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Abstract Evolutionary optimization aims to tune the

hyper-parameters during learning in a computationally

fast manner. For optimization of multi-task problems

evolution is done by creating a unified search space

with a dimensionality that can include all the tasks.

Multi-task evolution is achieved via selective imitation

where two individuals with the same type of skill are

encouraged to crossover. Due to the relatedness of the

tasks, the resulting offspring may have a skill for a dif-

ferent task. In this way, we can simultaneously evolve

a population where different individuals excel in differ-

ent tasks. In this paper, we consider a type of evolution

called Genetic Programming (GP) where the popula-

tion of genes have a tree like structure and can be of

different lengths and hence can naturally represent mul-

tiple tasks.

Methods : We apply the model to multi-task neu-

roevolution that aims to determine the optimal hyper-

parameters of a neural network such as number of nodes,

learning rate and number of training epochs using evo-

lution. Here each gene is encoded with the hyper pa-

rameters for a single neural network. Previously, op-

timization was done by enabling or disabling individ-

ual connections between neurons during evolution. This

method is extremely slow and does not generalize well

to new neural architectures such as Seq2Seq. To over-

come this limitation, we follow a modular approach

where each sub-tree in a GP can be a sub-neural archi-

tecture that is preserved during crossover across multi-

ple tasks. Lastly, in order to leverage on the inter-task

covariance for faster evolutionary search we project the
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features from both tasks to common space using fuzzy

membership functions.

Conclusions :The proposed model is used to de-

termine the optimal topology of a feed-forward neural

network for classification of emotions in physiological

heart signals and also a Seq2seq chatbot that can con-

verse with kindergarten children. We can outperform

baselines by over 10% in accuracy.

1 Introduction

Recent studies show that cognitive functions such as

memory or heart are strongly effected by emotions.

Due to the complex nature of emotions we need bal-

ance multiple attributes such as Valence and Arousal

simultaneously [1], [2], [3]. Multi-task optimization aims

to leverage on annotated samples from different tasks

simultaneously, since skills acquired by an individual

for one task may be useful for another inter-related

task [4]. Such a transfer optimization aims to harness

past search experiences on one task to enhance the con-

vergence efficiency of another task [5]. A limitation of

the model is that an improvement in accuracy of one

task may be accompanied by a deterioration in accuracy

for another task. This happens because the covariance

between the data samples for the same class label in

different classes is low [6]. For example, we consider the

classification of ECG into emotions. Here one task is

classification of Valence into Joy or Sad and another

task is the classification of Arousal into Fear or Calm.

However, an increase in heart rate during Joy may not

be well correlated with an increase in heart rate when

experiencing Fear. In recent years, population based

optimization such as an evolutionary search algorithm

© 2020 Springer Science+Business Media, LLC, part of Springer Nature



2 Iti Chaturvedi et al.

Fig. 1 Crossover operation during neuroevolution using genetic programming. Here two different topologies are combined
using an additional node that represents a mathematical operator such as + or ∗. Hence, genetic programming results in an
additional layer of neurons where the weights are determined by non-linear operators.
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have been used to solve multi-task problems. Evolu-

tionary multi-tasking aims to optimize each constitu-

tive task absolutely, instead of having to establish any

kind of tradeoff between individual tasks. To achieve

this we evolve both the tasks in the same population of

individuals, however we allow the offspring to imitate

the skill factor (cultural trait) of the parents [7]. Fol-

lowing the principle of assortative mating where indi-

viduals prefer to mate with those belonging to the same

cultural background, we only allow crossover among in-

dividuals skilled in a particular task [8]. The skill is

calculated using the accuracy on the training dataset.

Such a framework is intuitively more likely to result

in new individuals that are competent in at least one

task. The crossover operation will constantly generate

new individuals from two existing elite individuals. The

new individuals may have a higher skill factor for any

of the tasks. Hence, even if we crossover two individuals

with high skill factor for one task, we might generate

a new individual with a higher skill factor for another

task. This happens because the two tasks are related to

each other.

Social data analysis is focusing on emotion recog-

nition in natural language text. Annotating common-

sense in terms of ’Pleasantness’ and ’Attention’ is a

difficult and time-consuming task, hence unsupervised

neural models are being used [9], [10]. Traditionally,

neural networks are trained using backpropagation and

the optimization of hyper-parameters is done using a

validation set. In this paper, we apply this idea to neu-

roevolution where a population of neural networks with

different topologies is evolved [11]. In particular, we

wish to determine hyper-parameters such as learning

rate and number of neurons in each layer. The shift

from evolving fixed topologies to increasingly complex

ones creates new challenges like crossing over struc-

tures (that is, combining the structures of two parent

networks to create a parsimonious offspring network).

© 2020 Springer Science+Business Media, LLC, part of Springer Nature



Fuzzy Aggregated Topology Evolution for Cognitive Multi-tasks 3

In [12], the authors used a database of safe mutations

that only incurs a small cost that enables the learn-

ing of even hundreds of layers. Here, we leverage on

the fact that the dictionary of features learned for one

task maybe used in another task. Hence, we propose

an aggregate model of sub neural networks where each

component is trained on a specific task [13]. This allows

us to even model temporal neurons (such as those used

in a chatbot that can simulate how a human would be-

have as a conversational partner). Another limitation of

previous evolutionary approaches is that they assume

that all chromosomes are of equal length. However, each

task may require a different number and type of neural

layers hence a variable length chromosome is ideal for

evolving multiple tasks together.

Genetic programming (GP) has a flexible variable

length tree representation [7]. They have shown good

accuracy in transfer learning tasks such as image classi-

fication and multi-lingual product classification. Hence,

in this paper we consider neuroevolution in a genetic

programming framework. GP evolves a population of

potential models, each structured in a tree-like fashion

with mathematical functions linking input nodes and

constants. The mathematical functions enable highly

nonconvex optimization compared to a fixed objective

function. Our approach to neuroevolution involves three

steps: (a) first we create a population of neural net-

works with a single output node (b) each input node

in the GP corresponds to the output node of a single

topology (c) we try to combine sub-component neural

networks using an additional layer of mathematical op-

erators and a single output neuron. Figure 1 illustrates

the crossover operation during neuroevolution using ge-

netic programming. Here two different topologies are

combined using an additional node that represents a

mathematical operator such as ‘+’ or ‘*’. Hence, genetic

programming results in an additional layer of neurons

where the weights are determined by non-linear oper-

ators. In [8] the authors achieved a sparse solution for

multiple tasks by thresholding, instead we can achieve

sparsity in a Genetic Program by simply selecting a

chromosome with fewer input nodes.

The organization of the paper is as follows: Section 2

reviews related works and dataset on image translation;

Section 3 provides the preliminary concepts necessary

to understand the present work; Section 4 details the

proposed model for generating videos; in Section 5 we

validate our method on two real world dataset and fi-

nally we provide conclusions in Section 6.

2 Related Works and Contributions

Multi-task optimization aims to optimize one or more

tasks simultaneously so that we can get an improvement

in accuracy over the ‘no-transfer’ case. We can leverage

on the hidden covariances between related tasks. The

inter-task covariance matrix provides a mapping from

one task to another. In [14] the authors described multi-

task optimization based on a Gaussian Process prior

which has inter-task covariance specified by the product

of the inter-task covariance matrix and the intra-task

covariance matrix . However, computation of the co-

variance matrix becomes extremely slow with increase

in the number of samples and tasks. Instead, we pro-

pose the use of a sampling based evolutionary approach

where a knowledge base is created to gather informa-

tion from different tasks. The samples in the knowledge

base are accessible to all the tasks in the multi-tasking

environment. The idea is similar to multi-objective op-

timization that aims to obtain a set of equally good

solutions that hold a tradeoff among multiple conflict-

ing objectives. However, multi-task optimization will

obtain one solution for each task that are related but

not necessarily conflicting each other. Hence, there is

no trade-off between different tasks.

In [15], the authors reviewed the multi-task prob-

lem is different domains, however they don’t consider

evaluation on any specific dataset. Evolutionary multi-

tasking in optimization leverages on the implicit knowl-

edge transfer across different optimization tasks thereby

achieving faster convergence. This additional factor for

each task that is concurrently optimized results in a

multi-factorial problem. To achieve implicit genetic trans-

fer the modified child of task 1 is evaluated for task 2

and vice versa. For example, task 1 could be the path

planning of two UAVs through a barrier and task 2

can be a more complex case where four UAV have to

fly concurrently through a barrier. A limitation of the

approach is that a unified genotype is used for both

tasks that results in an overlap in phenotype. However,

this can limit the accuracy on a single task. Instead,

in this paper we consider sub neural networks that are

completely optimized for a single task and there is no

opportunity for a negative transfer.

Previous authors have used assumed a linear rela-

tionship between parents during crossover where the

covariance matrix between two individuals is constant.

In contrast, in this paper, we allow for mating between

individuals that excel in different tasks hence the covari-

ance matrix will keep changing. In order to account for

this additional factor in this paper, we use assortative

mating to achieve ‘multi-task evolutionary optimiza-

tion’. Evolutionary multi-tasking was also proposed

© 2020 Springer Science+Business Media, LLC, part of Springer Nature
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Fig. 2 FATE process on ECG data

in [16]. Here explicit transfer was achieved between

the different tasks using a denoising auto-encoder. In-

stead of using Gaussian noise here they assumed that

the solution of one task is the corrupted version of an-

other task. To transfer a solution they multiply with

the mapping matrix learned by the auto-encoder. The

limitation of their approach is that the chromosomes

are of equal length. In this paper, we use GP where

chromosomes can be of variable length. Hence, we use

fuzzy membership functions to perform explicit transfer

between the tasks.

When doing optimization of a neural network we

need to determine the optimal hyper-parameters such

as number of neurons and learning rate. Traditionally,

Bayesian optimization is used that makes the use of

past evaluations when choosing the hyper-parameters

set to evaluate next [17]. In this way a Bayesian prior

is used to select the best hyper-parameters given the

training accuracy. Bayesian optimization is computa-

tionally efficient; however the prior and posterior distri-

bution is fixed and is unable to adapt to new tasks. An-

other limitation of this method is the cold start problem

where it requires to evaluate several thousand solutions

before convergence. Here we consider an evolutionary

approach to hyper-parameter tuning that is flexible and

highly parallelizable. In [18], the authors evolved neural

networks to play the game of ‘GO’ where they main-

tain a population of neurons with a fixed number of

connections but may allocate them arbitrarily among

the units in the input and the output layers.

In order to apply this type of neuroevolution to

multi-task optimization we consider the use of Genetic

Programming. The modular nature of a Genetic Pro-

gram tree makes it ideal for transfer learning across

different tasks. Next, Fuzzy logic is used to model the

inter-task covariance matrix. The resulting Fuzzy Ag-

gregated Topology Evolution (FATE) framework has

immense applications in symbolic regression, classifica-

tion, automatic model design and real parameter opti-

mization. In our model, the solution will be a GP tree

where each leaf node is a single neural topology. Here,

we can efficiently merge or delete layers in a neural net-

work using simple mathematical operators. In order to

represent a neural topology at a single leaf node in the

GP we consider neural networks with a single output

neuron. In this way, the feature learned at the output

neuron for each topology can be concatenated into a

vector of input features. The task of evolution is to se-

lect the best sub-set of topologies and aggregate them

into a single neural topology.

In [19], the authors encode the genetic program as a

directed acyclic graph to represent the neural network

architecture. The limitation of this method is that the

feature vector has to be padded with zeros so as to

combine different architecture outputs. Evolution was

used to train an ensemble of neural networks in [20]

such that the covariance between the models in mini-

mal. By decomposing a problem into sub-problems such

a model is more robust compared to a single model.

Multi-objective evolution can also be used to create a

set of competing classifiers [21] where different models

perform well on different objectives.

We can summarize the main contributions of this

paper as follows:

1. We use Fuzzy logic to predict the inter-task covari-

ance matrix where each membership function corre-

sponds to a single task.

2. To evolve the neural topologies for different tasks,

we consider Genetic Programming where each chro-

mosome can be of a different length that is ideal to

model multiple tasks.

3. Each leaf node of the optimal GP is a neural topol-

ogy with different hyper-parameters. In this way, we

© 2020 Springer Science+Business Media, LLC, part of Springer Nature
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can control the training of sub-components in the

aggregated model for different tasks.

4. In contrast to previous authors we are also able to

optimize temporal models with inter-connected neu-

rons.

Emotions can be represented in a two dimensional

space of ‘Arousal’ and ‘Valence’. Arousal is a state of

being alert, on the other hand ‘Valence’ quantifies the

attractiveness of an event. For example, high arousal

would result in ‘Fear’ emotion and high valence would

result in a feeling of ‘Joy’. Heart signals are annotated

for emotions in multi-modal studies of a person’s per-

sonality and mood. Here all participants watched a set

of short videos and were then profiled according to their

personality traits and their mood based on the heart

signal recorded [22]. The annotation is done by each

participant using a questionnaire rating the intensity

of emotions they feel after watching the video. Figure 2

illustrates the complete FATE process for ECG data.

We also evaluate the proposed model on a personal

digital assistant for children. Personal digital assistants

can act as secretary in doing activities such as schedul-

ing of tasks, sending emails, making reservations, etc.

For example, a 6-year old Dallas girl prompted Alexa to

order her a Dollhouse [23]. Secondly, it can help people

who suffer from social isolation such as the elderly. Rule

based chatbots such as Siri are easy to train, however

they lack memory and variations in response. In [24],

the authors moved from symbolic AI to sub-symbolic AI

(such as memory models) to enhance the efficiency of di-

alog systems. In retrieval based models we can take into

account the related common-sense knowledge to select

the appropriate response [25]. Such a model can become

dull and a generation based model with an encoder-

decoder can be used. It is ideal to combine rule-based

and AI models for the best results [26]. In this paper,

we consider the multi-task learning of a chatbot that

can converse on different topics.

3 Preliminaries

In this section, we provide the preliminary theoretical

concepts needed to understand the model. We begin

with a description of Genetic Programming (GP) where

chromosomes can be of variable lengths. Next, we de-

scribe two neural topologies that are optimized in this

paper. Lastly, we describe the multi-task evolutionary

framework for optimization using GP.

3.1 Genetic Programming

Genetic Programming (GP) evolves a population of po-

tential models, each structured in a tree-like fashion,

with mathematical functions linking input nodes and

constants. The probability of a given tree surviving into

the next generation depends on its classification accu-

racy on the training set. Fitness proportional selection

combined with genetic operators such as crossover and

mutation produce a new generation of offspring solu-

tions. Here, each leaf node is the output node of a

certain neural topology and all other nodes are func-

tions such as the set F = {+,−, ∗, /, sin, cos, exp,<,>
, sqrt, cube} where / denotes protected division that re-

turns 1 if the denominator is 0. We first initialize a large

population of GP’s randomly.

Algorithm 1 describes a simple steady state GP clas-

sifier. We start with a root p and np children for the

root. Next, for each child we randomly generate a new

sub-tree until the maximum number of nodes is reached.

The next generation is reproduced through the crossover

operation. Here, we selectively rank the entire popu-

lation of GPs based on classification accuracy on the

training dataset. Next, two elite parent GP’s are se-

lected, and we randomly replace a sub-tree in one par-

ent GP with a sub-tree from the second parent GP re-

sulting in two new children GPs for the next generation.

This process of evolution continues until convergence

when the accuracy of elite GP in each generation does

not improve any further. In order to achieve neuroevo-

lution using genetic programming we initialize each leaf

node with the output neuron from a single neural topol-

ogy. The elite program in the last generation is used to

determine the optimal topology that is made up of an

aggregation of individual topologies. In order to com-

bine the different sub-topologies we use an additional

layer of neurons where the weights are determined us-

ing mathematical operators. For example, in Figure 1

offspring 1 is made up of three individual topologies

and two mathematical operators namely > and −. Each

topology has its own set of hyper-parameters such as

N1
1 for number of neurons and lr11 for learning rate.

The input to the neuron is random class labels. The ac-

curacy of the complete GP can be obtained by solving

the entire decision tree.

A GP can get stuck in local optimum solution if the

population similarity in each generation is low (<0.6%).

Hence, we keep the maximum number of nodes to 20

and depth to 4 levels, so that the similarity between

trees is high and it can easily converge to the global

optimum solution. Irrespective of the number of input

features, each GP tree will have 20 nodes and discard

the remaining features.

© 2020 Springer Science+Business Media, LLC, part of Springer Nature
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Fig. 3 Topology for (a) Feedforward NN (b) Seq2Seq network
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Algorithm 1 Genetic Programming classification
1: Input :
2: Training and test data (xij)n×T for n topologies and T

samples
3: Corresponding class labels (y)1×T ∈ {+ve,−ve}
4: Output :
5: GP ensemble topology
6: Class labels of Test Samples
7: % Initialize a population of random GP’s
8: Initialize GP root p and children p.children with length

np

9: repeat
10: p.children[k]← randomly generated subtree
11: until k < np

12: % Crossover Operations to generate new population
13: repeat
14: Select Two Elite GP p1 and p2 based on Accuracy
15: Select subtree1 = p1.children[1 : k1] for any k1
16: Select subtree2 = p2.children[k1 + 1 : np]
17: Merge subtree1 and subtree2 resulting in two new chil-

dren
18: l = l + 2
19: until convergence
20: Each test sample is classified using predicted GP
21: Accuracy : # of correctly classified test samples

3.2 Neural Networks Topologies

We consider neuroevolution for two different types of

neural networks. However, the model can be easily ap-

plied to optimize any other neural model. Figure 3 illus-

trates the feedforward and the Seq2Seq neural models.

The feedforward neural networks are used to classify

ECG samples as positive or negative. The Neural Net-

work (NN) has at least three layers, namely the input

layer of heartbeat samples, the hidden layer and the

output layer for the class label as shown in Figure 3

(a). The weights of the edges connecting different lay-

ers are learned using backpropagation algorithm.

For example, we consider a feedforward neural net-

work with an input, one hidden and an output layer.

The continuous state ĥj of the hidden neuron j, with

bias bj , is a weighted sum over all continuous input

nodes v and is given by:

ĥj = bj +
∑
i

viwij , (1)

where wij is the connection weight to hidden neuron

j from a visible node vi. Similarly, we can predict the

value of neurons in the output layers using ( 1). Next,

the binary state hj of the hidden neurons in the output

layer can be defined by a sigmoid activation function:

hj =
1

1 + e−ĥj

. (2)

Lastly, we compute the change in weights as the dif-

ference between the predicted outputs and the target

outputs :

4wij = α(< vihj >output − < vihj >target), (3)

where α is the learning rate and < vihj > is the ex-

pected frequency with which visible unit i and hidden

unit j are active together when the visible vectors are

sampled from the training set and the hidden units are

determined by ( 1).

The Seq2seq neural network maps an input sen-

tence to an output sentence with a tag and attention

value. The idea is to use two Long-Short Term memory

(LSTM) that will work together with a special tying

or sharing of weights to predict the next state sequence

from the previous sequence. Unlike the feedforward NN,

the neurons in an LSTM are inter-connected so that

they can remember the past sequence of words in a

sentence using memory states. The first LSTM is the

encoder that learns to predict the next word in the in-

put chat sentence and the second LSTM is the decoder

that is trained to predict the next word in the response

as shown in Figure 3 (b).

Each neuron in an LSTM is a cell made up gates

that control which information to remember and which

© 2020 Springer Science+Business Media, LLC, part of Springer Nature
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information to forget. Each gate has two associated

weight matrices : input weights w1 and memory weights

w2. The input from the previous hidden neuron ht−1 in

a sequence of words is used to learn the weights of the

next word. In addition, the cell has a state node ct that

determines if the current word should be remembered

or forgotten. The value of ct is determined using the

input gate it, the forget gate ft and the previous state

ct−1 as shown in Figure 3 (b).

The model is trained using gradient descent similar

to the one described for feedforward NN. The continu-

ous state of each gate is determining as a weighted sum

over all input nodes:

it = vtw
1
i + ht−1w

2
i

ft = vtw
1
f + ht−1w

2
f

ct = vtw
1
c + ht−1w

2
c

ht = vtw
1
h + ht−1w

2
h (4)

where the gates are updated using the error computed

at the last hidden neuron and known target labels as

shown in ( 3). The forget gate uses the sin activation

function that transforms the input in the range [0, 1]

where a value 0 indicates that the information is for-

gotten.

3.3 Multi-Task Evolutionary Optimization

Multi-task optimization aims to model two or more task

simultaneously via transfer of solutions between the do-

mains of the two tasks. The features of each task will

have domain specific contextual meaning to the opti-

mization of that task. Hence, we need to model both

the independent and the shared information between

the tasks. In this paper, Multi-task evolutionary opti-

mization aims to achieve this via ‘assortative mating’.

Figure 1 illustrates a Genetic Program for multi-

task evolution for two tasks. Let us denote the skill fac-

tor of a chromosome i for a particular task k as SF k
i .

Here we can compute the skill factor as the accuracy on

the training dataset. Let us consider the optimization

of a feedforward neural network j for task k with five

hyper-parameters : (1) Number of hidden neurons Nk
j ,

(2) Regularization constant ckj , (3) Number of training

epochs T k
j , (4) Activation function F k

j and (5) Learning

rate lrkj . We consider a neural network with a single out-

put neuron. Hence, for each training sample of task k we

can create an output vector corresponding to the neu-

ral network with the specified hyper-parameters. For

example, the chromosome of Parent 1 in Figure 1 is an

ensemble three neural network topologies connected by

two mathematical operators > and −. Here we can use

> boolean operator on the output of neural network 1

and 2. If the output of 1 is greater than output of 2,

then we select the value and class label for the ‘True’

branch and otherwise we select the value and class label

for the ‘False’ branch. Next, we subtract the value from

the output of topology 3 and check if its greater than

a predefined threshold resulting in the final class label

for the sample.

We start with a random population of chromosomes.

The skill factor of each chromosome is evaluation for

both the tasks. In the next generation, we can use assor-

tative mating of two parent chromosomes resulting in

two new offspring’s. Assortative mating states that in-

dividuals prefer to mate with those belonging to similar

cultural background. Hence, two parents with a higher

skill in a particular task are mated. For example, in

Figure 1 we compare the skill factors of both the par-

ents for the two tasks. If SF 1
1 > SF 2

1 and SF 1
2 > SF 2

2

then we can conclude that both chromosomes are suit-

able for task 1 and hence are mated to generate two

new offspring’s that might have higher fitness for task

1. However, if the offspring has a higher skill for task 2,

then in the next generation it will be mated with an-

other offspring with higher skill for task 2. In this way,

multi-task evolution uses a combined search space to

optimize both tasks completely.

Figure 7 illustrates an example of multi-task GP.

The first tree has a higher accuracy for Valence than

Arousal. The second tree has higher accuracy for Arousal

than Valence. The trees take a decision tree structure

where all the leaf nodes are random binary class la-

bels. The operators are all boolean tests that determine

which class label is propagated to the leaf node. For ex-

ample, in Figure 7 the predicted GP tree for Valence is

made of neural topologies P12, P77 and P40. We can

see that P12 was also used in the Arousal GP tree. In

contrast to the traditional multi-task evolutionary op-

timization where a unified genotype is used to generate

different phenotypes for different tasks. Hence a single

chromosome encodes both the tasks. Here, the geno-

type for each task is different since each chromosome is

only skilled in a specific task. However, sub-trees could

be transferred between tasks during crossover.

4 Fuzzy Multi-task Optimization

In this section, we describe the Fuzzy classifier to detail

the inter-task covariance matrix. Next, we describe the

complete Fuzzy Multi-Task Optimization Framework.

© 2020 Springer Science+Business Media, LLC, part of Springer Nature
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4.1 Fuzzy Inter-task Covariance Matrix

Individual modeling of each task will not be very suit-

able for multi-task problems due to the ignorance of the

inter-task latent covariance. For a pair of input samples

i and i+1 from the same or different tasks we can define

an inter-task utility function q(i) as follows:

qi =

{
1, if σ ≥ 0.5

0, if σ < 0.5

where σ is the covariance between i and i+1. Hence, qi
is 1 if the covariance is high and qi is 0 if the covariance

is low. We can also define a long-term utility function

over all samples as follows :

yi = qi+1 + βqi+2 + β2qi+3 + . . . (5)

where β are the unknown parameters. In this paper we

employ Fuzzy Neural Networks to estimate the utility

function.

We now detail the fuzzy model for shared inter-task

dataset, the model for a single task is a special case of

the former. The input is a vector of features where each

feature is the output of a pre-trained sub-topology. We

use one fuzzy membership function to represent each

task. For example, one function can represent the va-

lence and the other can represent the arousal of an indi-

vidual. We consider four emotional dimensions for each

ECG e(t) , calmness mc(t), fear mf (t), happiness mh(t)

and sadness ms(t). The emotions have uncertainties

which can vary in the range mc(t) ∈ [mcmin,mcmax],

mf (t) ∈ [mfmin,mfmax], mh(t) ∈ [mhmin,mhmax] and

ms(t) ∈ [msmin,msmax]. It is to say that the uncer-

tainty of the calmness mc(t) is bounded by its minimum

value mcmin and its maximum value mcmax. Similarly,

the other emotional dimensions are bounded by their

minimum and maximum values.

0 x

M1(x) for Joy/Fear M2(x) for Sad/Calm
1

x*

M2(x*)

M1(x*)

Fig. 4 Sample Membership functions for two ECG tasks

In order to determine the inter-task covariance ma-

trix, we consider two membership functions. The partial

membership to both the functions M1 and M2 such as

‘Very Low, Low, High, Very High’ can be determined

using :

M1(x) =
x−mhmax

mhmax −mhmin
(6)

M2(x) =
x−msmax

msmax −msmin

M1(1/x) +M2(1/x) = 1

The member functions are labeled ”High” and ”Low”

as shown in Figure 4. The membership function M1 is

high for Joy and low for Sad. On the contrary the mem-

bership function M2 is high for Sad and is low for Joy.

For a given input sample x∗ we can compute two val-

ues corresponding to M1(x∗) and M2(x∗). Lastly, fuzzy

blending allows us to infer the overall fuzzy sentiment

model using the following rules :

Rule1 : IF Joy is High and Sad is Low (7)

THEN y = 1

Rule2 : IF Joy is Low and Sad is High

THEN y = 0

Rule3 : IF Fear is High and Calm is Low

THEN y = 1

Rule4 : IF Fear is Low and Calm is High

THEN y = 0

where y ∈ {0, 1} is the emotion class for a single task.

Similar rules can be designed for the chatbot dataset.

For a set of input variables x = (x1, x2, . . . , xp) and

output labels y, we consider a union of K fuzzy mem-

bership functions M1,M2, . . . ,MK , then the defuzzifier

that maps the fuzzy set to a single output ŷ is defined

as :

ŷi =

K∑
l=1

wl

(
p∏

i=1

Ml(xi)

)
/

K∑
l=1

p∏
i=1

Ml(xi) (8)

where wl = msmax is the point at which Ml(y) = 1.

Figure 2 provides the flow diagram for computing

the inter-task covariance matrix. We train a common

neural topology with both the tasks dataset : Valence

and Arousal. Next, the two output features extracted

from both tasks are combined and used to train the

Fuzzy Logic classifier. We use two membership func-

tions to capture the labels for two tasks. The output of

the Fuzzy classifier is a single output feature vector y.

In order to train the multi-task GP we again separate

the output feature into two tasks dataset.

© 2020 Springer Science+Business Media, LLC, part of Springer Nature
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4.2 Aggregated Multi-task Neuroevolution Framework

Next, we can use the previously described multi-task

optimization to collectively evolve several related tasks.

Here, each objective is a separate skill or task. For ex-

ample, in the ECG data one task is Valence classifica-

tion and the second task is Arousal classification. Sim-

ilarly, for the Children conversation data set, children

with 1 year of English exposure is one task and children

with 2 years of English exposure is the second task.

For each training sample with a known class label,

we predict the output class node using different neu-

ral topologies. The genetic program uses mathematical

functions to determine the optimal ensemble of topolo-

gies that can maximize the accuracy for all tasks simul-

taneously as described in the previous section. Each in-

dividual is now evaluated for each of the tasks. Next, we

can assign a skill to the individual as the task with the

highest fitness score after solving the genetic program.

Assortative mating is used where two individuals with

the same skill undergo crossover to produce new indi-

viduals in the next generation. By definition: A solution

x′ ∈ X is called Multi-task optimal if there is no solu-

tion x ∈ X such that fi(x) ≤ fi(x′) for all i = 1, 2, . . . , k

and fj(x) < fj(x
′) for all objective functions with index

j.

We first train a starting population of topologies

for each task. Each topology is trained using a different

set of hyper-parameters. The output features of each
topology from both tasks are combined to determine

the inter-task covariance matrix using a Fuzzy system.

The transformed outputs for each task are used to train

a multi-task genetic program using assortative mating.

Figure 2 illustrates the entire process of FATE for ECG

dataset. For each of the 500 participants we consider

1000 time samples in the ECG dataset and the labels

for level of Arousal and Valence. A common topology is

shared between the two tasks. We train the neural net-

work independently for both tasks. The neural network

has two outputs corresponding to high or low emotion.

We can combine the output for both tasks resulting in a

matrix of two outputs and 1000 participants. Next, we

use the combined data to train the Fuzzy Logic Clas-

sifier. Here the output of the Fuzzy model is a single

neuron that represents the shared neural topology. This

process repeated for 100 different topologies resulting in

a matrix of 100 outputs for 1000 participants. Finally,

we again separated the features for the two tasks and

train the Mutli-task GP model.

Fig. 5 Here we consider Task 1 where Valence is high (Joy)
and Task 2 where Arousal is high (Fear). The R-R peaks are
shown as circles. The Q peaks first reduce and then increase
in amplitude.
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5 Experiments

Validation of the proposed FATE (available on GitHub1)

is done on two real world dataset : (1) Heart ECG

data using Feed-forward NN (2) Chatbot for kids using

Seq2seq model. Following previous authors we report

the improvement in accuracy over baselines.

5.1 Physiological Signals ECG Dataset

The ECG signals were classified according to four emo-

tional states: calm (low arousal), fear (high arousal), joy

(high valence) and sad (low valence). First, we trained

the model through manually annotated ECG signals

from the DREAMER [27], Amigos [28] and Ascertain [29]

databases. In order to collect ECG samples for a par-

ticular emotion, a video clip was shown to the partici-

pant and ECG was recorded at the end of the clip. Each

clip targeted one of the following nine emotions: amuse-

ment, excitement, happiness, calmness, anger, disgust,

fear, sadness and surprise. To avoid contaminating data

recordings with multiple emotions, only the recordings

captured during the last 60 seconds of each film clip

were used for further analysis. A 5 second baseline record-

ing showing a fixation cross was shown before each

film clip in order to help the subject return to a neu-

tral emotional state. Each participant performed an ini-

tial self-assessment for the emotion felt ranging from

1 http://github.com/cogncomp/fate

© 2020 Springer Science+Business Media, LLC, part of Springer Nature
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1 (unpleasant/stressed) to 0 (happy/calm). We con-

sider 2 leads and up to 500 samples from each lead and

binary valence labels. The Amigos database contains

ECG recordings from 40 subjects and 16 movie clips.

Dreamer has recordings of 23 subjects and 18 movie

clips. Lastly, Ascertain with 58 student samples for 36

movies. Figure 5 illustrates a sample ECG where the va-

lence and arousal are both high. Each heart-beat spans

R-R peaks shown in pink circles. The shorter peaks cor-

respond to Q and S peaks. When viewing movie clips

for different emotions such as ‘Sad’ or ‘Fear’, the am-

plitude and frequency of the wave form will be differ-

ent. Table 1 compares the classification accuracy of the

proposed FATE with the baseline GP without multi-

tasking and NeuroEvolution of Augmenting Topologies

(NEAT) algorithm. FATE is able to outperform both

the methods with up-to 15% in accuracy.

Table 1 Comparison of different baselines with proposed
model on different types of Dataset

Dataset GP NEAT [11] FATE
ECG 74.2 71.5 84.6

Chatbot 60.0 59 68.4

5.2 Childrens Conversation Dataset

The Paradis corpus consists of sample conversations

with 25 children who are learning English as a sec-

ond language [30]. Transcription is in English orthog-

raphy only; phonetic transcription was not included in

this research. Any real names of people or places in

the transcripts have been replaced with pseudonyms.

When the study started, the children were, on average,

5;6 years old with a mean of 9.5 months of exposure

to their English L2 in a preschool or school program.

Data was collected approximately every 6 months for

5 rounds. We can convert the problem into a classifi-

cation problem where the response generated by the

model can be labeled as ‘adult’ or ‘child’. We consider

two tasks for children with five months and 34 months

of exposure to English. Here we compare the response

for two questions ‘When’s your birthday?’ and ‘What’s

your favourite food?’ for both task. We can see that

at five months the child uses support sounds such as

‘mmhm’ and children with a longer exposure need fewer

prompts from the adult. In order to evaluate the chat-

bot we consider the recursive replies to an input ques-

tion. Here each response is used as the input in the next

time stamp (see Table 2). The response can be classi-

fied into 10 categories based on the conversation input

question such as ‘Food’ or ‘Birthday’. Table 1 compares

Fig. 6 We compare the evolution of number of neurons and
accuracy for NEAT and the proposed FATE. The first figure
is the increase in number of hidden neurons and the second
figure is the corresponding improvement in accuracy.
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the classification accuracy of the proposed FATE with

the baseline GP without multi-tasking and NEAT al-

gorithm. FATE is able to outperform both the methods

with up-to 10% in accuracy.

5.3 Neuroevolution Parameters

In order to determine the optimal hyper-parameters we

create an initial population of neural networks for each

of the types described in Figure 3. Table 3 provides the

list of tunable parameters for both the types of neu-

ral networks and the range of values considered in the

experiments. For the case of feedforward neural net-

works we vary the number of neurons, the number of

epochs, the learning rate, the regularization constant

and the activation function. For the case of Seq2seq we

vary the batch size, the number of hidden layers, the

number of attention units, the number of heads in the

multi-attention model and the number of epochs. Fig-

© 2020 Springer Science+Business Media, LLC, part of Springer Nature
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Table 2 We illustrate samples generated conversations be-
tween a child and an adult using Seq2seq for 5 months and
34 months exposure to English

5 months
Question : How old are you?
Reply (t1) : six
Reply (t2) : youre six
Reply (t3) : thats pretty old
Reply (t4) : and when it was my birthday
Reply (t5) : I was five
34 months
Question : do you go to school ?
Reply (t1) : yes
Reply (t2) : what grade are you in
Reply (t3) : kindergarten
Reply (t4) : youre in kindergarten still
Reply (t5) : mmhm

ure 6 shows the evolution of the proposed FATE and

the baseline NEAT algorithm on ECG dataset. We had

to run NEAT for both tasks Valence and Arousal. The

neural network predicted by NEAT has only up-to 20

hidden neurons instead by using an ensemble of neural

networks the proposed FATE uses up-to 260 neurons.

Lastly, the proposed FATE is exponentially faster than

the baseline NEAT algorithm.

Table 3 Tuning of Hyper-parameters

Feedforward NN Parameters
Number of Neurons [1, 2,. . . , 10]
Number of Epochs [1, 2,. . . , 50]
Learning Rate [0.1, 0.2,. . . , 1]
Regularization Constant [0.1, 0.2,. . . , 1]
Activation Function [‘trainbr’ ’trainbfg’ ’trainlm’]
Seq2Seq Parameters
Batch Size [1, 2, . . . , 5]
Number of Layers [1, 2, 3]
Number of Neurons [1, 2, . . . , 5]
Number of Heads [1, 2, . . . , 5]
Number of Epochs [50, 100, . . . , 500]

5.4 Decision Tree Representation

In this paper, each genetic program takes the form of a

decision tree as it is causal, transparent and intuitive. In

a decision tree each operator is a boolean test that com-

pares a numeric attribute against a threshold value or

a nominal attribute against a set of possible values. For

example in Figure 7 we show the predicted GP tree for

the two ECG tasks : Valence and Arousal. The optimal

trees for both tasks have three neural topologies. Va-

lence is an aggregate of P12, P77 and P40 and Arousal

is an aggregate of P14, P12 and P21. Hence, we can

conclude that some components such as P12 are reused

in both tasks. To solve the tree we have to first solve the

+ve and -ve sub-tree and the result is propagated from

the leaf nodes upwards to the root node. For example

in the tree for Valence, if the condition 3
√
P40 > 0.78

is true then the solution is +ve child value 0 and if the

condition is false then the solution is the -ve child value

that is 1. Next, we go up one level, here again if the con-

dition P77 < 0.49 is true then the solution is the value

from +ve child that is P12 and if the condition is false

then the solution is from the -ve child that is P40. The

class label in this task is binary where 0 corresponds to

Sad and 1 corresponds to Joy.

In Figure 1 we illustrate two sample chromosomes

that both have a higher accuracy on task 1. After cross

over we swap the sub-trees (shaded) between the two

parents. The resulting chromosomes may have higher

skill on task1 compared to both parents. However, it

may happen that an offspring is created that has a

higher accuracy in task 2. This is also observed in Fig-

ure 7. Here, we consider the two tasks : Valence and

Arousal in ECG data. We can see that individual P12

occurs in both tasks optimal trees. This happens due

to implicit genetic transfer between the two tasks.

6 Conclusion

We show that evolutionary approaches can be used to

optimize the hyper-parameters of complex neural ar-

chitectures. Furthermore, we can use assortative mat-

ing to evolve several tasks in the same model. To en-

able explicit transfer between different tasks, we can

use genetic programming where each individual has a

tree like structure and crossover is possible by simply

swapping sub-trees. To determine the optimal neural

topology, we train several different models in parallel.

Next, we use Fuzzy logic to determine the inter-task co-

variance matrix and transform the features from both

tasks to a common space. The transformed data is used

to train a genetic program classifier. The elite genetic

program is an ensemble of two or more topologies that

are combined together using mathematical functions.

We evaluate our model on two real world problems and

outperform baselines by over 10% in accuracy.
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Fig. 7 Predicted Optimal Trees for Valence and Arousal us-
ing FATE.
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