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Abstract: Ro-FSO systems have previously relied on the intensity, wavelength and polarization 

for multiplexing data streams in order to increase to the signal quality and to increase the 

achievable link range.  This work leverages on optical space division multiplexing by using novel 

three-core PCF mode group multiplexer and hexagonal mid-gapped tiered PCF mode group 

equalizers for improving the signal quality and increasing the achievable link range in a rural 

environment. At the transmitter, a three-core PCF mode group demultiplexer converts the 

fundamental mode into three distinct mode groups used as carriers for independent transmission of 

three radio frequency signals.  At the receiver, the three PCF successfully equalizes the power 

from the received signal, with the channel impulse responses showing an improvement in the 

signal quality. An increment between 13.6% and 31.1% in the achievable link range for all 

channels is evident under medium and heavy fog conditions at the same bit error rate level, using 

the designed PCF mode group multiplexers and equalizers. 

Keywords:  radio over free space optics, space division multiplexing, multiple-input-multiple-

output, photonic crystal fiber, mode multiplexer, digital divide 

 

1. Introduction 

The upcoming fifth generation (5G) and sixth generation (6G) communications systems are 

expected to be game changers for automotive, healthcare, manufacturing, data analytics, disaster 

management, utilities monitoring, augmented/virtual reality services [1-3]. Next generation smart 

communication systems are expected to connect people, smartphones, sensors devices for 

transporting an enormous amount of data more rapidly and reliably.   It is projected that by the 

year 2025, there will be 75 billion Internet of Things (IoT) devices and sensors which require real-

time data streaming [4].  The annual mobile data traffic is expected to grow three-fold from 2017 

to the end of 2022 from these smart services [5].  
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Inevitably, microwave spectrum bands below 6 GHz utilized by legacy wireless systems 

are growing increasingly congested and licensing is expensive.  To extend the coverage to larger 

areas, wired connections based on optical fibers have been used for higher bandwidth gains but at 

a high deployment cost and without the capacity for reconfiguration. On the other hand, the 

introduction of wireless connectivity at optical frequencies offers high data capacities, while 

allowing rapid and dynamic deployment.  Free space optics (FSO) technology may be used as an 

alternative to optical fiber for backhaul connectivity [6-8].  The key advantages of FSO are 

reconfigurability, unlicensed spectrum, high transmission rates, inherent security and 

insusceptibility to electromagnetic interference [9, 10].  

 

Radio over free space technology (Ro-FSO) may be deployed to extend high-speed 

network connectivity to underserved areas and geographical terrains where optical fiber 

installations may not be viable [11, 12].  Ro-FSO provides a high-bandwidth, cost-effective and 

flexible solution for resolving the spectrum crisis for evolution towards 5G [13, 14].  There is 

currently a large disparity between urban and rural communities in Internet access, especially in 

developing countries. The need to bridge this digital gap is necessary for the development of the 

digital economy of developing countries  [15, 16].   Studies have shown that the rural communities 

in developing countries, such as Malaysia lack the infrastructure for affordable high-speed Internet 

access [16-18]. Rural communities also lack knowledge and skills in information communications 

technology (ICT), which contributes to digital divide [19, 20].  Digitization through the provision 

of high-speed low cost Internet services based on Ro-FSO is a powerful agent of change.  FSO 

networks would potentially enable rural communities to access the wealth of online material and 

spur the creation of new digital start-ups, which contributes towards the development and 

sustainability of the digital economy of developing countries.   

 

Nevertheless, the main challenge for Ro-FSO systems is the performance degradation due 

to low visibility and turbulence, as optical are not capable of penetrating structures and other 

obstacles [9, 10, 21, 22].  Space division multiplexing (SDM) is a recent spatial diversity strategy 

transpired by utilizing different eigenmodes in optical fiber as independent channels to create 

multiple-input-multiple-output systems [22-27].  SDM enables the provision of multiple links 

during harsh weather conditions in case of failure of any of the links and increases the achievable 

link distance [28-34].   

 

The paper is organized as follows.  Section 2 provides a literature review on previous 

work on SDM for improving the signal quality and increasing the transmission link, and the design 

of PCFs for SDM.  Section 3 highlights the novelty of our work and its impact. Section 4 discusses 

the novel design of the three-core PCF mode group multiplexer and hexagonal mid-gapped tiered 

PCF mode group equalizers for increasing the achievable link range of a Ro-FSO system. Section 

5 compares the signal quality and achievable distance of the Ro-FSO transmission, prior to and 

after the incorporation of the novel PCF mode group multiplexers and equalizers, in terms of the 

intensity distribution, channel impulse response versus normalized effective index, eye diagrams 

and achievable distance for all channels. 

 

 

2. Related Work 

The role of SDM has recently been extended from optical fiber networks to FSO networks. In [35], 

researchers have modulated information over FSO transmission link of 143km by multiplexing of 

ℓ= ±1, ±2 and ±3 orbital angular momentum (OAM) modes at various relative phases to connect 

two islands. In [36], SDM in conjunction with polarization division multiplexing (PDM) was 

adopted for experimental transmission of 1.44 Tbps data over FSO link of 1.8m using 24 OAM 

modes. In another experiment [37], two OAM modes (ℓ=±3) were used in transmitting 40Gbps 16 

QAM data over FSO link of 260m. In [38], 400 Gbps data is experimentally transmitted over a 

120-meter FSO link using four OAM beams     
  and     

 , each carrying 100Gbps data, with 

the aid of two reflective spatial light modulators (SLMs). Another experiment [39] reported the 

transmission of 200 Gbps data over a 1-meter FSO link using two SLM-generated Laguerre–

Gaussian (LG) beams with different radial indexes     and     at a fixed azimuthal index 

     SDM was realized in a 50km-long FSO system in [40] through spiral-phased LG and 

Hermite–Gaussian (HG) modes to realize an aggregate data rate of 80 Gbps at 160 GHz for 
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OFDM signals. In [41], three 40 GHz signals are optically modulated at 20 Gbps and transported 

over a 50km-long FSO link  in a OFDM-SDM  system using three HG modes, HG 00, HG 01 and 

HG 02.  [28] reported on the design of two spiral-phased HG modes for transmission of 2.5Gbps 

10GHz radio signals each in a Ro-FSO system under the impact of beam divergence and 

atmospheric turbulence. In [42], a mode filtering technique using a single mode fiber was 

experimentally and theoretically shown to mitigate modal effects of a radio-over-fiber-FSO system 

and improved the system bandwidth by 2 GHz.  

 

Various PCF designs have been explored for mode excitation in SDM systems, largely 

used in optical fiber systems. In [43], authors demonstrated 100 Gbps data transmission over 1.15 

km of low loss photonic band gap fiber  (PBGF) and 1 km of solid core fiber.  In [44], a six-mode 

nineteen-core fiber was designed for  an ultra-dense quadrature phase shift keying system based on 

space, wavelength and phase multiplexing at 2.05 Pbit/s with a spectral efficiency of 456 bit/s/Hz 

for a distance of 9.8 km. In another work [45], a PCF was designed to minimize dispersion in an 

optical fiber communication systems with potential sensor applications. In [46], the authors 

designed a mode selective coupler based on dual core PCF for mode conversion between LP 01 

and LP 11 modes. In  [29, 47], solid core PCFs are designed as mode converters for excitation of 

LG modes. Recently [48], authors fabricated polarization beam splitters based on dual core PCF 

with magnetic fluids in air holes, which allows the proportion of polarization modes to be adjusted 

by controlling the magnetic field strength.  In another work, a long-period fiber grating mode 

converter based on a two-mode polarization-maintaining PCF was fabricated [49] to convert 

between LP01 modes and LP11 modes and separate the linearly polarized LP11 output modes at 

different wavelengths. In [50], an analysis on a 4-moded PCF is performed to investigate the effect 

of hole diameters and  the separation between them.  In [51], a circular PCF with a defect in the 

first layer was designed numerically and shown to support 14 OAM modes with low confinement 

loss at around 1.55μm.  In [52, 53], fiber amplifiers with erbium-doped rings within a PCF 

structure were been designed to equalize the gain of different modes in an OAM SDM system. In 

[54], a multiplexing coupler is designed using a five-core microstructure optical fiber to 

demultiplex LP11, LP21, LP02 and LP01 modes simultaneously at 1550nm. In [55], a dual-core PCF 

mode demultiplexer was designed for mode generation and equalization. 

 

 

3. Novelty 

To augment the capacity of Ro-FSO systems, various modulation and multiplexing schemes have 

been investigated, largely based on intensity, wavelength and polarization.  Despite recent SDM 

initiatives in Ro-FSO systems, the application of PCF mode multiplexers and equalizers in Ro-

FSO systems remains largely untapped. The contribution of this work is to increase the signal 

quality and achievable distance of a Ro-FSO system with the intricate design of novel three-core 

PCF mode and hexagonal mid-gapped tiered PCF mode group equalizers for generating thee 

independent mode groups as data carriers.  For equalizing the modal power between mode groups, 

tiering gaps were used instead of doping rings to minimize the differences in mode power.  In 

addition, while most previous mode converters enabled the conversion of a single mode into 

another single mode, in this work, we considered the conversion of the fundamental mode to three 

mode groups of relatively wider effective indices so that they are less susceptible to power 

coupling from weather fluctuations than individual modes. Ro-FSO provides a high-bandwidth, 

cost-effective and flexible solution for the evolution towards next generation communication 

systems, particularly for rural connectivity in developing countries 
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4. System Design 

The architecture for the proposed Ro-FSO system is illustrated in Fig. 1. The central office is 

connected to the base station through a 2km FSO link.  The base station is connected to several 

gateways, which are mounted on a tall structure in a rural area.  The Ro-FSO system comprises 

three segments: (i) radio links from houses to gateways in a rural area  (ii) Ro-FSO links from the 

gateways to base station using individual mode groups for each channel   (iii) SDM Ro-FSO links 

from base station to central office combining three mode groups. The Ro-FSO system is developed 

to aggregate/demultiplex data signals on radio frequencies from houses in a rural area onto/from 

an optical mode group and to allow spatial diversity through three mode group links using SDM in 

case of link failure. The application of a PCF multiplexer/demultiplexer for SDM presents a 

potential alternative to WDM for point-to-mutipoint access, thus provides a means for mitigating 

spectrum shortage in the low gigahertz range in rural areas. The small size and weight of these 

PCFs are attractive features for SDM-based compact transceivers at the base station for wireless 

Ro-FSO systems.   

Fig.2 shows a schematic diagram of the PCF mode group multiplexer and equalizers used 

in the Ro-FSO system.  Mode group multiplexer/demultiplexer PCF A and mode group equalizers 

PCFs B, C and D are designed using the finite element method at a wavelength of 1550 nm with 

the condition of perfect matched layer.  The parameters for the PCFs are given in Table 1.  The 

channel is modelled in MATLAB.   

 

 The refractive index profile of PCF A is given in Fig. 3. The three larger cores at the 

center have a higher refractive index than the surrounding smaller cores in order to reduce inter-

mode group crosstalk. PCF A is designed such that all three channels have approximately equal 

power distribution at the output.  Mode coupling is described by [56]: 

( ) ( )m
mn n mn

n m

dA
j K A z exp j z

dz




                              (1) 

 

Fig. 1.  SDM Ro-FSO system architecture for rural connectivity 
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where An is the modal amplitude in core n, z is the propagation direction, Kmn is the mode group 

coupling coefficient from core n to core m, mn=m - n  is the propagation constant difference, 

where m and n are the propagation constants of mode groups in core m and core n respectively.   

  

Different mode groups are excited by controlling the PCF length, which is given by: 

 

 
2( )even odd even odd

l
n n

 

 
 

 
  (2) 

where even and odd are the propagating constants of even and odd modes respectively; neven  

and nodd are the corresponding effective refractive indices respectively. By adjusting the refractive 

index profile and length of the PCF, the power may be coupled into distinct mode groups.   From 

Fig. 4, in PCF A, the power in each mode group increases oscillatorily with length until 32.1%, 

33% and 30.6% of the input power are coupled into the first, second and third mode groups 

respectively at a length of 200 m.  The insertion loss is 1% and the remainder of the power is lost 

to evanescent modes.  

Fig. 5 depicts the channel impulse response versus normalized effective index of mode 

groups at output of three-core PCF A, computed using the overlap integral between the transverse 

electric field from the relevant channel, Ech with the effective transverse electric field of each 

mode group, Emg: 

 

Fig. 2.     SDM in Ro-FSO system based on selective mode group excitation using PCFs   

 

 

Fig. 3.     Refractive index profile of dual-core PCF A at transmitter 
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2

22*( , ) ( , ) ( , ) . ( , )ch mg ch mgx y x y dx dy x y dx dy x y dx dy    E e E e      (3) 

The effective indices in Fig. 5 have been subtracted with respect to the average effective index of 

the mode groups in consideration, nbar so that the graph is centered at neff – nbar.  The effective 

indices for each channel are 1.5, 1.4 and 1.3.  The channel impulse response illustrates that the 

power between the three output modes are divided to an approximately equal distribution at the 

transmitter across the three channels. 

 

For uplink transmission, at the base station, a continuous wave light wave is generated by 

a distributed feedback laser at 1550 nm at the fundamental mode and split into three mode groups 

by PCF A as a mode group demultiplexer.  Three independent pseudorandom non-return-to-zero 

baseband signals are generated at 30 MHz to emulate radio signals from rural houses, which are 

converted into passband signals at 2.6 GHz at the gateways. The passband signals are used to 

modulate the optical beams from the PCF A-generated mode groups at 1550nm using a Mach-

Zehnder modulator at 10Gbps.  At the base station, the output of the modulator is amplified by an 

erbium-doped fiber amplifier and the signals are transmitted based on SDM over a free space 

channel of 2km in length to the central office. 

 

The FSO link is described as [57]:  

          
2

/10

2
10

( )

RR
R T

T

d
P P

d R








          (4) 

where PT is the transmitted power, PR is the received power,     is the receiver aperture diameter, 

   is the transmitter aperture diameter,   is the beam divergence and R is the FSO range,   is the 

atmospheric attenuation. 

 

The FSO channel and radio channel are modeled by the generalized Malaga (M) and η - μ 

distributions respectively.  The atmospheric attenuation,  is assumed to be 0.11dB/km for clear 

weather, 9dB/km for light fog, 15dB/km for thin fog and 21dB/km for heavy fog, based on 

Malaysian weather conditions [58-60]. The probability of a given intensity is given by [61]: 

 

 

TABLE  I    PCF PARAMETERS 

Parameters PCF A PCF B PCF C PCF D 

Diameter of large rods, b (m) 3.2 - - - 

Diameter of small rods, d (m) 0.95 1.22 1.22 1.22 

Distance between small rods, (m) 0.72 0.72 0.72 0.72 

Ratio of distance between rods to rod 

diameter, /d 

0.758 0.590 0.590 0.590 

Background index 1.46 1.5 1.4 1.4 

Length (m) 200 40 40 40 
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    (5) 

where -1 and -1 are variances of small and large scale eddies respectively,  is the gamma 

function and K is the modified Bessel function of the second kind. The Rytov variance is 

assumed for atmospheric scintillations [61], where the refraction structure parameter,   
  values of 

10-17 m-2/3,10-15 m-2/3, 10-13 m-2/3 represent weak, moderate and strong turbulence respectively. The 

fluctuation in the refractive index structure causes the power from the transmitted mode groups to 

scatter into various other mode groups.     

 

 

Fig. 5.    Channel impulse response versus normalized effective index of three-core PCF A at output 

  

 

Fig. 4.    Power coupling for three mode groups versus length in PCF A  
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For downlink transmission, the signals from the central office to the base station are 

transmitted using optical SDM.  At the base station, the optical SDM-ed signals are then 

demultiplexed into optical mode groups.  Each optical mode group is directed to a specific 

gateway in a rural area.  To avoid power loss in mode converters, retrieval of mode groups is 

performed in two stages.  In the first stage, the number of output modes should be larger than the 

number of input modes to alleviate transition into unavailable modes [62]. Thus, following the free 

space channel, PCF A as a mode group demultiplexer is designed such that the number of output 

mode groups exceeds the number of input mode groups. Then in the second stage, in order to 

select only the relevant mode groups in that channel, PCFs B, C and D perform to inverse the 

channel matrix, in order to offset mode coupling in the channel, so that the  original mode groups 

for each channel may be recovered.  Fig. 6 depicts the refractive index profiles of PCFs B, C and 

D.   

 

At the gateway, photodiodes convert the optical signals to electrical signals and low pass 

filtered.  The signal is then down converted to 30 MHz using a local oscillator running at the same 

frequency of 2.6 GHz as in the transmitter and delivered to respective houses in the rural area. 

 

 

 

5. Results 

After propagation through the free-space channel, the intensity distributions at the receiver are 

shown in Fig. 7.  The speckles indicate optical intensity fluctuations and fading caused by the 

random variation of the air refractive index.  For a quantitative analysis of Fig. 7, the channel 

impulse response versus normalized effective index are shown in Fig. 8 for Channels 1 to 3, taken 

immediately after the free-space channel. The effective indices in Fig. 8 have been subtracted from 

the average effective index, nbar so that the graph is centered at neff – nbar The channel impulse 

response plots for all channels reveal that the power from the transmitted mode group is found to 

couple into other mode groups with different effective indices.  The power is distributed across 

several mode groups with the dominant group receiving approximately only 62% of the input 

power for all channels.  Thus, the power is unequal across mode groups prior to power modal 

equalization. 

 

Fig. 6.     Cross section of refractive index profile for PCFs at the receiver for compensation of mode coupling: (a) 

PCF B for Channel 1  (b) PCF C for Channel 2     (c)  PCF D for Channel 3 
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Fig. 8. Channel impulse response versus normalized effective index after FSO link before PCF modal equalization 

for:  (a) Channel 1   (b) Channel 2   (c) Channel 3  

 

  

 

 

Fig. 7. Intensity distribution at the receiver prior to PCF equalizers: (a) Channel 1   (b) Channel 2   (c)  Channel 3 
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  Fig. 9 shows the intensity distributions at the receiver after the PCF equalizers, which 
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shows a reduction of speckles compared to in Fig. 7 and that three distinct mode groups are 
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achieved after power modal equalization.   For a quantitative analysis of Fig. 9, the channel 

 

Fig. 10.  Channel impulse response versus normalized effective index after PCF modal equalization for:  

(a) Channel 1  (b) Channel 2  (c) Channel 3   
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impulse response versus effective index is shown in Fig. 10, computed after PCF mode 

equalization at the receiver for all channels.  It is observed that for each channel, a significant 

portion of the received power falls into a mode group of a unique effective index, thus indicating 

that channel crosstalk is reduced. A high portion of the received optical power is coupled into the 

same dominant mode at the transmitter, at   88.4%, 85.0% and 88.3% at output of PCF B for 

Channel 1, PCF C for Channel 2 and PCF D for Channel 3. This is in contrast to only 62% of the 

received optical power being coupled into same dominant mode prior to PCF modal equalization, 

thus showing 23% to 26.4% improvement in power coupling into the dominant mode after modal 

power compensation by the PCF. 

 

The eye diagrams presented in Fig. 11 indicate that the insertion of the solid-core PCFs 

widens the eye openings for all channels, indicating that the PCFs at the receiver have 

compensated for the atmospheric turbulence by redistributing the power into desired modes while 

 

Fig. 11  Eye diagrams under medium fog conditions pre-compensation and post-compensation by PCF at the receiver at 

2000 m for:  (a) Channel 1   (b) Channel 2      (c) Channel 3 
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suppressing the power into higher order modes.   This addresses the loss of information coupled 

into undesirable modes. 

 

 

 

 

 

The designed system offers better achievable link distance following the compensation of 

mode coupling effects from the PCFs at the receiver, more strongly for medium and heavy fog 

conditions, as shown in Fig. 12. For Channel 1, for a BER of 1x10-12, under medium fog condition, 

the link range is increased from 1250 m to 1420 m; and under heavy fog, the link range is 

increased from 495 m to 650 m, after insertion of PCF B. For Channel 2, for a BER of 1x10-15, 

under medium fog condition, the link range is increased from 1310 m to 1600 m; and under heavy 

fog, the link range is increased from 720 m to 890 m, after insertion of PCF C.  For Channel 3, for 

a BER of 1x10-15, under medium fog condition, the link range is increased from 1520 m to 1900 

m; and under heavy fog, the link range is increased from 740 m to 930 m, after insertion of PCF D. 
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Thus, for Channel 1, there is an increment of 13.6% and 31.1% in the achievable link 

range under medium and heavy fog conditions respectively.  For Channel 2, there is an 

improvement of   22.1% and 23.6% in the achievable link range under medium and heavy fog 

conditions respectively.   Meanwhile, for Channel 3, there is an improvement of 25% and 25.7% in 

the achievable link range under medium and heavy fog conditions respectively.   The results show 

that the effects of the PCFs are more pronounced under heavy fog. 

 

 

6. Conclusion 

The wireless Ro-FSO system using novel three-core PCF mode multiplexer at the transmitter 

successfully decomposes the fundamental mode into three distinct mode groups with effective 

indices of 1.5, 1.4 and 1.3 respectively, for the transmission of three independent 2.5Gbps 

 

Fig. 12. BER under light, medium and heavy fog conditions for: (a) Channel 1 (b) Channel 2 (c) Channel 3.  Solid line 

are for pre-compensation, dotted line plots are for post-compensation by PCF respectively  

 

 

 

  



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2020 Springer Science+Business Media, LLC, part of Springer Nature. 16 

channels in a 2km-long Ro-FSO system, and demultiplexes the signal into three independent 

channels after the free space link. Channel impulse responses, eye diagrams and BER plots have 

demonstrated that the novel PCF mode group equalizers system improve the signal quality and the 

transmission distance of a Ro-FSO system. The PCF mode group equalizers successfully increase 

the received power in the dominant mode by 40%, with an increment between 13.6% and 31.1% in 

the achievable link range for all channels under medium and heavy fog conditions at the same bit 

error rate.   

The proposed SDM-based wireless Ro-FSO system based on the PCF mode group multiplexer and 

equalizer is an initiative for potentially bridging the digital divide in rural areas.   
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