a Scherk example.



MINIMAL SURFACE TANGENT CONES AT INFINITY 3

Figure 3. Non-orthogonal Scherk (from
http://www.indiana.edu/ minimal)

Meeks has conjectured that the symmetry condition in the above
may be removed:

Conjecture 1.3. [3] Let Σ be an embedded minimal surface in R3

with area growth of 2 planes. Then Σ is either a catenoid or a Scherk
example.

However, an initial difficulty with the above is that it is not yet
known that a minimal surface with quadratic growth even needs to be
asymptotic to a catenoid or a Scherk example. By the compactness
results from Geometric Measure Theory, it is known that if Σ is an
embedded minimal surface with quadratic area growth, then for any
sequence ri → ∞, there exists a subsequence ρi such that Σ/ρi ∩ B1

converges to a minimal cone C in the varifold topology. Such a cone C
is called a tangent cone at infinity. A priori, there may be many
tangent cones at infinity.
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This leads to the following conjecture, also due to Meeks:

Conjecture 1.4. [3] Let Σ be an embedded minimal surface in R3 with
quadratic area growth. Then Σ has a unique tangent cone at infinity.

In the case of finite genus, this had already been resolved by Collin
[2], who proved that any minimal surface with finite genus and qua-
dratic area growth must be asymptotic to a single multiplicity k plane.
In particular, when combined with a result of Schoen [5], this resolves
Meeks’ full conjecture in the case of finite genus - that is, the only
minimal surface with the area growth of two planes and finite genus is
the catenoid.

In this paper, we prove that Meeks’ Conjecture 1.4 holds true under
additional assumptions:

Theorem 1.5. Let Σ be an embedded minimal surface with the area
growth of k planes. Suppose that there exists α < 1 such that for all
R sufficiently large, there exists a line lR

Σ ∩BR ∩ {d(x, lR) > Rα}

is a union of at least 2k disks Σi and such that ∂Σi is homotopically
nontrivial in ∂(BR ∩ {d(x, lR) > Rα}). Then Σ has a unique tangent
cone at infinity.

This leads to the following:

Theorem 1.6. Let Σ be an embedded minimal surface with quadratic
area growth. Let

Cα = {x2
1 + x2

2 ≤ R2α}.
Then if for some R0, Σ\(BR0 ∪ Cα) is a union of 2k topological disks
Σi each with finitely many boundary components, then Σ has a unique
tangent cone at infinity.

Note that the corollary substitutes the homotopy requirement from
the theorem for the existence of a single line around which we can
base our sublinearly growing set. To the author’s knowledge, these two
theorems are the first progress towards proving Meeks’ conjecture.

1.1. Summary of Proofs. Both of the above theorems are proved by
first showing a lower area bound for the area of Σ inside large balls.
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This, combined with the upper area bound coming from the mono-
tonicity formula and quadratic area growth, along with a projection
argument due to Brian White, leads to uniqueness of tangent cones.

Both theorems prove their lower area bound by working on each leaf
of Σ separately. The lower area bound used in Theorem 1.5 is rather
straightforward to prove using the homotopy requirement. However,
bounding the area from below in Theorem 1.6 is slightly more detailed,
and relies on arguments made in the proof of Lemma 2.1, as well as a
case by case analysis of the possible shapes of the leaves of Σ.

1.2. Acknowledgments. The author would like to thank his advi-
sor, William Minicozzi, as well as Jonathan Zhu, Frank Morgan, Ao
Sun, and Nick Strehlke for their comments and suggestions throughout
the writing of this paper. Many thanks also to the referee’s helpful
suggestions.

2. Proof of Theorem 1.5

The proof of this begins with the following:

Lemma 2.1 (Lower Area Bound). Suppose that Σ satisfies the condi-
tions of Theorem 1.5. Then for some C = C(Σ)

Area(BR ∩ Σ) > kπR2 − CRα+1.

Proof. We will work on each leaf Σi separately, and the lemma will
come from adding the area of all the leaves together.

First note thatBR∩{d(x, lR) > Rα} = TR is a rotationally symmetric
solid torus and (since Σi is a disk), ∂Σi is contractible in TR. However,
since TR is rotationally symmetric, the smallest spanning disk for any
such curve has area at least that of a vertical cross section C. Any
such vertical cross section consists of a half-circle of radius R minus a
strip of length 2R and width CRα. Thus, we have

A(Σi) ≥ A(C) ≥ π

2
R2 − CRα+1

�

Remark 2.2. Note that Lemma 2.1 implies that there are in fact
exactly 2k disks in the statement of Theorem 1.5.
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We make a definition:

Definition 2.3. The error at scale r of a minimal surfaces with area
growth of k planes is defined as

e(r) = πk − Area(Σ ∩Br)

r2

Thus, Lemma 2.1 is equivalent to the statement:

(1) e(r) ≤ Crα−1

We now apply an argument of Brian White [6] to prove uniqueness
of the tangent cone.

Lemma 2.4. Let Σ satisfy the following: ∃R0, α < 1 such that for
R0 < r <∞,

(2) e(r) < Cr1−α

Then Σ has a unique tangent cone at infinity.

Proof. Define F (z) = z/|z|. Then note that A(F (Σ∩(Br\Bs))) is equal
to the area of the projection of Σ∩ (Br\Bs)) onto the unit sphere. We
will bound this area. We have:

A(F (Σ ∩ (Br\Bs))) =

∫
Σ∩Br\Bs

|xN |
|x|3

dΣ

≤
[∫

Σ∩Br\Bs

|xN |2

|x|4
dΣ

]1/2 [∫
Σ∩Br\Bs

1

|x|2
dΣ

]1/2

By the monotonicity formula, 1.1 and the fact that the area density of
Σ is uniformly bounded by k, we can bound the term inside the first
bracket: ∫

Σ∩Br\Bs

|xN |2

|x|4
dΣ ≤ A(Σ ∩Br)

r2
− A(Σ ∩Bs)

s2

≤ kπ − A(Σ ∩Bs)

s2
= e(s)

For the term in the second bracket, we have∫
Σ∩Br\Bs

1

|x|2
dΣ ≤

∫
Σ∩Br\Bs

1

s2
dΣ ≤ A(Br ∩ Σ)s−2.
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Thus, we get that

A(F (Σ ∩ (Br\Bs))) ≤ e(s)1/2(s−2A(Br ∩ Σ))1/2

Now, by equation (2), along with the fact that A(Br ∩ Σ) < kπr2, we
have that this is bounded by

Cs(α−1)/2

[(r
s

)2

(r−2A(Br ∩ Σ))

]1/2

≤ C
r

s(1−α)/2+1

Pick s and r such that s ≤ r ≤ 2s. Then

A(F (Σ ∩ (Br\Bs))) ≤ Cs(α−1)/2

We then sum the above bound to see

A(F (Σ ∩ (B2nr\Br))) =
n∑
k=1

A(F (Σ ∩ (B2kr\B2k−1r)))

≤ C
n∑
k=1

(2kr)(α−1)/2

≤ C

r(1−α)/2

1

1− 2(1−α)/2

As r →∞, this term goes to zero. Thus, the area of the projection of
Σ\Br approaches zero as r gets large, which means that the tangent
cone must be unique.

�

3. Proof of Theorem 1.6

For the reader’s convenience, we restate the assumptions: that there
exists α,R0 such that if

Cα = {x2
1 + x2

2 ≤ R2α}
and Σ\(BR0 ∪ Cα is a union of 2k disks Σi, each with finitely many
boundary components.

Note that the closure of Σi in R3 must be conformally equivalent to

D2
with finitely many boundary points removed. Take a neighborhood

N of one of these missing boundary points which does not come close
to any other missing boundary points. Then N ⊂ Σi has exactly one
boundary component. There are two options for the shape of ∂N .

(1) The function x3|∂N is unbounded in both directions.
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Figure 4. N and Σi for Option 1 (conformal picture)

(2) x3|∂N is bounded in one direction.

Note that x3 cannot be bounded in both directions, as then ∂N
would be compact, which it is not.

We temporarily assume that Option 1 occurs (see Figure 4). Let γ
be the portion of ∂N which is not on the boundary of Cα ∪BR0 . Note
that we can take R0 to be large enough so that ∂BR0 is arbitrarily close

to the missing point of ∂D2
, and thus in particular, γ ⊂ BR0 . Redefine

N to be N ∩Bc
R0

, and let R >> R0.

Lemma 3.1. ∂BR∩N has a component which starts at the x3 → +∞
side of ∂N ∩ ∂Cα and ends at the x3 → −∞ side.

Proof. Suppose not. Then every component of ∂BR ∩ N starts and
ends on the same side of the missing point. In particular, there are
an even number of points on each side. Consider moving along ∂Cα
towards the missing point. Each point of ∂BR ∩N ∩ ∂Cα represents a
change from radius smaller than R to radius larger than R. However,
since the radius started at R0 < R, there cannot be an even number of
these points. �

The above lemma implies that some component of N ∩BR ∩Cc
α will

satisfy the homotopy conditions of Theorem 1.5. This implies that it
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is possible to prove the Lower Area Bound lemma for this component,
and in particular, the area must be asymptotic to πR2/2.

The following lemma will complete our proof:

Lemma 3.2. Under our assumptions, Option 2 is not possible.

Proof. Suppose that Option 2 occurs. WLOG, let x3|∂N be bounded
below by 0, and let (x1, x2, 0) ∈ ∂N be the point at which that min-
imum is achieved. Let ρ = (x2

1 + x2
2)1/2. Let C be a catenoid where

the radius of the center geodesic is strictly larger than 2ρ. Then by a
simple application of the maximum principle, N must intersect C. In
particular, this implies that inf∂BR

x3|N < C0 + logR.

Now, consider a sequence of Ri such that Σ ∩ BRi
converges to a

tangent cone at infinity. By compactness, R−1
i N ∩ ∂BRi

must either
converge to a union of geodesics on B1 or must disappear at infinity.
However, due to the discussion of the previous paragraph, N cannot
disappear at infinty, and so must converge to a nontrivial union of
geodesics Γj, possibly with endpoints at the north or south poles. We
aim to show that these Γj are all great circles.

Let p be a nonsmooth point on ∪Γj. Then there must exist a neigh-
borhood S of p such that |A| restricted to S ∩ R−1

i N is unbounded
as i → ∞. However, since N is a minimal disk with quadratic area
growth bounds, |A|(x) must be bounded by C/d(x), where d(x) is the
distance of x from the boundary of N .

Suppose that our nonsmooth p is not equal to the south pole. Then
we can choose our neighborhood S of p to stay away from the x3 axis,
so we will have that |A| < C uniformly on S ∩ R−1

i N . Suppose that p
is equal to the south pole. Then by the assumption of Option 2, ∂N
is only contained in the region x3 ≥ 0. So, we can choose S = B1/2(p),
and this implies the same uniform |A| bound.

Therefore, there will be no nonsmooth points of ∪Γj, which implies
that Γj consists of a single great circle passing through the north pole.

In particular, this implies that there are some ε(Ri) → 0 such that
the area of R−1

i N ∩ B1 is greater than π − ε(Ri), where ε → 0 as
Ri → ∞. Thus, we have at least 2k components of Σ\Cα, each of
which has area growth at least πR2/2 by the discussion of Option 1.
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However, since the global area growth is kπR2, no component can have
growth πR2. �

4. Future Directions

There are several potential extensions of the work above. Theorem
1.5 and Corollary 1.6 effectively assume that all tangent cones of Σ
are unions of planes with a common axis. It is likely not significantly
more difficult to show that the same result holds in the case when the
one-dimensional singular set is more complicated, as long as away from
a sublinearly growing neighborhood, Σ is a union of disks. That is, we
have the following as another potential step towards the resolution of
Meeks’ Conjecture:

Conjecture 4.1. Let Σ have the area growth of k planes, and suppose
that there exists a uniform α < 1 such that for each R > R0 >> 1, the
following is true: There exist line segments Li(R), 1 ≤ i ≤ m(R) < M
such that outside of an α−sublinearly growing neighborhood of ∪Li(R),
Σ∩BR is a union of disks. Then Σ has a unique tangent cone at infinity.

There are likely other simple conditions which can be put on Σ to
force Lemma 2.1 to hold. However, it may be possible to prove theo-
rems approaching Conjecture 1.4 without factoring through some kind
of lower area bound.
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