
MIT Open Access Articles

Game tree search for minimizing 
detectability and maximizing visibility

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

As Published: https://doi.org/10.1007/s10514-020-09963-4

Publisher: Springer US

Persistent URL: https://hdl.handle.net/1721.1/131973

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/131973


Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2021 Springer Science+Business Media, LLC, part of Springer Nature.

Game tree search for minimizing detectability and maximizing
visibility

Cite this article as: Zhongshun Zhang, Jonathon M. Smereka, Joseph Lee, Lifeng Zhou,
Yoonchang Sung and Pratap Tokekar, Game tree search for minimizing detectability and
maximizing visibility, Autonomous Robots https://doi.org/10.1007/s10514-020-09963-4

This Author Accepted Manuscript is a PDF file of an unedited peer-reviewed manuscript that
has been accepted for publication but has not been copyedited or corrected. The official version
of record that is published in the journal is kept up to date and so may therefore differ from this
version.

Terms of use and reuse: academic research for non-commercial purposes, see here for full
terms. https://www.springer.com/aam-terms-v1

https://doi.org/10.1007/s10514-020-09963-4
https://www.springer.com/aam-terms-v1


Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2021 Springer Science+Business Media, LLC, part of Springer Nature.

Noname manuscript No.
(will be inserted by the editor)

Game Tree Search for Minimizing Detectability and
Maximizing Visibility

Zhongshun Zhang · Jonathon M. Smereka · Joseph Lee · Lifeng Zhou ·
Yoonchang Sung · Pratap Tokekar

Received: date / Accepted: date

Abstract We introduce and study the problem of plan-
ning a trajectory for an agent to carry out a scouting
mission while avoiding being detected by an adversar-
ial opponent. This introduces a multi-objective version
of classical visibility-based target search and pursuit-
evasion problem. In our formulation, the agent receives
a positive reward for increasing its visibility (by explor-
ing new regions) and a negative penalty every time it
is detected by the opponent. The objective is to find
a finite-horizon path for the agent that balances the
trade off between maximizing visibility and minimizing
detectability.

We model this problem as a discrete, sequential,
two-player, zero-sum game. We use two types of game
tree search algorithms to solve this problem: minimax
search tree and Monte-Carlo search tree. Both search

Distribution A: Approved for public release; distribution un-
limited. OPSEC # 3929

Zhongshun Zhang
Department of Computer Science, University of Maryland,
College Park. E-mail: zszhang@umd.edu

Jonathon M. Smereka
U.S. Army CCDC Ground Vehicle Systems Center. E-mail:
jonathon.m.smereka.civ@mail.mil

Joseph Lee
Aptiv. E-mail: joseph.lee@aptiv.com

Lifeng Zhou
Department of Electrical & Computer Engineering, Virginia
Tech, Blacksburg. E-mail: lfzhou@vt.edu

Yoonchang Sung
Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge. E-mail:
yooncs8@csail.mit.edu

Pratap Tokekar
Department of Computer Science, University of Maryland,
College Park. E-mail: tokekar@umd.edu

trees can yield the optimal policy but may require pos-
sibly exponential computational time and space. We
first propose three pruning techniques to reduce the
computational time while preserving optimality guar-
antees. When the agent and the opponent are located
far from each other initially, we present a variable reso-
lution technique with longer planning horizon to further
reduce computational time. Simulation results show the
effectiveness of the proposed strategies in terms of com-
putational time.

1 Introduction

Planning for visually covering an environment is a widely
studied problem in robots with many real-world appli-
cations, such as environmental monitoring [1], preci-
sion farming [2], ship hull inspection [3], and adver-
sarial multi-agent tracking [4, 5]. The goal is typically
to find a path for an agent to maximize the area cov-
ered within a certain time budget or to minimize the
time required to visually cover the entire environment.
The latter is known as the Watchman Route Problem
(WRP) [6] and is closely related to the Art Gallery
Problem (AGP) [7]. The goal in AGP is to find the
minimum number of cameras required to see all points
in a polygonal environment. In this paper, we extend
this class of visibility-based coverage problems to ad-
versarial settings.

We consider scenarios where the environment also
contains an opponent that is actively (and adversari-
ally) searching for the agent (Figure 1). The agent, on
the other hand, is tasked with covering the environ-
ment while avoiding detection by the opponent. This
loosely models stealth reconnaissance missions where
the agent is required to exercise caution while collecting



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2021 Springer Science+Business Media, LLC, part of Springer Nature.

2 Zhongshun Zhang et al.

Fig. 1 The agent (the red star) aims to maximize the total
area covered within the given time horizon while at the same
time minimize the number of times the opponent (the blue
dot) detects it.

information in the environment. We consider the ver-
sion where there is a finite time horizon within which
the agent must complete its mission. The objective of
the agent is to maximize the total area covered within
the given time horizon while at the same time mini-
mizing the number of times the opponent detects it. In
an exploration mission, the positive reward can be a
function of the number of previously unseen cells visi-
ble from the current agent position (Figure 1). For ease
of illustration, we assume that both sensing ranges are
unlimited and obstacles in the environment can block
lines-of-sight. The case of limited sensing range can be
easily incorporated. The agent receives a negative re-
ward when it is detected by the opponent (e.g., when it
moves to a cell that lies within the opponent’s visibility
region).

We adopt a game-theoretic approach for this prob-
lem where the agent maximizes the total reward col-
lected and the opponent minimizes that total reward.
The total reward is a weighted combination of positive
and negative rewards. The positive reward depends on
the specific task at hand. For example, when the task is
to scout an environment (Figure 1), the positive reward
can be the total area that is scanned by the agent along
its path. In this paper, we consider the case where the
agent receives a fixed negative reward every time it is
detected by the opponent. However, other models (e.g.,
time-varying negative rewards) can be easily incorpo-
rated. The total reward is a combination of the two
reward functions.

The proposed problem builds on classic pursuit eva-
sion games [8–10] and visibility-based scouting prob-
lems [11,12]. In classic pursuit-evasion, the evader (i.e.,
the agent in our setting) always tries to avoid the cap-
ture of the pursuer (i.e., the opponent). In our setting,
in addition to avoiding being detected by the oppo-
nent, the agent is tasked to explore the environment to

maximize the total area covered. Thus, the definition
of winning a game in our scenario is different. In classic
pursuit-evasion games, the pursuer wins the game if the
distance between the pursuer and the evader becomes
less than a threshold [13] or if the evader is surrounded
by the pursuer [14]. However, in our setting, winning
the game depends on the information collected, such as
the area explored, something that has not been consid-
ered in the conventional pursuit-evasion work. Also, by
considering the opponent, this problem separates from
the traditional exploration problems such as reconnais-
sance and surveillance where the goal is to maximize
the information collected only.

There has been recent work on designing strategies
for the visibility-based adversarial planning problem.
Raboin et al. [10] introduced a heuristic search tech-
nique for solving pursuit-evasion games in partially ob-
servable Euclidean space. Another visibility-based pursuit-
evasion problem formulated by Li et al. [15] is closely
related to ours. Instead of relying on a regular discrete
environment, the authors represented the game’s state
using visibility-based decomposition of the environment
paired with a more classical grid-based decomposition.
They also utilized minimax and MCTS to compute one
player’s optimal strategies. The main difference is that
we consider an objective which is a combination of cov-
erage and evasion, something that prior works have not
addressed. We also exploit the properties of this prob-
lem to present ways to reduce the computational time
in practice.

We abstract the underlying geometry and model the
problem as a discrete, sequential, two-player, zero-sum
game. Minimax tree search [16] and Monte-Carlo tree
search (MCTS) [17] are well-known algorithms to solve
discrete, two-player, zero-sum games. Both techniques
build a search tree that contains all possible (or a subset
of all possible) actions for both players over the plan-
ning horizon. The MCTS algorithm has been shown to
converge to the optimal solution for turn-based [18] and
simultaneous-move games [19].

To reduce the computation time of minimax tree
search and MCTS, we first propose several pruning
techniques (Theorems 1-2) based on the structural prop-
erties of the underlying problem. We show the resulting
pruned tree still preserves optimality. To further reduce
the computational time, we then introduce a changing
resolution strategy that allows the agent to change the
spatial horizon to build a search tree with fewer levels.
We show that the resulting strategy outperforms the
fixed resolution one, especially in larger environments.

To summarize, the contributions of this effort are
as follows: (1) We formulate a problem of minimizing
detectability and maximizing visibility as a sequential,



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2021 Springer Science+Business Media, LLC, part of Springer Nature.

Game Tree Search for Minimizing Detectability and Maximizing Visibility 3

(a) The case when the
agent is detected by the op-
ponent.

(b) The agent and the op-
ponent move in a grid-
based environment.

Fig. 2 A negative penalty will be added if the agent is inside
the opponent’s visibility polygon (i.e., the blue region). In a
reconnaissance mission, the area of the agent’s visibility poly-
gon (i.e., the red region) is considered as a positive reward.
Both the agent and the opponent move in the grid-based en-
vironment, as in (b).

two-player, zero-sum game between an agent and an
opponent; (2) We propose three pruning strategies that
preserve optimality; and (3) a changing resolution strat-
egy, which can be applied for both the minimax tree
search and MCTS to reduce computational costs.

A preliminary version of the paper was presented at
ICRA 2019 [20] without the changing resolution strat-
egy, without detailed descriptions of the minmax tree
search and MCTS algorithms, and provide online plan-
ning results in richer environments including Gazebo
simulations.

The rest of the paper is organized as follows. We
begin by describing the problem setup in Section 2.
We then describe two tree search techniques in Sec-
tion 3 and present two approaches for improving the
computational efficiency of these tree search techniques
in Section 4. Next, we evaluate the effectiveness of the
proposed approaches through extensive simulations in
Section 5. In the end, we summarize the paper and out-
line some future work in Section 6.

2 Problem Formulation

We consider a grid-based environment where each cell
in the environment is associated with a positive reward.
Our problem is formulated by appropriately designing
the reward function — the agent obtains positive re-
wards for maximizing visibility (depending on the type
of mission) and receives negative rewards when detected
by the opponent. The reward is used to measure both
the visibility of an agent and the detectability by an
opponent.

We make the following assumptions: (1) The agent
and the opponent move in the same grid-based map

and can move one grid in one time step. (2) Both the
agent and the opponent know the full grid-based map a
priori. (3) We assume that the agent and the opponent
have known sensing ranges (not necessarily the same).
In this paper, we assume that both sensing ranges are
unlimited for ease of illustration. However, the case of
limited sensing range can be easily incorporated. (4)
The opponent has a sensor that can detect the agent
when the agent is within its visibility region. (5) There
is no motion uncertainty associated with the agent and
opponent. (6) The agent is aware of the position of the
opponent. These assumptions are applicable in scenar-
ios where we expect the agent’s actions to be conserva-
tive, taking into account an “intelligent” opponent that
always chooses the best move.

Even though the last assumption may seem restric-
tive, there are some practical scenarios where it is jus-
tified. For example, Bhadauria and Isler [21] describe a
visibility-based pursuit-evasion game where police heli-
copters can always provide the global positions of the
evader to the pursuer that is moving on the ground and
may not be able to directly see the pursuer. Thus, even
if the opponent is not in the field-of-view of the agent,
the agent may still know the position of the opponent
by communicating with other (aerial) agents. Note that
the agent still does not know where the opponent will
move next, thereby, making the problem challenging.

In general, the environment could be any discrete
environment, not just a grid-based environment, as long
as it satisfies the above requirements. Continuous en-
vironments can be appropriately discretized such that
they satisfy the above assumptions. Commonly used
techniques for environment discretization include graph
representation [22], occupancy maps [23], and random-
ized methods such as probabilistic roadmaps [24], and
Rapidly-exploring Random Trees [25,26].

The complexity of the tree search algorithm will
depend on the number of vertices (or grid cells) in a
given discretization. In Section 4, we present two ways
to improve efficiency. First, we show how to prune away
nodes and branches in the tree while preserving opti-
mality. Second, we show how to change the spatial res-
olution of the tree (Section 4.3) at different levels for
improving the search, especially in large environments.
By losing some precision, the tree can predict further
ahead, leading to better plans without incurring ad-
ditional computation cost. However, this method will
inevitably lose some accuracy. We show that reducing
the resolution is beneficial in net, through experiments
over a larger map.

We next describe the main problem to be solved in
the paper. Consider that the agent receives the positive
reward when exploring new area and penalties when



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2021 Springer Science+Business Media, LLC, part of Springer Nature.

4 Zhongshun Zhang et al.

detected by the opponent. The agent’s objective can be
written as:

max
πa(t)

min
πg(t)
{R(πa(t))− η(πa(t), πg(t))P} . (1)

While the objective of the opponent is as follows:

min
πg(t)

max
πa(t)

{R(πa(t))− η(πa(t), πg(t))P} , (2)

where πa(t) denotes an agent’s path from time step 0
to t. πg(t) denotes an opponent’s path from time step 0
to t. R(πa(t)) denotes the positive reward collected by
the agent along the path from time step 0 to t. P is a
constant which gives the negative reward for the agent
whenever it is detected by the opponent. η(πa(t), πg(t))
indicates the total number of times that the agent is
detected from time step 0 to t. For the rest of the paper,
we model R(πa(t)) to be the total area that is visible
from the agent’s path πa(t).

We model this problem as a discrete, sequential,
two-player zero-sum game between the opponent and
the agent. In the next section, we demonstrate how to
find the optimal strategy for this game and explain our
proposed pruning methods.

3 Tree Search Techniques

We abstract the underlying geometry and model the
problem as a discrete, sequential, two-player, zero-sum
game. Minimax tree search [16] and MCTS [17] are
two well-known algorithms to solve discrete, two-player,
zero-sum games. Both techniques build a search tree
that contains all possible (or a subset of all possible)
actions for both players over planning horizons. In gen-
eral, the size of search trees is exponential in planning
horizon. Pruning techniques, such as alpha-beta prun-
ing [27], can be employed to prune away branches that
are guaranteed not to be part of the optimal policy.

We refer to the agent and the opponent as MAX
and MIN players, respectively. Even though the agent
and the opponent move simultaneously, we can model
this problem as a turn-based game. At each time step,
the agent moves first to maximize the total reward, and
then the opponent moves to minimize the total reward.
This repeats for a total of T planning steps. In this
section, we first show how to build a minimax search
tree to find the optimal policy. Then, we show how to
construct a Monte-Carlo search tree to solve the same
problem. The advantage of MCTS is that it finds the
optimal policy in less computational time than minimax
tree — a finding we corroborate in Section 5.

3.1 Minimax Tree Search

A minimax tree search is a commonly used technique
for solving two-player zero-sum games [27]. Each node
stores the position of the agent, the position of the op-
ponent, the polygon that is visible to the agent along
the path from the root node till the current node, and
the number of times the opponent detects the agent
along the path from the root node to the current node.
The tree consists of the following types of nodes:

– Root node: The root node contains the initial posi-
tions of the agent and the opponent.

– MAX level : The MAX (i.e., agent) level expands
the tree by creating a new branch for each neighbor
of the agent’s position in its parent node from the
previous level (which can be either the root node
or a MIN level node). The agent’s position and its
visibility region are updated at each level. The op-
ponent’s position and the number of times the agent
is detected are not updated at this level.

– MIN level : The MIN (i.e., opponent) level expands
the tree by creating a new branch for each neighbor
of the opponent’s position in its parent node (which
is always a MAX level node). The opponent’s po-
sition is updated at each level. The total reward is
recalculated at this level based on the agent’s and
opponent’s current visibility polygons and the to-
tal number of times the agent is detected up to the
current level.

– Terminal node: The terminal node is always a MIN
level node. When the minimax tree is fully gener-
ated (i.e., the agent reaches a finite planning hori-
zon), the reward value of the terminal node can be
computed.

The reward values are backpropagated from the termi-
nal node to the root node. For each node, the minimax
policy chooses an action that maximizes (MAX level)
or minimizes (MIN level) the backpropagated reward.

Figure 3 illustrates the steps to build a minimax
tree that yields an optimal strategy by enumerating all
possible actions for both the agent and the opponent.
Algorithm 1 presents the algorithm of minimax tree
search.

3.2 Monte-Carlo Tree Search

In the naive minimax tree search, the tree is expanded
by considering all the neighbors of a leaf node, one-by-
one. In MCTS, the tree is expanded by carefully select-
ing one of the nodes to expand. The node to select for
expansion depends on the current estimate of the value
of the node. The value is found by simulating many



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2021 Springer Science+Business Media, LLC, part of Springer Nature.

Game Tree Search for Minimizing Detectability and Maximizing Visibility 5

MAX

MIN

MAX

Root
Agent
Opponent

Visibility range

Fig. 3 A (partial) minimax search tree. The root node con-
tains the initial states of the agent and the opponent. Two
successive levels of the tree correspond to one time step. The
agent moves first to an available position in order to maximize
the reward (MAX level). The opponent moves subsequently
to a neighboring cell to minimize the agent’s reward (MIN
level).

rollouts. In each rollout, we simulate one instance of
the game, starting from the selected node, by applying
some arbitrary policy for the agent and the opponent
until the end of the planning horizon, T . The total re-
ward collected is stored at the corresponding node. This
reward is then used to determine how likely is the node
to be chosen for expansion in future iterations. Algo-
rithm 2 presents the algorithm of MCTS.

Agent Policy

Guard Policy Backpropagation

 Selection Expansion Simulation

Rollout reward

Backpropagation

Fig. 4 Four iteration steps in Monte-Carlo search tree.

Each node in the Monte-Carlo search tree stores the
total reward value, and the number of times the node
is visited. Each iteration of MCTS consists of the fol-
lowing four steps [28] (Figure 4):

– Selection (Line 4 in Algorithm 2, pseudocode pre-
sented in Algorithm 3): Starting from the root node
(in every iteration), the node selection algorithm
uses the current reward value to recursively descend
through the tree until we reach a node that is not
at the terminal level (i.e., corresponding to time T )
and has children that have never been visited be-
fore. We use the Upper Confidence Bound for Trees
(UCT) [18] to determine which node should be se-
lected. The UCT value takes into account not only

Algorithm 1: The Minimax search with Prun-
ing.
1 function Minimax(node, depth, α, β, state)
2 if node is a terminal node then
3 return value
4 else if state is at the agent level then
5 for each child v of node do
6 V ← Minimax(v, depth − 1, α, β,MIN)
7 bestvalue ← max(bestvalue, V )
8 α← max(bestvalue, α)

// Alpha-beta pruning
9 if β ≤ α then

10 break
11 end

// Proposed condition
12 if pruning condition is true then
13 break
14 end
15 return value
16 end
17 else
18 for each child v of node do
19 V ← Minimax(v, depth− 1, α, β,MAX)
20 bestvalue ← min(bestvalue, V )
21 β ← min(bestvalue, β)
22 if β ≤ α then
23 break
24 end
25 if pruning condition is true then
26 break
27 end
28 return value
29 end
30 end
31 Initial← {S0},Map
32 Ar(s), At(s)← Minimax(S0, 1,−∞,∞,MAX)
33 end

the average of the rollout reward obtained but also
the number of times the node has been visited. If a
node is not visited often, then the second term in
the UCT value will be high, improving its likelihood
of getting selected. At the agent level, we choose the
node with the highest UCT value while at the op-
ponent level with the lowest UCT value. Note that
n(v) stands for the number of simulations for the
node v, and N stands for the total number of MCTS
simulations.

– Expansion (Lines 6-9 in Algorithm 2): Child nodes
(one or more) are added to the selected nodes to ex-
pand the tree. If the child node is at the agent level,
the node denotes one of the available actions for the
agent. If the child node is at the opponent level,
the node denotes one of the available actions for the
opponent. Expansion details are given in Algorithm
2.

– Rollout (Line 11 in Algorithm 2, pseudocode pre-
sented in Algorithm 4): A Monte-Carlo simulation is



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2021 Springer Science+Business Media, LLC, part of Springer Nature.

6 Zhongshun Zhang et al.

carried out from the expanded node for the remain-
ing planning horizon. The agent and the opponent
follow a random policy uniformly. Based on this, the
total reward for this simulation is calculated. Roll-
out details are given in Algorithm 4.

– Backpropagation(Line 13-17, Algorithm 2): The
total reward found is then used to update the reward
value stored at each of the predecessor nodes.

Algorithm 2: Monte-Carlo Tree Search
1 function

MCTS(Tree, Initial agent and opponent state)
2 Create root node v0 with initial opponent and

agent state s0;
3 while maximum number of iterations not

reached do
// Selection

4 vi ← Monte Carlo Selection(Tree, v0)
// Expand or rollout

5 if level(vi) = T and n(vi) = 0 then
// Expand

6 Tree ← Expand(Tree,vi)
7 if Newly added node can be pruned then
8 break
9 end

10 else
// Rollout

11 R← Rollout(vi);
12 end

// Backpropagation
13 while vi 6= NULL do

// Update total reward value
14 Q(vi)← Q(vi) +R
15 n(vi)← n(vi) + 1
16 vi ← parent of vi

17 end
18 N ← N + 1
19 end
20 return Tree
21 end

Algorithm 3: MCTS selection
1 function Monte Carlo Selection(Tree, vi)
2 while level(vi) 6= TERMINAL do
3 if level(vi) = AGENT then

4 vi ← arg max
v′∈children(vi)

Q(v′)
n(v′) + c

√
2 ln N
n(v′)

5 else

6 vi ← arg min
v′∈children(vi)

Q(v′)
n(v′) − c

√
2 ln N
n(v′)

7 end
8 end
9 end

Given a sufficient number of iterations, the MCTS
with UCT is guaranteed to converge to the optimal pol-

Algorithm 4: MCTS rollout
1 function Rollout(v)
2 R← 0
3 while level(v) 6= 2T + 1 do
4 if level(v) = AGENT then
5 v ← choose an agent action at random
6 else
7 v ← choose an opponent action at

random
8 R← update reward
9 end

10 return R

11 end
12 end

icy [19,29]. However, if the agent has n available actions,
in the worst case, we need nk−1 in k-th level of the
search tree to enumerate all the possible nodes. This
may still require building an exponentially sized tree.
In the next section, we present a number of pruning
conditions to reduce the size of the tree, and strategies
to expand the search tree with changing resolution to
save the computation time.

3.3 Online Planning with Search Tree

Once the tree is built, the agent can execute the policy
for one step. If we are using minimax tree search, at
the root node, the agent executes the first action along
the optimal path found. In MCTS, the agent executes
the first action along the path with the best average
reward in the rollout simulations. After the agent exe-
cutes one step and observes the new position, the agent
will update the position of the opponent (based on new
measurement or estimation) in the new root node and
rebuild the search tree.

4 Improved Computational Efficiency

In a larger environment, the agent may need to build a
search tree that reaches far enough from its initial posi-
tion to yield a good strategy. This is especially the case
when the starting positions of the agent and the oppo-
nent are far from each other. However, when the size of
the tree increases, the computational time required to
generate the tree grows exponentially in the worst case
(despite pruning). In this section, we present the fol-
lowing two strategies to reduce the computational cost:
(1) Pruning strategies to reduce the size of the tree; and
(2) Expanding the spatial reach of the search tree with
changing resolution at different levels.



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2021 Springer Science+Business Media, LLC, part of Springer Nature.

Game Tree Search for Minimizing Detectability and Maximizing Visibility 7

4.1 Pruning Techniques

In this section, we present several pruning techniques
to reduce the size of the tree and the computational
time required to build the minimax tree and the MCTS.
Pruning a node implies that the node will never be ex-
panded (in both types of trees). In MCTS, if a node
is pruned we simply will break to the next iteration
of the search. Pruning the tree results in considerable
computational savings which we quantify in Section 5.

In the case of the minimax search tree, we can ap-
ply a classical pruning strategy called alpha-beta prun-
ing [17]. Alpha-beta pruning maintains the minimax
values at each node by exploring the tree in a depth-
first fashion. It then prunes nodes if a node is clearly
dominated by another, see [17] for more details. Alpha-
beta pruning is preferable when the tree is built in a
depth first fashion. However, we can exploit structural
properties of this problem to further prune away nodes
without needing to explore a subtree fully. We propose
strategies that find and prune redundant nodes before
the terminal level is reached.

Our proposed pruning techniques apply for both
types of trees. Therefore, in the following we refer to
a “search tree” instead of specifying whether it is min-
imax or MCTS.

Our first proposed class of pruning techniques (The-
orem 1) are based on the properties of the given map.
Consider the MIN level and the MAX level separately.
The main idea of these pruning strategies is to compare
two nodes A and B at the same level of the tree, say
the MAX level. In the worst case, the node A would
obtain no future positive reward while always being de-
tected at each time step of the rest of the horizon (e.g.,
when the agent moves from behind an obstruction into
an open area into the view of the opponent, and thus
it is no longer able to collect a reward from proceed-
ing on that path). Likewise, in the best case, the node
B would collect all the remaining positive reward and
never be detected in the future. If the worst-case out-
come for node A is still better than the best-case out-
come for node B, then node B will never be a part of
the optimal path. It can thus be pruned away from the
search tree. Consequently, we can save time that would
be otherwise spent on computing all of its successors.
Note that these conditions can be checked even before
reaching the terminal node of the subtrees at A or B.

Given a node in the search tree, we denote the re-
maining positive reward (unscanned region) for this
node by F (·). Note that we do not need to know F (·)
exactly. Instead, we just need an upper bound on F (·).
This can be easily computed since we know the entire
map information a priori. The total reward collected

by node A and by node B from time step 0 to t are
denoted by RA(t) and RB(t), respectively.

Theorem 1 Given a time horizon T , let A and B be
two nodes in the same level of the search tree at time
step t.

In the MAX level, if RA(t) − (T − t)η ≥ RB(t) +
F (B), then the node B can be pruned without loss of
optimality.

Similarily, in the MIN level, if RA(t) + F (A) ≤
RB(t)−(T−t)η, then the node B can be pruned without
loss of optimality.

Proof We prove the case at the MAX level. The proof
of the MIN level case is similar.

In the case of node A, the worst case occurs when
in the following T − t steps the agent is always de-
tected at every remaining step and collects zero ad-
ditional positive rewards. After reaching the terminal
tree level, the reward backpropagated to node A will
be RA(t)− (T − t)η. For node B, the best case occurs
in the following T − t steps when the agent is never
detected but obtains all remaining positive rewards. In
the terminal tree level, the node B collects the reward
of RB(t) + F (B).

Since RA(t) − (T − t)η ≥ RB(t) + F (B) and both
nodes are at the MAX level, it implies that the reward
returned to the node A is always greater than that re-
turned to the node B. Therefore, the node B will not be
a part of the optimal policy and can be pruned without
affecting the optimality.

Now, we present the second pruning strategy. The
main idea of the second type of pruning strategy (i.e.,
Theorem 2) comes from the past path (or history). If
two different nodes have the same agent and opponent
position but one node has a better history than the
other, then the other node can be pruned away.

Here, we denote by SA(π(t)) and SB(π(t)) the total
scanned region in the node A and the node B from time
step 0 to t, respectively.

Theorem 2 Given a time horizon T and 0 < t1 ≤
t2 ≤ T , let the node A be at the level t1 and the node
B be at the level t2, such that both nodes are at a MAX
level. If (1) the agent and the opponent’s position stored
in the nodes A and B are the same, (2) SA(π(t1)) ⊃
SB(π(t2)), and (3) RA(t) > RB(t) + (t2 − t1)η, then
the node B can be pruned without loss of optimality.

Proof With 0 < t1 ≤ t2 ≤ T , we have the node B
appear further down the tree as compared to the node
A. SA(π(t1)) ⊆ SB(π(t2)) indicates that the node A’s
scanned area is a subset of the node B’s scanned area.



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2021 Springer Science+Business Media, LLC, part of Springer Nature.

8 Zhongshun Zhang et al.

Since the nodes A and B contain the same opponent
and agent positions, one of the successors of node A con-
tains the same opponent and agent positions as node
B. Since RA(T ) ≥ RB(T ) + (t2− t1)η and SA(π(t1)) ⊃
SB(π(t2)), the value backpropagated from the succes-
sor of node A will always be greater than the value
backpropagated from the path of node B. Furthermore,
more reward can possibly be collected by node A since
SA(π(t1)) ⊆ SB(π(t2)). Thus, the node B will never
be a part of the optimal path and can then be pruned
away.

4.2 Bounding the Size of the Tree

We analyze the computational cost by bounding the
number of nodes generated by the minimax search tree
to find the optimal path. For the minimax search tree,
we present the approximate computational cost by giv-
ing the size of the tree. Clearly, the tree’s size is not the
only factor determining the complexity. In most cases,
the bottleneck is the tree’s size, and therefore, the com-
plexity will mainly come from the size of the tree. For
MCTS, there is not clear way to determine the effect
of pruning analytically. Instead, we present numerical
results by comparing the time required to find the op-
timal solution with/without pruning, in the evaluation
section. We present bounds on the size of the minimax
search tree in the following.

Consider that the planning horizon is T steps, the
height of the minimax search tree is 2T , the agent has
a available actions at each step, the opponent has b
actions at each step, and there are K grid points/cells
in the given environment. When a minimax search tree
is generated using brute-force, the number of nodes in
the full tree is O((ab)T ). In the best case with alpha-
beta pruning (which means the best moves are always
searched first while we build the tree), the number of
nodes in the tree is Θ((ab)

T
2 ) [30].

With pruning techniques proposed in Theorem 1
and Theorem 2, we consider the best-case scenario sim-
ilar to the alpha-beta pruning result above. The best-
case indicates that for all nodes in the same level of
the search tree, the more informative1 nodes are al-
ways searched first. In Theorem 2, one requirement is
that the agent and the opponent’s positions stored in
two nodes to compare are identical. If the best nodes in
each position are all generated first, then other nodes
at the same level containing the same agent and op-
ponent’s positions can all be punned away. In an envi-

1 Here, more informative indicates that the value backprop-
agated from the current node’s successor will be greater than
the value backpropagated from the path of another node that
contains the same agent and opponent’s position.

ronment with K grid points/cells, there are K2 possi-
ble combinations of the agent and the opponent’s posi-
tions. Thus, at most K2 nodes are listed at each level of
the search tree in the best case. The size of the tree is
lower bounded by Ω(K2 · 2T ). In the trivial case where
a, b = O(K), we see that the best case is realized. There-
fore, in the best case the size of the tree with pruning
will be Θ(K2 · 2T ).

In the worst case, the less informative nodes are
always selected first while building the search tree in
a depth-first fashion. Both alpha-beta pruning and our
punning techniques cannot prune any nodes, so the size
of the tree is the same as the brute-force.

In practice, the size of the tree will be in between
the best and worse-case. We show the empirical results
in Section 5.

4.3 Expanding the Tree with Changing Resolution

Consider a scenario where the agent and opponent are
located far from each other in a large environment. In
such a case, even if the agent builds a search tree with
many levels, the leaf nodes in the tree may still not go
far enough to see the opponent (Figure 5). Instead, we
propose a technique that changes the spatial resolution
at different levels of the tree. We define the resolution as
follows: Consider a search tree T and a node A at level
k. The resolution C(k) of node A is defined as the dis-
tance that will be traveled by the agent and opponent
atomically when executing any action corresponding to
A’s child nodes.

Traditionally, we fix the resolution for all levels as
one, e.g., C(k) = 1, as shown in Figure 5 (a). All the
nodes expand with the same resolution. The agent (red
square) looks ahead for only three steps in this 8 × 7
environment. The agent at least needs to plan for seven
steps to discover the opponent (blue square) located in
the top right corner.

In contrast, we apply the changing resolution ap-
proach, as shown in Figure 5 (b). In the k-th level of
the search tree, the newly generate node in (k + 1)-
th level will expand by combining C(k) grids into one
“larger grid”. C(k) is defined as C(k) = 2k−1. Thus, in
the root node, C(1) = 1 will not reduce the accuracy
and will return one of the nodes as the control action.
As k grows, we sacrifice some accuracy by changing the
resolution of the gird map but the agent can look ahead
further.

Reducing the resolution of the map will inevitably
leading to losing some accuracy in the plans (as well as
in the representation of the map). However, the tree can
look ahead a longer spatial horizon without additional



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2021 Springer Science+Business Media, LLC, part of Springer Nature.

Game Tree Search for Minimizing Detectability and Maximizing Visibility 9

(a) Expand the search
tree with fixed resolu-
tion.

(b) Expand the search
tree with changing reso-
lution.

(c) Disadvantage: Expand the search tree with
changing resolution will lose some accuracy. The
agent could miss the corridor and turn left by mis-
takenly thinking the environment is larger on the
left.

Fig. 5 Two different ways to expand the search tree. The
three different colors stand for the resolution of each step in
different levels of the search tree.

computational cost. In Figure 5 (c), we show an exam-
ple that increasing the resolution makes the agent miss
the small corridor, which could have lead the agent to
a larger, unscanned environment. However, our empir-
ical results show that this does not happen often and
the benefits of looking ahead outweigh this potential
disadvantage.

In general, at the beginning of building the search
tree, we do not need to reduce the resolution since the
agent will execute one of the actions in the first level of
the tree. After the search tree expands for a few gen-
erations, the accuracy of the map is not as important
as the initial steps. The intuition behind the chang-
ing resolution strategy is when the precision becomes
less critical, combining several grids into one can help
the agent to plan in a longer horizon and decide which
direction leads to better results in the distant future.
Also, the computational cost does not increase since the
depth of the search tree will remain the same. Finally,
we also investigate the question of which C(k) function
to use to change the resolution.

Without changing the resolution, the agent can pre-
dict the effect of positions that are T steps away, which
is the same as the search tree’s depth if all control
actions are unit length. With changing resolution, the
search tree can reach farther away positions, with the
same computational cost. For example, if the path is
planned by a linearly changing resolution C(k) = k in

the search tree, we can reach agent positions that are
1
2T (T − 1) away.

In the simulation, we show that although we cannot
guarantee optimality, the empirical performance of the
agent in most cases is better with this approach. This
turns out to be the case especially when the environ-
ment is large, or when the agent and the opponent are
located far from each other. By looking further ahead,
the agent can make a better decision either to collect
more rewards or to move away from the opponent.

5 Evaluation

In this section, we evaluate the proposed techniques
in the context of a reconnaissance mission. We assume
the visibility range of the agent and the opponent are
both unlimited (only restricted by the obstacles in the
environment). The experiments were conducted on a
2.90GHz i9-8950HK processor with 32 GB RAM. The
software was written in MATLAB R2017a and used the
VisiLibity library [31] to compute the visibility poly-
gons.

First, we present two qualitative examples that show
the path found by the minimax algorithm. Second, we
compare the computational cost of the two search tree
algorithms with and without pruning. Third, we study
the trade-off between solution quality and computa-
tional time by changing the resolution in the search
process.

5.1 Varying Penalty

Both the minimax tree search and MCTS can find the
same optimal solution for these instances. Figures 6 and
7 show two examples of the policy found by MCTS
method, using high and low negative penalty values (P
in Equation 1), respectively. We use a 25× 25 grid en-
vironment. With higher negative reward P = 30, the
agent tends to prefer avoiding detection by the oppo-
nent (Figure 6). With a lower negative reward P = 3,
the agent prefers to explore more area (Figure 7).

Both tree search methods give the same optimal so-
lution in both cases. (In general, there can be multiple
optimal solutions. There could be multiple paths to col-
lect the same reward in the same initial position, and
the solution is not unique in most cases.) We can see
the algorithm can help the agent to decide whether to
detect more area or to avoid the detection of the oppo-
nent based on the penalty.

The MCTS finds the optimal solution (for T = 10)
in 40,000 iterations taking a total of approximately 50
minutes. On the other hand, the minimax tree search



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2021 Springer Science+Business Media, LLC, part of Springer Nature.

10 Zhongshun Zhang et al.

(a) t = 5 (b) t = 10

(c) t = 15 (d) t = 20

Fig. 6 Qualitative example (higher penalty P = 30): Path
for the agent (red) and the opponent (blue) is given by MCTS
for T = 10. The environment is a 25× 25 grid. With a higher
penalty, the agent prefers paths where it can hide from the
opponent at the expense of the area explored (from (a) to
(d), t = 5, 10, 15, 20.). Figure 7 shows the case with a lower
penalty.

required approximately 10 hours to find the optimal
solution. More thorough comparison is in the next sub-
section.

5.2 Pruning Techniques

MCTS: We evaluate the computational time required
to find the optimal solution by varying the time hori-
zon T . Figure 8 shows the computational time for the
two search algorithms. The time horizon T ranges from
1 to 5; the tree consists of 3 to 11 levels. When the
time horizon T is less than 3, the minimax search tree
performs better than MCTS. This can be attributed
to the fact that Monte-Carlo search requires a certain
minimum number of iterations for the estimated total
reward value to converge to the actual one. When the
horizon T is increased, the MCTS finds the solution
faster since it does not typically require generating a
full search tree. We only compare up to T = 5 since
beyond this value, we expect MCTS to be much faster
than minimax. Furthermore, the computational time
required for finding the optimal solution for the mini-
max tree beyond T = 5 is prohibitively large.

Figure 8, as expected, shows that the computational
time with pruning is lower than that without pruning
for both techniques. Next, we study this effect in more
detail.

(a) t = 5 (b) t = 10

(c) t = 15 (d) t = 20

Fig. 7 Qualitative example (lower penalty P = 3): With
a lower penalty, path for the agent (red) and the opponent
(blue) is given by MCTS. The agent prefers paths where it
increases the area explored at the expense of being detected
often. From (a) to (d), t = 5, 10, 15, 20.

1 2

10
0

10
2

10
4

Fig. 8 Comparison of the time required to find the optimal
solution with the minimax tree and the MCTS, with and
without pruning. Note that the y axis is in log scale.

Minimax Tree Search: We show the effectiveness of the
pruning algorithm by comparing the number of nodes
generated by the brute force technique (no pruning)
with the minimax tree with pruning. We generate the
initial position of the agent and the opponent randomly.
We find the optimal path for various horizons ranging
from T = 2 to T = 7. Therefore, the minimax tree
depth ranges from 5 to 15 (if the planning horizon is T ,
then we need a game search tree with 2T + 1 level).

The efficiency of the proposed pruning algorithm is
presented in Table 1, which shows the individual effect
of alpha-beta pruning and the combined effect of all
pruning techniques.

Since the efficiency of pruning is highly dependent
on the order in which the neighboring nodes are added



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2021 Springer Science+Business Media, LLC, part of Springer Nature.

Game Tree Search for Minimizing Detectability and Maximizing Visibility 11

0 500 1000 1500 0 500 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 9 Effect of increasing the number of iterations in MCTS,
with and without pruning, on the the likelihood of finding the
optimal solution. The y–axis shows the fraction of the number
of trials (out of 50 trials) MCTS was able to find the optimal
solution given by the minimax tree for T = 3.

to the tree first, different results can be achieved by
changing the order in which the children nodes are
added to the minimax tree. Table 1 compares the num-
ber of nodes generated. The table shows the effect of
individual pruning techniques. By applying the prun-
ing algorithm, the best case only generates 2.94 × 104

nodes to find the optimal solution, while brute force
takes 9.76× 106 nodes to find the same solution.

Figure 9 shows the fraction of the times we find
the optimal solution as a function of the number of
iterations when T = 3 in a 10 × 10 grid map. We first
find the optimal solution using a minimax tree. Then,
we run the MCTS for a fixed number of iterations and
verify if the best solution found has the same value as
the optimal. The x-axis in this figure is the number
of iterations in MCTS. Note that since there is more
than one optimal solution, we check the accumulated
collected reward instead of how the agent moves in each
step.

We make the following observations from Figure 9:
(1) The proposed pruning strategy increases the (em-
pirical) likelihood of finding the optimal solution in the
same number of iterations; and (2) The probability of
finding the optimal solution grows as the number of
iterations grows.

The number of iterations required to find the opti-
mal solution also depends on the planning horizon. Fig-
ure 10 shows the effect of the planning horizon over the
number of iterations required to find the optimal solu-
tion. Note that even though the likelihood of finding an
optimal solution increases with more iteration times in
general, it is always possible that only a suboptimal is
found due to “overfitting” caused by the UCT selection
rule. Therefore, we run the MCTS multiple times and
find out how often we find the same total reward within
a given number of iterations. If we find the optimal so-
lution 80% or more times, we consider it as success. We
find that the number of iterations required to find suc-

2 4 6 8 10

0

2

4

6

8
10

4

Fig. 10 Effect of the planning horizon on the number of
iterations required to find the optimal solution for MCTS
with pruning.

cess 80% or more times increases exponentially as we
vary the planning horizon.

5.3 Changing Resolution Approach

In this section, we evaluate the effectiveness of the chang-
ing resolution strategy in the minimax search and MCTS.
First, we present a qualitative example to show some
limitations of the baseline fixed resolution approach and
how they are overcome with the changing resolution
strategy (using C(k) = k).

In Figure 11, we present a qualitative example of us-
ing the Monte-Carlo search tree with/without changing
the resolution (planning horizon is five steps) for the
agent and the opponent. It would be more direct if we
look at the results from the opponent’s perspective, as
shown in Figure 11. Figure 11(a) shows the limitation
of the traditional approach that without changing res-
olution, within five steps, the opponent (blue square) is
not able to discover the agent. From the results of the
search tree, the opponent’s move cannot affect the agent
since the agent cannot be detected in the Monte-Carlo
simulations within five steps. As a result, the opponent
ends up moving back-and-forth locally (because the op-
ponent cannot discover the agent during the roll-out,
it cannot find an optimal solution). In Figure 11(b),
we linearly decrease the resolution in the search tree
(C(k) = k). As a result, the new search tree with chang-
ing resolution can look ahead a length of 15 units away
without any additional computation cost.

The right figure shows the online path for 20 steps.
With a changing resolution in the search process, Fig-
ure 11(b) gives a more reliable predicted path for the
opponent. Also, the agent first explores part of the en-
vironment then goes back to hide the opponent.

In Figure 13, we compare the collected reward be-
tween fixed resolution with changing resolution. We test
the results in different simulation environments that are



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2021 Springer Science+Business Media, LLC, part of Springer Nature.

12 Zhongshun Zhang et al.

Table 1 Comparision of the number of nodes generated by different pruning techniques, from T = 3 to T = 6.

Number of nodes generated
Planning horizon T = 3 T = 4 T = 5 T = 6

Brute force 625 1.56× 104 3.90× 105 9.76× 106

With only
alpha-beta

Maximum 403 3844 7.08× 104 1.70× 106

Median 206 2822 1.80×104 2.46× 105

Minimum 104 1444 7860 1.86× 105

With all
pruning

techniques

Maximum 388 1389 3.3× 104 4.81× 105

Median 105 639 4064 3.74× 104

Minimum 78 563 3016 2.94× 104

(a) Search tree with fixed resolution. The search depth
in the tree is not enough for the opponent to locate the
agent. The Monte-Carlo search tree returns a result that
the opponent only moves locally, and the agent explores
the environment by ignoring some potential “danger”.

(b) Search tree with increasing resolution. The search
depth in the tree remains the same. The Monte-Carlo
search tree returns a simulation result that the opponent
can move closer to the agent, and the agent avoids the
opponent, even when they are far away initially.

Fig. 11 Qualitative examples. The effect of using chang-
ing resolution in the Monte-Carlo search tree. The left figure
shows the structure in the search tree in the initial position,
lists all the locations included in the five depth of the search
tree. The right figure shows the online planning path for 20
steps. Opponent will move back and forth if it cannot detect
the agent in planning horizon.

shown in Figure 12. We compute the difference between
the average reward collected various initial positions for
the agent (marked as red dots in Figure 12). The path of
the opponent is planned by a linearly changing resolu-
tion C(k) = k in the search tree. In all the experiments,
the opponent is planning with the changing resolution
approach to ensure the opponent can locate the agent
even if they are far apart.

(a) Environment A
(25× 25).

(b) Environment
B (10× 10).

(c) Environment C
(13× 16).

(d) Environment D (25×
10).

(e) Environment E (50×30).

Fig. 12 Environments used for the online simulations. Red
dots are the different initial positions for the agent. The start-
ing position for the opponent is fixed at the blue dot.

From Figure 13, we can see on average, applying
the changing resolution approach will produce a better
path for the agent. This is especially the case when the
environment is large, or when the agent and opponent
are located far from each other, such as in the 50× 30
environment E. Also, as expected, there are cases where
fixed resolution collects more or the same reward, such
as position 3 in environment C, positions 1, 2, and 3 in
environment B. This is due to the fact that the initial
positions are too close to the opponent and the environ-
ment is not large enough. Intuitively, the observation
shows we should increase the resolution when the agent
and the opponent are not able to locate each other in
the given planning horizon.

5.4 Gazebo Experiments

The previous simulation results show the proposed al-
gorithm can be applied in the visibility-based scouting
problem. However, some of the assumptions made for



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2021 Springer Science+Business Media, LLC, part of Springer Nature.

Game Tree Search for Minimizing Detectability and Maximizing Visibility 13

Environment A

Average Min Max
0

200

400
Environment B

Average Min Max
0

5

10

Environment C

Average Min Max

-20

0

20

Environment D

Average Min Max
-20

0

20

40

60

80

Environment E

Average Min Max
0

200

400 Fixed resolution

Changing resolution

Fig. 13 Fix resolution vs. changing resolution. From envi-
ronment A to E, the planning horizon for each steps are 20,
5, 15, 20, 30.

the previous simulations may not hold in the real world.
In this section, we discuss how to extend our algorithm
to incorporate more realistic settings. We demonstrate
this through ROS Gazebo simulations [32].

One of the assumptions is that the agent and the
opponent operate in a grid-based environment. This is
easily addressed in our algorithm. We do not actually
need a grid-based environment since we can rebuild the
tree after every step. Here, the tree is rooted at the
current position of the agent and the opponent. Sub-
sequent states in the tree are relative to the respective
starting positions of the agent and the opponent.

In addition, the agent and the opponent move si-
multaneously and do not move in turns as the model
assumes. While we assume the agent and the opponent
move at the same speed in each turn, in practice, the
two robots will not move with the exact pace for the
same speed at all times. It is possible that one of the
robots reaches its goal position before the other. This
is where the anytime nature of MCTS comes in handy.
We let MCTS run until one of the two robots reaches
the goal positions. As soon as one robot reaches the goal
positions, we use the solution that’s returned by MCTS
and use that to plan the actions for the next step. Here,
the assumption we make is that once the two robots
commit to an action at the start of the timestep; they do
not change the action midway. Therefore, the agent can
observe the action chosen by the opponent at the start
of the timestep and use that to invoke MCTS, which
runs until either the agent or the opponent reaches their
goal position for the current timestep.

Figure 14 shows the setup where the agent and the
opponent are simulated by using the model of a differential-
drive robot and the two robots are equipped with a

Fig. 14 Gazebo simulation environment. The agent and the
opponent are simulated as differential drive robots equipped
with a 360-degree lidar scanner to generate the visibility poly-
gon (we only plot one robot’s lidar scanner in blue).

(a) With a higher penalty
P = 50.

(b) With a lower penalty
P = 3.

Fig. 15 Gazebo qualitative experiments. Actual paths of the
agent (red) and the opponent (blue) given by MCTS for 30
time steps. By varying the negative penalty values of being
detected by the opponent.

360-degree lidar scanner (scan range marked with blue).
We use the MCTS with changing resolution techniques
(C(k) = k) to generate the paths for the agent path
and the opponent (planning horizon T = 5). In these
Gazebo experiments, we set the speeds of both the
agent and the opponent as 0.2 and set the unit length
between each grid cell as 3. When the agent moves, we
take the agent and the opponent’s goal positions as the
input. After the agent reaches its current goal position,
MCTS is terminated, and the agent will execute the
best action generated by the MCTS.

Similar to the previous qualitative results, we show
two examples of the policy found by the MCTS, using
high and low negative penalty values in Figure 15 and
the attached video.2 In the video, we show an example
that with a higher penalty P = 50, the agent tends to
avoid all possible detection by the opponent, e.g., the
agent only collects 449.88 positive reward but only be-
ing detected for only once. In contrast, with a lower
negative reward, the agent prefers to explore more ar-
eas. With a lower penalty P = 3, the agent explores a
much larger area and collects 1027.72 positive reward
despite the opponent detecting it 22 time in 30 time
steps.

2 https://youtu.be/_UuawB8CZ-E



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2021 Springer Science+Business Media, LLC, part of Springer Nature.

14 Zhongshun Zhang et al.

6 Conclusion

We introduce a new problem of maximizing visibility
and minimizing detectability in an environment with
an adversarial opponent. The problem can be solved
using minimax and the MCTS to obtain an optimal
strategy for the agent. Our main contribution is a set
of pruning techniques that reduce the size of the search
tree while still guaranteeing optimality. We also investi-
gate how changing the resolution of the tree can lead to
better performance in large environments. An immedi-
ate avenue for future work is to incorporate additional
constraints, such as kinematic/dynamic constraints, as
part of the planning process. Further, one may want
to relax the assumption that the opponent’s position is
known at all times. This can be handled in MCTS by
maintaining a belief over the opponents position. Dur-
ing the rollouts, one can randomly draw a sample from
this belief. The resulting strategy can then take into
account uncertain positions of the opponent.

LEGAL

Distribution A: Approved for public release; distribu-
tion unlimited. OPSEC # 3929. This research was sup-
ported in part by the Automotive Research Center (ARC)
at the University of Michigan, with funding and sup-
port by the Department of Defense under Contract No.
W56HZV-14-2-0001.

References

1. P. Tokekar and V. Kumar, “Visibility-based persistent
monitoring with robot teams,” in Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ International Confer-
ence on. IEEE, 2015, pp. 3387–3394.

2. C. Peng and V. Isler, “View selection with geometric un-
certainty modeling,” arXiv preprint arXiv:1704.00085,
2017.

3. A. Kim and R. M. Eustice, “Active visual slam for robotic
area coverage: Theory and experiment,” The Interna-
tional Journal of Robotics Research, vol. 34, no. 4-5, pp.
457–475, 2015.

4. G. Hollinger, S. Singh, J. Djugash, and A. Kehagias, “Ef-
ficient multi-robot search for a moving target,” The In-
ternational Journal of Robotics Research, vol. 28, no. 2,
pp. 201–219, 2009.

5. L. Zhou, V. Tzoumas, G. J. Pappas, and P. Tokekar,
“Resilient active target tracking with multiple robots,”
IEEE Robotics and Automation Letters, vol. 4, no. 1,
pp. 129–136, 2018.

6. S. Carlsson and B. J. Nilsson, “Computing vision points
in polygons,” Algorithmica, vol. 24, no. 1, pp. 50–75,
1999.

7. J. O’rourke, Art gallery theorems and algorithms. Ox-
ford University Press Oxford, 1987.

8. Z. Zhang and P. Tokekar, “Non-myopic target tracking
strategies for non-linear systems,” in Decision and Con-
trol (CDC), 2016 IEEE 55th Conference on. IEEE,
2016, pp. 5591–5596.

9. E. Raboin, D. S. Nau, U. Kuter, S. K. Gupta, and
P. Svec, “Strategy generation in multi-agent imperfect-
information pursuit games.” in AAMAS, 2010, pp. 947–
954.

10. E. Raboin, U. Kuter, and D. Nau, “Generating strategies
for multi-agent pursuit-evasion games in partially observ-
able euclidean space,” in Proceedings of the 11th Inter-
national Conference on Autonomous Agents and Multi-
agent Systems-Volume 3, 2012, pp. 1201–1202.

11. N. M. Stiffler and J. M. OKane, “Complete and opti-
mal visibility-based pursuit-evasion,” The International
Journal of Robotics Research, vol. 36, no. 8, pp. 923–946,
2017.

12. V. Macias, I. Becerra, R. Murrieta-Cid, H. Becerra, and
S. Hutchinson, “Image feedback based optimal control
and the value of information in a differential game,” Au-
tomatica, vol. 90, pp. 271–285, April 2018.

13. S. D. Bopardikar, F. Bullo, and J. P. Hespanha, “Sensing
limitations in the lion and man problem,” in American
Control Conference, 2007. ACC’07. IEEE, 2007, pp.
5958–5963.

14. S. Jin and Z. Qu, “A heuristic task scheduling for multi-
pursuer multi-evader games,” in Information and Au-
tomation (ICIA), 2011 IEEE International Conference
on. IEEE, 2011, pp. 528–533.

15. A. Quattrini Li, R. Fioratto, F. Amigoni, and V. Isler,
“A search-based approach to solve pursuit-evasion games
with limited visibility in polygonal environments,” in
Proceedings of the 17th International Conference on Au-
tonomous Agents and MultiAgent Systems, 2018, pp.
1693–1701.

16. S. Gelly and Y. Wang, “Exploration exploitation in go:
Uct for monte-carlo go,” in NIPS: Neural Information
Processing Systems Conference On-line trading of Ex-
ploration and Exploitation Workshop, 2006.

17. S. Russell and P. Norvig, Artificial Intelligence: A Mod-
ern Approach. Prentice Hall Press, 2009.

18. L. Kocsis and C. Szepesvári, “Bandit based monte-carlo
planning,” in European conference on machine learning.
Springer, 2006, pp. 282–293.

19. V. Lisy, V. Kovarik, M. Lanctot, and B. Bosansky, “Con-
vergence of monte carlo tree search in simultaneous move
games,” in Advances in Neural Information Processing
Systems, 2013, pp. 2112–2120.

20. Z. Zhang, J. Lee, J. M. Smereka, Y. Sung, L. Zhou, and
P. Tokekar, “Tree search techniques for minimizing de-
tectability and maximizing visibility,” in 2019 Interna-
tional Conference on Robotics and Automation (ICRA).
IEEE, 2019, pp. 8791–8797.

21. D. Bhadauria and V. Isler, “Capturing an evader in a
polygonal environment with obstacles.” in IJCAI, 2011,
pp. 2054–2059.

22. P. Surynek, “A novel approach to path planning for
multiple robots in bi-connected graphs,” in 2009 IEEE
International Conference on Robotics and Automation.
IEEE, 2009, pp. 3613–3619.

23. S. Hrabar, “3d path planning and stereo-based obstacle
avoidance for rotorcraft uavs,” in 2008 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems.
IEEE, 2008, pp. 807–814.

24. L. E. Kavraki, M. N. Kolountzakis, and J.-C. Latombe,
“Analysis of probabilistic roadmaps for path planning,”
in Robotics and Automation, 1996. Proceedings., 1996



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2021 Springer Science+Business Media, LLC, part of Springer Nature.

Game Tree Search for Minimizing Detectability and Maximizing Visibility 15

IEEE International Conference on, vol. 4. IEEE, 1996,
pp. 3020–3025.

25. S. M. LaValle, Planning algorithms. Cambridge univer-
sity press, 2006.

26. S. Karaman and E. Frazzoli, “Incremental sampling-
based algorithms for a class of pursuit-evasion games,”
in Algorithmic foundations of robotics IX. Springer,
2010, pp. 71–87.

27. S. J. Russell and P. Norvig, Artificial intelligence: a mod-
ern approach. Malaysia; Pearson Education Limited,,
2016.

28. G. Chaslot, S. Bakkes, I. Szita, and P. Spronck, “Monte-
carlo tree search: A new framework for game ai.” in AI-
IDE, 2008.

29. H. Baier and M. H. Winands, “Monte-carlo tree search
and minimax hybrids,” in Computational Intelligence in
Games (CIG), 2013 IEEE Conference on, 2013, pp. 1–8.

30. D. E. Knuth and R. W. Moore, “An analysis of alpha-
beta pruning,” Artificial intelligence, vol. 6, no. 4, pp.
293–326, 1975.

31. K. J. Obermeyer and Contributors, “The visilibity li-
brary,” https://karlobermeyer.github.io/VisiLibity1/.

32. N. Koenig and A. Howard, “Design and use paradigms
for gazebo, an open-source multi-robot simulator,” in In-
telligent Robots and Systems, 2004.(IROS 2004). Pro-
ceedings. 2004 IEEE/RSJ International Conference on,
vol. 3. IEEE, 2004, pp. 2149–2154.



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2021 Springer Science+Business Media, LLC, part of Springer Nature.

Zhongshun Zhang received the B.S. degree in Electrical Engineering and Automation in 2012, and the 

M.Sc. degree in Control Engineering in 2015. Both from Southwest Jiaotong University, Chengdu, China. 

He is currently pursuing the Ph.D. degree in Department of Computer Science, University of Maryland, 

College Park, MD, USA. 

Jonathon M. Smereka received the B.S. degrees in computer engineering, electrical engineering, and 

engineering mathematics from the University of Michigan at Dearborn, in 2009, and the M.S. degree 

and the Ph.D. degree from the Electrical and Computer Engineering Program, Carnegie Mellon 

University. He was employed as a Computer Engineer with the U.S. Army Tank‐Automotive Research, 

Development and Engineering Center. His research interests are in computer vision, pattern recognition, 

and machine learning. He received the Carnegie Institute of Technology Dean’s Tuition Fellowship in 

2010, and the Science, Mathematics, and Research for Transformation Fellowship in 2011. 

Joseph Lee received the B.Eng. and M.Eng from Handong Global University, South Korea, in 2006 and 

2008, and the Ph.D. degree from the Computer Science Program, Texas A&M University. He was 

employed as a Computer Engineer with the U.S. Army Tank‐Automotive Research, Development and 

Engineering Center. He is currently with Aptiv. 

Lifeng Zhou received the B.S. degree in Automation from Huazhong University of Science and 

Technology, Wuhan, China, in 2013, the M.Sc.  degree in Automation from Shanghai Jiao Tong University, 

Shanghai, China, in 2016. He is currently pursuing the Ph.D. degree in Electrical and Computer 

Engineering, Virginia Tech, Blacksburg, VA, USA. 

Yoonchang Sung is a postdoctoral associate in the Learning and Intelligent Systems Group within the 

Computer Science and Artificial Intelligence Laboratory at MIT, hosted by Prof. Tomás Lozano‐Pérez and 

Prof. Leslie Pack Kaelbling. He received my Ph.D. degree in the Bradley Department of Electrical and 

Computer Engineering at Virginia Tech under Prof. Pratap Tokekar in 2019. He received my M.S. and B.S. 

degrees in the School of Mechanical Engineering from Korea University in 2013 and 2011, respectively. 

Pratap Tokekar is an Assistant Professor in the Department of Computer Science and UMIACS at the 

University of Maryland. Between 2015 and 2019, he was an Assistant Professor at the Department of 

Electrical and Computer Engineering at Virginia Tech. Previously, he was a Postdoctoral Researcher at 

the GRASP lab of University of Pennsylvania. He obtained his Ph.D. in Computer Science from the 

University of Minnesota in 2014 and Bachelor of Technology degree in Electronics and 

Telecommunication from College of Engineering Pune, India in 2008. He is a recipient of the NSF CAREER 

award (2020) and CISE Research Initiation Initiative award (2016). He serves as an Associate Editor for 

the IEEE Robotics & Automation Letters, IEEE Transactions of Automation Science & Engineering, and 

the ICRA and IROS Conference Editorial Board. 

 

 



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2021 Springer Science+Business Media, LLC, part of Springer Nature.

 

                      Zhongshun Zhang        Jonathon M. Smereka             Joseph Lee 

             
Lifeng Zhou        Yoonchang Sung    Pratap Tokekar 

 

 


