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Abstract: We utilize the technology of open quantum systems in conjunction with the

recently developed effective field theory for forward scattering to address the question of

massless jet propagation through a weakly-coupled quark-gluon plasma in thermal equilib-

rium. We discuss various possible hierarchies of scales that may appear in this problem,

by comparing thermal scales of the plasma with relevant scales in the effective field theory.

Starting from the Lindblad equation, we derive and solve a master equation for the trans-

verse momentum distribution of a massless quark jet, at leading orders both in the strong

coupling and in the power counting of the effective field theory. Markovian approximation

is justified in the weak coupling limit. Using the solution to the master equation, we study

the transverse momentum broadening of a jet as a function of the plasma temperature and

the time of propagation. We discuss the physical origin of infrared sensitivity that arises

in the solution and a way to handle it in the effective field theory formulation. We suspect

that the final measurement constraint can only cut-off leading infrared singularities and

the solution to the Markovian master equation resums a logarithmic series. This work is

a stepping stone towards understanding jet quenching and jet substructure observables on

both light and heavy quark jets as probes of the quark-gluon plasma.
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1 Introduction

Jets are sprays of collimated particles produced in high energy collisions of hadrons and/or

electrons. Their formation starts with a highly virtual parton generated from an initial

hard scattering, followed by subsequent parton cascade and fragmentation. Jet production

can be studied via perturbative QCD due to the large scales involved, for example, the
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virtuality of the initial parton produced. Therefore the calculation of the initial production

of jets can be well-controlled theoretically, which makes jets powerful tools to probe the

properties of the quark-gluon plasma (QGP) in heavy ion collisions.

Jet production is modified in heavy ion collisions, compared with that in proton-proton

collisions, due to the jet-medium interaction. Jet quenching, a phenomenon of suppression

of particles with high transverse momenta, has been studied intensively theoretically long

before [1–20] and recently observed in experiments at both Relativistic Heavy Ion Collider

(RHIC) [21–24] and Large Hadron Collider (LHC) [25–27]. The suppression mechanism is

mainly the energy loss when jets traverse the hot medium. Both collisional and medium-

induced radiative energy loss contribute, but the latter dominates at high energy. The key

to understand jet quenching and jet substructure modifications in heavy ion collisions is

to understand how the jet interacts with the expanding medium. There has been tremen-

dous theoretical effort to study the jet energy loss mechanism (see refs. [28–31] for recent

reviews). But this is not a simple problem because it involves multiple scales such as the

jet energy, the transverse momentum with respect to the jet axis and thermal scales of the

QGP. Furthermore, in current heavy ion collision experiments, the temperature achieved

fits roughly the range 150 − 500 MeV, and may not always be a perturbative scale. Thus,

a fully weak coupling calculation may not be valid. A hybrid model has been developed to

address this problem [32–36], in which the initial jet production and vacuum-like parton

shower are calculated perturbatively, while the subsequent jet energy loss in the medium is

calculated by mapping the field theory computation in the strong coupling limit to a weak

coupling computation in the classical gravity theory [37–42], i.e., by using the AdS/CFT

correspondence [43].

From the perspective of field theory, a powerful tool to deal with multi-scale prob-

lems is effective field theory (EFT). The EFT that is particularly useful for jet studies is

Soft-Collinear Effective Theory (SCET). There are also formulations of SCET (known as

SCETG) treating the Glauber gluon, which is a type of mode appearing in forward scat-

tering, as a background field induced by the medium interacting with an energetic jet. By

making use of the collinear sector of the corresponding EFT, this formalism has been used

to address the question of jet quenching in the medium [44–48]. In the same spirit, a new

EFT for forward scattering has been developed recently [49] which also uses the Glauber

mode to write down contact operators between the soft and collinear momentum degrees

of freedom. The partons from the thermal QGP are generally soft, when compared with

an energetic jet, which can be described by a collinear mode.

Another theoretical challenge in understanding the jet-medium interaction is the quan-

tum interference effect. For example, in the process of the medium-induced single radiation

from a high energy parton, multiple transverse momentum kicks from the medium can

suppress the radiation spectrum by destructive interference, a phenomenon known as the

Landau-Pomeranchuk-Migdal (LPM) effect. Progress in understanding the LPM effect in

the single radiation has been achieved in recent years [50–52]. Extension to studying the

LPM effect in multiple splittings has been explored in simplified cases [53, 54]. Further-

more, when two collimated partons are close to each other spatially, the medium may not

be able to resolve them completely. So they may lose energy coherently as a single parton.
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This interference effect caused by the finite resolution power of the QGP is also important

and can change jet substructure observables dramatically [36].

To take into account the interference effect systematically, one can keep track of the

time evolution of the system’s density matrix. This can most easily be done by using the

open quantum systems formalism (for introductory books, see [55, 56]). For jets inside a

QGP, if we only focus on jet observables, the jet can be treated as an open quantum sys-

tem interacting with a QGP bath. The application of the open quantum system formalism

in heavy ion collisions has been thriving in the study of color screening and regenera-

tion of quarkonium [57–68]. There, the heavy quark-antiquark pair in the color singlet

interacts with the medium destructively when they are close. Great progress in the un-

derstanding of quarkonium in-medium dynamics has been achieved by combining potential

nonrelativistic QCD (pNRQCD [69–71], an EFT of QCD) and the open quantum system

formalism [72–75]. For example, a semiclassical Boltzmann transport equation of quarko-

nium in the medium has been derived, under assumptions that are closely related with a

hierarchy of scales [75–77].

We would like to combine the forward scattering EFT recently developed within the

formalism of SCET with the open quantum system formalism and explore its physical

implications on the jet-medium interaction. As a first step, we will study in this paper, the

transverse momentum broadening of a high energy parton moving through the medium.

For simplicity, we will assume the plasma temperature is high enough so the weak coupling

calculation is valid. We will leave the inclusions of nonperturbative effects and radiation

into the calculation to future work.

The use of an EFT formalism allows us to write a simple and hence easily calculable

description of the system. On the other hand, as alluded to earlier, we hope that the use

of an open quantum system approach will allow us to easily keep track of the quantum

interference effects and construct a new class of calculable observables. The long term

goal here is to develop a theoretically robust formalism for computing jet substructure

observables for both light parton and heavy quark jets. For example, the bottom quark jets

have been identified as an effective probe of the QGP medium and will be experimentally

studied at LHC, as well as by the sPHENIX collaboration at RHIC. There has been recent

work on computing jet substructure observable for heavy quark jets in the context of proton-

proton collisions [78, 79]. The objective would then be to compute the same observables

in heavy ion collisions and study modifications caused by the medium.

This paper is organized as follows. In section 2 we discuss the importance of the forward

scattering regime in jet-medium interactions. Based on this, we then introduce the physical

system that we wish to study and the relevant physical scales that play an important role in

its description. The next section 3 reviews the basics of SCET and Glauber EFTs as tools

to model jet propagation in the QGP. We then introduce the concept of open quantum

systems and derive a master equation for the jet density matrix from the Lindblad equation

in section 4. The master equation is solved analytically and the transverse momentum

distribution of a jet is studied in section 5 along with a comparison with previous results in

literature. We also discuss possible infrared (IR) divergences that show up in the Markovian

limit. Finally we conclude and discuss future directions in section 6.
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2 Relevant hierarchy of scales

In this section we examine the dominant interaction of a jet with a QGP medium and

discuss the possible hierachy of scales that can appear as a function of the jet energy and

QGP temperature.

2.1 Dominance of forward scattering regime

We can gain intuition about the dominant interaction of a parton traversing a QGP medium

by examining a 2 → 2 scattering. Consider the simple example of 2 → 2 scattering

e−µ− → e−µ−. The lowest order Feynman diagram is just a t channel photon exchange.

The differential cross section for this process has the form [80]

dσ

dΩ
=

α2
EM

2E2
cm(1− cos θ)2

(
4 + (1 + cos θ)2

)
, (2.1)

where Ecm is the center of mass energy and θ is the angle between the final and initial

state electron/muon. αEM is the electromagnetic coupling. This cross section has a singular

behavior as θ → 0

dσ

dΩ
∝ 1

θ4
. (2.2)

This singularity over the phase space is not integrable and is in fact a physical singularity

that arises due to the infinite range of the Coulomb potential. In real experiments, however,

this singularity gets cut off by some IR scale such as a dynamically induced photon mass

or a finite interaction region introduced by localized beam wave packets at a finite impact

parameter. It is worth noting that most of the contribution to the cross section comes

from this small angle region of phase space. In the case of scattering inside the QGP, the

corresponding 2→ 2 scattering would be forward scattering of quarks/gluons mediated by

a gluon. For a QGP in thermal equilibrium with a temperature T , the interactions in the

medium induce an effective gluon mass (Debye mass) mD which acts as an IR cut-off scale.

As we will do in this paper, we may also impose some cuts on the final state measurements

which will act to regulate some of the IR divergences.

We wish to develop an EFT description in this region of forward scattering by ex-

panding in the small scattering angle θ, which will also be the power counting parameter

of our EFT. How exactly this parameter is related to the physical scales of the system

will depend on the measurement that we impose on the final state. Roughly speaking, for

a high energy parton (quark or gluon) with an initial energy Q, the angular parameter

θ ∼ Q⊥/Q measures the transverse momentum of the final state with respect to its initial

direction (considered as the longitudinal direction). We will discuss this in detail in the

following subsection.

2.2 Jets in quark-gluon plasma

The QGP at vanishing chemical potential1 is characterized by its temperature T in thermal

equilibrium. In this paper we will mostly be concerned with light quarks so all the partons

1We leave the case of a non-zero baryon density to future studies.
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are considered massless at the level of the Lagrangian. The finite temperature interactions

between the partons induce a dynamical gluon mass mD, which is of the order of gT in

perturbation. Here g is the strong coupling at the scale T . The Debye mass provides a

screening effect and effectively shortens the strong interaction range to be of the order of

1/mD. The perturbative description of the QGP works well when the temperature T is far

above the confinement scale ΛQCD, which is a dynamically generated scale of QCD.

The system we want to study is a highly energetic jet traversing a region of the QGP.

The energy of the jet, Q, will be the hard scale in our process and is assumed to be

much larger than all the other scales in the problem. In this paper, we will focus on

the leading interaction of the jet with the QGP medium and leave the vacuum as well

as medium-induced splitting to future studies. So effectively our jet is described by a

leading parton. The aim is to calculate the final transverse momentum broadening of the

jet when it comes out of the QGP. For our purpose in this paper, we are going to impose a

measurement constraint on the final transverse momentum Q⊥ of the jet, by concentrating

on the forward scattering region, i.e., λ ∼ θ � 1. Here λ is the power counting parameter

for our EFT description. If the interaction of the jet with the medium is a single coherent

scattering, then we can write λ ∼ θ ∼ Q⊥/Q. In this paper, however, we allow the

jet to have a series of mutually incoherent interactions with the medium. In any of the

intermediate incoherent interactions, a smaller transverse momentum p⊥ . Q⊥ can be

exchanged between the jet and the medium so along as the net value adds up to Q⊥. This

means that our power counting parameter satisfies λ . Q⊥/Q, with the smallest transverse

momentum being effectively cut-off by mD. We will discuss this in detail in section 5. Since

the transverse momentum exchanged is always small compared to the jet energy, the jet

(leading parton) can be treated as a collinear particle throughout its evolution. Medium

partons will be treated as soft modes that carry energy and momentum of the order of the

QGP temperature T . We are always going to work in a regime where T � Q.

We can use the final measurement on Q⊥ to probe the physics at different scales (while

maintaining Q⊥/Q � 1, otherwise our EFT framework described below does not apply).

The natural question then is how the IR scale Q⊥ compares to all the other scales such as

T , mD and ΛQCD. Several possible hierarchies are possible here and we now discuss each

of them.

• High temperature

The simplest case is when the temperature T is high enough that both T and mD are

perturbative scales. In other words, we have Q � T � mD � ΛQCD. We can also

have the possibility of a somewhat lower temperature such that Q � T ∼ mD �
ΛQCD, where the Debye mass scale is still perturbative. Under these hierarchies, we

can do a perturbative computation of the final observable Q⊥ to probe all the scales

greater than ΛQCD and much smaller than Q. We will primarily focus on this regime

in this paper.
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• Intermediate temperature

In this case, we still have T high enough to be a perturbative scale. However, the

scale mD ∼ ΛQCD is now nonperturbative, i.e., Q� T � mD ∼ ΛQCD. But we can

still set up a perturbative EFT for Q⊥ ∼ T . In fact the EFT that we construct in

the high T regime in the first case will be valid for the Q⊥ ∼ T case here as well. On

the other hand, if we want to probe the physics at lower scales, Q⊥ ∼ mD, then we

have to take into account nonperturbative effects.

• Low temperature

Finally we have the low temperature regime in which case all our scales T ∼ mD ∼
ΛQCD are nonperturbative. In this case, we can still develop a perturbative EFT

description for the case Q � Q⊥ � T , and then appropriately make a transition to

the nonperturbative regime of Q⊥.

As a side remark, we want to emphasize that jet observables with the same jet radius

R can be very different at the RHIC and LHC energies. Since at LHC the collision energy

is much higher, more energetic jets can be produced, whose energies Q can be much larger

than those at RHIC with the same jet radius. Then the transverse momenta ∼ QR (with

respect to the jet axis) of jets at RHIC and LHC can be very different, even though these

jets are defined with the same jet radius R, and probably probe the physics at different

scales. For example, it is likely that the transverse momentum at the LHC energy is in

the perturbative regime while that at the RHIC energy sits in the nonperturbative regime.

EFT approaches can help us to better understand the difference quantitatively.

Since we will concentrate on the region of forward scattering, we can use EFT tools

already available in the literature to describe our system. One such a formalism that has

been extensively used in collider physics is SCET. We now review the basics of SCET and

discuss how it can be used in our problem.

3 Soft-collinear effective theory (SCET) and forward scattering

3.1 Review of soft-collinear effective theory

SCET is a theory of both soft and collinear particles. Collinear particles have a large

momentum along a particular light-like direction, while soft particles have a small mo-

mentum, and no preferred direction. For each relevant light-like direction, we define two

reference vectors nµ and n̄µ such that n2 = n̄2 = 0 and n · n̄ = 2. The typical choice of

nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1) will be used below. The freedom in the choice of n,

as in the case of the label velocity in Heavy Quark Effective Theory, is represented in the

EFT by a reparametrization invariance [81, 82]. Any four-momentum p can be decomposed

with respect to nµ as

pµ = n̄ · p n
µ

2
+ n · p n̄

µ

2
+ pµ⊥ . (3.1)

The SCET is defined by a systematic expansion in terms of a formal power counting

parameter λ � 1, which is determined by the measurements or kinematic restrictions

– 6 –



J
H
E
P
1
0
(
2
0
2
0
)
0
2
4

imposed on the QCD radiation. The momenta for different modes in the SCET scale as

Collinear :
(
n̄·p, n·p, p⊥

)
∼ n̄·p

(
1, λ2, λ

)
,

Soft :
(
n̄·p, n·p, p⊥

)
∼ n̄·p

(
λ, λ, λ

)
, (3.2)

Ultrasoft :
(
n̄·p, n·p, p⊥

)
∼ n̄·p

(
λ2, λ2, λ2

)
.

A theory with only collinear and ultrasoft modes is typically referred to as SCET I, while

that with only collinear and soft modes is referred to as SCET II [83].2 In this paper, we

will only be concerned with SCET II along with the Glauber mode.

In order to expand the fields in the full theory QCD around a particular direction, the

momenta are decomposed into the label p̃µ and residual kµ components

pµ = p̃µ + kµ = n̄ · p̃ n
µ

2
+ p̃µ⊥ + kµ . (3.3)

Then for a collinear particle, n̄ · p̃ ∼ Q and p̃⊥ ∼ λQ, where Q is a typical scale of the

hard interaction, while kµ ∼ λ2Q describes small fluctuations around the label momentum.

Field modes with momenta of definite scaling in the SCET are obtained by performing a

multipole expansion of the fields in the full theory QCD. SCET involves independent gauge

bosons and fermions for each collinear direction An,p̃(x), ξn,p̃(x), which are labeled by their

collinear direction n and their large label momentum p̃, as well as (ultra)soft gauge boson

fields A(u)s(x). Independent gauge symmetries are enforced for each set of fields, which

have support for the corresponding momentum carried by that field [84]. Overlap between

different regions is removed by the zero-bin subtraction procedure [85]. This ensures no

double counting of momentum regions.

The leading power SCET II Lagrangian that we shall be concerned with in the follow-

ing, takes the form

LSCET = L(0)h + L(0)c + L(0)s + L(0)G . (3.4)

Here L(0)h contains the hard scattering operators and is determined by an explicit matching

calculation. The Lagrangian L(0)c , L(0)s describe the universal leading power dynamics of the

collinear and soft modes. Finally, L(0)G is the leading power Glauber Lagrangian [49], which

describes the leading power coupling between the soft and collinear degrees of freedom

through potential operators. We will discuss the Glauber interaction in more detail in the

next section.

Hard scattering operators involving collinear fields are constructed out of products of

Wilson line dressed fields that are invariant under collinear gauge transformations [86, 87].

For example, the gauge invariant gauge boson operator is given by

Bµn(x) =
1

g

[
W †n(x) iDµ

n⊥Wn(x)
]
, (3.5)

2In the presence of Glauber modes, soft modes are always required for the renormalization group consis-

tency of the Glauber potentials [49]. Whether or not ultrasoft modes are required depends on the physical

observable in question.
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where Dn⊥ is the collinear gauge covariant derivative, and Wn(x) is a collinear Wilson line

Wn(x) =

[ ∑
perms

exp
(
− g

n̄ · P n̄ ·An(x)
)]

, (3.6)

where Pµ is an operator that returns the label momentum of the fields on its right. The

collinear Wilson line, Wn(x), is localized with respect to the residual position x so that

Bµn(x) can be treated as local gauge boson fields from the perspective of the ultrasoft

degrees of freedom. For the leading power calculation presented here, ultrasoft and soft

fields will not appear explicitly in our hard scattering operators, other than through the

Wilson lines in the field redefinition

BAµn⊥ → Y AB
n BBµn⊥ , (3.7)

which is performed on each collinear sector. For a general representation, r, the ultrasoft

Wilson line is defined by3

Y (r)
n (x) = P exp

ig 0∫
−∞

ds n ·ABus(x+ sn)TB(r)

 , (3.8)

where P denotes path ordering. This so-called BPS field redefinition has the effect of

decoupling ultrasoft and collinear degrees of freedom at leading power [88], and it accounts

for the full physical path of ultrasoft Wilson lines [89, 90]. In the following, we will also

need soft Wilson lines,

S(r)
n (x) = P exp

ig 0∫
−∞

ds n ·ABs (x+ sn)TB(r)

 . (3.9)

3.2 Glauber mode for forward scattering

The process of near forward scattering is referred to as the Glauber exchange which in-

volves the exchange of an off-shell gluon. The transverse momentum of this gluon (with

respect to the forward direction) is parametrically larger than its longitudinal components

so that |k⊥|2 � n̄ · kn · k, which is different from the regime of a Coulomb exchange which

satisfies |k|2 � (k0)2. As a result, the Glauber mode is not a propagating mode and acts

instantaneously along the light-cone time.

A systematic study of the Glauber mode was carried out in [49] within the formalism

of SCET. Depending on the process that we are interested in, the asymptotic (propagating)

states that we deal with can be classified as collinear and soft modes as described in the

previous section. Scattering processes at colliders can usually be factorized in terms of

these modes that separate the momentum fluctuations at different scales. The Glauber

is an off-shell mode that mediates between either two collinear, two soft or one collinear

3Here we give the explicit result for an incoming Wilson line. Depending on whether particles are

incoming or outgoing, different Wilson lines must be used. When done correctly, the BPS field redefinition

accounts for the full physical path of the particles [89, 90].

– 8 –
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and one soft modes, thus violating factorization. These factorization violating interactions

can be captured via effective operators in the Glauber Lagrangian L(0)G . At leading power,

these operators have been derived in [49].

Our interest lies in utilizing this EFT formalism to study the near forward scattering

of a jet inside a QGP in thermal equilibrium. For the 2 → 2 scattering process, the region

of near forward scattering dominates the total cross section and various approximations

can be made to simplify the result at leading power in the expansion parameter. In the

current case the expansion parameter is the small scattering angle θ.

We can now discuss the effective interaction between the jet leading parton and the

medium in the forward scattering region. The thermal QGP is mainly composed of soft

particles whose energies and momenta are on the order of T . Their momenta ps scale

uniformly in our expansion parameter λ ∼ θ � 1, so we can write

ps ∼ Q(λ, λ, λ) , (3.10)

where Q is the hard scale in our process, i.e., the jet energy. The jet is composed of highly

energetic collinear particles that are moving along the light-like direction n. The scaling of

their momenta, in the light-cone coordinate, can be written as

pc ∼ Q(1, λ2, λ) . (3.11)

As the collinear particles move through the medium, they interact with the soft medium

particles mainly via forward scattering where both the collinear and soft particles maintain

their momentum scaling after the scattering. This interaction is therefore mediated by the

Glauber mode with the scaling

pG ∼ Q(λ, λ2, λ) . (3.12)

Adding or subtracting a momentum of the Glauber scaling from the collinear or soft mode

does not alter their momentum scaling.

The Glauber can be integrated out of the Lagrangian, which leads to effective operators

coupling the collinear and soft degrees of freedom. The effective gauge invariant operators

for quark-quark (qq), quark-gluon (qg or gq) and gluon-gluon (gg) interactions have been

worked out in the Feynman gauge in ref. [49]

Oqqns = OqBn
1

P2
⊥
OqnBs ,

Oqgns = OqBn
1

P2
⊥
OgnBs ,

Ogqns = OgBn
1

P2
⊥
OqnBs ,

Oggns = OgBn
1

P2
⊥
OgnBs , (3.13)

where B is the color index and the subscripts n and s denote the collinear and soft operators

respectively. The soft operators Os are constructed from the gauge invariant soft quark

– 9 –
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and gluon building blocks that are built out of the soft fields dressed with soft Wilson lines:

OqnBs = 8παs

(
ψ̄ns T

B /n

2
ψns

)
,

ψns = S†nψs ,

OgnBs = 8παs

(
i

2
fBCDBnCs⊥

n

2
· (P + P†)BnDs⊥

)
,

Bnµs⊥ = BnBµs⊥ TB =
1

g

(
S†niD

µ
s⊥Sn

)
, (3.14)

where the soft Wilson lines ensure that the operators are invariant under soft gauge trans-

formations.

The collinear operators are built out of the collinear building blocks. In this paper, we

will only work with collinear quarks which are constructed from bare collinear quark fields

dressed with collinear Wilson lines:

OqBn = χ̄nT
B /̄n

2
χn (3.15)

χn = W †nξn = W †n
/n/̄n

4
ψ , (3.16)

where ψ is the standard four-component Dirac spinor. Since the soft momentum puts the

collinear particle off-shell and off-shell modes have been integrated our in the construction

of the EFT, the collinear fields do not transform under the soft gauge transformations.

The effective Lagrangian density for the Glauber exchange then looks like

LG = e−ix·P
∑
Oi , (3.17)

in which the operators Oi are listed in eq. (3.13).

One point to note here is that the collinear and soft operators On and Os are separately

gauge invariant. However, a simple calculation shows that a change in the gauge choice

for the Glauber propagator in the construction would lead to a different form of the gauge

invariant operators. The derivation of eq. (3.13) in ref. [49] chooses the Feynman gauge.

In general, the operators will be of the form

Onµ
[
∆µν

]
Osν , (3.18)

where ∆µν would be the Glauber gluon propagator in the chosen gauge. The operators

Onµ,Osµ would still be separately gauge invariant4 but the form of these operators would

change according to the Glauber gauge choice. The final result for any scattering amplitude

would remain gauge independent. Thus it suffices to work with any specific gauge. From

now on we will choose to work in the Feynman gauge since all the effective operators have

been constructed.

4The operator Onµ is invariant under collinear gauge transformations while Osν is invariant under Soft

gauge transformation.

– 10 –



J
H
E
P
1
0
(
2
0
2
0
)
0
2
4

4 Lindblad equation for open quantum system

In this section we review the basic concepts of the open quantum system formalism, which

can be used to describe the quantum dynamical evolution of an open subsystem in contact

with an environment. Later in this section, we will apply this formalism to the case of a jet

(subsystem) interacting with the thermal QGP (environment) via the effective operators

described in the previous section.

We begin with the microscopic derivation of the Lindblad equation which closely follows

the discussion in ref. [56]. We assume that the Hamiltonian of the total system (subsystem

and environment) is given by

H = HS +HE +HI , (4.1)

where HS is the subsystem Hamiltonian, HE is the environment Hamiltonian, and HI

contains the interactions between the subsystem and the environment. The interaction

Hamiltonian is assumed to be factorized as follows: HI =
∑

αO
(S)
α ⊗ O

(E)
α where O

(S)
α

and O
(E)
α denote the subsystem and environment operators respectively. Here α denotes

all relevant quantum numbers. (For local quantum field theory, the factorized form is

generally true and α includes the spatial coordinates for which the summation means an

integration.) In our case, α would be the particle type (q or g), the color and spatial

coordinates of the effective operators. We can assume 〈O(E)
α 〉 ≡ TrE(O

(E)
α ρE) = 0 because

we can redefine O
(E)
α and HS by O

(E)
α −〈O(E)

α 〉 and HS +
∑

αO
(S)
α 〈O(E)

α 〉 respectively. Here

ρE is the density matrix of the environment. Each part of the Hamiltonian is assumed to

be Hermitian.

The von Neumann equation for the time evolution of the total density matrix in the

interaction picture is given by

dρ(int)(t)

dt
= −i[H(int)

I (t), ρ(int)(t)] , (4.2)

where

ρ(int)(t) = eiHSteiHEtρ(t)e−iHEte−iHSt , (4.3)

H
(int)
I (t) = eiHSteiHEtHI(t)e

−iHEte−iHSt . (4.4)

The density matrix and Hamiltonians without any superscript are in the Schrödinger pic-

ture. In the above formula, we have used the fact [HS , HE ] = 0. We will omit the

superscript “(int)” in the following discussion. The symbolic solution is given by

ρ(t) = U(t)ρ(0)U †(t) , (4.5)

where the evolution operator is

U(t) = T e−i
∫ t
0 HI(t

′) dt′ , (4.6)

and T is the time-ordering operator.
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We will assume the subsystem and the environment are weakly interacting. We further

assume the initial total density matrix factorizes

ρ(0) = ρS(0)⊗ ρE , (4.7)

which is generally true for weakly-coupled systems (factorization breaking terms come at

higher orders in the coupling). The environment density matrix is assumed to be in thermal

equilibrium:

ρE =
e−βHE

TrE e−βHE
, (4.8)

where T = 1/β is the temperature of the thermal environment. If we expand the interaction

to second order in perturbation and take the partial trace over the environment degrees of

freedom, we obtain the Lindblad equation:

ρS(t) = ρS(0)− i
∑
a,b

σab(t)[Lab, ρS(0)] (4.9)

+
∑
a,b,c,d

γab,cd(t)

(
LabρS(0)L†cd −

1

2
{L†cdLab, ρS(0)}

)
+O

(
(HI)

3
)
.

Each term in the Lindblad equation is defined as

Lab ≡ |a〉〈b| (4.10)

σab(t) ≡
−i
2

∑
α,β

∫ t

0
dt1

∫ t

0
dt2Cαβ(t1, t2)sgn(t1 − t2)〈a|O(S)

α (t1)O
(S)
β (t2)|b〉 (4.11)

γab,cd(t) ≡
∑
α,β

∫ t

0
dt1

∫ t

0
dt2Cαβ(t1, t2)〈a|O(S)

β (t2)|b〉〈c|O(S)
α (t1)|d〉∗ (4.12)

Cαβ(t1, t2) ≡ TrE(O(E)
α (t1)O

(E)
β (t2)ρE) , (4.13)

where {|a〉} forms a complete set of states in the Hilbert space of the subsystem. The

Lindblad equation has two non-trivial terms: first, the term proportional to σab corresponds

to a unitary evolution induced by the interaction with the environment, in addition to the

usual time evolution driven by the subsystem Hamiltonian. Second, the term proportional

to γab,cd generates a non-unitary evolution through which the subsystem dissipates and

loses coherence.

In our case, the subsystem is an energetic jet propagating through the environment

which is a QGP in thermal equilibrium with a temperature T . For current heavy ion colli-

sion experiments, the measured jet energy Q is much larger than the highest temperature

achieved in the collision: Q� T . The jet starts out as a single, highly virtual parton which

then showers even in vacuum. Now inside the QGP, the parton shower is modified by its

interaction with the medium. In the simple case of forward scattering, the energetic parton

exchanges a small amount (small compared with the jet energy) of transverse momentum

with the medium. Other physical processes are also possible: a virtual parton can radiate

off soft on-shell partons with energy ∼ T which then become part of the medium (the wake

of a jet). The virtuality of the parton may come from the initial production as in vacuum
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parton shower, or be developed by a sequence of soft kicks from the medium. In the latter

case, the radiation is medium-induced. In this paper, we will take a first step towards un-

derstanding the full consequences of the subsystem-environment interaction. To that end,

we will ignore the subsystem evolution in vacuum (which is already well understood). We

will concentrate on the jet evolution induced by the forward scattering, i.e., the transverse

momentum broadening of a jet. We will leave the inclusion of medium-induced radiation

into our framework to future studies.

In order to describe the subsystem evolution in terms of the Lindblad equation, we

need to know all the three Hamiltonians that are involved:

• The subsystem Hamiltonian is the same as the SCET Hamiltonian for collinear par-

ticles in vacuum. Usually in vacuum the modes that appear in the SCET Lagrangian

are determined by the measurement performed on the jet. Here both the measure-

ments and the medium scales will determine the modes in SCET.

• The environment Hamiltonian describes the thermal QGP with the temperature T .

The sources of the Glauber exchange from the medium are soft modes that scale as

Q(λ, λ, λ).

• The interaction Hamiltonian describes the effective interaction between the collinear

particles (subsystem) and the soft partons in the QGP (environment). For the

near forward scattering region, the interaction happens via Glauber exchanges. The

Glauber mode scales as Q(λ, λ2, λ) with the power counting parameter λ ∼ θ. The

interaction between collinear and soft modes mediated via Glaubers is described in

section 3.

Finally, to apply the Lindblad equation in our study, we need the one-to-one corre-

spondence between the SCET operators and the general operators used in the Lindblad

equation. Here we list them:

O(S)
α (t) → OqAn (t,x) , OgAn (t,x) (4.14)

O(E)
α (t) → 1

P2
⊥
OqnAs (t,x) ,

1

P2
⊥
OgnAs (t,x) (4.15)

α → q/g , x , A (4.16)

where q/g denotes the quark/gluon operator, A is the color index and x is the spatial

coordinate of the fields.

Now we will apply the Lindblad equation to study the interaction between a collinear

quark and a soft quark via the Glauber exchange.

4.1 Unitary evolution part

We first compute the piece for the unitary evolution of the subsystem density matrix

induced by its interaction with the thermal environment

ρS(t) = ρS(0)− i
∑
a,b

σab(t)
[
Lab, ρS(0)

]
+ · · · , (4.17)
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where non-unitary Lindblad terms are omitted for the moment. To evaluate the expression,

we first write

sgn(t1 − t2) = Θ(t1 − t2)−Θ(t2 − t1) . (4.18)

At the same time, we note that

∑
a,b

(
− i

2

∑
α,β

∫ t

0
dt1

∫ t

0
dt2Cαβ(t1, t2)Θ(t1 − t2)〈a|O(S)

α (t1)O
(S)
β (t2)|b〉Lab

)†
=
∑
a,b

− i
2

∑
α,β

∫ t

0
dt1

∫ t

0
dt2Cαβ(t1, t2)

(
−Θ(t2 − t1)

)
〈a|O(S)

α (t1)O
(S)
β (t2)|b〉Lab , (4.19)

where we have swapped a and b, α and β, t1 and t2 in the last line. Then we can simply

write∑
a,b

σabLab (4.20)

=
∑
a,b

− i
2

∑
α,β

∫ t

0
dt1

∫ t

0
dt2〈O(E)

α (t1)O
(E)
β (t2)〉TΘ(t1 − t2)〈a|O(S)

α (t1)O
(S)
β (t2)|b〉Lab + h.c. ,

where we have replaced the environment correlator Cαβ(t1, t2) ≡ TrE(O
(E)
α (t1)O

(E)
β (t2)ρE)

with the finite temperature Green’s function 〈O(E)
α (t1)O

(E)
β (t2)〉T , since the environment

density matrix is assumed to be in thermal equilibrium. The subscript T indicates the finite

temperature. As we discussed earlier, the indices α and β include the spatial coordinates of

the field operators. To show the spatial coordinates more explicitly, we rewrite this term as∑
a,b

σabLab =
∑
a,b

− i
2

∑
A,B

∫ t

0
dt1

∫ t

0
dt2

∫
d3x1

∫
d3x2

[
〈O(E)

A (x1)O
(E)
B (x2)〉T

]
×
[
Θ(t1 − t2)〈a|O(S)

A (x1)O
(S)
B (x2)|b〉Lab

]
+ h.c. , (4.21)

in which xi = (ti,xi) and now the indexes A and B are just color indexes and no longer

include the spatial coordinates. If we assume the thermal bath is homogeneous in space

and time, we have

〈O(E)
A (x1)O

(E)
B (x2)〉T = 〈O(E)

A (x1 − x2)O(E)
B (0)〉T ≡

∫
d4k

(2π)4
e−ik·(x1−x2)DAB

> (k) , (4.22)

where O(E) is given by the soft operators (4.15) that are dressed with soft Wilson lines. Here

we introduced the finite temperature Wightman function in momentum space DAB
> (k). We

will evaluate this finite temperature correlator for soft quark operators in the imaginary

time formalism. Details are provided in appendix A.

4.1.1 Subsystem transition

Now we discuss the computation of the other piece in eq. (4.21): 〈a|O(S)
α (x1)O

(S)
β (x2)|b〉.

Since the purpose of the current paper is to study the transverse momentum kicks, in
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which splittings are not taken into account, all the relevant states in the subsystem are one

particle states. They can be specified by their momentum (we neglect the quark mass),

color and spin. Spin does not flip in the Glauber exchange process, which is explained in

appendix B. We will average (sum over) the colors of the incoming (outgoing) states. So we

will focus on the momentum and use |p〉 to label the subsystem state |a〉. In the following,

all the abstract state labels a, b, · · · will be replaced with the momenta p1, p2, · · · and the

summation over a will be replaced with an integration over the momentum.

We can then evaluate the correlator of the subsystem (collinear quarks) operators as

follows. For two collinear momenta p1 and p2, we define the relevant transition between

them as

JS ≡ Θ(t1 − t2)〈p1|O(S)
α (t1)O

(S)
β (t2)|p2〉 , (4.23)

where the indices α and β include both color and the spatial coordinates. Inserting a

complete set of one particle states leads to

JS = Θ(t1 − t2)〈p1|O(S)
α (t1)

∫
d3q

(2π)32Eq
|q〉〈q|O(S)

β (t2)|p2〉 , (4.24)

where q0 = Eq = |q|. This now represents a t channel process which we are interested in

describing, since we focus on a collinear quark. Since we are concerned with a jet initiated

by an energetic quark, we use the appropriate SCET interaction operators in eq. (3.13)

JS = Θ(t1 − t2)
∫

d3q

(2π)32Eq

[
ūn(p1)e

i(p1−q)·x1 /̄n

2
TAun(q)ūn(q)

/̄n

2
TBun(p2)e

−i(p2−q)·x2
]

= Θ(t1 − t2)
∫

d3q

(2π)32Eq

[
ūn(p1)e

i(p1−q)·x1 /̄n

2
TAn̄ · q /n

2

/̄n

2
TBun(p2)e

−i(p2−q)·x2
]
. (4.25)

This can be rewritten as

JS = − 1

2πi

∫
d4q

(2π)32Eq

1

(q0 − Eq + iε)

[
ūn(p1)e

i(p1−q)·x1 /̄n

2
n̄ · qTATBun(p2)e

−i(p2−q)·x2
]
,

(4.26)

where now q0 is not constrained.

4.1.2 Final expression

We can now put all the pieces together for the driving term of the unitary evolution∑
a,b

σabLab =− i
2

∫
d̃p1

∫
d̃p2

∑
A,B

∫ t

0
dt1

∫ t

0
dt2

∫
d3x1

∫
d3x2

1

Nc
DAB
> (x1 − x2)JABS (x1, x2)

=
i

2

∫
d̃p1

∫
d̃p2

∑
A,B

∫ t

0
dt1

∫ t

0
dt2

∫
d3x1

∫
d3x2

×
∫

d4k

(2π)4
e−ik·(x1−x2)DAB

> (k)
1

2πi

∫
d4q

(2π)32Eq

1

(q0 − Eq + iε)

× 1

Nc

[
ūn(p1)e

i(p1−q)·x1 /̄n

2
n̄ · qTATBun(p2)e

−i(p2−q)·x2
]
|p1〉〈p2|+ h.c. , (4.27)
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where the 1/Nc factor comes from the average of the color of the incoming states. We have

introduced the shorthand notation

d̃pi =
d3pi

(2π)32Epi
. (4.28)

Integrating over x1 and x2 gives two delta functions for momentum conservation: δ3(p1−
q−k) and δ3(p2− q−k). From this we can conclude p1 = p2 ≡ p. Since the external one

particle states |pi〉 (i = 1, 2) are on-shell, we further conclude Ep1 = Ep2 ≡ Ep. Then the

relevant time integrals in the limit t→∞ become∫ t

0
dt1

∫ t

0
dt2e

iωt1e−iωt2
t→∞−−−→ 2πtδ(ω) (4.29)

where ω = Ep − k0 − q0 is the common energy conservation condition that the integral

over ti yields. The t → ∞ limit is called the Markovian approximation, which is valid

when the subsystem relaxation time is much bigger than the environment correlation time.

Physically it means during a typical evolution time of the subsystem, the environment loses

all memory of the subsystem. Mathematically, it occurs when the environment correlator

Cαβ(t1, t2) dies off quickly enough at large ti so the contribution to the time integral from

the large time region is negligible. Markovian approximation is generally true when the

subsystem is weakly coupled to a thermal bath. The argument is as follows: the typical

energy scale of the thermal bath is the temperature. Its inverse gives the typical correlation

time of the environment. The subsystem relaxation rate is roughly αsT , which is based on

the leading order estimate. The inverse of the relaxation rate gives the relaxation time,

which is much bigger than 1/T when αs is small. We will give an explicit estimate of the

subsystem relaxation rate in section 5.1.

Finally we obtain

∑
a,b

σabLab =
t

2

∑
AB

∫
d̃p

2Ep

∫
d4k

(2π)4

∫
d4q

(2π)42Eq

1

q0 − Eq + iε

1

Nc

[
ūn(p)

/̄n

2
n̄ · qTATBun(p)

]
×DAB

> (k)(2π)4δ3(p− q − k)δ(Ep − k0 − q0)|p〉〈p|+ h.c. . (4.30)

Since the various momenta in the formula scale in a specific manner, we can simplify the

formula further by doing an expansion and keeping terms only at leading power in λ.

We notice that the unitary evolution driving term is diagonal in the subsystem state

space. If the initial state density matrix is a pure state of a single parton ρS(0) = |Q0〉〈Q0|,
we find

−i
∑
a,b

σab(t)
[
Lab, ρS(0)

]
= 0 . (4.31)

So at least at leading order, no correction on the subsystem unitary evolution is generated

from its interaction with the medium. In other words, at leading order, the single parton

state energy is not corrected by the medium interaction.
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4.2 Non-unitary (dissipative) evolution part

The other terms in the Lindblad equation lead to a non-unitary or dissipative evolution

for the subsystem density matrix:

ρS(t) = ρS(0) +
∑
a,b,c,d

γab,cd(t)

(
LabρS(0)L†cd −

1

2
{L†cdLab, ρS(0)}

)
+ . . . , (4.32)

where higher order terms are neglected. Even though the evolution is non-unitary, it

preserves the properties of a valid density matrix, i.e., hermiticity, positivity and unity trace

(the total density of all states is conserved). In this case the correlator in the environment

does not have any time ordering. We can simply relate it to one of the Wightman functions

using translational invariance of the thermal bath,

TrE
(
O(E)
α (x1)O

(E)
β (x2)ρE

)
= 〈O(E)

A (x1 − x2)O(E)
B (0)〉T

=

∫
d4k

(2π)4
e−ik·(x1−x2)DAB

> (k) , (4.33)

which can be related to the other Wightman function as well as the spectral function. For

our bosonic environment operators (4.15),

DAB
< (k) = e−k0/TDAB

> (k) = nB(k0)ρAB(k) , (4.34)

where nB is the Bose-Einstein distribution and ρAB(k) is the spectral function. Details for

the weak coupling computation of the Wightman functions are given in appendix A.

Now we compute the matrix element of the subsystem operator:

〈a|O(S)
β (t2)|b〉〈c|O(S)

α (t1)|d〉∗ = 〈d|O(S)
α (t1)|c〉〈a|O(S)

β (t2)|b〉 . (4.35)

Since we focus on one particle quark state with a collinear momentum, we can use the

collinear momentum to label the states. As discussed in the unitary evolution, spin does

not flip in the transition and we will average over the initial state colors and sum over the

final state colors. We choose |a〉 = |p1〉, |b〉 = |p2〉, |c〉 = |p3〉 and |d〉 = |p4〉. Then at

leading order we have,

〈p4|O(S)
α (t1)|p3〉〈p1|O(S)

β (t2)|p2〉

=

[
ūn(p4)

/̄n

2
TAun(p3)ūn(p1)

/̄n

2
TBun(p2)

]
e−i(p3−p4)·x1e−i(p2−p1)·x2 . (4.36)

We can now separately evaluate each term in our expression for non-unitary evolution. We

first compute

∑
a,b,c,d

γab,cd(t)L
†
cdLab =

4∏
i=1

∫
d̃pi

∫ t

0
dt1

∫ t

0
dt2

∫
d3x1

∫
d3x2

∫
d4k

(2π)4
e−ik·(x1−x2)

×DAB
> (k)

1

Nc

[
ūn(p4)

/̄n

2
TAun(p3)ūn(p1)

/̄n

2
TBun(p2)

]
e−i(p3−p4)·x1e−i(p2−p1)·x2L†34L12 .

(4.37)
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Since L†34L12 = |p4〉〈p3|p1〉〈p2| = 2Ep3(2π)3δ3(p3−p1)|p4〉〈p2|, we can use this to eliminate

the integral over one of the momenta. The integrals over x1 and x2 then set p2 = p4. We

further obtain Ep2 = Ep4 and Ep1 = Ep3 because of the on-shell particles. Then we can

apply the same trick to the time integrals as we did for the unitary evolution in the previous

subsection. The two time integrals will lead to one delta function for energy conservation,

multiplied by the time length t in the Markovian approximation. When the dust settles,

we are left with

∑
a,b,c,d

γab,cd(t)L
†
cdLab = t

∫
d̃p

2Ep

∫
d̃q

∫
d4k

(2π)4
DAB
> (k)

1

Nc

[
ūn(p)

/̄n

2
n̄ · qTATBun(p)

]
×(2π)4δ3(p− k − q)δ(Ep − k0 − Eq)|p〉〈p| , (4.38)

where Ep = |p| and Eq = |q|. The dummy color indexes A and B are summed over

implicitly. This term appears as

− 1

2

∑
a,b,c,d

γab,cd(t){L†cdLab, ρS(0)} , (4.39)

in the Lindblad equation. When the initial subsystem density matrix is |Q0〉〈Q0|, it gives

back a projection onto |Q0〉〈Q0|. Then the anti-commutator gives the same result, which

cancels the factor of one half. Due to the negative sign, this term in the Lindblad equation

represents the loss in the probability of staying in the state |Q0〉〈Q0|.
We have one more term in the Lindblad equation:

∑
a,b,c,d

γab,cd(t)Labρs(0)L†cd =
4∏
i=1

∫
d̃pi

∫ t

0
dt1

∫ t

0
dt2

∫
d3x1

∫
d3x2

∫
d4k

(2π)4
e−ik·(x1−x2)

×DAB
> (k)

1

Nc

[
ūn(p4)

/̄n

2
TAun(p3)ūn(p1)

/̄n

2
TBun(p2)

]
e−i(p3−p4)·x1e−i(p2−p1)·x2L12ρ(0)L†34 ,

(4.40)

where the Lindblad operator is defined by Lij = |pi〉〈pj |. In the Markovian approximation

t→∞,5

∑
a,b,c,d

γab,cd(t)Labρs(0)L†cd =
4∏
i=1

∫
d̃pi

∫
d4k

(2π)4
1

Nc

[
ūn(p4)

/̄n

2
TAun(p3)ūn(p1)

/̄n

2
TBun(p2)

]
×DAB

> (k)(2π)8δ4(p3 + k − p4)δ4(p1 + k − p2)|p1〉〈p2|ρ(0)|p4〉〈p3| . (4.41)

Further simplification depends on the initial subsystem density matrix ρS(0) and the final

measurement operator applied.

5Rigorously speaking, one must first show the two frequencies associated with time in the exponents are

equal and then apply eq. (4.29) to obtain the energy conservation delta function multiplied by the time

length. Here we write down two delta functions for energy conservation without the factor of time length

t. Later we will show the two energy conservation functions are the same for our case here, which allows

us to write one of them as the time length.
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5 Transverse momentum broadening

We now apply the Lindblad equation to compute specific observables on the subsystem den-

sity matrix. For an observable associated with a subsystem operator M , the measurement

result at time t is defined by the expectation value

〈M〉(t) = TrS
(
MρS(t)

)
. (5.1)

In our case, the Fock state of the subsystem consists of only one particle states, labelled

by a collinear momentum. So we can write

〈M〉(t) =

∫
d̃p

∫
d̃q 〈p|M |q〉〈q|ρS(t)|p〉 . (5.2)

In the future, when we include splitting in the study, we will need to include all possible

states in the Fock space such as a two particle state.

An interesting observable is the final transverse momentum distribution of particles

within a jet (with respect to the jet axis). If we focus on the leading parton in the jet, the

final transverse momentum vanishes in vacuum. But in the medium, due to the interactions

with the medium, the leading parton can develop a non-zero final transverse momentum.

In other words, the transverse momentum distribution is broadened by the interactions

with the medium. To obtain the final momentum distribution, we set the measurement

operator to be a projection operator PQ = |Q〉〈Q| for some momentum of Q. Then we

need to compute

〈PQ〉(t) = 〈Q|ρS(t)|Q〉 . (5.3)

We will derive an evolution equation for the observable 〈PQ〉(t) that will correspond to

a linear differential equation in time. By solving it, we can resum various effects. The

resummation can be done given that the Markovian approximation holds. To obtain the

measurement results, our job now is to compute the time evolution of the diagonal piece

of the subsystem density matrix.

We first put all non-vanishing leading order pieces derived in the previous section

together

ρS(t) = ρS(0)− t

2

∫
d̃p

2Ep

∫
d̃q

∫
d4k

(2π)4
DAB
> (k)

1

Nc

[
ūn(p)

/̄n

2
n̄ · qTATBun(p)

]
×(2π)4δ4(p− k − q)

{
|p〉〈p|, ρS(0)

}
+

4∏
i=1

∫
d̃pi

∫
d4k

(2π)4
DAB
> (k)

1

Nc

[
ūn(p4)

/̄n

2
TAun(p3)ūn(p1)

/̄n

2
TBu(p2)

]
×(2π)8δ4(p3 + k − p4)δ4(p1 + k − p2)|p1〉〈p2|ρS(0)|p4〉〈p3| , (5.4)

where we neglect the medium-induced unitary evolution since later we will assume the

initial density matrix is a single parton with a given momentum. Sandwiching between 〈Q|
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and |Q〉 leads to

〈Q|ρS(t)|Q〉 = 〈Q|ρS(0)|Q〉

− t
∫

d̃q

2EQ

∫
d4k

(2π)4
DAB
> (k)

1

Nc

[
ūn(Q)

/̄n

2
n̄ · qTATBun(Q)

]
(2π)4δ4(Q−k−q)〈Q|ρS(0)|Q〉

+ t

∫
d̃q

2Eq

∫
d4k

(2π)4
DAB
> (k)

1

Nc

[
ūn(q)

/̄n

2
TAun(Q)ūn(Q)

/̄n

2
TBu(q)

]
× (2π)4δ4(Q+ k − q)〈q|ρS(0)|q〉 , (5.5)

which schematically can be written as

〈Q|ρS(t)|Q〉 = 〈Q|ρS(0)|Q〉 − tR(Q)〈Q|ρS(0)|Q〉+ t

∫
d̃qK(Q, q)〈q|ρS(0)|q〉 , (5.6)

where we defined the dissipation rate R(Q) and the fluctuation kernel K(Q, q)

R(Q) =

∫
d̃q

2EQ

∫
d4k

(2π)4
DAB
> (k)

1

Nc

[
ūn(Q)

/̄n

2
n̄ · qTATBun(Q)

]
(2π)4δ4(Q− k − q) (5.7)

K(Q, q) =
1

2Eq

∫
d4k

(2π)4
DAB
> (k)

1

Nc

[
ūn(q)

/̄n

2
TAun(Q)ūn(Q)

/̄n

2
TBu(q)

]
(2π)4δ4(Q+ k − q) .

(5.8)

5.1 Markovian approximation

To convert eq. (5.6) into a different equation in time, we will use the Markovian approx-

imation again. We will move the first term on the right hand side to the left hand side,

divide the equation by t and take the limit t → 0. Then we infer the master equation for

the probability of being in a specific momentum state P (Q, t) ≡ 〈Q|ρS(t)|Q〉

∂tP (Q, t) = −R(Q)P (Q, t) +

∫
d̃qK(Q, q)P (q, t) . (5.9)

One should be cautious here because previously we have taken t → ∞ when computing

the time integral to obtain delta functions for energy conservation. These two seemingly

contradictory limits are compatible with each other in the Markovian limit. The Marko-

vian approximation is valid if the environment correlation time is much smaller than the

subsystem relaxation time. When we take t → 0, we are thinking of the time length as

a typical subsystem relaxation time. This time length is still much larger than the envi-

ronment correlation time. What seems to be a short time for the subsystem is actually

very long for the environment. The master equation (5.9) is coarse-grained. Physically, the

environment has lost any information about the subsystem before it interacts again with

it. In this way, at each interaction point, the environment has no memory about the past

history of the subsystem.

Using eq. (5.9) derived above, we can check the validity of the Markovian approxima-

tion. The dissipation rate R(Q) is associated with a typical time scale of the subsystem

relaxation 1/R(Q), which is originated from the Glauber exchange between a collinear
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parton and a soft parton from the medium. On the other hand, the typical time scale for

the environment decoherence is of the order of 1/T , with T being the temperature of the

thermal bath. So for the validity of the Markovian approximation, we require

1

T
� 1

R(Q)
. (5.10)

From eq. (5.41), which will be explained in section 5.4, we can estimate the relaxation

rate as

R(Q) ∼ Tα2
s

∫ ∞
0

|k̂⊥| d|k̂⊥|
(|k̂⊥|2 +m2

D/T
2)2
∼ T 3α2

s

m2
D

∼ Tαs , (5.11)

so the Markovian approximation is valid in the weak coupling limit, where we have used

the fact that mD ∼ gT .

The structure of the master equation (5.9) is simple: the first term on the right hand

side is a loss term for the state |Q〉. The probability of being in the state |Q〉 decreases with

time because it may transition to other momentum states due to the Glauber exchange

with the medium. The last term is a gain term for the state |Q〉. It originates again from

the Glauber exchange. States with other momenta, say q, can turn into the state |Q〉 by

exchanging momentum with the medium.

5.2 Solution to master equation

Before we show the solution to the master equation, we want to elucidate our notations.

We will use r⊥ and k⊥ to label the Minkowski transverse vectors while r⊥ and k⊥ to label

the Euclidean transverse vectors. For the magnitude, we will use notations such as |r⊥|
and |k⊥|.

We can rewrite the master equation (5.9) in a suggestive form (see appendix B for the

explanation)

∂tP

([
Q−,
|Q⊥|2
Q−

, Q⊥

]
, t

)
=−R(Q)P

([
Q−,
|Q⊥|2
Q−

, Q⊥

]
, t

)
+

∫
d2k⊥K(Q, k⊥)P

([
Q−,
|Q⊥ + k⊥|2

Q−
, Q⊥ + k⊥

]
, t

)
, (5.12)

where we abused the notation: K(Q, k⊥) here includes both K(Q, q) in eq. (5.8) and some

integration from the last term of eq. (5.6). Due to the expansion based on our power

counting, we see that the second term is a convolution only in the ⊥ direction. Hence the

obvious way to solve this equation is to move to the space of impact parameter. Defining

P

([
Q−,
|q⊥|2
Q−

, q⊥

]
, t

)
≡
∫

d2r⊥e
−ir⊥·q⊥P̃ (Q−, r⊥, t) (5.13)

K(Q, k⊥) ≡
∫

d2s⊥e
−is⊥·k⊥K̃(Q, s⊥) , (5.14)
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we can simplify eq. (5.12) as

∂t

∫
d2r⊥e

−ir⊥·Q⊥P̃ (Q−, r⊥, t) =

−R(Q)

∫
d2r⊥e

−ir⊥·Q⊥P̃ (Q−, r⊥, t)

+

∫
d2k⊥

∫
d2s⊥e

−is⊥·k⊥K̃(Q, s⊥)

∫
d2r⊥e

−ir⊥·(Q⊥+k⊥)P̃ (Q−, r⊥, t)

= −R(Q)

∫
d2r⊥e

−ir⊥·Q⊥P̃ (Q−, r⊥, t) +

∫
d2r⊥e

−ir⊥·Q⊥K̃(Q,−r⊥)P̃ (Q−, r⊥, t) .

(5.15)

We now obtain a simpler equation

∂tP̃ (Q−, r⊥, t) = −R(Q)P̃ (Q−, r⊥, t) + K̃(Q,−r⊥)P̃ (Q−, r⊥, t)

=
[
−R(Q) + K̃(Q,−r⊥)

]
P̃ (Q−, r⊥, t) , (5.16)

which suggests a solution of the form

P̃ (Q−, r⊥, t) = e

[
−R(Q)+K̃(Q,−r⊥)

]
tP̃ (Q−, r⊥, t = 0) . (5.17)

Then we can write out the final solution of our measurement results at time t as

P (Q−, Q⊥, t) =

∫
d2r⊥e

−ir⊥·Q⊥e

[
−R(Q)+K̃(Q,−r⊥)

]
tP̃ (Q−, r⊥, t = 0) . (5.18)

We will examine the distribution in transverse momentum, starting out with a collinear

quark that has zero transverse momentum. Then our initial condition for the subsystem

density matrix is

P

([
Q−,
|Q⊥|2
Q−

, Q⊥

]
, t = 0

)
= f(Q−)δ2(Q⊥) (5.19)

P̃ (Q−, r⊥, t = 0) =
f(Q−)

(2π)2
, (5.20)

in which f(Q−) is the overall normalization of the initial density. If we just focus on the

transverse momentum distribution, we can set f(Q−) = (2π)2. Our solution then becomes

P (Q−, Q⊥, t) =
f(Q−)

(2π)2

∫
d2r⊥e

−ir⊥·Q⊥e

[
−R(Q)+K̃(Q,−r⊥)

]
t . (5.21)

For the distribution at any time t, we only need to evaluate the T and Q⊥ dependent

Sudakov factor S(Q, r⊥) ≡ −R(Q) + K̃(Q,−r⊥). Using the results from appendix B, we

find for a collinear quark scattered off soft quarks of the medium

S(Q, r⊥) =−CF
2

∫
d2k⊥ dk−

(2π)3

[
1− e−ik⊥·r⊥

]
D>(k−, k⊥) (5.22)

=
2α2

sNfCFTF
π3

∫ |k⊥| d|k⊥|
|k⊥|4

dφk

[
e−i|k⊥||r⊥| cosφk − 1

] ∫
d|p⊥| dp− dφ

|p⊥|3
(p−)2

×nF
(

(p−)2 + |p⊥|2
2p−

)[
1− nF

(
(p−)2(|p⊥|2+ |k⊥|2+ 2|p⊥||k⊥| cosφ)+|p⊥|4

2|p⊥|2p−
)]

,
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where p− > 0, CF = N2
c−1
2Nc

, TF = 1
2 and Nf is the number of active quark flavors in the

medium. The angular integration over φk can be done by using the Bessel function of the

first kind:

J0(z) =
1

2π

∫ 2π

0
dθeiz cos θ . (5.23)

Then the Sudakov factor can be written as

S(Q, r⊥) =
4α2

sNfCFTF
π2

∫ |k⊥| d|k⊥|
|k⊥|4

[
J0(|r⊥||k⊥|)− 1

] ∫
d|p⊥| dp− dφ

|p⊥|3
(p−)2

(5.24)

×nF
(

(p−)2 + |p⊥|2
2p−

)[
1− nF

(
(p−)2(|p⊥|2+ |k⊥|2+ 2|p⊥||k⊥| cosφ) + |p⊥|4

2|p⊥|2p−
)]
,

The integrand over p− is from 0 to ∞. The integrand is regular as p− →∞ or |p⊥| → ∞
due to the Fermi-Dirac distribution. On the IR side, the seemingly singular point p− = 0

is actually regular because the integrand scales as (p−)−2e−|p⊥|
2/(2p−) when p− → 0 for

non-vanishing |p⊥|. If |p⊥| = 0 the integrand is vanishing. IR singularity exists when

|k⊥| → 0. In this limit, the Bessel function behaves as

J0(|r⊥||k⊥|) = 1− |r⊥|
2|k⊥|2
4

+O
(
|r⊥|4|k⊥|4

)
. (5.25)

So it partially cancels out the singularity of 1/|k⊥|3 at k⊥ = 0. But the Sudakov factor still

has a logarithmic singularity. We will discuss this singularity in detail in section 5.3. In

our numerical studies shown in section 5.4, we will cut this IR divergence by introducing

the Debye screening.

Another singular behavior can appear in the final solution because our initial density

is a delta function in the transverse momentum. To make the initial delta function more

explicit in the final solution, we will reorganize our result as follows:

P (Q−, Q⊥, t) =
f(Q−)

(2π)2

∫
d2r⊥e

−ir⊥·Q⊥e

[
−R(Q)+K̃(Q,−r⊥)

]
t

=
f(Q−)

(2π)2
e−R(Q)t

∫
d2r⊥e

−ir⊥·Q⊥
(
eK̃(Q,−r⊥)t + 1− 1

)
(5.26)

= f(Q−)e−R(Q)tδ2(Q⊥) +
f(Q−)

(2π)2

∫
d2r⊥e

−ir⊥·Q⊥
(
e

[
−R(Q)+K̃(Q,−r⊥)

]
t − e−R(Q)t

)
.

The physical meaning of the separation is as follows: the first term describes that the

density of the initial state (Q⊥ = 0) decays over time with the rate R(Q). The second term

is the growing of the density of other states (Q⊥ 6= 0). If we integrate over Q⊥, we will

find the total probability is conserved which is to say that the time evolution preserves the

trace of our density matrix.

5.3 IR safety

We are interested in the physical regime Q⊥ ∼ T to which only the second term in eq. (5.26)

contributes. We define

G(Q−, Q⊥, t) ≡
∫

d2r⊥e
−ir⊥·Q⊥

(
e−R(Q)t+K̃(Q,−r⊥)t − e−R(Q)t

)
. (5.27)
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If we expand out the exponent of the right hand side, we have

G(Q−, Q⊥, t) =

∫
d2r⊥e

−ir⊥·Q⊥
∞∑
n=0

([
K̃(Q,−r⊥)t−R(Q)t

]n
n!

−
[
−R(Q)t

]n
n!

)
, (5.28)

where the rate and the kernel have the form of

R(Q) =

∫
d2k⊥
|k⊥|4

W(k⊥) , (5.29)

K̃(Q,−r⊥) =

∫
d2k⊥
|k⊥|4

e−ir⊥·k⊥W(k⊥) . (5.30)

The function W(k⊥) can be read from eq. (5.24) and does not have any singularity at

k⊥ = 0. In fact, the function W(k⊥) goes to a constant value at both low and high k⊥ (see

figure 1). For n = 0 and 1, we can work out the result easily

G(0)(Q−, Q⊥, t) = 0 (5.31)

G(1)(Q−, Q⊥, t) = t

∫
d2r⊥e

−ir⊥·Q⊥K̃(Q,−r⊥) = (2π)2t
W(−Q⊥)

|Q⊥|4
. (5.32)

For n = 0 and 1, the singularity at k⊥ = 0 does not influence the computation of the

integral. The IR singularity is cut-off by the constraint Q⊥ in the final measurements.

We can work out the n = 2 term in the series to see a non-trivial cancellation of some

IR divergences:

G(2)(Q−, Q⊥, t) =
t2

2

∫
d2r⊥e

−ir⊥·Q⊥
(
K̃2(Q,−r⊥)− 2R(Q)K̃(Q,−r⊥)

)
= 2π2t2

(∫
d2k1⊥
|k1⊥|4

W(k1⊥)

∫
d2k2⊥
|k2⊥|4

W(k2⊥)δ2(Q⊥ + k1⊥ + k2⊥)− 2R(Q)
W(−Q⊥)

|Q⊥|4
)

= 2π2t2
(∫

d2k⊥
W(k⊥)

|k⊥|4
W(−Q⊥ − k⊥)

|Q⊥ + k⊥|4
− 2R(Q)

W(−Q⊥)

|Q⊥|4
)
. (5.33)

We have two regions of manifest IR divergence here: k⊥ → 0 and k⊥ → −Q⊥. The first

term in eq. (5.33) is symmetric under the interchange k⊥ ↔ −Q⊥ − k⊥. So the two

regions have the same singular behavior. Expanding about these two singular regions (we

only need to expand around one of them and then multiply by two), we obtain the leading

singularity (LS):

G(2)(Q−, Q⊥, t)
∣∣∣
LS

= 2π2t2

(
2

∫ |k⊥|�|Q⊥|
0

d2k⊥
W(k⊥)

|k⊥|4
W(−Q⊥)

|Q⊥|4
− 2R(Q)

W(−Q⊥)

|Q⊥|4

)
.

(5.34)

Given the form of R(Q) in eq. (5.29), we see that the leading IR singularity cancels out.

However, we can still have subleading IR singularities that do not cancel. To see this more

explicitly, we can set W(k⊥) to be a constant since it has a very mild dependence on k⊥.

We can then write

G(2)(Q−, Q⊥, t) = 2π2t2
(

2W2

∫ |k⊥| d|k⊥| dφ
|k⊥|4

1

(|Q⊥|2 + |k⊥|2 + 2|Q⊥||k⊥| cosφ)2

−2R(Q)
W
|Q⊥|4

)
(5.35)
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We can then expand in terms of small |k⊥|. As before, we have exploited the symmetry

of k⊥ ↔ −Q⊥ − k⊥ to account for both singular regions. After expanding, we can do the

angular integral to obtain

G(2)(Q−, Q⊥, t) ≈ 4π2t2W2

(∫ |k⊥| d|k⊥|
|k⊥|4

[
2π

|Q⊥|4
− 4π|k⊥|2
|Q⊥|6

]
−
∫ |k⊥| d|k⊥|

|k⊥|4
2π

|Q⊥|4
)
.

(5.36)

As we can see, the leading singularity cancels out, but a subleading logarithmic singularity

remains. The final measurement constrain Q⊥ can only cut-off the leading IR singularity

but not the subleading one. This is connected with the Markovian approximation, as will

be explained in the following.

TheW term is proportional to α2
s. So the singularity first appears at O(α4

s). One might

think that perhaps we are missing some pieces and if we include terms at higher order in the

coupling constant, when deriving our master equation, this subleading singularity would

be cured. But we can immediately see a higher order term would only contribute to O(α6
s)

at O(t2) and hence cannot cancel out our IR divergence at O(α4
s). This singularity must

therefore have a physical origin.

The key point here is that we are working in the Markovian approximation in which all

coherence is lost between successive interactions with the medium. Therefore we can treat

successive interactions as products of independent scatterings. The only constraint that we

are imposing is that the total transverse momentum accumulated by the collinear parton

should be of the order of Q⊥. The value of Q⊥ is determined by the final measurement

we are conducting, and is assumed to be ∼ T . This implies that if the jet interacts more

than once with the medium, it is possible for the jet to accumulate almost Q⊥ transverse

momentum in one interaction and very little in all the others. All the other interactions are

therefore independent scatterings in which little or no transverse momentum is exchanged.

For these scatterings, our power counting does not apply. We must instead use the EFT

in the regime with λ ∼ mD/Q, making it sensitive to the scale mD. Therefore we have

to put in a mass regulator such as the Debye mass mD to obtain a finite sensible result.

The Debye mass defines the interaction range of these scatterings with little transverse

momentum transfer.

This also suggests that in the Markovian approximation, we need smooth transition

through all the EFTs from the scale mD up to the scale Q⊥ ∼ T . The leading singularities

discussed above cancel out at all orders in the expansion of eq. (5.28). We sketch a proof

for this in appendix C. If we work to higher orders in the expansion, we observe that some

of the subleading singularities also cancel out. So we conjecture that at the n-th order, we

are only left with a lnn−1 singularity. If this is correct, then our solution is resumming a

logarithmic series.

5.4 Numerical results

We will calculate the density of states with Q⊥ 6= 0. More specifically, we will compute

eq. (5.27) numerically. We will cut the IR divergence by introducing a gluon mass at finite
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temperature, which is the Debye screening mass

m2
D =

1

3

(
CA +

Nf

2

)
g2T 2 , (5.37)

in which CA = Nc = 3 and Nf = 3 is the number of active quark flavors in the QGP (we

will assume the strange quark is massless for simplicity). In the following calculations, we

will replace |k⊥|4 in the denominator in eq. (5.24) with (|k⊥|2 +m2
D)2.

The results shown in (5.27) depend on time t, the temperature T of the QGP and the

transverse momentum Q⊥ of interest. We will do the following scaling

t̂ = Tt , R̂ =
R

T
,

ˆ̃
K =

K̃

T
,

Q̂⊥ =
Q⊥
T

, r̂⊥ = Tr⊥ , k̂⊥ =
k⊥
T
,

p̂⊥ =
p̂⊥
T
, p̂− =

p−

T
, m̂D =

mD

T
,

(5.38)

so that the results at different temperatures fall onto a “universal” curve:

G(Q−, Q⊥, t) =
1

T 2
Ĝ(Q−, Q̂⊥, t̂) . (5.39)

The Ĝ function is given by

Ĝ(Q−, Q̂⊥, t̂) = 2π

∫
|r̂⊥| d|r̂⊥|J0(|r̂⊥||Q̂⊥|)

(
e−R̂t̂+

ˆ̃
Kt̂ − e−R̂t̂

)
, (5.40)

in which the rate and kernel are given by

R̂ =
4α2

sNfCFTF
π2

∫ |k̂⊥| d|k̂⊥|
(|k̂⊥|2 + m̂2

D)2
Ŵ(k̂⊥) (5.41)

ˆ̃
K =

4α2
sNfCFTF
π2

∫ |k̂⊥| d|k̂⊥|
(|k̂⊥|2 + m̂2

D)2
J0(|r̂⊥||k̂⊥|)Ŵ(k̂⊥) (5.42)

Ŵ(k̂⊥) =

∫
d|p̂⊥| dp̂− dφ

|p̂⊥|3
(p̂−)2

n̂F

(
(p̂−)2 + |p̂⊥|2

2p̂−

)
(5.43)

×
[
1− n̂F

(
(p̂−)2(|p̂⊥|2 + |k̂⊥|2 + 2|p̂⊥||k̂⊥| cosφ) + |p̂⊥|4

2|p̂⊥|2p̂−
)]

. (5.44)

Here n̂F (x) = (ex + 1)−1. The Ĝ function seems to be independent of the temperature T .

But it still depends on T through the coupling constant αs. The determination of αs relies

on a scale. If we scale everything by T , then αs will depend on T .

The numerical results of Ŵ and Ĝ with constant αs = 0.3 are plotted in figure 1.

Running coupling effect will be studied in the future. The function Ŵ does not vary

significantly as |k̂⊥| changes. For |k̂⊥| > 10, Ŵ is almost a constant. In the plot of Ĝ, we

choose two different Debye screening masses to demonstrate the sensitivity to the IR scale:

one is eq. (5.37) and for αs = 0.3, m̂2
D ≈ 5.65; the other is m̂2

D = 0.01. The curves of Ĝ

are normalized according to eq. (5.26):∫
|Q̂⊥| d|Q̂⊥|Ĝ(|Q̂⊥|, t̂) = 2π

(
1− e−R̂t̂

)
. (5.45)
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Figure 1. Numerical results of Ŵ and Ĝ with constant αs = 0.3.

The value of the Debye mass has a significant effect on the broadening rate of the jet. For

the smaller Debye mass, the distribution is gradually broadened from the initial peak at

the origin. For the larger Debye mass, the shape of Ĝ saturates fast and the only change

is the normalization, which is given by eq. (5.45). This is intuitively clear from the fact

that for a value of m̂D much greater than |Q̂⊥|, the |Q̂⊥| scale becomes irrelevant for the

IR physics. Then the shape of the curve is fixed and its amplitude merely scales with time.

We also notice that when |Q̂⊥| � m̂D, the results of Ĝ are less sensitive to the value of the

Debye mass, where the Debye mass becomes irrelevant. Our simple calculations confirm the

physical picture that the transverse momentum distribution of a collinear parton broadens

as the parton traverses the QGP.

This is still only a partial picture since we have not included other effects such as vac-

uum parton shower evolution, medium-induced splitting and non-zero chemical potential.

So a comparison with data will only be meaningful when these corrections are included in

our evolution equation.

5.5 Comparison with previous work

The solution to the Markovian master equation (5.21) agrees formally with eq. (2.15) of

ref. [91]. To match the normalization used in ref. [91], we need to choose f(Q−) = (2π)2.

The exponent structure in the solution comes from resumming length enhanced diagrams

in ref. [91] while in our case it shows up after solving the master equation. The solution

resums multiple scattering, as also explained in ref. [91]. More specifically, the multiple

scattering is incoherent. What ref. [91] calls W(2)
R corresponds to the Sudakov factor

S(Q, r⊥) = −R(Q) + K̃(Q,−r⊥) we defined earlier. The diagrammatic interpretation of

W(2)
R in ref. [91] exactly matches the structure of the Lindblad equation.

Next we compare the transverse momentum distribution after single scattering in our

study and those calculated in refs. [91, 92]. This quantity is defined as Psingle in ref. [92].

In our notation, this quantity is given by

Psingle(Q⊥) =

∫
d2r⊥e

−ir⊥·Q⊥
[
K̃(Q,−r⊥)−R(Q)

]
t . (5.46)
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Our EFT has been designed with an expansion in the small parameter Q⊥/Q along with

the condition Q⊥ � mD. It is therefore valid for a wide range in the temperature T .

It is possible to obtain simple analytic expressions in certain limiting hierarchies. To

compare with earlier literature, we will focus on two kinematic regions: |Q⊥| � T and

T � |Q⊥| � mD. Our EFT framework is still valid in these two limiting cases (the only

difference is that the power counting parameter λ is now given by Q⊥/Q
− rather than

T/Q−). For Q⊥ 6= 0, neglecting the Debye mass, we find

Psingle(Q⊥) = (2π)2t
W(−Q⊥)

|Q⊥|4
= t

8α2
sNfCFTF
π

T 3

|Q⊥|4
Ŵ(−Q̂⊥) , (5.47)

where 4παs = g2 (note the difference in the definition of W in eq. (5.30) and Ŵ in

eq. (5.42)). Since here we only focus on the Glauber scattering between a collinear quark

and a soft quark, we will only compare the results relevant for quarks. The results of

ref. [92] for quark-quark scattering in these two regions can be written as

Psingle(Q⊥) =

tg
4CFNf

3ζ(3)
2π2

T 3

|Q⊥|4
, |Q⊥| � T

tg4CFNf
1
6

T 3

|Q⊥|4
, T � |Q⊥| � mD

. (5.48)

Our result (5.47) agrees with ref. [92] in these two limits. This can be easily checked

using the numerical result of Ŵ shown in figure 1 or referring to the limiting formu-

las (A.19), (A.20) in the appendix A.

6 Conclusions

In this paper, we take the first step towards developing an effective field theory description

for energetic jets traversing a region of the QGP medium. We treat the jet as an open

quantum system interacting with a QGP environment in thermal equilibrium at constant

temperature T . For now we restrict ourselves to the case when the scale T is perturbative,

which is valid at high temperature. We focus on the transverse momentum broadening in

this paper and neglect parton splitting. The interaction between the jet and the medium is

encoded in effective operators mediated by a Glauber momentum exchange, which captures

the dominant forward scattering regime. Tracing out the degrees of freedom of the environ-

ment yields a Lindblad evolution equation for the density matrix of the jet. The Lindblad

equation turns into a master equation in the Markovian limit if the initial jet density matrix

is diagonal in the transverse momentum space and a final projective measurement onto a

specific transverse momentum Q⊥ is imposed.

Given that the Glauber mode connects the subsystem and the thermal QGP only via

its transverse momentum, we observe that we can analytically solve the time evolution

of the master equation by going to the impact parameter space. We work in the scale

hierarchy Q⊥ � mD � ΛQCD. The EFT works for a wide range of high temperatures

and the expansion parameter for our EFT description is set by λ ∼ Q⊥/Q � 1. We

demonstrate that the leading singularities cancel out but subleading singularites still exist,

which we conjecture are powers of logarithms to all orders. We surmise that the residual IR
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singularity is a consequence of the Markovian approximation used to describe the density

matrix evolution. We calculate numerically the transverse momentum distribution by

cutting off the IR singularity with a gluon Debye mass. The distribution becomes broadened

as time increases. Our results agree with those previously derived in literature in various

limiting regimes of our EFT.

Our ultimate goal is to understand the jet quenching inside a dynamically evolving

QGP in a theoretically controlled way. Looking forward, there are several questions that we

would like to address using our current approach. The most urgent one is to incorporate the

effects of vacuum shower and other medium-induced effects (such as the medium-induced

splitting) systematically. Furthermore, non-Markovian effect of the jet dynamics inside the

QGP (such as the LPM effect6) should be investigated in our framework. We can also apply

our formalism to study a heavy quark jet traveling through the medium. For the heavy

quark jet, we need to first construct effective field theory for the forward scattering of a

boosted heavy quark and then use those operators in our open quantum system formalism.

Finally, we should explore how to define and compute jet substructure observables in our

formalism and how to incorporate the wake of a jet into the formalism. Finally, we want to

understand whether universal nonperturbative effects can be suitably parametrized in our

formalism and then extracted from experiment. Understanding these questions will help

us make better use of jets as probes of the QGP.
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A Wightman functions in thermal bath

We will use the imaginary time formalism to compute the finite temperature correlation

function of the soft operators. The operator for the soft quark current is given by (3.14):

OqnAs = 8παs
1

P2
⊥
ψ̄ns T

A /n

2
ψns , (A.1)

where the soft quark operator ψns is dressed with a soft Wilson line ψns = S†nψs. In our

weak coupling calculation, the soft Wilson line can be dropped at leading order. In the

6At least three time scales are involved in the LPM effect: the environment correlation time τE ∼
1/T , the Glauber exchange time scale τG ∼ 1/(αsT ) and the formation time of the radiated gluon τF ∼√

x(1−x)E
T

τG, where xE denotes the energy of the radiated gluon. The LPM effect is important when

τF & τG, when multiple Glauber exchanges can happen during the formation of the radiated gluon. These

Glauber exchanges have to be resummed coherently in the amplitude level and their interference will lead to

a suppression of the radiation. Thus, these Glauber exchanges cannot be treated as independent scatterings,

and cannot be resummed in the Markovian master equation. One may construct effective operators in the

Hamiltonian for the LPM modified radiation. If τF � τE is valid, then each LPM modified gluon radiation

can still be treated as independent processes, i.e., Markovian.
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imaginary time formalism, we first compute the correlator in the Euclidean space and then

analytically continue to the Minkowski space. The Euclidean correlator in momentum

space is defined by

DAB
E (K) =

∫ β

0
dτ

∫
d3x eiK·X〈OqnAs (X)OqnBs (0)〉 , (A.2)

where β = 1/T . The Euclidean coordinate is X = (τ = it,x), the Euclidean momentum is

K = (k`,k) and K ·X = k`τ − k · x. The Matsubara frequency for bosonic operator (our

soft quark current operator is bosonic even though it comprises quark fields) is k` = 2`πT

where ` is an integer. Plugging the soft quark current into the correlator leads to

DAB
E (K) = −(8παs)

2

∫ β

0
dτ

∫
d3xT

∑
n

T
∑
m

∫
d3p

(2π)3

∫
d3q

(2π)3
ei(K+P−Q)·X

× 1

[(p⊥ − q⊥)2]2
Tr

[−i /P
P 2

/n

2

−i /Q
Q2

/n

2

]
Tr[TATB] , (A.3)

where P = (pn,p) and Q = (qm, q). Here pn = (2n + 1)πT and qm = (2m + 1)πT

are the Matsubara frequencies for fermionic operators. The notations here are Euclidean:

P 2 = p2n + p2, /P = γ0Epn + γiEpi = γ0pn − iγipi = γ0pn + iγipi. The overall minus sign

comes from the fermion loop. After the integral over the Euclidean coordinates, we obtain

DAB
E (K) = −(8παs)

2T
∑
n

∫
d3p

(2π)3
1

[(k⊥)2]2
Tr

[−i /P
P 2

/n

2

−i( /K + /P )

(P +K)2
/n

2

]
Tr[TATB] .(A.4)

We now apply the trick known as the Saclay method to sum over the Matsubara frequencies.

To that end, we introduce a Kronecker delta function by writing

DAB
E (K) = −(8παs)

2Tr[TATB]

[(k⊥)2]2

∫
d3p

(2π)3
T
∑
n

T
∑
m

βδqm,pn+k`
f(ipn, ik`,p,k)

[p2n + E2
1 ][q2m + E2

2 ]
, (A.5)

where the function f contains all the trace factors in the numerator, with E1 = |p|, E2 =

|p + k|. Moreover, pn and qm are fermionic Matsubara frequencies. Then we can write

DAB
E (K) = −(8παs)

2Tr[TATB]

[(k⊥)2]2

∫ β

0
dτe−iτk`

∫
d3p

(2π)3

×
[
T
∑
n

e−iτpn
f(ipn, ik`,p,k)

p2n + E2
1

][
T
∑
m

eiτqm

q2m + E2
2

]
. (A.6)

We can further simplify the above expression by using the following relations:

T
∑
n

e−ipnτ

p2n + E2
1

=
nF (E1)

2E1

[
e(β−τ)E1 − eτE1

]
T
∑
n

ipne
−ipnτ

p2n + E2
1

=
nF (E1)

2E1

[
E1e

(β−τ)E1 + E1e
τE1

]
T
∑
n

(ipn)2e−ipnτ

p2n + E2
1

=
nF (E1)

2E1

[
E2

1e
(β−τ)E1 − E2

1e
τE1

]
, (A.7)
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where nF (E) = (eβE +1)−1 is the Fermi-Dirac distribution. After applying the summation

formulas, the integral over τ can be easily done.

Once we obtain the correlator in the imaginary time formalism, we can obtain all the

real time Green’s functions and the spectral function via analytic continuation. First, the

spectral function can be obtained by

ρAB(k0,k) =
1

i
DiscDAB

E (kn → −ik0,k)

= −i
(
DAB
E (−i[k0 + i0+],k)−DAB

E (−i[k0 − i0+],k)
)
. (A.8)

In our case, eq. (A.8) leads to

ρAB(k) = (8παs)
2 TF δ

AB

[(k⊥)2]2

∫
d3p

(2π)34E1E2

×
[
2n · pn · (p+ k)

(
1− nF (E1)− nF (E2)

)
2πδ(k0 + E1 + E2)

+2n · pn · (p+ k)
(
nF (E1)− nF (E2)

)
2πδ(k0 + E1 − E2)

+2n̄ · p(n̄ · p− n · k)
(
nF (E2)− nF (E1)

)
2πδ(k0 + E2 − E1)

−2n̄ · p(n̄ · p− n · k)
(

1− nF (E2)− nF (E1)
)

2πδ(k0 − E1 − E2)
]

(A.9)

The four terms here present four different scattering processes respectively. The ones of our

interest are the second and third term, which correspond to scattering processes with one

incoming and one outgoing soft quark. The other two terms correspond to processes with

either two incoming soft quarks or two outgoing soft quarks. In fact, these two terms (the

term proportional to δ(k0 +E1 +E2) or δ(k0−E1−E2)) do not contribute at the order we

are working here, since the gluon exchanged in these processes scales as a soft mode rather

than a Glauber mode. In our power counting, the soft mode scales as ps ∼ Q(λ, λ, λ) and

the sum of any two soft modes scales similarly. If the exchanged gluon is soft, the collinear

particle will become off-shell. So this process is suppressed and we can drop them. At the

same time, we can use our power counting to drop the term n · k (which is Glauber and

scales as ∼ λ2) when compared with n̄ · p or n · p (which are soft and scale as ∼ λ)

ρAB(k) = (8παs)
2 TF δ

AB

[(k⊥)2]2

∫
d3p

(2π)34E1E2

×
[
2(n · p)2

(
nF (E1)− nF (E2)

)
2πδ(k0 + E1 − E2)

+2(n̄ · p)2
(
nF (E2)− nF (E1)

)
2πδ(k0 + E2 − E1)

]
. (A.10)

If we define ρAB(k) = ρ(k)δAB, we can write the Wightman function DAB
> (k) =

D>(k)δAB as

D>(k) =
(
1 + nB(k0)

)
ρ(k) . (A.11)
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Plugging the spectral function gives

D>(k) = (8παs)
2 TF
[(k⊥)2]2

∫
d3p

(2π)34E1E2

×
[
2(n · p)2nF (E1)

(
1− nF (E2)

)
2πδ(k0 + E1 − E2)

+2(n̄ · p)2nF (E2)
(
1− nF (E1)

)
2πδ(k0 + E2 − E1)

]
, (A.12)

where nF appears for the initial state while 1− nF shows up in the final state. This is the

standard Pauli blocking in quantum statistics. In order to apply the power counting in k,

we need to express everything in light-cone coordinates. To that end, we make a change of

variables p → −p in the second term and introduce a dummy four-momentum variable q

to write

D>(k) = (8παs)
2 4πTF
[(k⊥)2]2

∫
d4p d4q

(2π)3
δ+(p2)δ+(q2)2(n · p)2nF (p0)

(
1− nF (q0)

)
δ4(k + p− q) .

(A.13)

The integral over q gives

D>(k) = (8παs)
2 4πTF
[(k⊥)2]2

∫
d4p

(2π)3
δ+(p2)δ+

(
(k + p)2

)
2(n · p)2nF (p0)

(
1− nF (k0 + p0)

)
≡ (8παs)

2 4πTF
(2π)3[(k⊥)2]2

I(k−, k⊥) , (A.14)

where we define the integral as I. Now our task is to simplify the integral

I(k−, k⊥)≡
∫

d4p δ+(p2)δ+
(
(k + p)2

)
2(n · p)2nF (p0)

(
1− nF (k0 + p0)

)
=

∫
|p⊥| d|p⊥| dp− dp+ dφδ(p−p+ − |p⊥|2)δ

(
(p− + k−)p+ − |p⊥ + k⊥|2

)
(p+)2

×Θ(p− + p+)Θ(p− + k− + p+)nF

(p− + p+

2

)[
1− nF

(p− + k− + p+

2

)]
, (A.15)

where we have dropped k+ according to our power counting.

For later convenience, we now calculate∫
dk−

2π
I(k−, k⊥)

=
1

2π

∫
|p⊥| d|p⊥| dp− dφ

(p+)2

p−p+
nF

(p− + p+

2

)[
1− nF

(p− + k− + p+

2

)]
, (A.16)

where p− > 0 and the values of p+ and k− are fixed by integrating over the two delta

functions:

p+ =
|p⊥|2
p−

(A.17)

k− =
|p⊥ + k⊥|2

p+
− p− = p−

|p⊥|2 + |k⊥|2 + 2|p⊥||k⊥| cosφ

|p⊥|2
− p− . (A.18)
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In the limit |k⊥| → 0, we find k− → 0, so

lim
|k⊥|→0

∫
dk−

2π
I(k−, k⊥)

=

∫
d|p⊥| dp−

|p⊥|3
(p−)2

nF

(
(p−)2 + |p⊥|2

2p−

)[
1− nF

(
(p−)2 + |p⊥|2

2p−

)]
=
π2

3
. (A.19)

In the limit |k⊥| → ∞, we find k− →∞, so we can approximate the (1− nF ) term by one

to obtain

lim
|k⊥|→∞

∫
dk−

2π
I(k−, k⊥) =

∫
d|p⊥| dp−

|p⊥|3
(p−)2

nF

(
(p−)2 + |p⊥|2

2p−

)
= 3ζ(3) . (A.20)

So far, we only considered one flavor of massless soft quark. If we assume the medium

consists of Nf = 3 massless soft quarks (we neglect the strange quark mass), we find after

putting everything together

D>(k−, k⊥) = Nf
(8παs)

2

(2π)3
4πTF
|k⊥|4

× I(k−, k⊥) . (A.21)

B Rate and kernel

In this appendix, we will explain the computation of the rate R and the kernel K for a

collinear quark scattering with soft quarks of the medium.

B.1 Rate

From eq. (5.7), we have the expression for the dissipation rate that appear in the final

master equation

R(Q) =

∫
d̃q

2EQ

∫
d4k

(2π)4
DAB
> (k)

1

Nc

[
ūn,s(Q)

/̄n

2
n̄ · qTATBun,r(Q)

]
(2π)4δ4(Q− k − q) , (B.1)

where we restore the spin indexes s, r here and we will show they are equal. To simplify

this, we use the fact that DAB
> ∝ δAB and write

DAB
> (k) = δABD>(k) . (B.2)

Then we can work out the color factors

DAB
> (k)

[
ūn,s(Q)

/̄n

2
n̄ · qTATBun,r(Q)

]
= D>(k)CF n̄ ·Qn̄ · qδsr , (B.3)

where we average over the color of the incoming state with momentum Q. To obtain the

result, we have used

TATA = CF1Nc×Nc (B.4)

ūn,s(Q)
/̄n

2
un,r(Q) = δsrn̄ ·Q . (B.5)
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From now on, we will omit the spin indexes s, r. We are left with

R(Q) = CF

∫
d̃q

∫
d4kD>(k)δ4(Q− k − q)n̄ · q

= CF

∫
d4k

(2π)3
D>(k)δ+

(
Q−(Q+ − k+)− (Q⊥ − k⊥)2

)
Q− , (B.6)

which we have used our power counting to expand away any power corrections. Here Q is

collinear and k is Glauber. As we have shown in appendix A, the k+ dependence in D>(k)

is dropped out since it is subleading in our power counting. Hence, we can easily do the

integral over k+ which leads to

R(Q) =
CF
2

∫
d2k⊥ dk−

(2π)3
D>(k−, k⊥) . (B.7)

Plugging eq. (A.21) into R(Q) leads to

R(Q) =
2α2

sNfCFTF
π3

∫ |k⊥| d|k⊥|
|k⊥|4

dφk

∫
d|p⊥| dp− dφ

|p⊥|3
(p−)2

nF

(
(p−)2 + |p⊥|2

2p−

)
×
[
1− nF

(
(p−)2(|p⊥|2 + |k⊥|2 + 2|p⊥||k⊥| cosφ) + |p⊥|4

2|p⊥|2p−
)]

, (B.8)

where the integrand is independent of φk and the integral over φk can be done trivially.

B.2 Kernel

For the solution to the master equation, we also need to compute the kernel, which is defined

by eq. (5.14) in the transverse plane. Its expression can be obtained from eqs. (5.6), (5.8)

and (5.14)

K̃(Q,−r⊥) =

∫
d̃q

2Eq

∫
d4k

(2π)4
e−ik⊥·r⊥DAB

> (k)

× 1

Nc

[
ūn(q)

/̄n

2
TAun(Q)ūn(Q)

/̄n

2
TBu(q)

]
(2π)4δ4(Q+ k − q) . (B.9)

The evaluation of the kernel is almost the same as the rate, except for the extra phase

e−ik⊥·r⊥ . The result can be written as

K̃(Q,−r⊥) =
CF
2

∫
d2k⊥ dk−

(2π)3
e−ik⊥·r⊥D>(k−, k⊥) (B.10)

=
2α2

sNfCFTF
π3

∫ |k⊥| d|k⊥|
|k⊥|4

dφke
−i|k⊥||r⊥| cosφk

∫
d|p⊥| dp− dφ

|p⊥|3
(p−)2

×nF
(

(p−)2+|p⊥|2
2p−

)[
1− nF

(
(p−)2(|p⊥|2+|k⊥|2+2|p⊥||k⊥| cosφ)+|p⊥|4

2|p⊥|2p−
)]
,

where φk is the relative angle between k⊥ and r⊥.
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C Proof for cancellation of leading IR singularities

Here we sketch a proof of the statement that the leading singularities cancel out at all

orders in the expansion of t, which is the expansion in eq. (5.28). We will use the method

of mathematical induction. The term at n+ 1-th order in the expansion can be written as

(we will drop the Q dependence in relevant functions)

G(n+1) =
tn+1

(n+ 1)!

∫
d2r⊥e

−ir⊥·Q⊥
([
K̃(Q,−r⊥)−R(Q)

]n+1
−
[
−R(Q)

]n+1
)

=
tn+1

(n+ 1)!

∫
d2r⊥e

−ir⊥·Q⊥
([
K̃(−r⊥)−R

][
K̃(−r⊥)−R

]n
−
[
−R

]n+1
)

=
tn+1

(n+ 1)!

∫
d2r⊥e

−ir⊥·Q⊥
(
K̃(−r⊥)

[
K̃(−r⊥)−R

]n
−R
([
K̃(−r⊥)−R

]n − [−R]n))
=

tn+1

(n+ 1)!

∫
d2r⊥e

−ir⊥·Q⊥
(
K̃(−r⊥)

([
K̃(−r⊥)−R

]n − [−R]n)+ K̃(−r⊥)
[
−R

]n
−R
(

[K̃(−r⊥)−R
]n − [−R]n)) . (C.1)

We have now written the result in terms of the n-th order term. We now only need to

consider new singularities that arise as we go from the n-th to (n+ 1)-th order term. We

first check the first term in the expression above:∫
d2r⊥e

−ir⊥·Q⊥
(
K̃(−r⊥)

([
K̃(−r⊥)−R

]n − [−R]n))
=

∫
d2r⊥e

−ir⊥·Q⊥
(∫

d2k⊥e
−ik⊥·r⊥W(k⊥)

|k⊥|4
([
K̃(−r⊥)−R

]n − [−R]n)) . (C.2)

eq. (C.2) may have two new singularities at leading order: the first is when k⊥ → 0 and

the second is when k⊥ → −Q⊥ (see the explicit second order calculation in the main text).

In the first case the exponential is approximately unity and the expression reduces to

R

∫
d2r⊥e

−ir⊥·Q⊥
([
K̃(−r⊥)−R

]n − [−R]n) , (C.3)

which cancels out with the third term in the last line of eq. (C.1). No other new leading

order singularities can show up in the k⊥ → 0 region because all leading order singularities

cancel out in the n-th term∫
d2r⊥e

−ir⊥·Q⊥
([
K̃(−r⊥)−R

]n − [−R]n) . (C.4)

In the second case when k⊥ → −Q⊥, the term∫
d2r⊥e

−ir⊥·Q⊥
∫

d2k⊥e
−ik⊥·r⊥W(k⊥)

|k⊥|4
[
K̃(−r⊥)−R

]n
(C.5)
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in eq. (C.2) has no leading singularity since K̃(−r⊥)−R has only logarithmic singularity,

which is subleading. So for the consideration of leading IR singularity, eq. (C.2) in the

second region k⊥ → −Q⊥ reduces to

−
∫

d2r⊥e
−ir⊥·Q⊥K̃(−r⊥)

[
−R

]n
(C.6)

which cancels out with the second term in the last line of eq. (C.1).
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