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Abstract Missing data is a common problem in longitudinal datasets which include multiple instances of
the same individual observed at different points in time. We introduce a new approach, MedImpute, for
imputing missing clinical covariates in multivariate panel data. This approach integrates patient specific
information into an optimization formulation that can be adjusted for different imputation algorithms. We
present the formulation for a K-nearest neighbors model and derive a corresponding scalable first-order
method med.knn. Our algorithm provides imputations for datasets with both continuous and categorical
features and observations occurring at arbitrary points in time. In computational experiments on three real-
world clinical datasets, we test its performance on imputation and downstream predictive tasks , varying the
percentage of missing data, the number of observations per patient, and the mechanism of missing data. The
proposed method improves upon both the imputation accuracy and downstream predictive performance
relative to the best of the benchmark imputation methods considered. We show that this edge is consistently
present both in longitudinal and electronic health records datasets as well as in binary classification and
regression settings. On computational experiments on synthetic data, we test the scalability of this algorithm
on large datasets, and we show that an efficient method for hyperparameter tuning scales to datasets with
10, 000’s of observations and 100’s of covariates while maintaining high imputation accuracy.

Keywords missing data imputation, time series data, electronic health records, longitudinal studies,
Framingham Heart Study, K-nearest neighbors

1 Introduction

Machine learning applied to healthcare data can generate actionable insights ranging from predicting the
onset of disease to streamlining hospital operations. Statistical models that leverage the variety and richness
of clinical data are still relatively rare and offer an exciting avenue for further research (Callahan and Shah
2017). As an increasing amount of information becomes available the medical field expects machine learning
to become an indispensable tool for clinicians (Obermeyer and Emanuel 2016).

This information will come from various clinical and epidemiological sources. Claims records, clinical
trials, and data from longitudinal studies have been an invaluable resource for medical research over the past
decades. In many of these datasets, data from individual subjects is gathered over time via continuous or
repeated monitoring of both risk factors and health outcomes. For example, longitudinal cohort studies are
used to discover relationships between exposures of interest and long term health effects including adverse
events and chronic disease. By design, these studies mitigate recall bias in participants by collecting data
prospectively and prior to knowledge of a possible subsequent event (Caruana et al. 2015).
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Another valuable source of clinical data are Electronic Health Records (EHR). Over the past years,
widespread uptake of EHR has generated massive datasets that contain quantitative, qualitative, and
transactional data (TB and AS 2013). Their hospital adoption has skyrocketed in part due to the Health
Information Technology for Economic and Clinical Health (HITECH) Act of 2009, which provided $30
billion in incentives for hospitals and physician practices to adopt EHR systems (Birkhead et al. 2015).
While primarily designed for archiving patient information and performing administrative healthcare tasks,
many researchers have found secondary use of these records for various clinical informatics applications
(Shickel et al. 2018). Because heterogeneous labs, measurements, and notes are recorded for patients during
each visit, EHR data has a rich and complex structure with time series information.

However, it is algorithms and not merely datasets that will prove transformative for the medical field
(Obermeyer and Emanuel 2016). To make progress, we need to develop new statistical tools tailored to
clinical applications which address the challenges and leverage common structure encountered in healthcare
data. One of the most important issues is the ubiquitous presence of missing time series data (Pedersen
et al. 2017), particularly for variables requiring complex, time-sensitive, or resource-intensive procedures
to collect. There are many reasons for “missingness”, including missed study visits, patients lost to follow-
up, missing information in source documents, lack of availability (e.g., laboratory tests that were not
performed), and clinical scenarios preventing collection of certain variables (e.g., missing coma scale data
in sedated patients) (CD and RJ 2015). Thus, creating a consistent dataset for individuals over multiple
visits even at the same healthcare organization for a fixed set of covariates remains a challenge. Even in
longitudinal studies, where a set of covariates is collected over time, missing data are pervasive and complete
ascertainment of all variables is rare (Landrum and Becker 2001).

The presence of missing data poses considerable challenges in the analyses and interpretation of clin-
ical investigations’ results (Wood et al. 2004), potentially weakening their validity and leading to biased
inferences. Their presence may complicate interpretation or even invalidate an otherwise important study
(Ware et al. 2012). Many methods commonly used for handling missing values during data analysis can yield
biased results, decrease study power, or lead to underestimates of uncertainty, all reducing the chance of
drawing valid conclusions (CD and RJ 2015). As many statistical models and machine learning algorithms
rely on complete datasets, it is key to handle the missing data appropriately.

1.1 Review of Methods for Handling Missing Values

In this section, we present some of the most common approaches for missing data imputation. First, we
introduce fairly simple and intuitive techniques that do not require the use of sophisticated machine learning
methods. We then provide brief descriptions of advanced missing data imputation algorithms, both general
purpose methods as well as approaches tailored to medical records and time series.

Excluding observations that contain missing values has been a standard practice for clinical research,
primarily due to the lack of interpretable, accurate machine learning methods that can be easily applied
by medical researchers (Sterne et al. 2009; Janssen et al. 2010). Unsurprisingly, complete case analysis
may suffer from severe bias and the reduced sample size results in lower study power (CD and RJ 2015).
Recent advances in machine learning have allowed missing values to be accurately imputed prior to running
statistical analyses on the complete dataset. The benefit of the latter approach is that once a set (or multiple
sets) of complete data has been generated, practitioners can easily apply their own learning algorithms to
the imputed dataset. In healthcare settings, often times those datasets contain numerous visits of the same
person corresponding to various patterns of missing data. This special structure challenges state-of-the-art
missing data methods which do not consider the connection of multiple observations to the same individual
(Che et al. 2018).

A variety of machine learning approaches have been introduced in the literature to impute missing values
ignoring the potential dependency between observations of the same individual. The simplest approach is
the mean imputation that uses the mean of the observed values to replace those missing for the same
covariate (Little and Rubin 2019). However, mean imputation underestimates the variance, ignores the
correlation between the features leading to poor imputation outcomes.

Another common method called bpca uses the singular value decomposition (SVD) of the data matrix
and information from a Bayesian prior distribution on the model parameters to impute missing values.
This method outperforms basic SVD methods (Oba et al. 2003). In cases where the level of missing data
is above 30%, we have found that this method reduces to mean imputation, leading to similar biases (Faria
et al. 2018).
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Joint modeling assumes the existence of a joint distribution on the entire dataset and a parametric
density function on the data given model parameters. Current implementations of the method estimate the
model parameters using an Expectation-Maximization (EM) approach in order to maximize the likelihood
function. One widely used software package which implements this approach, Amelia I, assumes that data
are drawn from a multivariate normal distribution (Honaker et al. 1999). In practice, healthcare data
typically violate this condition (Sterne et al. 2009).

Recent review articles indicate that single imputation methods can lead to seriously misleading results
and advise us to consider multiple imputation (Janssen et al. 2010; Little and Rubin 2019). This approach,
implemented in the software package mice, allows for uncertainty about the missing data by creating
several different plausible imputed datasets and appropriately combining results obtained from each of
them (Schafer and Olsen 1998). The Amelia I package was extended to multiple imputation in the Amelia
II algorithm (Honaker et al. 2011). Multiple imputation entails two stages: (1) generating replacement
values for missing data and repeating this procedure many times, resulting in many datasets with replaced
missing information, and (2) analyzing the many imputed datasets and combining the results (P et al.
2015). As a result, multiple imputation methods are slower and require pooling results, which may not be
appropriate for certain applications. For example, in clinical applications, where the interpretability of the
underlying model matters, a single imputed dataset and simple predictive model may be preferred.

Most recently, Bertsimas et al. (Bertsimas et al. 2018b) proposed a general optimization framework with
a predictive model-based cost function that can explicitly handle both continuous and categorical variables
and can be used to generate single, as well as multiple, imputations. This optimization perspective has
led to new scalable algorithms for more accurate data imputation. We describe this method OptImpute in
more detail in Section 2.2, which we use as a foundation for the imputation method proposed in this paper.

The algorithms above are not tailored to multivariate time series datasets despite the fact that covariates
may be strongly correlated over time (Lipton et al. 2016). Preliminary work has been done demonstrating
their performance in that setting (Zhang 2016). Recurrent Neural Network approaches have also been
employed to handle missing values in time series among the covariates for a particular prediction task
(Lipton et al. 2016; Che et al. 2018). However, these approaches differ from traditional imputation methods
because they also use features derived from the missing pattern itself, and they require that the downstream
learning method is a neural network. In contrast, our method produces a single imputed dataset that can
be used as training data for any supervised learning method which is preferred for the downstream task.

In practice, simpler techniques are more commonly applied in the panel data setting. Researchers often
opt for a moving average approach with a fixed time window using previous observations from the same
individual (Flores et al. 2019). For example, the last-observation-carried-forward method is used to impute a
present missing value by carrying only the last non-missing value forward for a defined time period (Siddiqui
and Ali 1998). However, these techniques ignore the correlation between covariates which is leveraged by
other more advanced imputation methods. There have been a few methods that give weights to instances
of the same patient in temporal data. For example, this approach has been applied to adverse drug events
monitoring (Zhao and Henriksson 2016). In addition, similar methods have been applied in the political
science and economics fields where time-series cross-sectional data are quite common (Shor et al. 2007).

1.2 Contributions

Given multivariate time series data, we develop a novel imputation method that utilizes optimization and
machine learning techniques and outperforms state-of-the-art algorithms. Our contributions are as follows:

1. We formulate the problem of missing data imputation with time series information under the MedImpute
framework, extending the OptImpute framework proposed by Bertsimas et al. (2018b). Our approach
can be adjusted to account for different imputation models based on predictive methods such as K-NN,
SVM, and trees. We focus on a K-NN formulation to solve the problem and derive a corresponding fast
first-order algorithm med.knn. This method provides imputations for datasets with both continuous and
categorical features and observations occurring at arbitrary points in time.

2. We design a series of computational experiments on three real-world sets of data with direct clinical
implications. We consider the Framingham Heart Study (FHS) and the Parkinson’s Progression Markers
Initiative (PPMI), two longitudinal datasets with rich time series data recorded at regular time intervals,
and Electronic Health Record (EHR) data from the Dana Farber Cancer Institute (DFCI), which is less
structured and more sparse time series data. We provide a comprehensive framework for our experi-
ments that tests the performance of our method across a diverse range of scenarios, varying parameters
including: (1) the percentage of missing data, (2) the number of observations per individual, and (3) the
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mechanism of missing data. For the latter, we consider different mechanisms for the longitudinal and
EHR datasets corresponding to the different patterns of missing data which are typically observed in
real-world datasets. We demonstrate that med.knn obtains the best predictive performance and lowest
imputation error as we vary the missing percentage from 10% to 50%. In addition, we show that for
all datasets, the relative performance of med.knn improves as we increase the number of observations
per individual. Finally, we demonstrate that med.knn performs well on missing patterns commonly en-
countered in practice for both longitudinal studies and EHR data. These improvements are relative to
the best of the comparator methods among amelia, moving average, mean, bpca, mice, and opt.knn,
which are described in Section 3.

3. We propose a new custom tuning procedure to efficiently learn the hyperparameters in the optimization
problem avoiding the use of traditional approaches such as Grid Search. Our methodology allows for
decoupling the problem into multiple parts, enabling parallel computation that can decrease the run
time. We create synthetic EHR data to test the scaling performance of the algorithm as we increase the
number of observations and features. Our results show that the custom tuning approach leads to both
superior scaling performance and better imputation accuracy compared to standard cross-validation.
The tuning procedure is described in Section 2.4 and the scaling experiments with synthetic data are
provided in Section 4.

The structure of the paper is as follows. In Section 2, we describe our framework for imputation of
clinical covariates in time series and proposed method med.knn. In Section 3, we describe computational
experiments on three real-world datasets evaluating both imputation and prediction accuracy. In Section
4, we present scaling experiments on simulated clinical datasets. In Section 5, we discuss properties of our
algorithm and key insights from our experiments. We conclude our work in Section 6.

2 Methods

In this section, we describe our proposed method for imputation. In Section 2.1, we define variables and
notation that we use in this paper. In Section 2.2, we review the OptImpute framework for missing data
imputation. In Section 2.3, we introduce our new framework for imputation MedImpute which directly
models clinical covariates in time series, and we present the K-Nearest Neighbors (K-NN) based formu-
lation. In Section 2.4, we describe a custom tuning procedure to efficiently learn the hyperparameters in
the optimization problem. Finally, in Section 2.5 we provide the detailed steps of the first-order method
med.knn that can be used to find high-quality solutions.

2.1 Variables and Notation

In this paper, we consider the single imputation problem for which our task is to fill in the missing values
of dataset X ∈ Rn×p with n observations (rows) and p features (columns). Without loss of generality, we
assume that the first p0 features are continuous and that the next p1 = p− p0 features are categorical, and
the missing and known indices are specified by the following sets:

M0 = {(i, d) : entry xid is missing, 1 ≤ d ≤ p0, 1 ≤ i ≤ n},
N0 = {(i, d) : entry xid is known, 1 ≤ d ≤ p0, 1 ≤ i ≤ n},
M1 = {(i, d) : entry xid is missing, p0 + 1 ≤ d ≤ p0 + p1, 1 ≤ i ≤ n},
N1 = {(i, d) : entry xid is known, p0 + 1 ≤ d ≤ p0 + p1, 1 ≤ i ≤ n},
I = {i : xi has one or more missing values}.

(1)

Here, M0, M1 are the sets of indices of the missing values in the continuous and categorical variables,
respectively. Similarly, N0, N1 are the sets of indices of the known values in the continuous and categorical
variables, respectively. I is the set of rows which contains at least one missing value.

We suppose that all of the continuous variables are normalized with unit standard deviation and that the
dth categorical variable takes value among kd classes. Given this data, we introduce the decision variables
W ∈ Rn×p0 , V ∈ {1, . . . , kp0+1} × . . . × {1, . . . , kp0+p1} to be the matrices of imputed continuous and
categorical variables, respectively. For each entry xid, wid is the imputed value if d ∈ {1, . . . , p0}, and vid is
the imputed value if d ∈ {p0 +1, . . . , p0 +p1}. We refer to the full imputation for observation xi as (wi,vi).
For the MedImpute method, we also assume that each observation xi corresponds to a particular patient
with the unique ID yi observed at time-stamp ti.
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2.2 Review of OptImpute

Next, we review the OptImpute framework for general imputation which we use as a foundation for our
method. In this approach, we formulate the missing data problem as an optimization problem in which all
entries are simultaneously filled in and used as covariates to predict the other entries. Our key decision
variables are the imputed values {wid : (i, d) ∈M0} and {vid : (i, d) ∈M1}. We will also introduce auxiliary
decision variables Z. For any given set of imputed values and a corresponding data X, we associate a cost
function c(·) to it. Thus, our objective is to solve the following optimization problem:

min c(Z,W,V; X)

s.t. wid = xid (i, d) ∈ N0,

vid = xid (i, d) ∈ N1,

(Z,W,V) ∈ Z,

(2)

where Z is the set of all feasible combinations (Z,W,V) of auxiliary vectors and imputations. In this
paper, we only consider an OptImpute formulation based upon K-Nearest Neighbors (K-NN), however it
is also possible to consider formulations based upon SVM and trees (Bertsimas et al. 2018b).

In the K-NN formulation, the objective is to impute the missing values so that each point is as close to
its K-nearest neighbors as possible. First, we define a distance metric on the dataset. Given two observations
i and j, we say that the distance between them is:

dij :=
p0∑

d=1

(wid − wjd)2 +
p0+p1∑

d=p0+1

1{vid 6=vjd}. (3)

In this distance metric, we weight the contributions from the continuous and categorical variables equally,
but it is also possible to introduce a scaling factor to weight these terms differently. Given this distance
metric, we introduce the binary variables Z ∈ {0, 1}|I|×n, where

zij =





1, if j is among the K-nearest neighbors of i
with respect to distance metric (3),

0, otherwise.
(4)

The OptImpute formulation with the K-NN objective function is

min
∑

i∈I

n∑

j=1

zij




p0∑

d=1

(wid − wjd)2 +
p0+p1∑

d=p0+1

1{vid 6=vjd}




s.t. wid = xid (i, d) ∈ N0,

vid = xid (i, d) ∈ N1,

zii = 0 i ∈ I,
n∑

j=1

zij = K i ∈ I,

Z ∈ {0, 1}|I|×n,

(5)

where I = {i : xi has one or more missing values}. Problem (5) is non-convex with integer constraints for
the categorical variables. In order to solve this problem, the authors find near optimal feasible solutions
using first-order methods with random and targeted warm starts, resulting in a new imputation algorithm
called opt.knn (Bertsimas et al. 2018b).

At a high level, the opt.knn algorithm works as follows. The user provides as input an incomplete data
matrix X, a convergence threshold δ0 > 0, and a warm start imputation (W0,V0). The output of the
algorithm is the full matrix Ximp with the imputed variables. In each iteration, we alternate updating the
auxiliary variables Z and the imputation (W,V) using either Coordinate Descent (CD) or Block Coordinate
Descent (BCD). The problem of updating Z given an imputation reduces to a simple sorting procedure on
the distances. To update (W,V) in CD, we locally optimize each imputed value (wid or vid) one at a time.
To update (W,V) in BCD, for each continuous or categorical feature we solve a Quadratic Optimization
problem or a Mixed-Integer Optimization problem, respectively. We continue updating these values until

5



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature.

the objective value stops improving by a sufficiently large amount δ0. Notice that the objective function
value is strictly decreasing by at least δ0 at every iteration until the algorithm terminates. As a result, the
number of steps required for the algorithm termination is:

T =
1
δ0
c(Z0,W0,V0; X), (6)

where W0,V0 are the warmstart values, X is data, and Z0 is the initialized auxiliary variables. There are
no analytical guarantees that the algorithm will find the globaly optimal solution (Wright 2015). We repeat
this process for multiple warm starts and take the solution with the best objective value to be the final
imputation. The algorithm for a single warm start is summarized in Algorithm 1.

Algorithm 1 opt.knn

Input: Incomplete data matrix X,
warm start [W0,V0],
max number of iterations T ≥ 0.

Output: Ximp a full matrix with imputed values.
Procedure:

Initialize t← 0, W∗ ←W0, V∗ ← V0.
while t < T do

1 Find the K nearest neighbors for each observation i, and update Z∗ accordingly.
2 Update the imputation (W∗,V∗), following either Block Coordinate Descent

or Coordinate Descent (details in Bertsimas et al. (2018b)).
3 Increment t← t+ 1.

end while
return Ximp ← [W∗; V∗].

2.3 MedImpute

In this section, we present the MedImpute framework for imputation of clinical covariates in time series.
We extend the general OptImpute framework by weighting instances of the same person in the imputation
model. We focus on the K-NN classifier and provide the specific formulation to solve this problem. Our
new framework takes into account the time series structure frequently encountered in healthcare data. In
addition, unlike univariate time series methods, this approach leverages statistical correlations between
multiple clinical covariates.

Suppose that we are given the same problem setup for single imputation as described in Section 2.2.
In addition, assume that each observation i corresponds to an individual patient with unique identifier
yi ∈ {1, . . . ,M} recorded at a particular time point. For datasets with multiple observations of individuals
over time, we have M < n. Define ti ∈ R+ as the number of (days/months/years) after a reference date that
observation i was recorded. It follows that |ti − tj | is the time difference in (days/months/years) between
observations i and j. Note that this framework captures the common structure of many clinical datasets
collected over time, including longitudinal studies, insurance claims, and EHR data.

For each clinical covariate d = 1, . . . , p, we introduce the parameters αd, hd. We learn αd and hd via a
custom tuning procedure which we describe in Section 2.4. The first learned parameter αd ∈ [0, 1] is the
relative weight given to the time series component of the objective function for variable d. At the extremes,
αd = 0 corresponds to imputing covariate d under the OptImpute objective, and αd = 1 corresponds to
imputing covariate d using each individual’s time series information independently. The second learned
parameter hd ∈ (0,∞) is the halflife parameter for the covariate d. This parameter is called the “halflife”
parameter because it is the halflife of an exponential decay function f(x) = 2−x/hd that we use to determine
the relative weights for multiple observations of the same patient.

We introduce this parameter hd so that observations from the same individual at nearby points in
time will be weighted most heavily in the imputation. We make this design decision under the assumption
that each clinical covariate can be approximated as a continuous function which is relatively smooth over
time. For example, Body Mass Index (BMI) is a clinical covariate with values that are relatively smooth
over time. Under this model, we assume that a BMI measurement from one week ago is more predictive
of a patient’s current BMI than a BMI measurement from one year ago. However, we do not make any
assumptions about how much more/less predictive these different measurements are, only that their relative
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weights follow an exponential distribution. The halflife of this exponential distribution for covariate d is
the modelling parameter that we refer to as hd.

For each pair of observations i, j, covariate d, and corresponding halflife parameter hd, define the two
derived parameters:

Cijd =

{
2−|ti−tj |/hd , if yi = yj ,

0, otherwise,

Cijd =
Cijd∑

{j′:yi=yj′ ,j′ 6=i}
Cijd

.
(7)

The first derived parameter Cijd is the relative weight that observation j is given for time-series based
imputation of observation i in covariate d. Note that this parameters is only non-zero when yi = yj , i.e.
i and j are observations from the same patient. For example, if hd = 7 days, then past observations of
covariate d from one week and two weeks ago from the same patient would be given relative weights 0.5 and
0.25, respectively. The second derived parameter, Cijd, is the normalized variation of Cijd. In particular,
Cijd is the relative weight that observation j is given to impute observation i in covariate d, divided by the
sum of all relative weights of observations from the same patient in covariate d.

The MedImpute formulation with the K-NN objective function is

min
1
K

∑

i∈I

n∑

j=1

zij




p0∑

d=1

(1− αd)(wid − wjd)2 +
p0+p1∑

d=p0+1

(1− αd)1{vid 6=vjd}




+
∑

i∈I

n∑

j=1




p0∑

d=1

αdCijd(wid − wjd)2 +
p0+p1∑

d=p0+1

αdCijd1{vid 6=vjd}




s.t. wid = xid (i, d) ∈ N0,

vid = xid (i, d) ∈ N1,

zii = 0 i ∈ I,
n∑

j=1

zij = K i ∈ I,

Z ∈ {0, 1}|I|×n,

(8)

where I = {i : xi has one or more missing values} and αd, Cijd are constants. This problem is equivalent
to (5) plus a penalty term in the objective for each feature d with different weights αd in order to account
for instances of the same person in the dataset. At the optimal solution, the objective function is the sum
of the distances from each point to its K-nearest neighbors with respect to distance metric (3), plus the
sum of the distances from each point to other observations from the same individual.

We derive a fast algorithm to provide high quality solutions to this problem using first order methods
with random restarts, alternatively updating the binary variables and the imputed values as in opt.knn
(Bertsekas 1999). In Algorithm 2, we summarize the med.knn method for a single warm start. In the next
section, we describe the steps of this algorithm in detail.

MedImpute provides a flexible framework that can be easily extended as well. For example, we may
consider other predictive models besides K-NN such as support vector machines and decision tree based
methods by adjusting the objective functions of the corresponding OptImpute formulations appropriately.
We refer the reader to (Bertsimas et al. 2018b) for more discussion on these alternate formulations, which is
a possible area of future work. In these cases, we add the same penalty term to the objective functions that
we added in formulation (8), and we solve using first-order methods with random starts. In this manuscript,
we focus on the K-NN formulation due to the method’s simplicity that is close to the medical practice.
The idea of imputing a patient’s missing values using the mean or the mode of the covariates from the
most similar individuals to that observation is intuitive. Various implementations of the heuristic K-NN
approach are already widely accepted and used in practice (Crookston and Finley 2008). For these reasons,
we decided to extend upon those combining the time series component and an optimization framework.

The method can also be adapted to a multiple imputation setting. However, while multiple imputation
has been considered for several years to be the most accurate method for dealing with missing data (Rubin
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1996), there is a tradeoff because single imputation is more interpretable. In particular, with single impu-
tation we obtain one downstream predictive model that can be easily presented and explained to an entire
clinical team, which is a critical step in the process of data-driven medical research (Shrive et al. 2006).

2.4 Learning αd and hd

In this section, we describe a custom tuning procedure to efficiently learn αd and hd, which are hyperparam-
eters in the optimization problem (8). We run this custom tuning procedure as a pre-processing step before
the med.knn algorithm, which allows us to learn these parameters without using cross-validation. This is a
heuristic procedure which decouples the problem into multiple parts, first learning hd for each covariate,
and then learning αd for each covariate. As a result, this custom tuning procedure is more computationally
efficient and scales to larger problem sizes than cross-validation. In Section 4, we present the results from
computational experiments comparing the speed and imputation accuracy of this custom tuning procedure
against a traditional cross-validation method for selecting αd and hd.

In the first step of the custom tuning procedure, we learn the halflife parameter hd for each covariate.
As in cross-validation, we tune the halflife parameters over a discrete range of values, denoted as H. For
example, in the computational experiments, we set H = {1, 7, 30, 90, 365, 1000}, representing halflife values
of 1 day, 1 week, 1 month, etc. For each covariate d, we compute the leave-one-out error for each halflife
value hd ∈ H. In particular, to compute the leave-one-out error for the halflife value hd, first we derive
the weights Cijd, then we impute the known values in covariate d using these weights, and finally we
compute the sum-of-squared errors. Afterwards, we select the halflife parameter hd which yields the lowest
leave-one-out error.

For each continuous covariate d ∈ {1, . . . , p0}, the leave-one-out error is defined as:
∑

{i:(i,d)∈N0}
(xid − ŵid)2, (9)

where:

ŵid :=
n∑

j=1

Cijdxjd. (10)

Here, ŵid is equivalent to the MedImpute imputation of a continuous covariate xid when αd = 1. For each
categorical covariate d ∈ {p0 + 1, . . . , p0 + p1}, the leave-one-out error is defined as:

∑

{i:(i,d)∈N1}
1{xid 6=v̂id}, (11)

where:

v̂id := arg max
vid

n∑

j=1

Cijd1{xjd=vid}. (12)

Intuitively, v̂id is the weighted mode of covariate d, where the weights are Cijd. This is equivalent to the
MedImpute imputation of the categorical covariate xid when αd = 1.

Note that we are able to learn hd independently from αd because the selection of Cijd which minimizes
the objective function (8) for any fixed value of αd also minimizes the objective function for any choice of
αd ∈ [0, 1]. Similarly, we can learn the halflife parameters {h1, h2, . . . , hp} independently from one another,
because the optimal choice of hd which minimizes the objective function (8) does not depend upon the
values of {h1, . . . , hd−1, hd+1, . . . , hp}. Therefore, in this custom tuning procedure, we take advantage of
this fact, and tune each of the halflife parameters as an initial step.

In the second step of the custom tuning procedure, we learn the MedImpute weight parameter αd for
each covariate. As in cross-validation, we tune the MedImpute weight parameters over a discrete range of
values, denoted as A. For example, in the computational experiments, we set A = {0, 0.05, . . . , 0.95, 1.0},
denoting relative MedImpute weights of 0%, 5%, . . . , 100%, respectively. For each covariate d, we compute
the k-fold error for each MedImpute weight value αd ∈ A. In particular, to compute the k-fold error for the
MedImpute weight value αd, first we split the dataset into k subsets (aka “folds”), next we impute each
data subset using the rest of the subsets as training data, and finally we compute the total sum-of-squared
errors across all of the folds. We select the MedImpute weight parameter αd which yields the lowest k-fold
error. For continuous covariates, the k-fold error is defined as:
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k∑

`=1

∑

{i:(i,d)∈N `
0}

(xid − ŵ`
id)2, (13)

where N `
0 are the known continuous values in the `th fold. The imputed values ŵ`

id are given by:

ŵ`
id := (1− αd)wOPT`

id + αd

∑

{i:(i,d)∈N0\N `
0}
Cijdxjd, (14)

where wOPT`

id is the OptImpute imputation of xid using the data from the other k−1 folds, and N0 \N `
0

are the known continuous values not in the `th fold. For categorical covariates, the k-fold error is defined
as:

k∑

`=1

∑

{i:(i,d)∈N `
1}
1{xid 6=v̂`

id}, (15)

where N `
1 are the known categorical values in the `th fold. The imputed values v̂`

id are given by:

v̂`
id := arg max

vid


(1− αd)1{vOPT`

id =vid} + αd

∑

{i:(i,d)∈N0\N `
0}
Cijd1{xjd=vid}


 . (16)

where vOPT`

id is the OptImpute imputation of xid using the data from the other k−1 folds, and N1 \N `
1

are the known categorical values not in the `th fold. Intuitively, v̂`
id is the weighted mode of the OptImpute

value and the other known values of the same covariate, where the weights are (1 − αd) and αdCijd,
respectively.

Finally, we note that there is another hyperparameter that we may tune for the med.knn algorithm, K,
which is the number of nearest-neighbors. In the computational experiments, we fix K = 10, which works
well for the datasets that we consider here. Previously, it has been shown that the OptImpute methods are
relatively robust even if their hyperparameters are misspecified (Bertsimas et al. 2018b). Thus, while the
accuracy of the med.knn algorithm can be improved slightly by tuning over K, the relative improvement in
imputation accuracy is outweighed by the increased computational costs.

Algorithm 2 med.knn

Input: Incomplete data matrix X,
warm start [W0,V0],
max number of iterations T ≥ 0,
weight parameters {αd}pd=1,
halflife parameters {hd}pd=1.

Output: Ximp a full matrix with imputed values.
Procedure:

Initialize t← 1, W∗ ←W0, V∗ ← V0.
while t < T do

1 Find the K nearest neighbors for each observation i, and update Z∗ accordingly.
2 Update the imputation (W∗,V∗), following either Block Coordinate Descent

or Coordinate Descent (details in Section 2.5).
3 Increment t← t+ 1.

end while
return Ximp ← [W∗; V∗].

2.5 The med.knn algorithm

In this section, we provide details for the updates in the med.knn imputation algorithm. This is a first-order
method to find locally optimal solutions to Problem (5). As in the opt.knn algorithm, in this algorithm we
alternatively update Z and (W,V) until the solution converges. The update for Z is identical to the one
for opt.knn, and is computed with a simple sorting procedure on the distances. However, the update for
(W,V) is modified and depends upon the MedImpute parameters αd, Cijd. As in opt.knn, we can update
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the values of (W,V) either with Block Coordinate Descent (BCD) or Coordinate Descent (CD) which are
described in the following subsections. The opt.knn updates for both BCD and CD are equivalent to the
corresponding med.knn updates when αd = 0 for all d = 1, . . . , p.

2.5.1 Block Coordinate Descent

In this approach, we update all of the imputed values at once. We call this approach BCD because we
update the variables (W,V) as an entire block, keeping Z fixed. Our formulation Problem (8) decomposes
by dimension into p0 Quadratic Optimization problems for the continuous features and p1 Mixed Integer
Optimization problems for the categorical features. To update the imputed values wd for continuous feature
d = 1, . . . , p0, we solve:

min
wd

∑

i∈I

n∑

j=1

zij(1− αd)(wid − wjd)2 +
∑

i∈I

n∑

j=1

αdCijd(wid − wjd)2

s.t. wid = xid (i, d) ∈ N0.

(17)

Taking the partial derivative of the objective function with respect to wid for some missing entry (i, d) ∈M0

and setting it to zero, we obtain after some simplifications:

0 =
(

(1− αd)K + αd +
∑

j∈I
[(1− αd)zji + αdCjid]

)
wid −

∑

(j,d)∈M0

[(1− αd)(zij + zji) + αd(Cijd + Cjid)]wjd

−
∑

(j,d)∈N0

[(1− αd)(zij + 1{j∈I}zji) + αd(Cijd + 1{j∈I}Cjid)]xjd.

(18)

This follows directly from equation (9) in (Bertsimas et al. 2018b). For each feature d = 1, . . . , p0, we
have a system of equations of the above form which we can solve to determine the optimal imputed
values wid, (i, d) ∈ M0. Simplifying the notation, suppose that the missing values for the dimension d are
w̃d := (w1d, . . . , wad) and the known values are xd := (x(a+1)d, . . . , xnd). Then the set of optimal imputed
values wd

id, (i, d) ∈M0 is the solution to the linear system

((1− αd)Q + αdP)w̃d = ((1− αd)R + αdY)xd, (19)

where the matrices Q, P, R, and Y are defined as

Q =




K +
∑

j∈I zj1 − 2z11 −z12 − z21 . . . −z1a − za1

−z21 − z12 K +
∑

j∈I zj2 − 2z22 . . . −z2a − za2

...
...

. . .
...

−za1 − z1a −za2 − z2a . . . K +
∑

j∈I zja − 2zaa


 , (20)

P =




∑
j∈I Cj1d − 2C11d −C12d − C21d . . . −C1ad − Ca1d

−C21d − C12d

∑
j∈I Cj2d − 2C22d . . . −C2ad − Ca2d

...
...

. . .
...

−Ca1d − C1ad −Ca2d − C2ad . . .
∑

j∈I Cjad − 2Caad



, (21)

R =



z1(a+1) + 1{(a+1)∈I}z(a+1)1 . . . z1n + 1{n∈I}zn1

...
...

za(a+1) + 1{(a+1)∈I}z(a+1)a . . . zan + 1{n∈I}zna


 , (22)

Y =



C1(a+1)d + 1{(a+1)∈I}C(a+1)1d . . . C1nd + 1{n∈I}Cn1d

...
...

Ca(a+1)d + 1{(a+1)∈I}C(a+1)ad . . . Cand + 1{n∈I}Cnad


 . (23)
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Without loss of generality, there exists a closed-form solution

w̃d = ((1− αd)Q + αdP)−1((1− αd)R + αdY)xd (24)

to this system of equations for each feature d = 1, . . . , p0. To update the imputed values vd for each
categorical feature d = (p0 + 1), . . . , p, we solve the following mixed-integer optimization problem:

min
vd

∑

i∈I

n∑

j=1

((1− αd)zij + αdCijd)yij

s.t. vid = xid (i, d) ∈ N1,

vid − vjd ≤ yijkd i = 1, . . . , n, j = 1, . . . , n,

vjd − vid ≤ yijkd i = 1, . . . , n, j = 1, . . . , n,

yij ∈ {0, 1}|I|×n.

(25)

This is a Mixed Integer Optimization problem, which is practically solvable as the BCD update for opt.knn.
Since the BCD update step requires inverting a matrix with O(n2) entries and solving an optimization
problem with O(n2) binary variables, this method works best for smaller problem sizes n ≤ 10, 000.

2.5.2 Coordinate Descent

In CD, we update the imputed values one at a time. In order to update the imputed value for xid, we
fix all of the variables in Problem (8) except for wid or vid and solve the corresponding one-dimensional
optimization problem. This results in fast, closed-form updates for both the continuous and categorical
variables. Each wid, (i, d) ∈M0 is imputed as the minimizer of the following:

min
wid

∑

r∈I

n∑

j=1

zrj

p0∑

d=1

(1− αd)(wrd − wjd)2 +
∑

r∈I

n∑

j=1

p0∑

d=1

αdCrjd(wrd − wjd)2. (26)

Solving the above gives the closed-form solution for every (i, d) ∈M0:

wid =

∑n
j=1((1− αd)zij + αdCijd)wjd +

∑
j∈I((1− αd)zji + αdCjid)

K +
∑n

j=1 αdCijd +
∑

j∈I((1− αd)zji + αdCjid)
. (27)

Similarly, each categorical variable vid, (i, d) ∈M1 is imputed as the minimizer of the following:

min
vid

∑

r∈I

n∑

j=1

zrj

p0+p1∑

d=p0+1

(1− αd)1{vrd 6=vjd} +
∑

r∈I

n∑

j=1

p0+p1∑

d=p0+1

αdCrjd1{vrd 6=vjd}. (28)

Suppose that the value of categorical variable vid is one of kd distinct categories {1, 2, . . . , kd}. Then, the
solution to problem (28) is

arg max
k∈{1,...,kd}

[
n∑

j=1

(
(1− αd)zij + αdCijd

)
1{vjd=k} +

∑

j∈I

(
(1− αd)zji + αdCijd

)
1{vjd=k}

]
. (29)

Here, we set the imputed variable to be the value with the highest frequency in the neighborhood, with
instances of the same person i receiving additional weight calibrated by the parameters {Cijd}nj=1 and αd.

This approach scales to large problem sizes (n in the 100,000’s), and it is the method that we implement
for the computational experiments.

3 Computational Experiments on Real-World Clinical Datasets

In this section, we run a series of computational experiments testing the performance of med.knn imputing
missing values in real-world clinical datasets. In Section 3.1, we provide an overview of the three datasets
and their baseline characteristics. In Section 3.2, we describe the mechanisms for generating Missing Not
at Random (MNAR) data that are used in some of the experiments. In Section 3.3, we describe the setup
of the computational experiments, and we describe the imputation methods that we run for comparison
across all of the computational experiments. In Section 3.4, we report the results of the experiments on the
imputation tasks. In Section 3.5, we report the results of the experiments on the downstream predictive
tasks. In Section 3.6 we discuss the results and major takeaways from the computational experiments.
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3.1 Description of Real-World Clinical Datasets

In this section we describe the three real-world clinical datasets used in the computational experiments.
In Section 3.1.1, we describe the FHS dataset. In Section 3.1.2, we describe the DFCI dataset. Finally, in
Section 3.1.3, we describe the PPMI dataset.

3.1.1 Framingham Heart Study (FHS) dataset

The FHS was started in 1948 with the goal of observing a large population of healthy adults over time
to better understand the factors that lead to cardiovascular disease. Over 80 variables were collected from
5,209 people at a time for more than 40 years. The FHS is arguably the most influential longitudinal study
in the field of cardiovascular and cerebrovascular research. This data has now been used in more than 2,400
studies and is considered one of the top 10 cardiology advances of the twentieth century alongside the
electrocardiogram and open-heart surgery (Daniel Levy 2006).

In our computational experiments, we consider all individuals from the FHS Original Cohort (National
Heart, Lung, and Blood Institute, Boston University 2012) with 10 or more observations, which includes
M = 1, 107 unique patients. For each patient, we take the 10 most recent observations, so the dataset
has n = 11, 070 observations total. We include p = 13 continuous (Age, Body Mass Index, Systolic Blood
Pressure, High-Density Lipoproteins, Hematocrit, Blood Glucose levels) and categorical covariates (Gender,
Smoking, presence of Cardiovascular Disease, presence of Atrial Fibrillation, presence of diabetes, currently
under prescription of antihypertensive medication, presence of Left Ventricular Hypertrophy from ECG
results).

Overall, there are 12.56% missing values in the FHS dataset. The percentage of missing values in
each covariate is shown in Table 5 in Appendix 7.1. Due to the design of the longitudinal study, the 10
observations for each patient occur at regular intervals spaced 2 years apart, for a total span of 18 years. For
the imputation tasks, we add in additional missing values to the FHS dataset, and evaluate the accuracy of
med.knn and comparison methods against the ground-truth values. For the downstream tasks, we evaluate
classification models which predict 10-year risk of stroke given the imputed training data.

3.1.2 Dana Farber Cancer Institute (DFCI) dataset

The DFCI dataset was obtained from a recently published work on predicting mortality in late-stage cancer
patients (Bertsimas et al. 2018a). In this study, the authors retrospectively obtained patient data from EHR
and linked Social Security Administration mortality data for cancer patients at the Dana Farber Cancer
Institute / Brigham and Women’s Cancer Center from 2004 through 2014. Predictive models were fit for
the entire population and individual cancers, including breast, lung, colorectal, kidney, and prostate cancer.
Study eligibility required adult patients that have received at least one anticancer treatment over the course
of their care, including chemotherapy, immunotherapy, and targeted therapy.

In our computational experiments, we consider all patients with late-stage breast cancer from the DFCI
dataset. Each observation corresponds to a patient initiating an anticancer regimen which was systematically
recorded in the hospital’s database. As a result, for every patient who followed more than one regimen,
multiple observations were collected. For each patient, we include all of their observations in either the
training set or testing set, respectively. In total, we have 12,206 observations that correspond to 5,987
unique patients. This includes 3,228 individuals who have just one line of therapy and therefore only
appear once in this dataset. For each observation, there are 106 covariates which describe the patient at
that point in time, including demographics, lab tests, vital signs, current medications, medical history,
biomarkers, and variables derived from the patient’s temporal EHR history.

Overall, there are 10.79% missing values in the DFCI dataset. The percentage of missing values in each
covariate is shown in Table 6 in Appendix 7.1. Due to the nature of this observational study, the observations
for each patient occur at irregular intervals, which correspond to hospital visits. In addition, in the dataset
each patient has anywhere from 1 to 12 observations. In Appendix 7.1, we provide some more details on the
DFCI dataset, including the distribution of observations per patient (see Figure 13) and summary statistics
of the time intervals between each visit (see Table 8). For the imputation tasks, we add in additional missing
values to the DFCI dataset, and evaluate the accuracy of med.knn and comparison methods against the
ground-truth values. For the downstream tasks, we evaluate classification models which predict 60-day risk
of mortality given the imputed training data.
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3.1.3 Parkinson’s Progression Markers Initiative (PPMI) dataset

The PPMI (Marek et al. 2011) was a landmark observational clinical study with the aim to comprehensively
evaluate patient cohorts using imaging, biologic sampling as well as clinical and behavioral data to identify
biomarkers of Parkinson’s disease progression.

In our computational experiments, we consider data from the PPMI baseline examination as well as the
following three years of follow-up. In this longitudinal study, 20 patients appeared only in one follow-up
examination, 33 in two while the rest of the population participated in all 352 clinical evaluations. As a
result, in total we have 1,547 observations corresponding to 405 distinct patients. For each observation,
there are 116 covariates which describe the demographic characteristics, the results of behavioral tests,
clinical test results, as well as the presence or absence of genetic mutations related to the disease.

Overall, there are 2.61% missing values in the PPMI dataset. The percentage of missing values in each
covariate is shown in Table 7 in Appendix 7.1. Due to the design of the longitudinal study, the 4 observations
for each patient occur at regular intervals spaced 1 year apart, for a total span of 4 years. For the imputation
tasks, we add in additional missing values to the PPMI dataset, and evaluate the accuracy of med.knn and
comparison methods against the ground-truth values. For the downstream tasks, we evaluate regression
models which predict the Montreal Cognitive Assessment (MoCA) score one year in advance. The MoCA
score is a rapid screening instrument for mild cognitive dysfunction, a clinical state that often progresses
to dementia (Nasreddine et al. 2005).

3.2 Mechanisms for Generating Missing Not at Random (MNAR) data

Missing data can either be Missing Completely At Random (MCAR), Missing At Random (MAR), or
Missing Not At Random (MNAR) (Little and Rubin 2019). The type of missingness can be determined
through an understanding of the specific feature and what systematic biases may exist in its collection
process. Different types of missingness must be treated differently for meaningful analysis. In reality, missing
data are most commonly associated with the MNAR category where the presence of unknown values is
systematically related to unobserved factors.

In this section, we describe mechanisms for generating Missing Not at Random (MNAR) data for
our computational experiments. We consider different mechanisms for the longitudinal and EHR datasets
corresponding to the different patterns of missing data which are typically observed in real-world datasets.
In section 3.2.1, we describe the missing data mechanism that we use for the MNAR experiments on the
two longitudinal datasets: FHS and PPMI. In section 3.2.2, we describe the missing data mechanism that
we use for the MNAR experiments on the EHR dataset: DFCI.

For all MNAR experiments, the total percentage of missing data is fixed to 30%. For each individual
experiment, we assume that the dataset is (γ30% MNAR, (1−γ)30% MCAR), where γ is a constant that we
select between 0 and 1. To generate the missing data patterns, first we generate the γ30% MNAR patterns,
and then we randomly select an additional (1 − γ)30% subset of the data to be Missing Completely at
Random (MCAR). In the following two sections, we describe the specific ways that we generate MNAR
data for longitudinal studies and EHR data, which are influenced by real-world missing data mechanisms.

3.2.1 MNAR Mechanism for Data from Longitudinal Studies

In longitudinal studies, missing data patterns often result from changes in the experiment design. Re-
searchers may decide to include an additional set of variables as the study progresses over time due to new
information from other investigations. Thus, it is common for feature d to be missing for the first td rounds
of long-term longitudinal studies. For example, ECG results were only first recorded in the FHS study 14
years after the study began (D’Agostino et al. 2013; Mahmood et al. 2014).

To generate γ30% MNAR patterns under this mechanism, we use the following process. First, we
randomly select a covariate d and a discrete uniform random variable td ∈ {1, 2, . . . , N}, where N = 10
for the FHS dataset and N = 4 for the PPMI dataset. The value td corresponds to the last round of the
longitudinal study that covariate d is missing. For example, if td = 2 for the covariate “Left Ventricular
Hypertrophy” (LVH), then the value for LVC will be missing for all observations in the two first clinical
examinations. We continue this process until we have introduced γ30% MNAR missing values. Afterwards,
we introduce additional MCAR missing values to the remaining dataset in order to obtain the final dataset
with 30% missing values.
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3.2.2 MNAR Mechanism for Data from EHR

In EHR data, missing data patterns may be correlated with the severity of patient’s condition. Consider the
case of a patient whose physician suspects the existence of chronic kidney disease. The associated record
is more likely to have a recorded value for Glomerular Filtration Rate since it is a direct indication of the
kidney’s functional status (Levey et al. 2005). Therefore, observed values are more likely to be below the
threshold of 60mL/min/1.73 m2 since they correspond to sicker patients.

To generate γ30% MNAR patterns under this mechanism, we suppose that missing indicators are inde-
pendent Bernoulli random variables where the probability that entry xid is missing equals the probability
that a normal random variable N(xid, ε) is greater than a particular threshold for covariate d. The threshold
for each covariate d is the quantile of Xd which corresponds to the desired missing percentage level γ30%.
Then, we introduce additional MCAR missing values to the remaining dataset in order to obtain the final
dataset with 30% missing values total for this experiment.

3.3 Experimental Setup

In this section, we describe the setup of computational experiments that compare med.knn to other state-
of-the-art imputation methods. We use data from three distinct sources to test the performance of our
algorithm on both longitudinal cohort study and EHR datasets. The codebase for the computational ex-
periments is publicly available at https://github.com/colin78/medimpute_computational_experiments.

In our experiments, we take the full dataset to be the ground truth. First, we normalize the data so
that each continuous covariate has mean zero and standard deviation equal to one. Then, we run some of
the most commonly-used and state-of-the-art methods for imputation to predict the missing values and
compare against med.knn. The methods that we compare are as follows:

1. Mean (mean): This is the simplest method. For each continuous feature, we impute the mean of the
observed values and, for each categorical feature, we impute the mode of the observed values (Little
and Rubin 2019).

2. Moving Average (moving.avg): This method takes into account only observations of the same entity
(i.e., patient) and imputes their averages under a given time window. In cases where only one observation
per entity is available, the method reduces to the mean. For each dataset, we consider a different time
horizon depending on the relative scale of the data (i.e, years, months, or days). Implemented in the
Julia programming language.

3. Bayesian Principal Component Analysis (bpca): This method takes a singular value decomposition
(SVD) of the data matrix and information from a Bayesian prior distribution on the model parame-
ters to impute missing values (Oba et al. 2003). Implemented using the pcaMethods package in the R
programming language.

4. Multivariate Imputation via Chained Equations (mice): In this multiple imputation method, we
begin from m random starts and iteratively update each one to produce m independent imputations.
In each iteration, we update the imputed values in feature d by drawing from a distribution conditional
on all other features (van Buuren and Groothuis-Oudshoorn 2011). We use Classification Trees for
the categorical features and Regression Trees for the continuous features. Implemented using the mice
package in in the R programming language.

5. Multiple Imputation with Boostrap Expectation Maximization (Amelia II): This is another
multiple imputation method that builds upon the Amelia I framework, which assumes that the data is
jointly distributed as multivariate normal and uses an expectation-maximization (EM) algorithm with
bootstrapping (Honaker et al. 2011; King et al. 2001). In addition, a newer version of the method allows
for the imputation of cross-sectional time series data. It can build a general model of patterns within
variables across time by creating a sequence of polynomials of the time index. Thus, it is able to capture
variables that are recorded over time within a cross-sectional unit and are observed to vary smoothly
over time. Implemented using the amelia package in the R programming language.

6. OptImpute under K-NN Objective (opt.knn): This method finds a high quality solution to Problem
(5) minimizing the sum of distances from each point to its K-Nearest Neighbors (Bertsimas et al. 2018b).
We find solutions to this problem using Algorithm 1 with the CD update. Fixing K = 10, we use several
warm and random restarts and select the imputation with the best objective value. Implemented using
the OptImpute package in the Julia programming language.

7. MedImpute under K-NN Objective (med.knn): This method finds a high quality solution to Prob-
lem (8) minimizing the sum of distances from each point to its K-Nearest Neighbors and other instances
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of the same individual. We find solutions to this problem using Algorithm 2 with the CD update. For
each feature d, we perform cross-validation to tune the parameters αd, hd with the rest of the MedIm-
pute parameters set equal to zero. Fixing K = 10, we use several warm and random restarts and select
the imputation with the best objective value. Implemented in the Julia programming language.

For each experiment, we evaluate the imputation accuracy of each method using the Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE) metrics, which are extended to accommodate both
continuous and categorical covariates. Let Mtest

0 , Mtest
1 be the hold-out sets for the missing continuous

and categorical covariates, respectively. We define the MAE and RMSE metrics to be:

MAE :=
1

|Mtest
0 |

∑

(i,d)∈Mtest
0

|wid − xid|+
1

|Mtest
1 |

∑

(i,d)∈Mtest
1

1{vid 6=xid}, (30)

RMSE :=

√√√√ 1
|Mtest

0 |
∑

(i,d)∈Mtest
0

(wid − xid)2 +
1

|Mtest
1 |

∑

(i,d)∈Mtest
1

1{vid 6=xid}. (31)

In addition to comparing the accuracy of each method on the imputation task, we also compare their
performance on downstream predictive tasks which are tailored for each dataset. In these experiments, we
use the imputation methods to fill in the missing values of the datasets, and then we train machine learning
models with the data from completed datasets. By comparing the accuracy of the predictive models on
the downstream tasks, we can see the relative impact of using one imputation method versus another in a
machine learning pipeline. For the FHS dataset, the downstream task is to predict 10-year risk of stroke,
a classification task. For the DFCI dataset, the downstream task is to predict 60-day risk of mortality,
which is also a classification task. For the PPMI dataset, the downstream task is to predict the Montreal
Cognitive Assessment (MoCA) score for next year, which is a regression task.

To evaluate the accuracy on the downstream predictive task, first we split the patients from the com-
pleted dataset into a training and testing set using a 75%/25% ratio. For the longitudinal datasets (FHS
and PPMI) we include only one visit per patient, the most recent one. Thus, the time series component of
the dataset is only present in the missing data imputation process but not in the supervised learning part
of the experiment. This setup allows us to quantify the relative benefit of med.knn per individual. For the
EHR dataset (DFCI), we include all of the observations from each patient in either the training or testing
set for the supervised learning task.

Next, we train predictive models on the training set and report the out-of-sample accuracy on the testing
set. For the classification tasks, we train `1-regularized logistic regression models and report the out-of-
sample Area Under the Receiver Operator Characteristic Curve (AUC). For the regression task, we train
`1-regularized linear regression models and report the out-of-sample Mean Absolute Error (MAE). These
two metrics are commonly used evaluation criteria in machine learning (Hastie et al. 2009). We repeat all
experiments for 25 random seeds and average the results. Each iteration corresponds to a different random
split of the patients into the training and testing sets, a random warmstart, and a randomly generated
missing data pattern. In particular, we note that the patient IDs and the time stamps corresponding to
each row of the dataset are maintained across the different random seeds, so that the temporal sequence of
the records remains the same as the original dataset.

We artificially created missing data under different mechanisms and random patterns to compare the
imputation accuracy of the proposed method. The missing data generation process was independently
applied to each column. For a fixed missing percentage f%, we remove the necessary number of known
values for each feature to reach the f% target. The patient ID yi was not factored in the missing data
generation process and all rows were considered independent observations. If the existing percent of missing
data for a column was higher than the target f%, we do not generate any artificial missing values for the
covariate, and thus the feature does not contribute to the estimation of the imputation accuracy metrics.

Given this framework for evaluating imputation methods on both imputation and downstream tasks,
we conduct a variety of experiments which vary the pattern of the missing data. In particular, we conduct
three different types of experiments that correspond to variations in the form of missing data that we
frequently encounter in medical datasets:

1. Percentage of Missing Data: We generate patterns of missing data for various percentages ranging
from 10% to 50% under the missing completely at random (MCAR) mechanism. Given a target pro-
portion of missing data f (i.e., f = 20%), we generate among all observed data f missing values at each
column independently from the rest completely at random.
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2. Number of Observations Per Patient: With the missing percentage fixed at 50% MCAR, we vary
the time frame during which patient observations are included in the imputation task. Our goal is to
quantify the effect of the time series component as we vary its intensity.

3. Mechanism of Missing Data: With the missing percentage fixed at 30%, we vary the missing data
mechanism from Missing Completely At Random (MCAR) to Missing Not At Random (MNAR) on a
gradient scale. In particular, we suppose that the missing pattern is (γ30% MNAR, (1−γ)30% MCAR),
where γ varies from 0 to 1. We consider two different MNAR mechanisms that correspond to distinct
missing data patterns observed in longitudinal studies and EHR.

The objective of the first set of experiments is to determine which imputation methods perform best
at high and low levels of missing data. For these experiments, we also report the results from statistical
hypothesis tests (Friedman Rank and pairwise t-tests) to evaluate whether the rankings and differences be-
tween the imputation algorithms are statistically significant. The objective of the second set of experiments
is to determine how the performance of med.knn and other imputation methods varies as the amount of
time series information available on each patient fluctuates. Finally, the objective of the third set of exper-
iments is to determine how robust each imputation method is with respect to the missing data mechanism.
In the previous section, we describe the two mechanisms for generating MNAR data for the third set of
experiments. Below, we summarize all of the steps required to run one of the computational experiments
for a single random seed:

1. Fix a random seed s, a dataset, a desired missingness percentage level f%, a missing data imputation
method, and a value for the γ parameter.

2. Generate a random missing data pattern in the given dataset using the targeted percentage of missing
values f%, the random seed s, and the value of the γ parameter.

3. Impute the missing values in the provided dataset using the specified algorithm (i.e. med.knn, mean,
bpca).

4. Calculate the imputation error using the MAE and RMSE metrics (see Equations 30-31) on the artifi-
cially generated missing data.

5. Split the patients in the dataset into a training and testing set using a 75%/25% ratio. For the lon-
gitudinal datasets, only include the most recent observation from each individual in the training and
testing sets. For the EHR (DFCI) dataset, include all of the observations from each individual in the
training or testing set.

6. Train a downstream predictive model on the training set using the cv.glmnet function from the R
glmnet package (Friedman et al. 2009). For the FHS and DFCI datasets which have binary outcomes
variables, train a logistic regression model with l1 regularization. For the PPMI dataset which has a
continuous outcome variable, train a linear regression model with l1 regularization.

7. Report the out-of-sample performance of the trained model on the testing set. For the classification
tasks, report the out-of-sample AUC, and for the regression task, report the out-of-sample MAE.

3.4 Imputation Results

In this section, we provide the results from all experiments on the imputation tasks. In particular, we
present the imputation results from the 1) Percentage of Missing Data, 2) Number of Observations Per
Patient, and 3) Mechanism of Missing Data experiments.

Percentage of Missing Data In Figure 1, we show the MAE imputation accuracy results from the first
set of experiments in which we vary the percentage of missing data from 10% to 50%, and the missing data
mechanism is fixed to MCAR. We present the exact values and standard errors in this plot in the Appendix
in Table 9. Across all of the datasets, med.knn achieves the lowest average MAE for all of the missing
percentages tested. On the FHS longitudinal dataset with 50% MCAR data, med.knn has an average MAE
of 0.289 compared to the next best method opt.knn with an average MAE of 0.503, a 42.54% reduction.
Similarly, on the PPMI longitudinal dataset with 50% MCAR data, med.knn has an average MAE of 1.286
compared to the next best method opt.knn with an average MAE of 1.99, a 35.37% reduction. On the
DFCI dataset with 50% MCAR data, med.knn has an average MAE of 3.568 compared to the next best
method mean with an average MAE of 4.367, a 22.39% reduction.
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Fig. 1: Imputation errors for each method using the MAE metric on the FHS, DFCI, and PPMI datasets,
varying the percentage of missing data from 10% to 50%. The missing data mechanism is fixed to MCAR.

In Figure 2, we present the RMSE imputation accuracy results. In general, the results are similar to the
MAE imputation accuracy results, and med.knn produces the imputation with the lowest RMSE across all
experiments. One notable difference is on the DFCI dataset, the relative improvement of med.knn compared
to bpca, moving.avg, and mean is much smaller. Because the mean imputation method performs relatively
well, this suggests that there are some difficult-to-impute covariates in the DFCI dataset which are resulting
in large RMSE values for all of the more complex methods.
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Fig. 2: Imputation errors for each method using the RMSE metric on the FHS, DFCI, and PPMI datasets,
varying the percentage of missing data from 10% to 50%. The missing data mechanism is fixed to MCAR.

In Table 1, we present the results from the Friedman Rank test for each of the Missing Data imputation
experiments. In this statistical test, we compare the relative rank of med.knn against the relative ranks
of the comparator methods for each of the 25 random seeds. These results demonstrate that the med.knn
method is consistently ranked higher than the others across each of the experiments.

In Table 2, we present the results from the pairwise t-test for each of the experiments. In this statistical
test, we evaluate the differences in MAE between med.knn and each of the comparison methods. In all of
the experiments, we observe that the differences in MAE are statistically significant with p-values less than
0.001. In most cases, we observe that the relative improvement of med.knn decreases as the percentage of
missing data increases. This is because the comparator methods perform similarly across all levels of missing
data from 10-50%, while the med.knn performs best at the lowest missing percentages. One exception is mice
on the PPMI dataset, which declines in performance rapidly as the percentage of missing data increases.
Another exception is the bpca method, which surprisingly improves in performance as the percentage of
missing data increases for the DFCI and PPMI datasets. One explanation for these results could be that
bpca is overfitting on the datasets which have few missing values.

In the Appendix, we present the MedImpute hyperparameters which were selected in Missing Percentage
experiments for the FHS dataset. In Table 15, we show the median halflife parameters that were selected for
each covariate at each missing percentage. We observe that most of the halflife parameters are consistent
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χ2 statistic (adjusted p-value)

% FHS DFCI PPMI

10 130 (<0.001***) 210 (<0.001***) 75 (<0.001***)
20 130 (<0.001***) 220 (<0.001***) 53 (<0.001***)
30 130 (<0.001***) 260 (<0.001***) 74 (<0.001***)
40 110 (<0.001***) 230 (<0.001***) 58 (<0.001***)
50 140 (<0.001***) 270 (<0.001***) 71 (<0.001***)

(a) MAE

χ2 statistic (adjusted p-value)

% FHS DFCI PPMI

10 130 (<0.001***) 210 (<0.001***) 75 (<0.001***)
20 130 (<0.001***) 220 (<0.001***) 53 (<0.001***)
30 130 (<0.001***) 260 (<0.001***) 74 (<0.001***)
40 110 (<0.001***) 230 (<0.001***) 58 (<0.001***)
50 140 (<0.001***) 270 (<0.001***) 71 (<0.001***)

(b) RMSE

Table 1: The Friedman Rank test results for the imputation tasks varying the percentage of missing data
from 10-50% MCAR, using either the MAE or RMSE metric for comparison. Each table shows the value
of Friedman’s Chi-squared statistic and p-value for the hypothesis test comparing med.knn against the
benchmark methods for each experiment.

FHS

∆ MAE (adjusted p-value)

Missing % mice moving.avg amelia bpca mean opt.knn

10 -0.33 (<0.001***) -0.33 (<0.001***) -0.41 (<0.001***) -0.30 (<0.001***) -0.29 (<0.001***) -0.25 (<0.001***)
20 -0.33 (<0.001***) -0.32 (<0.001***) -0.40 (<0.001***) -0.30 (<0.001***) -0.28 (<0.001***) -0.26 (<0.001***)
30 -0.33 (<0.001***) -0.31 (<0.001***) -0.39 (<0.001***) -0.29 (<0.001***) -0.27 (<0.001***) -0.25 (<0.001***)
40 -0.33 (<0.001***) -0.31 (<0.001***) -0.39 (<0.001***) -0.27 (<0.001***) -0.26 (<0.001***) -0.23 (<0.001***)
50 -0.33 (<0.001***) -0.29 (<0.001***) -0.38 (<0.001***) -0.25 (<0.001***) -0.25 (<0.001***) -0.21 (<0.001***)

DFCI

∆ MAE (adjusted p-value)

Missing % mice amelia moving.avg bpca mean opt.knn

10 -1.64 (<0.001***) -6.55 (<0.001***) -1.92 (<0.001***) -6.92 (<0.001***) -1.17 (<0.001***) -1.81 (<0.001***)
20 -1.58 (<0.001***) -6.89 (<0.001***) -1.86 (<0.001***) -3.12 (<0.001***) -1.08 (<0.001***) -1.69 (<0.001***)
30 -1.67 (<0.001***) -7.09 (<0.001***) -1.84 (<0.001***) -1.02 (<0.001***) -1.02 (<0.001***) -1.54 (<0.001***)
40 -1.46 (<0.001***) -6.71 (<0.001***) -1.81 (<0.001***) -1.26 (<0.001***) -0.93 (<0.001***) -1.62 (<0.001***)
50 -1.57 (<0.001***) -6.56 (<0.001***) -1.77 (<0.001***) -1.11 (<0.001***) -0.80 (<0.001***) -1.48 (<0.001***)

PPMI

∆ MAE (adjusted p-value)

Missing % mice amelia moving.avg bpca mean opt.knn

10 -0.32 (<0.001***) -1.55 (<0.001***) -1.10 (<0.001***) -1.86 (<0.001***) -1.21 (<0.001***) -1.00 (<0.001***)
20 -0.48 (<0.001***) -1.44 (<0.001***) -1.10 (<0.001***) -1.61 (<0.001***) -1.14 (<0.001***) -0.78 (<0.001***)
30 -0.67 (<0.001***) -1.36 (<0.001***) -1.09 (<0.001***) -1.49 (<0.001***) -1.10 (<0.001***) -0.72 (<0.001***)
40 -0.75 (<0.001***) -1.37 (<0.001***) -1.08 (<0.001***) -1.24 (<0.001***) -1.02 (<0.001***) -0.67 (<0.001***)
50 -0.90 (<0.001***) -1.40 (<0.001***) -1.07 (<0.001***) -1.14 (<0.001***) -0.94 (<0.001***) -0.70 (<0.001***)

Table 2: Pairwise t-tests between med.knn and benchmark methods for imputation tasks varying the per-
centage of missing data from 10-50% MCAR, using the MAE metric for comparison. The p-values are
adjusted for multiple comparisons.

across different levels of missing data, and for many of the covariates the highest halflife parameter of 1000
days was selected. This suggests that for these covariates, a measurement from 1000 days ago may be used
to significantly inform the measurement for the same patient today. In addition, we may be able to improve
the performance of this method by considering even longer halflife values. In Table 16, we show the median
alpha parameters that were selected for each covariate at each missing percentage, from the validation.
In all cases, the alpha parameter is at least 0.5, and in many cases equals 1. This suggests that for these
covariates, the time series part of the objective function is more important for the imputation than the K-
nearest neighbors part of the objective function. In addition, we observe that the alpha parameter selected
generally decreases or remains the same as the percentage of missing data increases. This suggests that as
the percentage of missing data increases, the time series part of the objective function should be weighted
less heavily in the imputation because there is less time series information available for each observation in
the dataset.
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Number of Observations Per Patient In Figure 3, we present the MAE imputation accuracy results
from the experiments in which we vary the number of observations per patient. We present the exact values
and standard errors in this plot in the Appendix in Table 11. Across all of the experiments, we observe that
as the time horizon increases, the performance of med.knn generally improves. This is expected, because as
the time horizon increases, we include more observations per patient in the dataset, so there is more time
series information that can be leveraged during the imputation process.

Similarly, the imputation accuracy of the moving.avg method generally improves as the time horizon
increases. One notable exception is in the FHS dataset, the MAE of the moving.avg method increases as
the time horizon increases from 10 to 20 years, while the MAE of med.knn remains relatively constant.
From this, we can deduce that past observations of patients in the FHS dataset from 10 to 20 years prior
have little predictive power for the other imputed values, which causes simple time series methods such
as moving.avg to perform worse with more data. In contrast, the med.knn method has an exponential
halflife parameter that we can tune so that observations from 10+ years ago are weighted less heavily in
the imputation, so the performance remains about the same with the additional data.

One surprising trend that we observe in these graphs is the performance of amelia, which is another
imputation method that takes into account time series information. On the DFCI dataset, as the time
horizon increases, the imputation error increases. In addition, on the FHS dataset, as time horizon increases,
the imputation error remains about the same. Only in the PPMI dataset does the performance of amelia
noticeably improve as the time horizon increases.
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Fig. 3: Imputation errors for each method using the MAE metric on the FHS, DFCI, and PPMI datasets,
varying the time horizon which determines the number of observations per patient. The missing data
mechanism is fixed to MCAR, and the total percentage of missing data is fixed to 50%.

In Figure 4, we present the RMSE imputation accuracy results for the Observations Per Patient ex-
periments. The results are similar to the MAE imputation accuracy results, and med.knn produces the
imputation with the lowest RMSE across all experiments. One characteristic of the RMSE results is that
they are much noisier, and in particular on the DFCI dataset the RMSE values do not decrease monotoni-
cally in a smooth fashion. Since the RMSE metric is more sensitive to outliers than the MAE metric, this
suggests that there may be some outliers in the DFCI data which are added into the dataset at different
time horizons.
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Fig. 4: Imputation errors for each method using the RMSE metric on the FHS, DFCI, and PPMI datasets,
varying the time horizon which determines the number of observations per patient. The missing data
mechanism is fixed to MCAR, and the total percentage of missing data is fixed to 50%.

In addition to evaluating the imputation accuracy of med.knn on datasets with varying numbers of
observations per patient, we can also evaluate the imputation accuracy on subsets of patients within the
DFCI dataset which have varying numbers of observations. In Figure 5, we present the imputation errors
for med.knn on the DFCI dataset with 30% MCAR missing data, for subgroups of patients which have
1, 2, . . . , 12 observations per patient in the dataset. Overall, the MAE for the entire dataset is 3.331. For
patients with one visit, and therefore one observation in the dataset, the average MAE is almost 3.5. In
contrast, for patients with 10 or more visits, the average MAE is below 2.5. This suggests that in datasets
with heterogeneous numbers of observations per patient, the med.knn imputation may be most accurate for
the patients with the most observations in the dataset.
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Fig. 5: Imputation errors for med.knn on the DFCI dataset with 30% MCAR missing data for subgroups
of patients which have varying numbers of visits in the dataset.

Overall, from the Observations Per Patient experiments, we can conclude that med.knn method performs
best with the additional time series information. As the time horizon increases, the imputation accuracy
of med.knn generally improves or remains the same, while in a few cases the other time series methods
moving.avg and amelia perform significantly worse with additional time series data. In addition, the
imputation accuracy of the methods which do not take into account time series information (bpca, mean,
mice, opt.knn) remains relatively constant as the time horizon varies. Furthermore, within a dataset that
has heterogeneous numbers of observations per patient, such as EHR datasets, we may expect med.knn to
most accurately impute values for the patients with the most observations in the dataset.

In the Appendix, we present the MedImpute hyperparameters which were selected in Observations Per
Patient experiments for the FHS dataset. First, in Table 17, we show the median halflife parameters that
were selected for each covariate for each experiment. For OPP ≤ 2, the selection of the halflife parameter
does not impact the imputation, so the halflife parameter is set to 1 for each covariate. For OPP ≥ 3, the
halflife parameters remain relatively constant for each covariate as the observations per patient varies. In
Table 18, we show the median alpha parameters that were selected for each covariate. When the OPP = 1,
there is no time series information in the dataset, so the alpha parameter is set to 0 for each covariate. For
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OPP ≥ 2, the alpha parameters selected remain relatively constant for each covariate, with a few gradual
trends for some of the covariates. For some covariates such as Age, Body Mass Index, and Systolic Blood
Pressure, the selected alpha parameter gradually increases as OPP increases, and for other covariates such
as Blood Glucose and High-Density Lipoproteins, the selected alpha parameter gradually decreases as OPP
increases. This suggests that the addition of more time series data may change the med.knn imputation of
each covariate differently.

Mechanism of Missing Data In Figure 6, we present the MAE imputation accuracy results from the
experiments in which we vary the mechanism of missing data. We present the exact values and standard
errors in this plot in the Appendix in Table 13. Across all of these experiments, we observe that med.knn
has the best average MAE values by a significant margin.

In general, the imputation accuracy of all of the imputation methods increases or remains the same as
the proportion of MNAR data increases. Two exceptions are the moving.avg method on the FHS dataset
and the amelia method on the DFCI experiments, which both improve in performance at first as a small
proportion of MNAR data is added. One possible explanation for this is that the MNAR data acts as
a regularizer which helps these methods avoids overfitting to the dataset. However, in most cases the
imputation error increases or remains constant as the percentage of MNAR data increases.

In the FHS MNAR experiments, the performance of all of the methods remains relatively constant,
however the imputation error of moving.avg improves at γ = 0.1. Because moving.avg is the second-best
performing method in these experiments, this means that the edge of the med.knn method slightly decreases
in these experiments. In the PPMI MNAR experiments, the imputation error of all methods increases
approximately linearly as the proportion of MNAR data increases. In the DFCI MNAR experiments, the
imputation error for all methods except for amelia increases sharply at γ = 0.1, and then increases linearly
afterwards as γ increases. As a result, for the experiments on the DFCI and PPMI datasets, the absolute
improvement of med.knn over the comparator methods remains about the same as the proportion of MNAR
data increases.
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Fig. 6: Imputation errors for each method using the MAE metric on the FHS, DFCI, and PPMI datasets,
varying the ratio of the missing data mechanism from γ = 0 (30% MCAR, 0% MNAR) to γ = 1 (0%
MCAR, 30% MNAR). The total percentage of missing data is fixed to 30%.

In Figure 7, we present the RMSE imputation accuracy results for the missing data mechanism experi-
ments. The results are largely consistent with the MAE imputation accuracy results. In particular, med.knn
produces the imputation with the lowest RMSE by a significant margin across all experiments.
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Fig. 7: Imputation errors for each method using the RMSE metric on the FHS, DFCI, and PPMI datasets,
varying the ratio of the missing data mechanism from γ = 0 (30% MCAR, 0% MNAR) to γ = 1 (0%
MCAR, 30% MNAR). The total percentage of missing data is fixed to 30%.

Overall, these experiments demonstrate that the med.knn method performs well relative to the other
imputation methods even as the mechanism of missing data changes. In the MNAR experiments for the
longitudinal datasets, FHS and PPMI, the relative imputation accuracy of the comparator methods remains
approximately the same with the med.knn method performing best, with the exception of the moving.avg
method which performs significantly worse. Thus, we can conclude that the med.knn method is well suited for
imputing missing values according to the particular MNAR mechanism designed for longitudinal datasets
which is described in Section 3.2.1. In the MNAR experiments for the EHR dataset DFCI, the relative
imputation accuracy of the comparator methods remains approximately the same with the med.knn method
performing best, with the exception of the amelia method which performs significantly better. Therefore,
we can also conclude that the med.knn is suitable for imputing missing values according to the MNAR
mechanism for EHR datasets which is described in Section 3.2.2.

In the Appendix, we present the MedImpute hyperparameters which were selected in Mechanism of
Missing Data experiments for the FHS dataset. In Tables 19 and 20, we show the median halflife and
alpha parameters that were selected for each covariate for each experiment, respectively. Across all of
the experiments, we observe that the parameters selected during the validation procedure remain almost
exactly constant. We conclude that varying the missing data mechanism for the FHS dataset according to
the approach outlined in Section 3.2.1 has little impact on the med.knn imputation for this dataset.

3.5 Prediction Results

In this section, we provide the results from all experiments on the downstream prediction tasks. In particular,
we present the downstream prediction results from the 1) Percentage of Missing Data, 2) Number of
Observations Per Patient, and 3) Mechanism of Missing Data experiments. For the FHS and DFCI datasets,
in which we train and evaluate classification models, we report the average out-of-sample AUC results. For
the PPMI dataset, in which we train and evaluate regression models, we report the average out-of-sample
MAE results.

Percentage of Missing Data In Figure 6, we present the performance on the downstream tasks from
the experiments in which we vary the percentage of missing data. We present the exact values and standard
errors in this plot in the Appendix in Table 10. Across all of the datasets, the med.knn method performs
best, and the downstream performance of all methods generally declines as the missing level increases. In
particular, the AUC values generally decrease for the classification tasks and the MAE values generally
increase for the regression tasks as the percentage of missing data increases.

For the FHS dataset, while the downstream performance of all methods declines as the percentage of
missing data increases, the downstream performance of med.knn declines least rapidly. In particular, with
20% missing data, the downstream AUC of med.knn is 0.897, compared to downstream AUC of 0.861 from
the second-best method bpca and the baseline AUC of 0.901 with no additional missing data. With 50%
missing data, the downstream AUC of med.knn is 0.864, compared to 0.826 for the second-best method
moving.avg.
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χ2 statistic (adjusted p-value)

% FHS DFCI PPMI

10 130 (<0.001***) 210 (<0.001***) 75 (<0.001***)
20 130 (<0.001***) 220 (<0.001***) 53 (<0.001***)
30 130 (<0.001***) 260 (<0.001***) 74 (<0.001***)
40 110 (<0.001***) 230 (<0.001***) 58 (<0.001***)
50 140 (<0.001***) 270 (<0.001***) 71 (<0.001***)

Table 3: The Friedman Rank test results for the downstream predictive tasks varying the percentage of
missing data from 10-50% MCAR. The table shows the value of Friedman’s Chi-squared statistic and p-
value for the hypothesis test comparing med.knn against the benchmark methods for each experiment. The
p-values are adjusted for multiple comparisons.

Similarly, for the DFCI dataset, the med.knn method performs best across all levels of missing data,
and the downstream AUC values generally decrease as the missing level increases. The only exception is
for the amelia method, where we do not observe a smooth trend because this method does not converge in
some cases. In addition, the relative improvement of med.knn compared to the other imputation methods is
lower for this dataset. At 50% missing data, the downstream AUC of med.knn is 0.889, compared to 0.884
for the second-best method bpca and the baseline AUC of 0.92 with no additional missing data.

Lastly, in the PPMI dataset, we observe the same trends that the med.knn method performs best, and
the performance of all methods declines as the missing level increases. In this case, the downstream MAE
for each method increases as the percentage of missing data increases. Across all levels of missing data,
med.knn achieves the lowest downstream MAE. At 50% missing data, the downstream MAE of med.knn
is 1.917, compared to 2.092 for the second-best method opt.knn and the baseline MAE of 1.170 with no
additional missing data.
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Fig. 8: Downstream accuracy results for each method on the FHS, DFCI, and PPMI datasets, varying the
percentage of missing data from 10% to 50% according to the MCAR mechanism. On each plot, we overlay
the downstream accuracy of a baseline model trained with no additional missing data as a dotted blue line
(shaded with standard error bars).

In Table 3, we present the results from the Friedman Rank tests for each of the downstream predictive
tasks varying the percentage of missing data. Similar to Friedman Rank tests for the imputation tasks,
each test is significant with a p-value less than 0.001. These results demonstrate that the med.knn method
is consistently ranked higher than the others for each of the downstream predictive tasks.

In Table 4, we present the results from the pairwise t-tests for each of the experiments. In this statistical
test, we evaluate the differences in downstream predictive performance between med.knn and each of the
comparison methods. We consider the differences in downstream AUC for the classification tasks, and
we consider the differences in downstream MAE for the regression tasks. In most of the experiments, we
observe that the differences in downstream AUC/MAE are statistically significant with p-values less than
0.001. These results demonstrate that the relative improvement in imputation accuracy for the med.knn
method carries over to a relative improvement in performance on the downstream predictive tasks with
different levels of MCAR data. Between the two classification tasks, we observe that the med.knn gives
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FHS: Predicting 10-year Risk of Stroke

∆ AUC (adjusted p-value)

Missing % mice moving.avg amelia bpca mean opt.knn

10 0.0296 (<0.001***) 0.0309 (<0.001***) 0.0378 (<0.001***) 0.0193 (<0.001***) 0.0280 (<0.001***) 0.0233 (<0.001***)
20 0.0421 (<0.001***) 0.0382 (<0.001***) 0.0645 (<0.001***) 0.0341 (<0.001***) 0.0464 (<0.001***) 0.0384 (<0.001***)
30 0.0602 (<0.001***) 0.0408 (<0.001***) 0.0908 (<0.001***) 0.0566 (<0.001***) 0.0663 (<0.001***) 0.0649 (<0.001***)
40 0.0728 (<0.001***) 0.0420 (<0.001***) 0.0997 (<0.001***) 0.0720 (<0.001***) 0.0762 (<0.001***) 0.0913 (<0.001***)
50 0.0915 (<0.001***) 0.0373 (<0.001***) 0.1266 (<0.001***) 0.0931 (<0.001***) 0.0931 (<0.001***) 0.1132 (<0.001***)

DFCI: Predicting 60-day Risk of Mortality

∆ AUC (adjusted p-value)

Missing % mice amelia moving.avg bpca mean opt.knn

10 0.0010 (0.234) 0.0050 (<0.001***) 0.0196 (<0.001***) 0.0015 (0.261) 0.0013 (0.407) 0.0016 (<0.001***)
20 0.0019 (0.004**) 0.0060 (0.092) 0.0181 (<0.001***) 0.0016 (0.318) 0.0018 (0.234) 0.0037 (<0.001***)
30 0.0031 (0.003**) 0.0114 (0.052) 0.0176 (<0.001***) 0.0030 (0.037*) 0.0030 (0.037*) 0.0053 (<0.001***)
40 0.0056 (<0.001***) 0.0046 (0.075) 0.0169 (<0.001***) 0.0033 (0.032*) 0.0030 (0.044*) 0.0081 (<0.001***)
50 0.0094 (<0.001***) 0.0077 (0.065) 0.0167 (<0.001***) 0.0044 (0.003**) 0.0044 (0.003**) 0.0102 (<0.001***)

PPMI: Predicting the MoCA score

∆ MAE (adjusted p-value)

Missing % mice amelia moving.avg bpca mean opt.knn

10 -0.117 (0.027*) -0.435 (<0.001***) -0.288 (<0.001***) -0.399 (<0.001***) -0.631 (0.027*) -0.347 (<0.001***)
20 -0.167 (0.004**) -0.249 (0.002**) -0.329 (<0.001***) -0.180 (<0.001***) -0.255 (<0.001***) -0.181 (0.004**)
30 -0.137 (<0.001***) -0.167 (<0.001***) -0.296 (<0.001***) -0.152 (<0.001***) -0.171 (<0.001***) -0.124 (<0.001***)
40 -0.204 (<0.001***) -0.153 (<0.001***) -0.362 (<0.001***) -0.161 (<0.001***) -0.188 (<0.001***) -0.144 (0.002**)
50 -0.214 (<0.001***) -0.207 (<0.001***) -0.312 (<0.001***) -0.181 (<0.001***) -0.207 (<0.001***) -0.175 (<0.001***)

Table 4: Pairwise t-tests between med.knn and benchmark methods for imputation tasks varying the per-
centage of missing data from 10-50% MCAR. The p-values are adjusted for multiple comparisons.

larger improvements in AUC on the FHS dataset than the DFCI dataset. In addition, we observe that as the
percentage of missing data increases, the relative improvement of med.knn increases in general. These results
are expected because as the percentage of missing data increases, the impact of the imputation method
on the training data and the final prediction task increases as well. Since med.knn provides substantial
improvements in imputation accuracy for all levels of missing data, having larger amounts of missing data
generally leads to larger gains in downstream predictive accuracy. There are a few exceptions to this, for
example amelia, bpca, mean, and opt.knn on the PPMI dataset, and moving.avg on the DFCI dataset.
In these cases, the largest improvement for med.knn occurs at the 10% missing level. For these several
examples, it follows that med.knn does a much better job at simulating the training dataset with 10%
missing data, but the other methods begin to catch up as the percentage of missing data increases.

Number of Observations Per Patient In Figure 9, we present the performance on the downstream tasks
from the experiments in which we vary the time horizon which determines the number of observations per
patient. We present the exact values and standard errors in this plot in the Appendix in Table 12. Across all
of the experiments, we observe that the downstream performance of med.knn tends to improve as the time
horizon increases, so that the dataset includes more observations per patient. However, for each dataset,
after a certain point there are diminishing returns, so that adding more observations per patient to the
dataset does not improve the performance on the downstream task.

For the FHS dataset, in which the task is to predict 10-year risk of stroke, the downstream AUC of
med.knn plateau starts to plateau at a time horizon of 6 years. For the DFCI dataset, in which the task
is to predict 60-day risk of mortality, the downstream AUC of med.knn starts to plateau around 3 years.
Similarly, for the PPMI dataset, in which the task is to predict the next year MoCA score, the downstream
MAE reaches a minimum value at 3 years.

In comparison to the other methods, we observe that med.knn tends to perform relatively better with
more observations per patient in the dataset. This indicates that the med.knn method is able to leverage
the additional time series information more efficiently than the other methods. The only exception to this is
amelia on the DFCI dataset, which outperforms med.knn with time horizons of 3 and 5 years, respectively.
However, we observe that the amelia method is more unstable, and med.knn outperforms this method for
the longest time horizon of 10 years.
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Fig. 9: Downstream accuracy results for each method on the FHS, DFCI, and PPMI datasets, varying the
time horizon which determines the number of observations per patient. In these experiments, the missing
data mechanism is fixed to MCAR, and the total percentage of missing data is fixed to 50%. On each
plot, we overlay the downstream accuracy of a baseline model trained with no additional missing data as
a dotted blue line (shaded with standard error bars).

Mechanism of Missing Data In Figure 10, we present the performance on the downstream tasks from
the experiments in which we vary the mechanism of missing data. We present the exact values and standard
errors in this plot in the Appendix in Table 14. In all of the experiments, we observe that the med.knn
acheives the best downstream accuracy, typically by a substantial margin.

In the FHS dataset, the average AUC for med.knn remains around 0.89 and above across all proportions
of MNAR data, while the second-best performing method moving.avg has an average AUC below 0.87. In
the PPMI dataset, the downstream MAE values for all of the methods increases approximately linearly as
the ratio of MNAR data increases. As a result, the relative improvement of med.knn on downstream tasks
remains large for all of the MNAR experiments on longitudinal datasets.

On the other hand, the relative improvement of med.knn on downstream tasks is more varied for the
MNAR experiments on EHR data. In the DFCI dataset, the downstream AUC values for each of the methods
increases significantly when gamma = 0.1, and then decreases gradually as gamma increases further. These
results are somewhat counterintuitive because the imputation errors for most of these methods increase
significantly at gamma = 0.1, and then increase gradually afterwards. One possible explanation is that the
DFCI dataset has some outlier values that tend to be missing under the MNAR mechanism for electronic
health record data (described in Section 3.2.2), which typically skew the downstream prediction results. At
the peak when gamma = 0.1, the relative improvement of med.knn is very small, with a downstream AUC
of 0.916 compared to the next best method mice which has a downstream AUC of 0.915. At the extreme
when gamma = 1, the downstream AUC of med.knn is 0.912 compared to 0.904 for the next best methods
(mice and bpca).
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Fig. 10: Downstream accuracy results for each method on the FHS, DFCI, and PPMI datasets, varying
the ratio of the missing data mechanism from γ = 0 (30% MCAR, 0% MNAR) to γ = 1 (0% MCAR, 30%
MNAR). On each plot, we overlay the downstream accuracy of a baseline model trained with no additional
missing data as a dotted blue line (shaded with standard error bars).
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3.6 Discussion of the Computational Experiments on Real-World Clinical Datasets

In this section, we discuss the major takeaways from the computational experiments on real-world clinical
datasets. For each dataset, we consider downstream models to predict patient outcomes that are clinically
relevant, in order to simulate the performance of med.knn in practical applications. For the FHS and PPMI
datasets, which are longitudinal studies, the clinical outcomes of interest are 10-year risk of stroke and
next year MoCA score, which can be predicted using the most recent observation for each patient. For the
DFCI dataset, which is an EHR dataset, the clinical outcome of interest is 60-day risk of mortality for
late-stage cancer patients, which requires us to train models using all of the observations from each patient
(using the latest observation for each patient would bias the results). As a result, the evaluation of the
downstream models is different between the datasets. Furthermore, we conduct non-identical experiments
on each dataset due to inherent dissimilarities in the time series structure.

Due to the significant differences between each dataset, we can draw separate conclusions from each
one as a separate case study. The FHS dataset is a long term longitudinal study with many patients, few
covariates, and a downstream classification task. In contrast, the PPMI dataset is a shorter longitudinal
study with fewer patients, more covariates, and a downstream regression task. Finally, the DFCI dataset
is an EHR dataset with irregularly recorded observations, the most patients, the most covariates, and a
downstream classification task. The results from the computational experiments demonstrate that med.knn
performs well across this range of diverse case studies. In particular, we show that this method performs
well on datasets with: 1) large or small numbers of patients, 2) large or small numbers of covariates, and 3)
regularly or irregularly recorded observations. Moreover, the application of med.knn for imputation led to
improved downstream predictive performance on two binary classification tasks and one regression task.

Prior to training the downstream models, we do not perform any further preprocessing on the imputed
data, so we preserve the correlation structure of the original dataset. As a result, since these are real-
world datasets, there may be unexpected correlations between the predictors which impact the accuracy of
the downstream models. One could apply PCA or another dimensionality-reduction method to transform
the feature space prior to training downstream models on the imputed datasets. However, this analysis is
outside of the scope of this set of computational experiments.

In the Percentage of Missing Data experiments, we observe that increased imputation accuracy does
not always translate into increased downstream model accuracy. For example, on the DFCI dataset, bpca
performs poorly on the imputation task (see Figure 1), but is one of the top-performing methods on the
downstream predictive task (see Figure 8). This is possible because in the downstream predictive task,
some features are more significant than others, so having a large imputation error on the insignificant
features may only result in a small decline in downstream model accuracy. However, we also observed that
in all datasets, med.knn consistently performed best on both the imputation and downstream tasks, by a
significant margin in most cases. These results suggest that for all three of the real-world datasets considered
here, med.knn leads to improvements in imputation accuracy on the clinically significant covariates in each
downstream model.

In the OPP experiments, the major trend that we observe is that the med.knn method performs signif-
icantly better with more time series data. For example, in the FHS dataset, the imputation accuracy and
downstream performance of med.knn improves dramatically as OPP increases from one to four. This makes
sense because as we include more observations per patient in the dataset, there is more relevant information
available to impute the missing covariates for each patient. We expect that this explains why the relative
improvement of med.knn is less significant on the DFCI dataset for several of the experiments. In this
dataset, over half of the patients have a single observation, so there is limited time series available to fill in
the missing values for these patients. In contrast, in the FHS dataset, every patient has 10 observations in
the full dataset, so there is more data available to aid the imputation.

In the MNAR experiments, we demonstrate that med.knn works under missing data mechanisms that
are frequently encountered in practice. Longitudinal studies often contain systematic missing information
on some clinical examinations based on decisions made by the designers of the study. For example, the
Framingham Heart Study dataset has expanded over time as clinicians have incorporated more and more
variables that are suspected to be correlated with heart disease (Mahmood et al. 2014). However, since some
of these variables were not recorded initially, they are systematically missing from this dataset. In EHR
datasets, clinical covariates recorded for each visit typically vary based the health condition of the patient.
Patients at higher risk are likely to undergo more detailed medical examinations, resulting in fewer missing
values. Through the MNAR experiments for each case study, we show that med.knn is an effective method
for imputing missing values under these specific mechanisms of missing data for longitudinal studies and
EHR datasets.
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4 Scaling Experiments on Simulated Clinical Datasets

In this section, we present scaling experiments on simulated clinical datasets. In Section 4.1, we describe the
data generation process which allows us to construct simulated longitudinal clinical datasets with 10, 000’s
of observations and 100’s of features. In Section 4.2, we describe the experimental setup of the scaling
experiments, which considers two variations of the med.knn method. In Section 4.3, we report the results
of the scaling experiments, including the imputation accuracy and timing results.

4.1 Simulated Data: Synthea

We create synthetic EHR to test the performance of the algorithm in higher instances of both the num-
ber of observations and the number of features using the Synthea synthetic patient population simulator.
It constitutes an open-source, synthetic patient generator that aims to model the medical history of pa-
tients using specific demographic information (Walonoski et al. 2018). Patient records are generated using
simulation processes that follow disease progression patterns published in the medical literature. For each
synthetic patient, Synthea data contains a complete medical history, including medications, allergies, med-
ical encounters, and social determinants of health. We pre-processed the records combining them into a
single dataset that contains a summary of all the information available at each visit.

Since we leverage this data source for experiments testing the scalability of the algorithm, we do not
limit the amount of observations to a specific number. Each patient in the data is associated on average
with 20 distinct visits (observations). We aggregate the EHR into 344 distinct features. Each experiment
randomly samples a subset of these features to compare the computational time needed by the algorithm.
The covariates that comprise the data include demographic characteristics, diagnosis and procedure codes,
medical prescriptions, and lab test results. We do not include any downstream prediction task.

4.2 Experimental Setup for the Scaling Experiments

In this section, we go over the experimental setup for the scaling experiments. We use synthetically generated
data for EHR varying both the number of observations n and the number of features p. Our goal is to
evaluate the scaling performance and accuracy of the algorithm comparing the two proposed methods for
tuning the hyperparameters αd and hd.

One of the most well-established approach for hyperparameter tuning in machine learning is K-fold
cross-validation (Kohavi et al. 1995). In the time series setting, Bergmeir et al. (2018) showed that this
technique is applicable for time series models, in particular for the case of autoregression models. However,
due to the large number of combinations of different values for αd and hd, in the case of med.knn, the
computation time for the K-fold cross-validation scales at an quadratic rate as the number of covariates
increases. For this reason, we propose a custom tuning procedure to select the hyperparameters. We conduct
a series of experiments comparing the following hyperparameter selection processes:

1. Grid Search: This approach uses the well-established 10-fold cross-validation process to determine the
hyperparameters hd and αd for every variable. Prior to solving the algorithm, 10% of the values of each
feature are artificially removed. A set of values is defined and all their combinations are evaluated for
each feature individually when solving the reduced version of the dataset. The grid for αd was set to
[0.0, 0.1, . . . , 1.0] and for hd to [90, 180, 365, 1000].

2. Custom Tuning: The custom tuning procedure proposed in Section 2.4. This is a heuristic method to
decompose the problem into multiple parts, first learning hd for each covariate, and then learning αd

for each covariate. This approach does not involve cross-validation and allows for parallel computations
as the problem is fully decoupled.

For each experiment, we evaluate the imputation accuracy of each approach using the MAE and RMSE
metrics, as defined in Equations 30 and 31. In addition, we also compare their scaling performance by
measuring the average time needed for completion. In these experiments, we did not consider the prediction
task as in Section 3. Here, we limit the types of experiments only to Percentage of Missing Data following
the experimental set up of Section 3.3.

We vary the number of features between [50, 100, 200, 300] and the number of observations between
[1000, 12500, 25000, 50000, 75000]. These bounds were chosen as they represent the most common spectra
of problem sizes that we encounter in healthcare applications. We repeat all experiments for five random
seeds and average the results.
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Fig. 11: Average time for MedImpute methods to complete imputation tasks on the Synthea dataset using
different procedures for hyperparameter tuning, with varying numbers of observations n and features p in
the dataset.

4.3 Results of the Scaling Experiments

In this section, we present the results from the scaling experiments. In Figure 11, we demonstrate the timing
results. While both the methods scale to the largest problem size with n = 75000 observations and p = 300
features, the Custom Tuning procedure is -60.42% faster than Grid Search; the traditional cross-validation
procedure. Across all experiments, Custom Tuning is on average -87.05% faster than Grid Search. We
notice that for the lower problem sizes, the Custom Tuning approach leads almost instantaneous algorithm
completion while Gridsearch requires up to 12 hours to solve.

Figure 12 presents the results referring to imputation accuracy. The two procedures lead to minimal
differences in imputation performance. Across all experiments, the Custom Tuning procedure is slightly
more accurate than the GridSearch procedure, with an average improvement of -4.36% in MAE. The gap
between the two processes is larger when n ∈ [25000, 50000] leading to an average reduction of -8.81% of the
imputation error. We also note that only when n = 1000, GridSearch as the MAE is increased on average
by 2.82% by the new method. In all other combinations, Custom Tuning leads to more accurate results
with the maximum improvement reaching a reduction of 10.48% (n = 50000, p = 100). Detailed results for
the RMSE metric are provided in Figure 14 at the Appendix.

4.4 Discussion of the Scaling Experiments on Simulated Clinical Datasets

The results from the scaling experiments demonstrate that the custom tuning procedure for the MedImpute
hyperparameters αd and hd is highly effective and efficient. In particular, the proposed method significantly
reduces the computational time required, while also giving a slight improvement in imputation accuracy as
well compared to traditional cross-validation. Using the methodology, we are able to scale the algorithm to
higher problem instances without sacrificing its imputation performance.

An analysis of the runtime complexity of the two hyperparameter selection methods provides further
insights into these results. The key bottleneck of the med.knn algorithm is computing the K-NN assignment
on X to update Z in each coordinate descent step, which requires O(n logn) operations. The Grid Search
procedure requires O(p2) iterations to identify the best values for αd and hd, so the complete runtime for
this method is O(np2 logn). On the other hand, the Custom tuning procedure only requires O(p) iterations
because each hyperparameter for each covariate can be computed independently of the remaining covariates.
As a result, this method scales in a linear fashion with respect to the number of covariates, and the full
runtime is O(np logn).
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Fig. 12: Average MAE imputation errors for MedImpute methods on the Synthea dataset using different
procedures for hyperparameter tuning, with varying numbers of observations n and features p in the dataset.

Despite these theoretical asymptotic runtime guarantees, we recognize that the med.knn method with the
Custom Tuning procedure for hyperparameter tuning still takes up to 16 hours in datasets with n ∼ 50,000
observations. However, given that the imputation task usually takes place once in the pre-processing part
of the data analysis, we believe that the time cost is not significantly high. Moreover, the Custom tuning
process allows for decoupling the problem in smaller instances. Thus, the application of parallel computing
techniques can further improve the scaling performance of the algorithm.

5 Discussion

MedImpute is an extension of the OptImpute framework introduced by Bertsimas et al. (2018b). MedIm-
pute uses the same optimization approach to solving the missing data problem. However, the optimization
formulation is significantly different and more general than the OptImpute formulations in order to incor-
porate additional time series information present in cross-sectional data. The new formulation provides a
structured way of accounting for observations from the same entity and re-weighting the objective func-
tion to incorporate time series information. As a result, the resulting imputation algorithm med.knn from
the MedImpute framework outperforms opt.knn from the OptImpute framework and other benchmark
imputation methods on real-world clinical datasets with patients observed over time.

In the MedImpute formulation, two new parameters are introduced, αd, hd, that are specific to each
covariate d. The proposed Custom Tuning procedure allows for learning the values of these parameters more
efficiently compared to a traditional Grid Search approach. In addition, these parameters are interpretable
in a clinical context, yielding insights regarding the significance of time in their determination. For example,
in the FHS dataset, we learn different values of αd for chronic disease indicators such as Type 2 Diabetes
Mellitus (T2DM) and lab values such as Systolic Blood Pressure (SBP). It is likely that an individual
diagnosed with T2DM will continue to have this diagnosis regardless of the other covariates (American
2010), so MedImpute finds αd relatively close to 1 for this feature. On the other hand, the lab measurement
of SBP may vary significantly during a single day (Millar-Craig et al. 1978), so previous observations of this
covariate from the same individual provide relatively less information. For this feature, MedImpute finds
αd closer to 0 so that the K-nearest neighbors are weighted more heavily in the imputation. In addition, we
learn hd to determine the relative weights that we give to observations of feature d from the same individual
based on time elapsed. MedImpute selects higher values of hd for features that change slowly over time
such as the Body Mass Index and lower values for features that change rapidly over time such as SBP.

Beyond the healthcare setting, cross-sectional datasets are also quite common in other areas such as
finance and economics. Our algorithm can be generalized and applied to any data where there is a time
series component and multiple observations are tied to the same entity. The entity may represent a patient,
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as we portray in this work, or something else that is observed over time such as a financial organization,
region, or country. Therefore, the MedImpute imputation framework and the associated med.knn algorithm
may be applied to impute missing values in other domains as well.

6 Conclusions

In this paper, we propose the optimization framework MedImpute that addresses the missing data problem
for multivariate data in time series encountered in medical applications. We introduce a new imputation
algorithm med.knn that yields high quality solutions using optimization techniques combined with fast
first-order methods. Through computational experiments on three real-world clinical datasets, including
two longitudinal studies and one EHR dataset, we show that med.knn offers statistically significant gains in
imputation quality over state-of-the-art imputation methods, which leads to improved out-of-sample per-
formance on downstream tasks. Through scaling experiments on a synthetic EHR dataset, we demonstrate
that med.knn can be applied to complete datasets with 10,000’s of observations and 100’s of features. As
a flexible, accurate, and intuitive approach, MedImpute has the potential to become an indispensable tool
for applications with longitudinal missing data. Promising areas for future work include: (1) applications of
this method to longitudinal datasets that are not related to healthcare, (2) additional experiments to assess
the performance on downstream predictive tasks with transformed feature spaces, (3) extensions of the
optimization framework to incorporate more specialized structure that is present in longitudinal healthcare
datasets.
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7 Appendix

7.1 Detailed Properties of Real-World Clinical Datasets

In this section, we provide additional details regarding the real-world clinical datasets which are used in
the computational experiments. In Tables 5, 7, and 6, we show the percentage of missing data in each
covariate for the FHS, PPMI, and the DFCI datasets, respectively. In Figure 13, we show a histogram of
the number of observations per patient in the DFCI dataset. Table 8 shows summary statistics of inter-visit
time intervals (in days) for the DFCI dataset.

Feature % Missing
HDL Cholesterol Levels 70.54
Hematocrit Levels 30.53
History of Diabetes 21.14
Blood Glucose Levels 14.91
Smoking 10.5
BMI 7.18
History of Cardiovascular Disease (CVD) 3.88
Presence of Left Ventricular Hypertrophy (LVH) 2.15
Prescripion of Antihypertensive Medication (AHT) 1.93
Systolic Blood Pressure (SBP) 0.51
Age 0.07
Gender 0
History of Atrial Fibrilation (Afib) 0

Table 5: Percentage of missing data in each covariate in the original FHS dataset.

Feature % Missing
History of Psoriatic arthritis 99.98
Creatinine Clearance Levels 99.96
AFP Mutation 99.91
CA.19.9 Mutation 98.74
ALT Mutation 96.92
AST Mutation 96.92
CA.125 Mutation 96.84
Direct Bilirubin Levels 77.73
CEA Mutation 69.32
CA.27.29 Mutation 62.91
Percentage Difference in Weight from Previous Measurement 50.88
Hispanic Race 29
Hematocrit Levels 25.15
Creatinine Levels 24.59
Total Bilirubin Levels 23.69
Albumin Levels 23.61
White Blood Cells Count 22.86
Systolic Blood Pressure Levels 5.56
Pulse 5.56
Weight 0.46
History of Myocardial Infarction 0.1
History of Congestive Heart Failure 0.1
History of Peripheral Artery Disease 0.1
History of Stroke 0.1
History of Dementia 0.1
History of Pulmonary Disease 0.1
History of Rheumatic Disease 0.1
History of Peptic Ulcer Disease 0.1
History of Mild Liver Disease 0.1

Table 6: Percentage of missing data in each covariate in the original DFCI dataset.
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Feature % Missing
History of Diabetes Mellitus 0.1
DMcx 0.1
History of Paralysis 0.1
History of Renal Failure 0.1
History of Severe Liver Disease 0.1
History of Metabolic Disease 0.1
History of HIV 0.1
Immunotherapy Prescription 0
Targetted Therapy Prescription 0
Number of Drugs Prescribed 0
Number of Blood Transfusions 0
Total Number of Inpatient Visits 0
Total Number of Outpatient Visits 0
Line of Therapy Prescribed 0
General Cancer Stage 0
Pathological Cancer Stage 0
Clinical Cancer Stage 0
Number of Diagnoses 0
Gender 0
White Race 0
Black Race 0
Age at Diagnosis 0
Age at Treatment 0
Divorced 0
Married 0
ACETAMINOPHEN 0
ALARIS 0
AMBULATORY 0
APREPITANT 0
ATROPINE 0
BEVACIZUMAB 0
BORTEZOMIB 0
CARBOPLATIN 0
CISPLATIN 0
CYCLOPHOSPHAMIDE 0
DARBEPOETIN 0
DEXAMETHASONE 0
DEXTROSE 0
DIPHENHYDRAMINE 0
DOCETAXEL 0
DOXORUBICIN 0
EPOETIN 0
ETOPOSIDE 0
EVACUATED 0
FAMOTIDINE 0
FILGRASTIM 0
FLUOROURACIL 0
FOSAPREPITANT 0
GEMCITABINE 0
IRINOTECAN 0
IV 0
LEUCOVORIN 0
LORAZEPAM 0
MAGNESIUM 0
MANNITOL 0
MEPERIDINE 0

Table 6: Percentage of missing data in each covariate in the original DFCI dataset.
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Feature % Missing
MESNA 0
METHYLPREDNISOLONE 0
METOCLOPRAMIDE 0
NS 0
ONDANSETRON 0
OXALIPLATIN 0
OXYCODONE 0
PACLITAXEL 0
PALONOSETRON 0
PEGFILGRASTIM 0
PEMETREXED 0
POTASSIUM 0
PROCHLORPERAZINE 0
RANITIDINE 0
SECONDARY 0
TRASTUZUMAB 0
VINORELBINE 0
ZOLEDRONIC 0

Table 6: Percentage of missing data in each covariate in the original DFCI dataset.

Feature % Missing
MDS-UPDRS Total Score 30.19
Hoehn and Yahr Stage (On Stage) 17.45
Hoehn and Yahr Stage (Off Stage) 17.45
TD/PIGD Classification - Original categories 17.45
TD/PIGD Classification - New categories 17.45
TD/PIGD Classification Indeterminate 17.45
TD/PIGD Classification PIGD 17.45
TD/PIGD Classification TD 17.45
MDS-UPDRS Part III Score 17.45
Total Rigidity Score 17.39
Tremor Score 17.39
MDS-UPDRS Part III Score 17.39
APOE Genotype - number of e4 alleles 9.7
Change in Diagnosis 5.04
Primary Diagnosis: Corticobasal Degeneration 5.04
Primary Diagnosis: Dementia with Lewy bodies 5.04
Primary Diagnosis: Idiopathic Parkinson’s Disease 5.04
Primary Diagnosis: Multiple System Atrophy 5.04
Primary Diagnosis: No Parkinson’s Disease Nor Other Neurological Disorder 5.04
Serum Uric Acid 4.33
SCOPA-AUT Total Score 1.42
SCOPA-AUT Gastrointestinal (GI) Score 0.97
Benton Judgement of Line Orientation Score 0.84
HVLT Delayed Recognition 0.84
HVLT False Alarms 0.84
HLVT Discrimination 0.84
Right caudate 0.78
Left caudate 0.78
Right putamen 0.78
Left putamen 0.78
REM Sleep Behavior Disorder Questionnaire Score 0.65
Categorical REM Sleep Behavior Disorder 0.65
Symbol Digit Modalities Score 0.65

Table 7: Percentage of missing data in each covariate in the original PPMI dataset.
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Feature % Missing
HVLT Delayed Recall 0.58
HLVT Retention 0.58
Letter Number Sequencing Score 0.58
SCOPA-AUT Sexual Dysfunction Score 0.58
Semantic Fluency Score - Animal subscore 0.58
Semantic Fluency Score - Vegetable subscore 0.58
Semantic Fluency Score - Fruit subscore 0.58
Semantic Fluency Total Score 0.58
HVLT Immediate/Total Recall 0.52
STAI Trait Sub-score 0.52
STAI Total Score 0.52
Epworth Sleepiness Scale Score 0.45
Categorical Epworth Sleepiness Scale Score 0.45
STAI State Sub-score 0.45
QUIP disorder - Hobbies 0.39
QUIP disorder - Punding 0.39
QUIP disorder - Walking or Driving 0.39
Total Rigidity Score 0.39
Use of Dopamine Agonist 0.32
Use of Dopamine Agonist and Other PD Medication 0.32
Use of Levodopa 0.32
Use of Levodopa and Dopamine Agonist 0.32
Use of Levodopa and Dopamine Agonist and Other PD Medication 0.32
Use of Levodopa and Other PD Medication 0.32
Use of Other PD Medication 0.32
Unmedicated for PD 0.32
MDS-UPDRS Part I Score 0.32
MDS-UPDRS Part I Fatigue 0.32
MDS-UPDRS Part II Score 0.32
Geriatric Depression Scale Score 0.32
Categorical Geriatric Depression Scale Score 0.32
QUIP disorder - Gambling 0.32
QUIP disorder - Sex 0.32
QUIP disorder - Buying 0.32
QUIP disorder - Eating 0.32
General QUIP Score 0.32
Any QUIP Disorder 0.32
SCOPA-AUT Cardiovascular Score 0.32
SCOPA-AUT Thermoregulatory Score 0.32
MDS-UPDRS Part I Cognitive Impairment 0.26
MDS-UPDRS Part I Hallucinations and Psychosis 0.26
MDS-UPDRS Part I Depressed Mood 0.26
MDS-UPDRS Part I Anxious Mood 0.26
MDS-UPDRS Part I Apathy Mood 0.26
MDS-UPDRS Part I Features of Dopamine Dysregulation Syndrome 0.26
SCOPA-AUT Urinary Score 0.26
SCOPA-AUT Pupillomotor Score 0.26
Family History of Parkinson’s Disease 0.26
Initial symptom (at diagnosis) - Postural Instability 0.26
Initial symptom (at diagnosis) - Other 0.26
Age 0
Gender - Female 0
Gender - Male 0
Years of Education 0
Race - Hispanic/Latino 0
Race - Non Hispanic/Non Latino 0

Table 7: Percentage of missing data in each covariate in the original PPMI dataset.

37



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature.

Feature % Missing
Race - Asian 0
Race - Black 0
Race - Other 0
Race - White 0
Duration of Parkinson’s Disease 0
Age Onset of Parkinson’s Disease 0
Age at Diagnosis 0
Brain Side Most Affected at Parkinson’s Disease Onset 0
Initial symptom (at diagnosis) - Resting Tremor 0
Initial symptom (at diagnosis) - Rigidity 0
Initial symptom (at diagnosis) - Bradykinesia 0
Missing initial symptoms 0
SNCA rs356181 Genotype - C.C 0
SNCA rs356181 Genotype - C.T 0
SNCA rs356181 Genotype - T.T 0
SNCA rs3910105 Genotype - C.C 0
SNCA rs3910105 Genotype - C.T 0
SNCA rs3910105 Genotype - T.T 0
MAPT Genotype - H1H1 0
MAPT Genotype - H1H2 0
MAPT Genotype - H2H2 0
Ipsliateral caudate 0
Ipsilateral striatum 0
Left striatum 0

Table 7: Percentage of missing data in each covariate in the original PPMI dataset.
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Fig. 13: Histogram of the number of observations per patient in the DFCI dataset.
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di = ti − ti+1 Mean Standard
Deviation Median Min Max Range Skew

d1 = t1 − t2 19.81 6.92 21.00 1.00 30.00 29.00 -0.61
d2 = t2 − t3 24.66 7.10 22.00 7.00 42.00 35.00 0.16
d3 = t3 − t4 29.75 10.47 28.00 14.00 42.00 28.00 -0.12
d4 = t4 − t5 68.02 22.88 70.00 13.50 117.00 103.50 -0.49
d5 = t5 − t6 89.76 26.38 85.00 17.50 163.00 145.50 0.21
d6 = t6 − t7 98.79 35.76 98.00 21.00 175.00 154.00 0.04
d7 = t7 − t8 130.85 51.70 126.00 27.00 266.00 239.00 0.45
d8 = t8 − t9 177.60 70.40 177.50 30.50 329.00 298.50 0.20
d9 = t9 − t10 230.44 101.10 226.00 14.00 518.00 504.00 0.25
d10 = t10 − t11 549.97 268.29 525.00 88.00 1344.00 1256.00 0.90
d11 = t11 − t12 1236.95 626.50 1157.63 70.00 3022.00 2952.00 0.82

Table 8: Summary statistics of inter-visit time intervals (in days) for the DFCI dataset, where ti is the time
of visit i and t1 corresponds to the most recent visit for each patient. We consider 11 intervals because the
maximum number of visits per patient is 12 in the DFCI dataset.
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7.2 Supplemental Experimental Results

This section provides detailed results from the computational experiments on the real-world datasets. Each
table refers to either the imputation accuracy or downstream predictive performance for all FHS, DFCI,
and PPMI. Tables 9 and 10 refer to the MCAR experiments when we vary the percentage of missing data
from 10% to 50%. Tables 11 and 12 show the performance of all methods when we vary the number of
observations per patient. Tables 13 and 14 focus on the experiments where we vary the ratio of the missing
data mechanism from γ = 0 (30% MCAR, 0% MNAR) to γ = 1 (0% MCAR, 30% MNAR).

FHS

MAE (Standard Error)

Missing % med.knn mice moving.avg amelia bpca mean opt.knn

10 0.251 (0.011) 0.58 (0.017) 0.578 (0.013) 0.656 (0.017) 0.554 (0.009) 0.543 (0.013) 0.505 (0.009)
20 0.247 (0.006) 0.581 (0.015) 0.569 (0.008) 0.646 (0.015) 0.549 (0.009) 0.532 (0.009) 0.502 (0.010)
30 0.262 (0.007) 0.593 (0.014) 0.576 (0.008) 0.657 (0.013) 0.555 (0.012) 0.537 (0.008) 0.514 (0.011)
40 0.273 (0.006) 0.605 (0.012) 0.578 (0.006) 0.661 (0.016) 0.544 (0.010) 0.537 (0.006) 0.508 (0.009)
50 0.289 (0.005) 0.616 (0.010) 0.582 (0.004) 0.669 (0.011) 0.535 (0.005) 0.535 (0.005) 0.503 (0.005)

DFCI

MAE (Standard Error)

Missing % med.knn mice amelia moving.avg bpca mean opt.knn

10 3.076 (0.583) 4.716 (1.032) 9.627 (2.385) 4.994 (0.614) 10 (4.089) 4.248 (0.603) 4.887 (1.038)
20 3.263 (0.513) 4.847 (0.787) 10.148 (2.383) 5.125 (0.506) 6.388 (3.654) 4.34 (0.478) 4.954 (0.799)
30 3.331 (0.339) 5.006 (0.563) 10.421 (2.144) 5.167 (0.313) 4.351 (0.272) 4.351 (0.272) 4.875 (0.420)
40 3.42 (0.214) 4.866 (0.316) 10.122 (2.617) 5.222 (0.193) 4.668 (1.581) 4.351 (0.143) 5.062 (0.447)
50 3.568 (0.156) 5.139 (0.407) 10.126 (1.955) 5.342 (0.107) 4.679 (1.570) 4.367 (0.049) 5.044 (0.466)

PPMI

MAE (Standard Error)

Missing % med.knn mice amelia moving.avg bpca mean opt.knn

10 1.046 (0.087) 1.368 (0.097) 2.592 (0.140) 2.143 (0.079) 2.901 (0.250) 2.256 (0.088) 2.049 (0.206)
20 1.101 (0.032) 1.58 (0.083) 2.538 (0.105) 2.214 (0.041) 2.713 (0.143) 2.236 (0.073) 1.884 (0.159)
30 1.111 (0.030) 1.784 (0.086) 2.522 (0.070) 2.201 (0.027) 2.604 (0.134) 2.214 (0.063) 1.827 (0.061)
40 1.189 (0.035) 1.934 (0.050) 2.555 (0.085) 2.278 (0.033) 2.432 (0.123) 2.207 (0.050) 1.856 (0.048)
50 1.286 (0.025) 2.188 (0.025) 2.565 (0.610) 2.361 (0.025) 2.422 (0.046) 2.228 (0.034) 1.99 (0.035)

Table 9: Imputation errors for each method using the MAE metric on the FHS, DFCI, and PPMI datasets,
varying the percentage of missing data from 10% to 50%. The missing data mechanism is fixed to MCAR.
For an illustration, see Figure 1.

40



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature.

FHS

AUC (Standard Error)

Missing % med.knn mice moving.avg amelia bpca mean opt.knn

10 0.897 (0.018) 0.868 (0.023) 0.867 (0.021) 0.86 (0.027) 0.878 (0.017) 0.869 (0.021) 0.874 (0.019)
20 0.895 (0.018) 0.853 (0.025) 0.857 (0.020) 0.831 (0.031) 0.861 (0.023) 0.849 (0.024) 0.857 (0.023)
30 0.884 (0.021) 0.824 (0.028) 0.843 (0.021) 0.793 (0.034) 0.827 (0.026) 0.818 (0.029) 0.819 (0.028)
40 0.877 (0.017) 0.805 (0.026) 0.835 (0.020) 0.78 (0.025) 0.805 (0.030) 0.801 (0.027) 0.786 (0.036)
50 0.864 (0.016) 0.772 (0.024) 0.826 (0.018) 0.734 (0.042) 0.771 (0.022) 0.771 (0.022) 0.75 (0.031)

DFCI

AUC (Standard Error)

Missing % med.knn mice amelia moving.avg bpca mean opt.knn

10 0.915 (0.012) 0.914 (0.013) 0.91 (0.014) 0.895 (0.013) 0.913 (0.013) 0.914 (0.013) 0.913 (0.013)
20 0.909 (0.014) 0.907 (0.015) 0.901 (0.014) 0.89 (0.014) 0.907 (0.015) 0.907 (0.015) 0.905 (0.015)
30 0.902 (0.014) 0.899 (0.017) 0.889 (0.017) 0.885 (0.015) 0.899 (0.016) 0.899 (0.016) 0.897 (0.016)
40 0.895 (0.015) 0.89 (0.018) 0.89 (0.018) 0.879 (0.015) 0.893 (0.016) 0.893 (0.016) 0.888 (0.016)
50 0.889 (0.017) 0.879 (0.019) 0.881 (0.017) 0.872 (0.016) 0.884 (0.018) 0.884 (0.018) 0.879 (0.018)

PPMI

MAE (Standard Error)

Missing % med.knn mice amelia moving.avg bpca mean opt.knn

10 1.208 (0.176) 1.325 (0.132) 1.657 (0.170) 1.475 (0.157) 1.608 (0.176) 1.838 (0.726) 1.555 (0.179)
20 1.624 (0.170) 1.788 (0.111) 1.861 (0.116) 1.898 (0.170) 1.802 (0.106) 1.876 (0.113) 1.802 (0.099)
30 1.785 (0.108) 1.923 (0.084) 1.939 (0.079) 2.054 (0.134) 1.938 (0.075) 1.955 (0.087) 1.909 (0.080)
40 1.822 (0.119) 2.027 (0.070) 2.025 (0.085) 2.158 (0.157) 1.982 (0.108) 2.01 (0.094) 1.968 (0.095)
50 1.916 (0.067) 2.13 (0.045) 2.114 (0.087) 2.217 (0.075) 2.097 (0.077) 2.122 (0.057) 2.092 (0.072)

Table 10: Downstream accuracy results for each method on the FHS, DFCI, and PPMI datasets, varying
the percentage of missing data from 10% to 50% according to the MCAR mechanism. For an illustration,
see Figure 8.
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FHS

MAE (Standard Error)

OPP med.knn mice amelia moving.avg bpca mean opt.knn

1 0.489 (0.006) 0.593 (0.010) 0.667 (0.017) 0.598 (0.004) 0.52 (0.014) 0.498 (0.004) 0.472 (0.013)
2 0.371 (0.006) 0.592 (0.008) 0.661 (0.014) 0.477 (0.006) 0.499 (0.006) 0.498 (0.006) 0.46 (0.007)
3 0.318 (0.006) 0.585 (0.008) 0.665 (0.018) 0.431 (0.006) 0.496 (0.004) 0.497 (0.004) 0.459 (0.004)
4 0.299 (0.005) 0.591 (0.006) 0.665 (0.015) 0.418 (0.006) 0.501 (0.005) 0.499 (0.004) 0.463 (0.004)
5 0.291 (0.005) 0.59 (0.010) 0.656 (0.018) 0.418 (0.004) 0.504 (0.003) 0.502 (0.005) 0.466 (0.006)
6 0.286 (0.005) 0.593 (0.008) 0.66 (0.016) 0.427 (0.004) 0.504 (0.005) 0.504 (0.005) 0.469 (0.005)
7 0.286 (0.005) 0.599 (0.009) 0.661 (0.014) 0.442 (0.005) 0.508 (0.006) 0.511 (0.005) 0.478 (0.006)
8 0.289 (0.004) 0.607 (0.010) 0.665 (0.012) 0.455 (0.004) 0.519 (0.002) 0.519 (0.004) 0.486 (0.005)
9 0.295 (0.003) 0.611 (0.009) 0.666 (0.011) 0.47 (0.005) 0.53 (0.006) 0.528 (0.006) 0.495 (0.007)
10 0.289 (0.004) 0.615 (0.009) 0.668 (0.011) 0.482 (0.004) 0.534 (0.005) 0.534 (0.005) 0.501 (0.006)

DFCI

MAE (Standard Error)

OPP med.knn mice amelia moving.avg bpca mean opt.knn

1 5.092 (0.190) 4.866 (0.579) 7.048 (2.543) 6.063 (0.065) 4.75 (0.806) 4.479 (0.066) 4.981 (0.666)
2 4.859 (0.290) 5.055 (0.853) 7.261 (2.569) 5.961 (0.087) 4.842 (0.906) 4.528 (0.075) 4.972 (0.650)
3 4.581 (0.154) 4.954 (0.673) 7.252 (2.003) 5.822 (0.117) 4.825 (0.917) 4.516 (0.083) 4.926 (0.648)
4 4.195 (0.170) 4.887 (0.655) 7.339 (2.008) 5.566 (0.098) 4.648 (0.874) 4.341 (0.057) 4.637 (0.482)
5 3.735 (0.183) 4.715 (0.474) 6.812 (1.664) 5.333 (0.083) 4.49 (1.001) 4.142 (0.050) 4.594 (0.495)
6 3.598 (0.194) 5.006 (0.594) 8.188 (2.299) 5.282 (0.112) 4.7 (1.311) 4.241 (0.051) 4.683 (0.457)
7 3.601 (0.205) 4.952 (0.523) 8.178 (2.212) 5.312 (0.108) 4.72 (1.314) 4.267 (0.048) 4.731 (0.415)
8 3.749 (0.099) 5 (0.456) 9.01 (2.149) 5.34 (0.104) 4.911 (1.635) 4.345 (0.047) 4.977 (0.475)
9 3.9 (0.131) 5.292 (0.391) 9.613 (2.236) 5.572 (0.127) 5.28 (2.080) 4.562 (0.063) 5.117 (0.237)
10 3.717 (0.129) 5.198 (0.420) 10.579 (2.651) 5.444 (0.104) 5.225 (2.241) 4.484 (0.058) 5.027 (0.455)
11 3.574 (0.140) 5.086 (0.335) 9.84 (2.205) 5.373 (0.106) 5.271 (2.444) 4.423 (0.055) 5.013 (0.369)
12 3.568 (0.156) 5.139 (0.407) 10.126 (1.955) 5.342 (0.107) 4.679 (1.570) 4.367 (0.049) 5.044 (0.466)

PPMI

MAE (Standard Error)

OPP med.knn mice amelia moving.avg bpca mean opt.knn

1 2.106 (0.035) 2.336 (0.053) 3.23 (0.964) 3.222 (0.019) 2.556 (0.058) 2.202 (0.019) 2.317 (0.197)
2 1.658 (0.032) 2.236 (0.051) 2.876 (1.429) 2.717 (0.034) 2.308 (0.040) 2.198 (0.019) 2.016 (0.087)
3 1.394 (0.024) 2.171 (0.082) 2.623 (1.243) 2.458 (0.023) 2.359 (0.063) 2.194 (0.060) 2.079 (0.173)
4 1.284 (0.025) 2.181 (0.021) 2.605 (0.660) 2.358 (0.026) 2.42 (0.038) 2.234 (0.031) 1.996 (0.028)

Table 11: Imputation errors for each method using the MAE metric on the FHS, DFCI, and PPMI datasets,
varying the time horizon which determines the number of observations per patient. The missing data
mechanism is fixed to MCAR, and the total percentage of missing data is fixed to 50%. For an illustration,
see Figure 3.

42



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature.

FHS

AUC (Standard Error)

OPP med.knn mice amelia moving.avg bpca mean opt.knn

1 0.778 (0.029) 0.789 (0.028) 0.742 (0.034) 0.786 (0.026) 0.819 (0.023) 0.806 (0.026) 0.798 (0.020)
2 0.835 (0.024) 0.777 (0.027) 0.74 (0.030) 0.815 (0.024) 0.8 (0.035) 0.79 (0.026) 0.781 (0.030)
3 0.868 (0.023) 0.79 (0.032) 0.738 (0.037) 0.842 (0.019) 0.806 (0.040) 0.804 (0.032) 0.797 (0.034)
4 0.864 (0.026) 0.772 (0.025) 0.736 (0.040) 0.837 (0.022) 0.786 (0.021) 0.781 (0.031) 0.764 (0.033)
5 0.862 (0.020) 0.782 (0.036) 0.741 (0.030) 0.839 (0.022) 0.799 (0.017) 0.788 (0.033) 0.778 (0.035)
6 0.865 (0.014) 0.778 (0.024) 0.745 (0.030) 0.84 (0.017) 0.783 (0.032) 0.783 (0.024) 0.77 (0.027)
7 0.86 (0.028) 0.775 (0.032) 0.732 (0.034) 0.838 (0.025) 0.773 (0.027) 0.781 (0.031) 0.764 (0.031)
8 0.882 (0.015) 0.769 (0.036) 0.733 (0.034) 0.835 (0.026) 0.785 (0.024) 0.779 (0.032) 0.757 (0.037)
9 0.873 (0.018) 0.772 (0.038) 0.743 (0.035) 0.827 (0.022) 0.787 (0.030) 0.773 (0.040) 0.757 (0.037)
10 0.864 (0.016) 0.769 (0.024) 0.735 (0.037) 0.827 (0.018) 0.768 (0.021) 0.768 (0.021) 0.749 (0.029)

DFCI

AUC (Standard Error)

OPP med.knn mice amelia moving.avg bpca mean opt.knn

1 0.845 (0.017) 0.857 (0.016) 0.854 (0.012) 0.835 (0.016) 0.854 (0.017) 0.854 (0.016) 0.846 (0.017)
2 0.838 (0.023) 0.844 (0.015) 0.831 (0.015) 0.83 (0.017) 0.842 (0.018) 0.842 (0.019) 0.835 (0.019)
3 0.84 (0.021) 0.845 (0.019) 0.838 (0.021) 0.83 (0.020) 0.841 (0.020) 0.841 (0.020) 0.836 (0.021)
4 0.847 (0.017) 0.845 (0.017) 0.845 (0.020) 0.836 (0.018) 0.843 (0.020) 0.844 (0.018) 0.84 (0.020)
5 0.862 (0.015) 0.85 (0.017) 0.855 (0.015) 0.85 (0.017) 0.852 (0.017) 0.852 (0.017) 0.844 (0.019)
6 0.872 (0.014) 0.858 (0.015) 0.859 (0.020) 0.858 (0.015) 0.865 (0.017) 0.865 (0.017) 0.853 (0.018)
7 0.878 (0.014) 0.862 (0.015) 0.865 (0.018) 0.864 (0.014) 0.867 (0.016) 0.867 (0.015) 0.858 (0.016)
8 0.878 (0.019) 0.866 (0.018) 0.873 (0.017) 0.866 (0.016) 0.871 (0.017) 0.871 (0.017) 0.861 (0.019)
9 0.882 (0.012) 0.872 (0.015) 0.865 (0.012) 0.867 (0.013) 0.873 (0.016) 0.873 (0.016) 0.867 (0.017)
10 0.889 (0.015) 0.878 (0.018) 0.9 (0.014) 0.872 (0.016) 0.881 (0.019) 0.881 (0.019) 0.873 (0.020)
11 0.89 (0.014) 0.881 (0.017) 0.906 (0.026) 0.874 (0.015) 0.886 (0.016) 0.886 (0.016) 0.881 (0.017)
12 0.889 (0.017) 0.879 (0.019) 0.881 (0.017) 0.872 (0.016) 0.884 (0.018) 0.884 (0.018) 0.879 (0.018)

PPMI

MAE (Standard Error)

OPP med.knn mice amelia moving.avg bpca mean opt.knn

1 2.116 (0.076) 2.183 (0.058) 2.12 (0.079) 2.249 (0.094) 2.08 (0.063) 2.104 (0.098) 2.087 (0.107)
2 1.982 (0.102) 2.141 (0.047) 2.094 (0.115) 2.167 (0.088) 2.101 (0.075) 2.1 (0.099) 2.089 (0.081)
3 1.899 (0.089) 2.09 (0.062) 2.075 (0.090) 2.071 (0.081) 2.03 (0.121) 2.029 (0.120) 2.009 (0.082)
4 1.923 (0.040) 2.138 (0.032) 2.126 (0.078) 2.076 (0.063) 2.101 (0.058) 2.126 (0.034) 2.097 (0.050)

Table 12: Downstream accuracy results for each method on the FHS, DFCI, and PPMI datasets, varying
the time horizon which determines the number of observations per patient. The missing data mechanism is
fixed to MCAR, and the total percentage of missing data is fixed to 50%. For an illustration, see Figure 9.
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FHS

MAE (Standard Error)

Gamma med.knn mice moving.avg amelia bpca mean opt.knn

0.1 0.261 (0.005) 0.602 (0.031) 0.473 (0.005) 0.672 (0.027) 0.562 (0.018) 0.547 (0.021) 0.519 (0.020)
0.2 0.26 (0.004) 0.612 (0.036) 0.474 (0.004) 0.681 (0.027) 0.571 (0.031) 0.554 (0.026) 0.527 (0.027)
0.3 0.259 (0.005) 0.621 (0.043) 0.471 (0.008) 0.681 (0.035) 0.565 (0.026) 0.555 (0.029) 0.523 (0.028)
0.4 0.262 (0.003) 0.603 (0.040) 0.474 (0.004) 0.671 (0.030) 0.558 (0.026) 0.548 (0.026) 0.515 (0.028)
0.5 0.261 (0.006) 0.623 (0.043) 0.478 (0.007) 0.695 (0.046) 0.573 (0.032) 0.563 (0.037) 0.532 (0.032)
0.6 0.261 (0.004) 0.627 (0.067) 0.472 (0.005) 0.689 (0.061) 0.569 (0.039) 0.559 (0.042) 0.527 (0.038)
0.7 0.262 (0.006) 0.614 (0.051) 0.473 (0.005) 0.677 (0.055) 0.559 (0.042) 0.549 (0.043) 0.517 (0.041)
0.8 0.262 (0.006) 0.59 (0.012) 0.473 (0.005) 0.662 (0.028) 0.558 (0.011) 0.538 (0.013) 0.516 (0.013)
0.9 0.262 (0.006) 0.59 (0.012) 0.473 (0.005) 0.654 (0.014) 0.558 (0.011) 0.538 (0.013) 0.516 (0.013)
1 0.262 (0.006) 0.59 (0.012) 0.473 (0.005) 0.656 (0.012) 0.558 (0.011) 0.538 (0.013) 0.516 (0.013)

DFCI

MAE (Standard Error)

Gamma med.knn mice amelia moving.avg bpca mean opt.knn

0.1 5.11 (0.082) 5.862 (0.104) 7.043 (0.278) 6.353 (0.073) 7.16 (0.107) 5.978 (0.056) 6.214 (0.200)
0.2 5.41 (0.087) 6.182 (0.110) 7.105 (0.449) 6.598 (0.085) 7.429 (0.169) 6.243 (0.054) 6.464 (0.181)
0.3 5.608 (0.091) 6.376 (0.098) 7.246 (0.290) 6.754 (0.086) 7.593 (0.200) 6.421 (0.058) 6.615 (0.133)
0.4 5.781 (0.097) 6.545 (0.085) 7.291 (0.257) 6.908 (0.093) 7.643 (0.245) 6.567 (0.058) 6.777 (0.120)
0.5 5.922 (0.100) 6.685 (0.085) 7.462 (0.197) 7.026 (0.097) 7.69 (0.280) 6.685 (0.056) 6.878 (0.112)
0.6 6.045 (0.095) 6.801 (0.079) 7.532 (0.173) 7.138 (0.090) 7.726 (0.298) 6.785 (0.056) 6.968 (0.104)
0.7 6.144 (0.096) 6.892 (0.078) 7.581 (0.211) 7.225 (0.092) 7.758 (0.326) 6.872 (0.057) 7.06 (0.117)
0.8 6.255 (0.101) 7.002 (0.084) 7.601 (0.179) 7.328 (0.093) 7.798 (0.366) 6.958 (0.062) 7.158 (0.098)
0.9 6.347 (0.103) 7.1 (0.080) 7.671 (0.192) 7.406 (0.096) 7.814 (0.372) 7.03 (0.060) 7.251 (0.087)
1 6.438 (0.104) 7.204 (0.075) 7.709 (0.200) 7.486 (0.097) 7.903 (0.354) 7.097 (0.058) 7.294 (0.092)

PPMI

MAE (Standard Error)

Gamma med.knn mice amelia moving.avg bpca mean opt.knn

0.1 1.302 (0.050) 2.11 (0.065) 2.774 (0.091) 2.359 (0.051) 2.815 (0.105) 2.485 (0.061) 2.179 (0.114)
0.2 1.459 (0.038) 2.269 (0.088) 2.87 (0.102) 2.502 (0.029) 2.973 (0.115) 2.659 (0.072) 2.373 (0.183)
0.3 1.636 (0.043) 2.41 (0.058) 3.01 (0.116) 2.667 (0.055) 3.104 (0.072) 2.835 (0.028) 2.507 (0.119)
0.4 1.78 (0.039) 2.571 (0.112) 3.051 (0.130) 2.801 (0.044) 3.203 (0.100) 2.977 (0.073) 2.679 (0.159)
0.5 1.91 (0.051) 2.641 (0.092) 3.161 (0.120) 2.935 (0.047) 3.308 (0.122) 3.08 (0.054) 2.761 (0.069)
0.6 2.006 (0.057) 2.778 (0.077) 3.308 (0.144) 3.013 (0.057) 3.343 (0.143) 3.19 (0.074) 2.904 (0.087)
0.7 2.117 (0.029) 2.931 (0.100) 3.424 (0.099) 3.126 (0.027) 3.489 (0.094) 3.311 (0.049) 3.052 (0.049)
0.8 2.246 (0.034) 3.076 (0.078) 3.538 (0.112) 3.258 (0.036) 3.655 (0.121) 3.459 (0.055) 3.199 (0.065)
0.9 2.374 (0.043) 3.225 (0.071) 3.736 (0.480) 3.385 (0.037) 3.752 (0.158) 3.557 (0.057) 3.339 (0.069)
1 2.487 (0.047) 3.375 (0.095) 3.883 (0.535) 3.496 (0.041) 3.856 (0.202) 3.664 (0.070) 3.564 (0.220)

Table 13: Imputation errors for each method on the FHS, DFCI, and PPMI datasets, varying the ratio of
the missing data mechanism from γ = 0 (30% MCAR, 0% MNAR) to γ = 1 (0% MCAR, 30% MNAR).
For an illustration, see Figure 6.
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FHS

AUC (Standard Error)

Gamma med.knn mice moving.avg amelia bpca mean opt.knn

0.1 0.89 (0.015) 0.841 (0.024) 0.861 (0.021) 0.808 (0.028) 0.846 (0.028) 0.836 (0.023) 0.838 (0.027)
0.2 0.897 (0.021) 0.843 (0.036) 0.866 (0.025) 0.816 (0.038) 0.847 (0.036) 0.841 (0.034) 0.841 (0.037)
0.3 0.89 (0.014) 0.857 (0.018) 0.859 (0.024) 0.824 (0.023) 0.859 (0.022) 0.851 (0.020) 0.85 (0.018)
0.4 0.892 (0.019) 0.854 (0.025) 0.86 (0.023) 0.831 (0.032) 0.857 (0.025) 0.849 (0.023) 0.848 (0.028)
0.5 0.891 (0.021) 0.858 (0.018) 0.857 (0.025) 0.84 (0.024) 0.862 (0.015) 0.855 (0.015) 0.854 (0.015)
0.6 0.889 (0.020) 0.865 (0.025) 0.86 (0.029) 0.834 (0.028) 0.867 (0.018) 0.86 (0.021) 0.859 (0.023)
0.7 0.894 (0.019) 0.865 (0.022) 0.868 (0.020) 0.845 (0.031) 0.868 (0.020) 0.861 (0.023) 0.862 (0.022)
0.8 0.894 (0.019) 0.848 (0.024) 0.868 (0.020) 0.835 (0.039) 0.854 (0.015) 0.847 (0.020) 0.848 (0.022)
0.9 0.894 (0.019) 0.848 (0.024) 0.868 (0.020) 0.812 (0.019) 0.854 (0.015) 0.847 (0.020) 0.848 (0.022)
1 0.894 (0.019) 0.848 (0.024) 0.868 (0.020) 0.825 (0.018) 0.854 (0.015) 0.847 (0.020) 0.848 (0.022)

DFCI

AUC (Standard Error)

Gamma med.knn mice amelia moving.avg bpca mean opt.knn

0.1 0.916 (0.013) 0.915 (0.014) 0.902 (0.015) 0.909 (0.012) 0.912 (0.014) 0.91 (0.014) 0.907 (0.014)
0.2 0.916 (0.012) 0.915 (0.014) 0.901 (0.016) 0.909 (0.012) 0.91 (0.014) 0.909 (0.014) 0.906 (0.014)
0.3 0.915 (0.012) 0.912 (0.014) 0.902 (0.015) 0.908 (0.012) 0.909 (0.013) 0.909 (0.014) 0.905 (0.013)
0.4 0.914 (0.012) 0.91 (0.014) 0.899 (0.014) 0.908 (0.011) 0.909 (0.013) 0.909 (0.013) 0.905 (0.014)
0.5 0.914 (0.013) 0.909 (0.015) 0.898 (0.016) 0.907 (0.012) 0.908 (0.014) 0.908 (0.014) 0.903 (0.015)
0.6 0.913 (0.012) 0.908 (0.014) 0.895 (0.016) 0.908 (0.011) 0.907 (0.014) 0.908 (0.014) 0.902 (0.015)
0.7 0.912 (0.012) 0.907 (0.015) 0.897 (0.016) 0.909 (0.011) 0.906 (0.013) 0.909 (0.012) 0.902 (0.013)
0.8 0.913 (0.012) 0.906 (0.014) 0.897 (0.014) 0.906 (0.011) 0.905 (0.013) 0.905 (0.013) 0.902 (0.014)
0.9 0.912 (0.012) 0.905 (0.014) 0.897 (0.014) 0.903 (0.012) 0.903 (0.014) 0.901 (0.013) 0.902 (0.014)
1 0.912 (0.012) 0.904 (0.015) 0.897 (0.013) 0.903 (0.011) 0.904 (0.014) 0.902 (0.013) 0.902 (0.014)

PPMI

MAE (Standard Error)

Gamma med.knn mice amelia moving.avg bpca mean opt.knn

0.1 1.851 (0.104) 2 (0.065) 2.037 (0.112) 2.061 (0.098) 2.01 (0.109) 2.065 (0.093) 2.016 (0.097)
0.2 1.905 (0.072) 2.04 (0.073) 2.084 (0.115) 2.115 (0.081) 2.066 (0.086) 2.126 (0.087) 2.094 (0.046)
0.3 1.905 (0.055) 2.039 (0.064) 2.116 (0.090) 2.106 (0.052) 2.066 (0.053) 2.12 (0.088) 2.065 (0.066)
0.4 1.968 (0.064) 2.066 (0.085) 2.163 (0.088) 2.174 (0.064) 2.085 (0.095) 2.171 (0.097) 2.089 (0.083)
0.5 2.011 (0.084) 2.152 (0.048) 2.223 (0.092) 2.212 (0.087) 2.167 (0.059) 2.246 (0.072) 2.186 (0.075)
0.6 2.004 (0.029) 2.169 (0.080) 2.222 (0.073) 2.214 (0.024) 2.2 (0.052) 2.261 (0.074) 2.2 (0.063)
0.7 2.026 (0.066) 2.17 (0.088) 2.259 (0.074) 2.237 (0.054) 2.199 (0.086) 2.274 (0.088) 2.2 (0.068)
0.8 2.031 (0.064) 2.189 (0.065) 2.259 (0.064) 2.243 (0.069) 2.179 (0.061) 2.248 (0.081) 2.214 (0.066)
0.9 2.07 (0.086) 2.235 (0.068) 2.29 (0.076) 2.289 (0.087) 2.24 (0.080) 2.295 (0.081) 2.225 (0.090)
1 2.074 (0.106) 2.245 (0.071) 2.293 (0.066) 2.309 (0.112) 2.257 (0.072) 2.311 (0.066) 2.236 (0.095)

Table 14: Downstream accuracy results for each method on the FHS, DFCI, and PPMI datasets, varying
the ratio of the missing data mechanism from γ = 0 (30% MCAR, 0% MNAR) to γ = 1 (0% MCAR, 30%
MNAR). For an illustration, see Figure 10.
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MedImpute Hyperparameter Tuning Results for FHS Experiments

In this section, we present the MedImpute hyperparameters which were selected for the FHS experiments.
These hyperparameters were tuned via the custom procedure described in Section 2.4. The covariates in
the FHS dataset are:

1. Afib: Boolean whether or not the patient has a diagnosis of Atrial Fibrillation.
2. Age: Age of the patient (in years).
3. AHT: Boolean whether or not the patient has a diagnosis of Arterial Hypertension.
4. BMI: Body Mass Index of the patient.
5. CVD: Boolean whether or not the patient has a diagnosis of Cardiovascular Disease.
6. Diabetes: Boolean whether or not the patient has a diagnosis of Diabetes.
7. Gender: Gender of the patient.
8. Glucose bl: Blood glucose level of the patient.
9. HDL: High-Density Lipoproteins level of the patient.

10. LVH: Boolean whether or not the patient has a diagnosis of Left Ventricular Hypertrophy.
11. SBP: Systolic Blood Pressure of the patient.
12. Smoking: Categorical variable describing the smoking behavior of the patient.

Missing %

Covariate 10 20 30 40 50

Afib 365 365 365 365 365
Age 180 180 180 180 180
AHT 365 365 1000 1000 1000
BMI 365 365 1000 1000 1000
CVD 365 365 365 365 365
diabetes 1000 1000 1000 1000 1000
Gender 1 1 1 1 1
Glucose bl 1000 1000 1000 1000 1000
HDL 1000 1000 1000 1000 1000
Hemat 1000 1000 1000 1000 1000
LVH 1000 1000 1000 1000 1000
SBP 1000 1000 1000 1000 1000
Smoking 1000 1000 1000 1000 1000

Table 15: Median halflife parameter selected for each covariate in the FHS dataset in the MCAR Missing
Percentage experiments with 10 observations per patient.

Missing %

Covariate 10 20 30 40 50

Afib 1 1 1 1 1
Age 1 1 1 1 0.95
AHT 1 1 1 1 1
BMI 1 1 1 1 1
CVD 1 1 1 1 1
diabetes 1 1 1 1 1
Gender 1 1 1 1 1
Glucose bl 0.65 0.6 0.6 0.55 0.5
HDL 0.85 0.85 0.85 0.85 0.85
Hemat 0.8 0.8 0.8 0.75 0.75
LVH 1 1 1 1 1
SBP 0.85 0.85 0.8 0.75 0.75
Smoking 1 1 1 1 1

Table 16: Median alpha parameter selected for each covariate in the FHS dataset in the MCAR Missing
Percentage experiments with 10 observations per patient.
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Observations Per Patient (OPP)

Covariate 1 2 3 4 5 6 7 8 9 10

Afib 1 1 1000 1000 365 365 365 365 365 365
Age 1 1 90 90 180 180 180 180 180 180
AHT 1 1 1000 1000 1000 1000 1000 1000 1000 1000
BMI 1 1 365 365 1000 1000 1000 1000 1000 1000
CVD 1 1 180 365 365 365 365 365 365 365
diabetes 1 1 1000 1000 1000 1000 1000 1000 1000 1000
Gender 1 1 1 1 1 1 1 1 1 1
Glucose bl 1 1 1000 1000 1000 1000 1000 1000 1000 1000
HDL 1 1 1000 1000 1000 1000 1000 1000 1000 1000
Hemat 1 1 1000 1000 1000 1000 1000 1000 1000 1000
LVH 1 1 1000 1000 1000 1000 1000 1000 1000 1000
SBP 1 1 1000 1000 1000 1000 1000 1000 1000 1000
Smoking 1 1 365 1000 1000 1000 1000 1000 1000 1000

Table 17: Median halflife parameter selected for each covariate in the FHS dataset in the MCAR OPP
experiments with 50% missing data.

Observations Per Patient (OPP)

Covariate 1 2 3 4 5 6 7 8 9 10

Afib 0 1 1 1 1 1 1 1 1 1
Age 0 0.8 0.8 0.8 0.85 0.85 0.9 0.9 0.9 0.95
AHT 0 1 1 1 1 1 1 1 1 1
BMI 0 0.95 0.95 0.95 0.95 0.95 0.95 0.95 1 1
CVD 0 1 1 1 1 1 1 1 1 1
diabetes 0 1 1 1 1 1 1 1 1 1
Gender 0 1 1 1 1 1 1 1 1 1
Glucose bl 0 0.6 0.6 0.5 0.55 0.5 0.55 0.55 0.5 0.5
HDL 0 0.9 0.85 0.9 0.9 0.85 0.9 0.85 0.85 0.85
Hemat 0 0.8 0.7 0.7 0.75 0.75 0.75 0.75 0.75 0.75
LVH 0 1 1 1 1 1 1 1 1 1
SBP 0 0.65 0.6 0.65 0.65 0.65 0.7 0.7 0.7 0.75
Smoking 0 1 1 1 1 1 1 1 1 1

Table 18: Median alpha parameter selected for each covariate in the FHS dataset in the MCAR OPP
experiments with 50% missing data.

Gamma

Covariate 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Afib 365 1000 365 365 365 365 365 365 365 365 365
Age 180 180 180 180 180 180 180 180 180 180 180
AHT 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
BMI 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
CVD 365 365 365 365 365 365 365 365 365 365 365
diabetes 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
Gender 1 1 1 1 1 1 1 1 1 1 1
Glucose bl 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
HDL 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
Hemat 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
LVH 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
SBP 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
Smoking 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

Table 19: Median halflife parameter selected for each covariate in the FHS dataset in the MNAR experiments
with 50% missing data and 10 observations per patient.
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Gamma

Covariate 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Afib 1 1 1 1 1 1 1 1 1 1 1
Age 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95
AHT 1 1 1 1 1 1 1 1 1 1 1
BMI 1 1 1 1 1 1 1 1 1 1 1
CVD 1 1 1 1 1 1 1 1 1 1 1
diabetes 1 1 1 1 1 1 1 1 1 1 1
Gender 1 1 1 1 1 1 1 1 1 1 1
Glucose bl 0.5 0.5 0.5 0.5 0.5 0.5 0.55 0.5 0.5 0.5 0.5
HDL 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
Hemat 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
LVH 1 1 1 1 1 1 1 1 1 1 1
SBP 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
Smoking 1 1 1 1 1 1 1 1 1 1 1

Table 20: Median alpha parameter selected for each covariate in the FHS dataset in the MNAR experiments
with 50% missing data and 10 observations per patient.
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7.3 Supplemental Synthetic Experiments Results

Figure 14 provides a direct comparison between the Custom Tuning and Grid Search parameter selection
processes. We provide results with respect to the imputation error using the RMSE metric.
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Fig. 14: Average RMSE imputation errors for MedImpute methods on the Synthea dataset using different
procedures for hyperparameter tuning, with varying numbers of observations n and features p in the dataset.
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7.4 Nemenyi Critical Diagrams

In this section, we show Nemenyi Critical Diagrams (Ismail Fawaz et al. 2019) for the results from the Per-
centage of Missing Data experiments which are presented in Section 3. These graphs highlight statistically
significant differences in the overall rankings of the methods. To generate these diagrams, first the Fried-
man Rank Test was performed to compare the relative performance of the different imputation methods
in each experiment. Second, the Wilcoxon-Holm method was performed to detect pairwise significance. In
the diagram for a single experiment, each imputation method is plotted according to its average relative
rank on a number line from one to seven. Methods which do not have statistically significant differences in
their overall rankings are joined by a horizontal line.

In Figures 15 and 16, we show the Nemenyi Critical Diagrams comparing the methods on the imputation
tasks under the MAE and RMSE metrics, respectively. For the FHS and PPMI datasets, we observe that
med.knn is consistently the top ranked method across all of the experiments. For the DFCI dataset, med.knn
is consistently top ranked method under the MAE metric, however med.knn outperforms the benchmark
methods by a smaller margin under the RMSE metric.

In Figure 17, we show the Nemenyi Critical Diagrams comparing the methods on the downstream
predictive tasks. Our results demonstrate the edge of the proposed algorithm over the other missing data
imputation methods considered. The performance gap is wider in the longitudinal datasets (FHS, PPMI)
compared to the DFCI dataset. Nevertheless, even in the latter case, we notice that med.knn improves upon
the other best performing methods (mean and bpca).
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Fig. 15: Nemenyi Critical Diagrams comparing the relative ranking of all methods on the imputation tasks
varying the percentage of missing data with respect to the MAE metric. Diagrams are shown for the FHS,
DFCI, and PPMI datasets (right to left) and varying levels of missing data from 10% to 50% (top to
bottom). In each diagram, imputation methods are plotted according to their average relative rankings on
a number line from one to seven. Methods which do not have statistically significant differences in their
overall rankings are joined by a horizontal line.
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Fig. 16: Nemenyi Critical Diagrams comparing the relative ranking of all methods on the imputation tasks
varying the percentage of missing data with respect to the RMSE metric. Diagrams are shown for the
FHS, DFCI, and PPMI datasets (right to left) and varying levels of missing data from 10% to 50% (top
to bottom). In each diagram, imputation methods are plotted according to their average relative rankings
on a number line from one to seven. Methods which do not have statistically significant differences in their
overall rankings are joined by a horizontal line.
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Fig. 17: Nemenyi Critical Diagrams comparing the relative ranking of all methods on the downstream
predictive tasks varying the percentage of missing data. For the FHS and DFCI datasets, rankings are
based upon the out-of-sample AUC metric, and for the PPMI dataset, rankings are based upon the out-
of-sample MAE metric. Diagrams are shown for the FHS, DFCI, and PPMI datasets (right to left) and
varying levels of missing data from 10% to 50% (top to bottom). In each diagram, imputation methods are
plotted according to their average relative rankings on a number line from one to seven. Methods which do
not have statistically significant differences in their overall rankings are joined by a horizontal line.
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7.5 Additional Statistical Significance Tests for the Percentage of Missing Data Experiments

In this section, we present the results from statistical tests comparing the performance of the med.knn
method at different levels of missing data. In particular, we run Welch two-sided t-tests evaluating whether
med.knn leads to higher imputation error and lower downstream model accuracy as we increase the per-
centage of missing data. We run statistical tests for the following pairs of missing percentages: 10% vs.
20%, 20% vs. 30%, 30% vs. 40%, and 40% vs. 50%.

The results from the t-tests comparing the imputation errors are summarized in Table 21. We observe
that in all of the experiments, the imputation error significantly increases going from 40% to 50% missing
values. Similarly, the imputation error significantly increases going from 30% to 40% missing values with
the exception of the DFCI dataset. For the MAE metric, most of the differences are not significant for
percentage shifts below 30%. On the other hand, most of the differences for the percentage shifts below
30% are significant for the RMSE metric, with the exception of two cases where the opposite trend is
observed.

Dataset Metric 10%− 20% 20%− 30% 30%− 40% 40%− 50%

DFCI MAE 1.696 (0.093) 0.79 (0.432) 1.543 (0.127) 3.914 (<0.001***)
FHS MAE -1.612 (0.116) 7.506 (<0.001***) 5.648 (<0.001***) 10.413 (<0.001***)
PPMI MAE 2.146 (0.023*) 0.851 (0.403) 6.217 (<0.001***) 8.155 (<0.001***)

DFCI RMSE 4.772 (<0.001***) 6.318 (<0.001***) 7.716 (<0.001***) 9.336 (<0.001***)
FHS RMSE -39.232 (0.005**) 44.142 (<0.001***) 51.106 (<0.001***) 69.95 (<0.001***)
PPMI RMSE 11.486 (<0.001***) -6.807 (0.028*) 28.54 (<0.001***) 35.852 (<0.001***)

Table 21: Results from Welch two-sided t-tests comparing the imputation error of the med.knn algorithm
for varying pairs of missing percentages under the MCAR missing data mechanism. Each entry shows
the t-statistic for a particular comparison with the associated p-value in parentheses. Positive t-statistics
indicate that the lower missing percentage is associated with the lower imputation error.

The results from the t-tests comparing the downstream model performance are summarized in Table
22. In all but one case, we observe that the downstream model performance significantly declines as the
percentage of missing data increases.

Dataset Metric 10%− 20% 20%− 30% 30%− 40% 40%− 50%

DFCI AUC 32.366 (<0.001***) 50.443 (<0.001***) 81.234 (<0.001***) 120.435 (<0.001***)
FHS AUC 160.727 (<0.001***) 160.093 (<0.001***) 135.249 (<0.001***) 163.204 (<0.001***)
PPMI MAE 2.154 (0.051) 10.672 (<0.001***) 18.744 (<0.001***) 16.165 (<0.001***)

Table 22: Results from Welch two-sided t-tests comparing the downstream model accuracy of the med.knn
algorithm for varying pairs of missing percentages under the MCAR missing data mechanism. Each entry
shows the t-statistic for a particular comparison with the associated p-value in parentheses. Positive t-
statistics indicate that the lower missing percentage is associated with higher downstream model accuracy.

54


