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Abstract We analyze the convergence rate of the random reshuffling (RR) method,
which is a randomized first-order incremental algorithm for minimizing a finite sum
of convex component functions. RR proceeds in cycles, picking a uniformly ran-
dom order (permutation) and processing the component functions one at a time
according to this order, i.e., at each cycle, each component function is sampled
without replacement from the collection. Though RR has been numerically ob-
served to outperform its with-replacement counterpart stochastic gradient descent
(SGD), characterization of its convergence rate has been a long standing open
question. In this paper, we answer this question by providing various convergence
rate results for RR and variants when the sum function is strongly convex. We
first focus on quadratic component functions and show that the expected distance
of the iterates generated by RR with stepsize αk = Θ(1/ks) for s ∈ (0, 1] con-
verges to zero at rate O(1/ks) (with s = 1 requiring adjusting the stepsize to
the strong convexity constant). Our main result shows that when the component
functions are quadratics or smooth (with a Lipschitz assumption on the Hessian
matrices), RR with iterate averaging and a diminishing stepsize αk = Θ(1/ks) for
s ∈ (1/2, 1) converges at rate Θ(1/k2s) with probability one in the suboptimality
of the objective value, thus improving upon the Ω(1/k) rate of SGD. Our analysis
draws on the theory of Polyak-Ruppert averaging and relies on decoupling the
dependent cycle gradient error into an independent term over cycles and another
term dominated by α2

k. This allows us to apply law of large numbers to an appro-
priately weighted version of the cycle gradient errors, where the weights depend
on the stepsize. We also provide high probability convergence rate estimates that
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2 M. Gürbüzbalaban et al.

shows decay rate of different terms and allows us to propose a modification of RR
with convergence rate O( 1

k2 ).

1 Introduction: First-order incremental methods

We consider the following unconstrained optimization problem where the objective
function is the sum of a large number of component functions:

min f(x) :=
m∑

i=1

fi(x) s.t. x ∈ Rn, (1)

with fi : Rn → R. This problem arises in many contexts and applications includ-
ing regression or more generally parameter estimation problems (where fi(x) is
the loss function representing the error between the output and the prediction of
a parametric model) [2, 3, 5, 12], minimization of an expected value of a function
(where the expectation is taken over a finite probability distribution or approxi-
mated by an m-sample average) [11,38], machine learning [38,41,42], or distributed
optimization over networks [27,28,33].

One widely studied approach for solving problem (1) is the deterministic incre-
mental gradient (IG) method [4–6]. IG method is similar to the standard gradient
method with the key difference that at each iteration, the decision vector is up-
dated incrementally by taking sequential steps along the gradient of the component
functions fi in a cyclic order. Hence, we can view each outer iteration k as a cycle
of m inner iterations: starting from initial point x0

0 ∈ Rn, for each k ≥ 0, we
update the iterate xki as

xki := xki−1 − αk∇fi(xki−1), i = 1, 2, . . . ,m, (2)

where αk > 0 is a stepsize with the convention that xk+1
0 = xkm.

Intuitively, it is clear that slow progress can be obtained if the functions that
are processed consecutively have gradients close to zero. Indeed, the performance of
IG is known to be pretty sensitive to the order functions are processed [6, Example
2.1.3] where an order σ is defined as a permutation of {1, 2, . . . ,m}. In some special
cases when the component functions have a particular symmetry structure, there
may be a favorable order σ to process the component functions which can lead to
better performance than other choices of the order (see e.g. [6, Example 2.1.6]).
IG iterations with respect to an order σ are of the form:

xki := xki−1 − αk∇fσ(i)(x
k
i−1), i = 1, 2, . . . ,m. (3)

However, in general a favorable order is not known in advance, and a common ap-
proach is choosing the indices of functions to process as independent and uniformly
distributed samples from the set {1, 2, . . . ,m}. This way no particular order is fa-
vored, making the method less vulnerable to particularly bad orders. This approach
amounts to at each iteration sampling the function indices with replacement from
the set {1, 2, . . . ,m} and is called the Stochastic Gradient Descent (SGD) method,
a.k.a. Robbins-Monro algorithm [37]. SGD is strongly related to the classical field
of stochastic approximation [25]. Recently it has received a lot of attention due to
its applicability to large-scale problems and became popular especially in machine
learning applications (see e.g. [8, 9, 11,43]).
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An alternative popular approach that works well in practice is following a mixed
approach between SGD and IG, sampling the functions randomly but not allowing
repetitions, that is sampling the component functions at each iteration without-
replacement, or equivalently picking a random order at each cycle. Specifically,
at each cycle k, we draw a permutation σk of {1, 2, . . . ,m} independently and
uniformly at random over the set of all permutations

Γ =
{
σ : σ is a permutation of {1, 2, . . . ,m}

}
, (4)

and process the functions with this order:

xki := xki−1 − αk∇fσk(i)(x
k
i−1), i = 1, 2, . . . ,m, (5)

where αk > 0 is a stepsize. We set xk+1
0 = xkm as before and refer to {xk0} as

the outer iterates. This method is called the Random Reshuffling (RR) method [6,
Section 2.1] and will be the focus of this paper.

2 Motivation and summary of contributions

Without-replacement sampling schemes are often easier to implement efficiently
compared to with-replacement sampling schemes, guarantee that every point in the
data set is touched at least once, and often have better practical performance than
their with-replacement counterparts [4,6,7,9,18,20,34,35]. For instance, Bottou [7]
empirically compares SGD and RR methods and finds that RR converges with a
rate close to ∼ 1/k2 whereas SGD is much slower achieving its min-max lower
bound of Ω(1/k) for strongly convex objective functions [1, 30]. This discrepancy
in rate between RR and SGD is not only observed for large m but also for small
m (as we illustrate in Example 1), and understanding it theoretically has been a
long-standing open problem [4,6, 35].

To our knowledge, the only existing theoretical analysis for RR is given by a
recent paper of Recht and Ré [34] which focuses on least mean squared optimiza-
tion and formulates a conjecture that would prove that the expected convergence
rate of RR is faster than that of SGD. Given N arbitrary positive-definite matrices
of dimension n × n, the conjecture says that products of any K matrices chosen
from this set of N matrices satisfy a non-commutative arithmetic-geometric mean
inequality for every positive integer N and every K ≤ N . This conjecture has been
proven only in some special cases (for N = 2 [34], for N = 3 [23] and when N is a
multiple of 3 and K = 3 [44]). Recht and Ré also analyze a special case of (1) (that
arises when fi(x) = (aTi x−yi)2 where ai is a column vector that is randomly gen-
erated according to a random model and yi is a scalar) and show that after a fixed
amount of iterations, the upper bounds on the expected mean square error using
without-replacement sampling is smaller than that of with-replacement sampling
with high probability on most models of ai (probabilities are taken with respect
to the random data generation model). Despite these advances, there has been a
lack of convergence theory for RR that characterizes its convergence rate and ex-
plains its fast performance. Analyzing algorithms based on without-replacement
sampling such as RR is more difficult than with-replacement based approaches
such as SGD. The reason is that the underlying independence assumption for
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the with-replacement sampling allows a tractable analysis with classical martin-
gale convergence theory [26,31], whereas without-replacement sampling introduces
correlations and dependencies among the sampled gradients and iterates that are
harder to analyze [34]. The aim of our paper is to fill this theoretical gap for the
case when the objective function f in (1) is strongly convex and develop a novel
algorithm that can accelerate the convergence further. We next summarize our con-
tributions.

We first consider the case when the component functions are quadratics. Build-
ing on the recent convergence rate results for the cyclic IG [21, Theorem 3.1], we
first present a key result (Theorem 1) that provides an upper bound for the dis-
tance from the optimal solution of the iterates generated by an incremental method
that processes component functions with an arbitrary fixed order and uses a step-
size Θ(1/ks) for s ∈ (0, 1]. This upper bound decays at rate O(1/ks) and depends
on the strong convexity constant of the sum function and an order dependent pa-
rameter given by a weighted average of Hessian matrices where the weights are
given by the sum of the component gradients processed up to that point according
to the given order. We use this result to show that the distance to the optimal
solution of the iterates generated by RR algorithm with stepsize Θ(1/ks), for all
s ∈ (0, 1], converges to 0 at rate O(1/ks) in expectation (where the expectation is
over the random sequence of iterates). Moreover, we show that achieving the rate
O(1/k) involves adapting the stepsize to the strong convexity constant of the sum
function.

We then consider the q-suffix averages of the iterates generated by RR for
some q ∈ (0, 1] (which is obtained by averaging the last qk iterates at iteration
k) and show that with a stepsize αk = R/(k + 1)s for s ∈ (1/2, 1) and R > 0,
they converge almost surely at rate O(1/ks) to the optimal solution. We provide an
explicit characterization of the asymptotic rate constant in terms of the averaging
parameter q, the stepsize parameters R and s and the Hessian matrices and the
gradients of the component functions at the optimal solution (parts (i) and (ii) of
Theorem 3). Using strong convexity, this implies an almost sure convergence rate
Θ(1/k2s) in the suboptimality of the objective value. Our analysis views RR as
a gradient descent method with random gradient errors. Since the permutations
arising in each cycle of the RR algorithm are sampled independently, by condition-
ing on the last iterate from the prior cycle, we eliminate the cross-dependencies of
the cumulative gradient error among the cycles in our approach. A key step in our
proof is to decouple the cycle gradient error into a O(αk) term independent over
cycles and another term that scales as O(α2

k). This allows us to use strong law of
large numbers for a properly weighted average of the cycle error gradient sequence
(where the weights depend on the stepsize) and show almost sure convergence of
the q-suffix averaged iterates. Another key component of our analysis is to adapt
the Polyak-Ruppert averaging techniques developed for SGD [26,31] to RR.

We also provide a high probability convergence rate estimate for the distance
of q-suffix averages to the optimal solution that consists of two terms, with the first
term corresponding to a 1/ks decay of a “bias” term (where bias is defined as the
expected value of the cycle gradient errors of RR which may be non-zero) and the
second term representing a 1/k decay for 0 < q < 1 (and log k/k decay for q = 1);
see part (iii) of Theorem 3 . These results are obtained by martingale concentration
techniques. We use the characterization of the bias to estimate it with a term
that can be computed during the RR iterations. We show that subtracting the
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estimated bias from the averaged RR iterates accelerates the convergence rate
further, leaving only the second error term of 1/k decay in the iterates (part (iv)
of Theorem 3). Based on this result, we propose a new algorithm which we call the
De-biased Random Reshuffling (DRR) method that can accelerate the asymptotic
convergence rate of RR in the suboptimality of the function values from O(1/k2s)
to O(1/k2).

Finally, in Theorem 4 we show that our results in Theorem 3 extend to the more
general case when component functions are smooth (twice continuously differen-
tiable) under a Lipschitz assumption on the Hessian, which allows us to control
the second order term in a Taylor expansion of the gradient.

Outline: The outline of the paper is as follows. In Section 3, we introduce our ap-
proach for analyzing RR, present Polyak-Ruppert averaging and give a motivating
example. Section 4 focuses on the case when component functions are quadratics.
We first present a convergence rate estimate for IG with a fixed arbitrary order.
We then focus on RR and study convergence of averaged iterates to the optimal
solution. Section 5 extends our results to smooth functions. Section 6 proposes
the DRR algorithm that can accelerate RR further. Finally, we conclude with a
summary of our work in Section 7. Some of the technical lemmas required in the
details of the proofs are deferred to Sections A, B and C of the Appendix.
Notation: We study the point-wise dominance of stochastic sequences by deter-
ministic sequences and use the following notation. Let xk = xk(ω) be a stochastic
real-valued sequence (where ω can be thought as the source of randomness) and
yk be a real-valued deterministic sequence. We write xk = O(yk) ⇐⇒ ∃h >
0,∃k0 such that |xk| ≤ h|yk| ∀k ≥ k0, for all ω, where h and k0 are inde-
pendent of ω (Note that the requirement is that this inequality holds for all ω,
not just for almost all ω). When xk is non-negative for every ω, given another
deterministic positive sequence zk, we also introduce the inequality version of this
definition: xk ≤ yk + o(zk) ⇐⇒ ∀ε > 0,∃k0(ε) such that z−1

k |xk(ω) − yk| ≤
ε, ∀k ≥ k0(ε),∀ω where k0 depends on ε but is independent of ω. When xk is
deterministic, these definitions reduce to the standard definitions of O(·) and o(·)
for deterministic sequences. For random xk, the only difference is that we require
the constants to be independent of the choice of ω. For example, if xk is uniformly
distributed over [0, 10], we write xk = O(1). Throughout the paper, ‖ · ‖ denotes
the 2-norm for vectors or matrices, depending on the context. We also define the
O(·) notation beyond scalars for matrix- and vector-valued sequences analogously:
Given a sequence of matrix-valued random variables Xk(ω) ∈ Rn×p where ω is
the source of randomness, n, p ≥ 1 are arbitrary fixed integers and a deterministic
real-valued sequence yk, we say ‖Xk(ω)‖ = O(yk) if and only if there exists h > 0
and k0 such that ‖Xk(ω)‖ ≤ h|yk| for all k ≥ k0, for all ω, where h and k0 are
independent of ω. Note that when when n = 1 or p = 1, ‖ · ‖ is equivalent to the
Euclidean norm.

3 Preliminaries

We consider solving problem (1) with RR method with iterations given in (5).
Throughout we assume the following:
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Assumption 1 The sum function f(x) =
∑m
i=1 fi(x) is strongly convex, i.e.,

there exists a constant c > 0 such that the function f(x) − c
2‖x‖2 is convex on

Rn.1

Note that this assumption is on the sum function f , it does not require the
convexity of the individual component functions fi. A consequence of this assump-
tion is that there exists a unique optimal solution to (1) which we denote by x∗.
Another consequence is that the Hessian at the optimal solution is invertible since

H∗ := ∇2f(x∗) � cIn � 0, (6)

where In is the n× n identity matrix.
To analyze RR, we view it as a gradient method with random gradient errors

and rewrite the outer iterations (5) as

xk0 − xk+1
0

αk
= ∇f(xk0) + Ek, (7)

where

Ek :=
m∑

i=1

(
∇fσk(i)(x

k
i−1)−∇fσk(i)(x

k
0)
)

(8)

is the cumulative gradient errors associated with the cycle k. This approach is
similar to the analysis of SGD, where one writes each (inner) iteration as a gradient
method with error. The key difference that simplifies the analysis of SGD is the fact
that the iteration gradient errors at the current iterate are independent (because of
independent identically distributed (i.i.d.) sampling of component function indices)
allowing use of martingale central limit theorems to obtain convergence and rate
results (see e.g. [13, 17, 25, 31]). In contrast, for RR, not only are the iteration
gradient errors dependent (because of sampling a random order at cycle k coupling
indices σk(i) and σk(j) for i 6= j), but also the cycle gradient errors Ek1 and Ek2

for cycles k1 6= k2 are dependent as they both depend on the history of the iterates.
2 Nevertheless, the analysis of RR is facilitated considerably by the fact that each
cycle of RR is based on i.i.d. permutations. Therefore, by conditioning to the last
iterate from the previous cycle, the analysis of the cumulative gradient errors Ek
can be simplified - as noted from the proof of Theorem 2 below.

A key idea in our analysis is to use a recent upper bound for the convergence
rate of cyclic incremental gradient method which applies to arbitrary fixed deter-
ministic order (see Theorem 1). This bound implies an almost sure upper bound
(in fact one that holds for all sample paths) on the distance of the outer iterates
xk0 generated by RR from the optimal solution x∗ (see Section 4.1). Crucially, this
result implies an upper bound in expected distance which is asymptotically m
times smaller than the almost sure guarantees on the distance of the iterates.

1 Such functions arise naturally in support vector machines and other regularized learning
algorithms or regression problems (see e.g. [32,36,38])

2 There is some literature that analyzes SGD under correlated noise [25, Ch. 6], but the
noise needs to have a special structure (such as a mixing property) which does not seem to be
applicable to the analysis of RR.
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In analyzing RR, we will also consider the average of the outer iterate sequence

given by x̄k :=
∑k−1

j=0 x
j
0

k . We also consider averaging only the most recent iterates,
i.e. at iteration k, averaging the last qk iterates for some constant q ∈ (0, 1]:

x̄q,k :=

∑k−1
j=(1−q)k x

j
0

qk
, 0 < q ≤ 1.

The generated sequence is referred to as the q-suffix average of the sequence xk0 .
For q = 1, we have x̄1,j = x̄j and it is easy to see that we can compute this
quantity based on the recursion

x̄j = (1− 1
j

)x̄j−1 +
1
j
xj−1

0 for j = 1, 2, . . . , k. (9)

Note that this requires storing only a vector of length n. For 0 < q < 1 fixed, it can
be verified after a straightforward computation that the q-suffix average satisfies
the identity

x̄q,k =
x̄1,k − (1− q)x̄1,(1−q)k

q
=
x̄k − (1− q)x̄(1−q)k

q
.

Therefore, based on this identity, one can still use the recursion (9) to compute
x̄q,k. Alternatively, x̄q,k can be computed from the following recursion

ȳj = (1− 1
j

)ȳj−1 +
1
j
x

(1−q)k+j−1
0 , for j = 1, 2, . . . , qk, (10)

with initialization ȳ0 = 0 where it can be checked that x̄q,k = ȳqk. Hence, q-suffix
averages can be computed efficiently in an online manner during the iterations,
requiring only a memory of length n which is the dimension of the underlying
optimization problem (1).

For SGD, it was shown that q-suffix averaging with 0 < q < 1 leads to better
performance then averaging (which corresponds to the q = 1 case by definition),
improving the convergence rate in the suboptimality of the function value from
log k/k to 1/k [32, 40]. This is in line with our results in Section 4 which show
faster rate for the 0 < q < 1 case. The parameter q can be thought as a measure of
how much memory one uses during the averaging process. We define the q-suffix
average of the stepsize in a similar way:

ᾱq,k =

∑k−1
j=(1−q)k αj

qk
, 0 < q ≤ 1. (11)

We note that the q-suffix average of the stepsize can be computed in an online
manner by a similar approach to the computation of x̄q,k described above.

We will obtain our strongest convergence results (in the almost sure sense
and with a similar m dependence as the expected guarantees) for averaged iterate
sequences with “large step sizes”, a technique known as Polyak-Ruppert averaging,
which has been used in achieving optimal rates for SGD in a robust manner as
explained next.
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3.1 Polyak-Ruppert averaging

SGD has a long history going back to the seminal paper of Robbins and Monro [37].
It has been analyzed under different assumptions extensively in the stochastic
approximation literature (see e.g. [25]). For stochastic convex optimization, it has
been shown that SGD has a min-max lower bound of Ω(1/k) [1, 30]. One way
of achieving this optimal 1/k rate is to use a stepsize αk = R/k where R is a
positive scalar adjusted properly to the strong convexity constant of the objective
function [13,17,25] but this requires the knowledge or the estimate of an accurate
lower bound on the strong convexity constant. If a lower bound is not known
or cannot be estimated accurately, the convergence can be potentially slow [29,
Section 2.1]. Polyak-Ruppert averaging is a technique that allows to get the optimal
∼ 1/k rate in an asymptotically efficient manner without the need to adjust to the
strong convexity constant. It relies on using a larger stepsize αk = R/ks (with R an
arbitrary positive constant and s ∈ (1/2, 1)) that decays slower than Θ(1/k) but
then taking the time average of the iterates to filter out the undesired oscillations
arising due to the larger steps [25, 29, 31].3 We will later show that the same
technique allows us to get almost sure guarantees for the averaged iterates without
the need to tune the stepsize to the strong convexity constant (see Theorems 3
and 4).

3.2 A motivating example

Before presenting our convergence analysis, we consider a simple example that
highlights the difference in convergence mechanisms of SGD and RR and gives
intuition on why RR is faster than SGD asymptotically.

Example 1 Consider the component functions

f1(x) =
1
2

(x− 1)2, f2(x) =
1
2

(x+ 1)2 +
x2

2
, (12)

with f(x) = f1(x) + f2(x) = 3
2x

2 + 1 and x∗ = 0. The outer RR iterates {xk0}
satisfy

xk+1
0 = xk0 − αk

(
∇fσk(1)(x

k
0) + fσk(2)(x

k
1)
)

= xk0 − αk(∇f(xk0) + Ek),(13)

where the cycle gradient errors are given by

Ek =

{
∇f2(xk1)−∇f2(xk0) with probability 1/2, for σk = {1, 2},
∇f1(xk1)−∇f1(xk0) with probability 1/2, for σk = {2, 1}. (14)

Plugging in the identities ∇f1(x) = x − 1, ∇f2(x) = 2x + 1 obtained from (13)
and the inner update formula (5), we obtain

Ek = αkµ(σk)− 2αkx
k
0 , (15)

3 IG shows similar properties to SGD in terms of the robustness of the stepsize rules αk =
R/ks. The convergence rate (in k) is only robust to the strong convexity constant of the
objective for s < 1 but not for s = 1 [29, Section 2.1].
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where µ(σk) = −∇2fσk(2)(x∗)∇fσk(1)(x∗) satisfying

µ(σk) =

{
+2 with probability 1/2, for σk = {1, 2},
−1 with probability 1/2, for σk = {2, 1}.

In contrast, SGD starting from an initial point y0 leads to the iterations

yj+1 = yj − αj∇fij (yj) = yj − αj
2

(∇f(yj) + ej), (16)

where ij is an independent and identically distributed (i.i.d.) random variable with
a uniform distribution over the index set {1, 2} and the gradient error ej is given
by

ej =

{
−2− yj with probability 1/2, for ij = 1,

2 + yj with probability 1/2, for ij = 2.
(17)

We consider a stepsize of αk = R
ks with s = 0.75 for both algorithms. Note

that for this example, RR is globally convergent to the optimal solution x∗ = 0
with probability one, therefore xj0 → 0.4 By a similar argument, it can be shown
that SGD is also convergent to the optimal solution x∗ = 0 in mean-square,
i.e. E‖yj‖2 → 0 (see also e.g. [25]). Then, it follows from (17) and (15) that
the cumulative gradient error of SGD for any cycle k (defined as the cumulative
sum

∑km−1
j=(k−1)m ej)) has zero expectation and Θ(1) variance whereas the gradient

errors in RR are Ek = O(αk) with a typically non-zero expectation satisfying
E(Ek) = αk(1− 2xk0) and an asymptotically smaller variance O(α2

k) compared to
SGD. In other words, the cycle gradient errors go to zero with probability one for
RR whereas the gradient errors in SGD are typically bounded away from zero with
a positive probability. Informally, this leads to a more accurate direction of descent
for RR and is the main reason behind the faster convergence we demonstrate for
RR compared to SGD in our analysis.

We also observe that the cycle gradient error Ek given by (15) consists of the
sum of two terms: The first term is O(αk) and is independent over the cycles as the
permutations σk are independent and identically distributed whereas the second
term is of smaller (second) order as xj0 → 0. We will show later in Lemma 4 that
such a decomposition can be obtained more generally when component functions
are quadratics or they are smooth functions and will be a key step in the proof of
Theorem 3.

Figure 1 compares the RR and SGD algorithms with averaging in terms of the
histogram of the error (distance of the averaged iterates to the optimal solution
x∗). In other words, we compare the approximation errors x̄k−x∗ and ȳk−x∗ where

where ȳk :=
∑mk−1

j=0 yj

mk is the averaged SGD iterates after k cycles (or equivalently
mk inner iterations). For a fair comparison, both algorithms are run with the
same parameters using k = 500 cycles over 10000 sample paths created for the
Example (1) where s = 0.75. The left panel in Figure 1 compares the histograms

4 To see this, note that the RR iterations for this example are given by xk+1
0 = (1− 3

2αk +
2α2
k)xk0 − α2

kµ(σk) which implies, after taking norms of both sides and using the fact that
‖µ(σk)‖ ≤ 2, distk+1 ≤ (1 − 3

2αk + 2α2
k)distk + 2α2

k. Then, by invoking classical results
for the asymptotic behavior of non-negative sequences (see e.g. [6, Appendix A.4.3], we get
distk+1 → 0. Theorem 1 also shows global convergence of RR on this example.
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Fig. 1: Left panel: Comparison of the histogram of the approximation error x̄k−x∗
of the averaged iterates for RR and SGD after k = 500 cycles over 10000 sample
paths created for the Example 1 with s = 0.75. Each sample path contains 1000
gradient computations for both RR and SGD. Right, top panel: Histogram of
the scaled approximation error ks(x̄k − x∗) for RR iterates which is concentrated
around the vertical line in red. Right, bottom panel: Histogram of the scaled
approximation error k1/2(x̄k − x∗) for SGD which has the shape of a standard
normal distribution. The vertical blue line passing through the origin is the axis
of symmetry for this distribution indicating that this distribution is centered.

of x̄k − x∗ and ȳk − x∗ and shows that the approximation error x̄k − x∗ for
RR is typically much smaller compared to that of SGD suggesting RR has a
faster convergence rate. The top panel on the right illustrates that the scaled
approximation error ks(x̄k − x∗) is concentrated around its mean (marked by
the red line) suggesting O(1/ks) convergence rate almost surely for the averaged
RR iterates. On the other hand, the bottom panel on the right shows that the
distribution of k1/2(ȳk − x∗) is approximately a standard normal distribution as
predicted by the theory [31], illustrating the O(1/k1/2) convergence rate of the
averaged SGD iterates to the optimal solution x∗ in distribution. In Section 4,
we will develop the first convergence theory for RR, establishing the O(1/ks)
convergence rate we observe in the numerical experiments and show that ks(x̄k −
x∗) converges almost surely to a point for which we provide an explicit formula.

4 Quadratic component functions

We first consider quadratic component functions which allows an elegant analysis
without the need to approximate higher order terms. We will show in Section 5
that the same line of analysis extends to smooth component function under a
Lipschitz assumption on the Hessian matrices. Let fi : Rn → R be a quadratic



Author a
cc

ep
ted

 m
an

usc
rip

t

AUTHOR ACCEPTED MANUSCRIPT

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society.

Why Random Reshuffling Beats Stochastic Gradient Descent 11

function of the form

fi(x) =
1
2
xTPix− qTi x+ ri, i = 1, 2, . . . ,m, (18)

where Pi is a symmetric n × n matrix, qi ∈ Rn is a column vector and ri is a
scalar. Note that fi has Lipschitz gradients, i.e.,

‖∇fi(y)−∇fi(z)‖ ≤ Li‖y − z‖, ∀y, z ∈ Rn,

where Li = ‖Pi‖. It follows from the triangle inequality that f has Lipschitz
gradients with Lipschitz constant at most

L :=
m∑

i=1

Li. (19)

Moreover, Assumption 1 implies that the Hessian matrix of the sum satisfies
∇2f(x) =

∑m
i=1∇2fi(x) =

∑m
i=1 Pi ≥ cIn > 0. Therefore, the solution x∗ to

(1) is unique.

4.1 Convergence Rate

Our convergence analysis of RR builds on a recent upper bound for convergence
rate of (deterministic) cyclic IG method (see [21, Theorem 3.1]), which applies to
any fixed permutation σ of {1, 2, . . . ,m}. This result implies an upper bound (for
all sample paths) on the distance to the optimal solution of the iterates gener-
ated by RR which is presented next. For our analysis throughout this paper, we
introduce the Lyapunov function

distk := ‖xk0 − x∗‖, (20)

which is the distance of the iterates to the optimal solution. Note that this quantity
is deterministic for the IG method with a fixed order σ, whereas it is random for
the RR method as the order σ is selected randomly for RR.

Theorem 1 [21, Theorem 3.1] Let Assumption 1 hold. Let fi(x) be a quadratic
function of the form fi(x) = 1

2x
TPix − qTi x + ri where Pi is a symmetric n × n

matrix, qi ∈ Rn is a column vector and ri is a scalar for i = 1, 2, . . . ,m. Suppose
Assumption 1 holds. Consider the iterates {xk0} generated by the iterations (5)
with a fixed order σ and stepsize αk = R/(k + 1)s where R > 0 and s ∈ (1/2, 1).
Then5,

distk ≤
R‖µ(σ)‖

c

1
ks

+ o(
1
ks

) if 1/2 < s < 1, (21)

distk ≤
R2‖µ(σ)‖
Rc− 1

1
k

+ o(
1
k

) if s = 1 and Rc > 1, (22)

5 The original result in [21, Theorem 3.1] was stated for σ = {1, 2, . . . ,m} but here we
translate this result into an arbitrary permutation σ of {1, 2, . . . ,m} by noting that processing
the set of functions {f1, f2, . . . , fm} with order σ is equivalent to processing the permuted
functions {fσ1 , fσ2 , . . . , fσm} with order {1, 2, . . . ,m}.
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where c is the strong convexity constant of the sum function f(x) and

µ(σ) = −
∑

1≤i<j≤m
Pσ(j)∇fσ(i)(x

∗). (23)

This theorem provides an upper bound on the rate with a rate constant µ(σ) that
depends on the order σ. Note that the best rate that IG with a fixed order σ can
attain in terms of upper bounds is O(1/k) and requires a stepsize R/(k + 1) with
R > 1/c (see also [21, Theorem 3.4] for the lower bound of Ω(1/k) for IG under
some conditions). We next provide some upper bounds on µ(σ). We define

G∗ : = sup
1≤i≤m

‖∇fi(x∗)‖, (24)

MΓ : = sup
σ∈Γ
‖µ(σ)‖. (25)

Using Li = ‖Pi‖ for each i, it follows from the triangle inequality that

‖µ(σ)‖ ≤MΓ ≤ sup
σ∈Γ

∑

1≤i<j≤m
Lσ(j)‖∇fσ(i)(x

∗)‖ = sup
σ∈Γ

m∑

j=2

Lσ(j)

j−1∑

i=1

‖∇fσ(i)(x
∗)‖

≤ sup
σ∈Γ

m∑

j=2

Lσ(j)(j − 1)G∗

≤ (m− 1)G∗ sup
σ∈Γ

m∑

j=2

Lσ(j) ≤ L(m− 1)G∗, (26)

where we used the definitions of the Lipschitz constant L and the gradient bound
G∗ from (19) and (24) respectively. By replacing µ(σ) by MΓ in Theorem 1 one
can get an upper bound on the worst-case convergence rate that applies to any
choice of fixed order σ. Using a similar argument along the lines of the proof
of Theorem 1 on the convergence rate of IG, it is straightforward to show that
RR never performs any slower than this worst-case convergence rate which is the
subject of the next result.

Corollary 1 Under the setting of Theorem 1, if σ is sampled uniformly at each
cycle instead of being kept fixed, then

distk ≤
RMΓ

c

1
ks

+ o(
1
ks

) if 1/2 < s < 1, (27)

distk ≤
R2MΓ

Rc− 1
1
k

+ o(
1
k

) if s = 1 and Rc > 1, (28)

with probability one where MΓ is deterministic and is defined by (25).

Corollary 1 provides a simple worst-case upper bound on the rate, however
the rate constant MΓ = supσ∈Γ ‖µ(σ)‖ is pessimistic and can be thought as a
worst-case performance measure that holds for every sample path. One way to
get better constants is to consider convergence in expectation, a weaker notion of
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convergence compared to almost sure convergence. In the next theorem, we show
that MΓ can be improved to a typically much smaller constant ‖µ̄‖ where

µ̄ := E
(
µ(σ1)

)
=
∑
σ∈Γ µ(σ)
|Γ | (29)

can be thought as a measure of average performance over the choice of random
permutations.

Theorem 2 Let fi(x) be a quadratic function of the form fi(x) = 1
2x
TPix−qTi x+

ri, where Pi is a symmetric n× n matrix, qi ∈ Rn is a column vector and ri is a
scalar for i = 1, 2, . . . ,m. Suppose Assumption 1 holds. Consider the iterates {xk0}
generated by the RR iterations (5) and stepsize αk = R/(k+ 1)s where R > 0 and
s ∈ (0, 1]. Then,

E (distk) ≤ R‖µ̄‖
c

1
ks

+ o(
1
ks

) if 1/2 < s < 1, (30)

E (distk) ≤ R2‖µ̄‖
Rc− 1

1
k

+ o(
1
k

) if s = 1 and Rc > 1, (31)

where the expectation is taken over the sequence of iterates, µ̄ is defined by (29).

Remark 1 A consequence of Lemma 3 proved in the Appendix is that

µ̄ =
1
2

m∑

i=1

Pi∇fi(x∗), (32)

where µ̄ is defined by (29). By the triangle inequality, ‖µ̄‖ ≤ ∑m
i=1 LiG∗ = LG∗

where G∗ is defined by (24). This upper bound is m − 1 times smaller than the
previous upper bound on MΓ in (26).

It is also natural to ask what would happen to the rate constants and to the rate
if one would take stepsize αk = Θ(1/ks) and apply (Polyak-Ruppert) averaging to
the RR iterates, especially given the fact that O(1/ks) stepsize used in averaging
does not require adjustment of the parameter R to the strong convexity level.
More generally, one could consider q-suffix averaging. In the next section, we show
that for the averaged RR iterates, similar upper bounds in (30) hold not only in
expectation but also in probability. Another benefit of averaging is that it allows
us to estimate and subtract the bias term in the iterations to get a more accurate
estimation of the optimal solution as we discuss later in part (iii) of Theorem 3
and in Section 6.

4.2 Convergence rate with averaging

The following theorem characterizes the rate of convergence of the averages of iter-
ates generated by RR. Part (i) and (ii) of this theorem show that q-suffix averages
of the RR iterates converge at rate 1/ks to the optimal solution almost surely
with a stepsize Θ(1/ks) for s ∈ (1/2, 1). By gradient Lipschitzness, this translates
into a rate of Θ(1/k2s) for the suboptimality of the objective value. The result is
based on decoupling the cycle gradient errors Ek into a Θ(αk) term independent
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over the cycles and another O(α2
k) term that becomes negligible in the limit. Part

(iii) is a high-probability convergence rate estimate for the approximation error
x̄q,k−x∗. The approximation error consists of two terms, the first term bq,k which
we call the “bias” term is deterministic and decays like ∼ 1/ks. It comes from the
expected value of the independent part of the gradient cycle errors which may be
different than zero. The second part is on the order of 1/k for 0 < q < 1 (and
log k/k when q = 1) and it is based on the Azuma-Hoeffding inequality for mar-
tingale concentration. Finally, part (iv) is on estimating the bias term bq,k with
another quantity b̂q,k. It shows that by subtracting the estimated bias from the
averaged iterates, we can approximate the optimal solution x∗ up to an O(1/k)
error in distances or equivalently up to an O(1/k2) error in the suboptimality of
the objective value. In Section 6, this result will be fundamental for Algorithm
1 that accelerates the convergence of RR from Θ(1/k2s) to O(1/k2) with high
probability in the suboptimality of the objective value.

Theorem 3 Let fi(x) be a quadratic function of the form

fi(x) =
1
2
xTPix− qTi x+ ri,

where Pi is a symmetric n×n matrix, qi ∈ Rn is a column vector and ri is a scalar
for i = 1, 2, . . . ,m. Consider the q-suffix averages x̄q,k of the RR iterates generated
by the iterations (5) with stepsize αk = R

(k+1)s where R > 0 and s ∈ (1
2 , 1). Suppose

that Assumption 1 holds. Then the following statements are true:

(i) For any 0 < q ≤ 1, the q-suffix averaged stepsize ᾱq,k defined in (11) satisfies

ᾱq,k =
aq(s)
ks

+O(
1
k

) where aq(s) =
1− (1− q)1−s

q(1− s) R. (33)

(ii) For any 0 < q ≤ 1, we have

lim
k→∞

x̄q,k − x∗
ᾱq,k

= −H−1
∗ µ̄ a.s., (34)

where µ̄ is given by (32), i.e., the normalized error (x̄q,k−x∗)/ᾱq,k converges to
the constant vector −H−1

∗ µ̄ almost surely where H∗ =
∑m
i=1 Pi is the Hessian

matrix at the optimal solution and µ̄ is given by (32). Then, from part (i),

lim
k→∞

ks(x̄q,k − x∗) = −aq(s)H−1
∗ µ̄ a.s. (35)

Hence, the q-suffix averaged iterates x̄q,k converge to the optimal solution x∗

with rate 1/ks almost surely.
(iii) We have

x̄q,k − x∗ = bq,k +
1
k
eq,k + +

{
O
( log k

k

)
if q = 1

O( 1
k

)
if 0 < q < 1,

where ‖eq,k‖ ≤ B
√

log(1/δ) with probability 1− δ for a deterministic constant
B = O(1),

bq,k = −ᾱq,kH−1
∗ µ̄ (36)

is deterministic, µ̄ is given by (32) and ᾱq,k is the averaged stepsize defined in
(11). The constants hidden by O(·) depend only on G∗, L,m,R, c, q and s.
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(iv) Let

b̂q,k = −ᾱq,k
[ m∑

i=1

Pσk(i)

]−1 m∑

i=1

Pσk(i)∇fσk(i)(x
k
i−1)/2, (37)

where ᾱq,k is the averaged stepsize defined in (11). Then, b̂q,k = bq,k +O(α2
k).

It follows from part (ii) that

(x̄q,k − b̂q,k)− x∗ =
1
k
eq,k +

{
O
( log k

k

)
if q = 1

O( 1
k

)
if 0 < q < 1.

where ‖eq,k‖ ≤ B
√

log(1/δ) with probability 1− δ for a constant B = O(1).

Proof (i) As the stepsize sequence is monotonically decreasing, we have the bounds

∫ k

(1−q)k

R

(x+ 2)s
dx ≤

k∑

j=(1−q)k
αj =

k∑

j=(1−q)k

R

(k + 1)s
≤ R+

∫ k−1

(1−q)k

R

(x+ 1)s
dx.

Dividing each term by qk, after a straightforward integration we obtain

ᾱq,k =
k1−s −

(
(1− q)k + 1

)1−s +O(1)
(1− s)qk R =

aq(s)
ks

+O(
1
k

),

which completes the proof.
(ii) Taking the q-suffix averages of both sides of (7), we obtain

Iq,k :=

∑k−1
j=(1−q)k (xj0 − xj+1

0 )α−1
j

qk
=

∑k−1
j=(1−q)k∇f(xj0) + Ej

qk
. (38)

As f is a quadratic, the first order Taylor series for the gradient of f is exact:

∇f(xj0) = H∗(xj0 − x∗). (39)

Therefore, (38) becomes Iq,k =
∑k−1

j=(1−q)k H∗(xj
0−x∗)+Ej

qk which is equivalent to

Iq,k = H∗(x̄q,k − x∗) +

∑k−1
j=(1−q)k Ej

qk
= H∗(x̄q,k − x∗) + ᾱq,kYq,k, (40)

where Yq,k is defined as

Yq,k :=
1

ᾱq,k

∑k−1
j=(1−q)k Ej

qk
=

∑k−1
j=(1−q)k Ej∑k−1
j=(1−q)k αj

(41)

and can be interpreted as the (q-suffix) averaged gradient error sequence Ej
normalized by the (q-suffix) averaged stepsize sequence αj . Since H∗ is invert-
ible by the strong convexity of f (see (6)), we can rewrite (40) as

x̄q,k − x∗ = −H−1
∗ ᾱq,kYq,k +H−1

∗ Iq,k

= −H−1
∗ ᾱq,kYq,k +

{
O( 1

k ) if 0 < q < 1
O( log k

k ) if q = 1,
(42)
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where we used the inequality ‖H−1
∗ ‖ ≤ 1/c implied by (6) and Lemma 2

from the appendix to provide an upper bound for the second term in the first
equality. Note that, as a consequence of Lemma 2, O(·) notation above hides a
constant that depends only on the parameters G∗, L, c,m,R, s, q and also dist0

when q = 1. Then, dividing both sides of (42) by ᾱq,k, taking limits as k goes
to infinity, using part (i) on the asymptotic behavior of ᾱq,k and the fact that
Yq,k → µ̄ a.s. from Lemma 4, we obtain the claimed result.

(iii) By parts (i) and (iii) of Lemma 4 from the appendix that relates the gradient
error sequence Ej to a sequence of i.i.d. variables µ(σj), for 0 < q ≤ 1,

Yq,k =

∑k−1
j=(1−q)k Ej∑k−1
j=(1−q)k αj

=

∑k−1
i=(1−q)k αjµ(σj) +O(α2

j )
∑k−1
j=(1−q)k αj

. (43)

We first give a proof for q = 1, the proof for the remaining q ∈ (0, 1) case will
be similar. Assume q = 1. Plugging q = 1 and (43) into (42), we obtain

x̄1,k − x∗ = O(
log k
k

)−H−1
∗ ᾱ1,kY1,k

= O(
log k
k

)−H−1
∗

(∑k−1
j=0 αj

(
µ(σj)− µ̄

)

k
+

∑k−1
j=0 αj µ̄+O(α2

j )
k

)

= b1,k +O(
log k
k

)−H−1
∗

∑k−1
j=0 αj(µ(σj)− µ̄)

k
−H−1

∗

k−1∑

j=0

O(α2
j )

k

= b1,k +O(
log k
k

)−H−1
∗

∑k−1
j=0 αj(µ(σj)− µ̄)

k
, (44)

where b1,k is defined by (36) and we used in the last step the fact that for
s > 1/2

∞∑

j=0

α2
j =

∞∑

j=1

R2

j2s = R2ζ(2s) <∞, (45)

where ζ(·) is the Riemann-Zeta function. We now study the asymptotic be-
havior of the last summation term in (44) by introducing the process S1,k =∑k−1
j=0 Zj , where Zj := αj(µ(σj) − µ̄) and k ≥ 0 with the convention that

S1,0 = 0. Equipped with this definition, (44) becomes

x̄1,k − x∗ = b1,k +O(
log k
k

) + e1,k, e1,k := −H−1
∗

S1,k

k
. (46)

The random variables Zj are independent, centered and have an identical dis-
tribution up to the scaling factor αj . Therefore, S1,k is a sum of centered
random variables satisfying:

‖S1,k − S1,k−1‖ =
∥∥αk−1

(
µ(σk−1)− µ̄

)∥∥ ≤ γk−1 := αk−1LmG∗, (47)

where we used (75) in the last inequality (see also Lemma 3). Then, by the
Azuma-Hoeffding inequality, for every t > 0,

P
(∥∥S1,k

k

∥∥ > t

k

)
≤ 2 exp

(
− t2

2
∑k−1
j=0 γ

2
j

)
= 2 exp

(
− t2

β

)
,
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where β = 2
∑∞
j=0 γ

2
j < ∞ as αj is square-summable (see (45)). Note that β

depends only on G∗, L,m and the stepsize parameters R and s. It is easy to see
that selecting t ≥ tδ =

√
β log(2/δ) makes the right-hand side ≤ δ. Therefore

for any δ > 0, with probability at least 1− δ,
∥∥S1,k

k

∥∥ ≤
√
β log(2/δ)

k
, (48)

which if inserted into the expression (46) completes the proof for the q = 1
case. For 0 < q < 1 case, the same line of reasoning applies except that we
replace b1,k with bq,k and we can improve the O(log k/k) term in the expression
(46) to O(1/k), this is justified by (42). Then, this leads to

x̄q,k − x∗ = bq,k +O(
1
k

) + eq,k, eq,k := −H−1
∗

Sq,k
qk

, (49)

where Sq,k :=
∑k−1
j=(1−q)k Zj = S1,k − S1,(1−q)k is the q-suffix cumulative sum

(cumulative sum of the last qk terms) of the sequence Zk. Then using (48),
with probability at least 1− δ,

∥∥Sq,k
k

∥∥ ≤ ‖S1,k

k

∥∥+ ‖S1,(1−q)k
k

∥∥ ≤ 2tδ
k
. (50)

Plugging this high probability bound into (49), we conclude.
(iv) By Lemma 1, we have max

1≤i<m
‖xki−1 − x∗‖ = O(αk). Therefore,

‖∇fσk(i)(x
k
i−1)−∇fσk(i)(x

∗)‖ = O(αk), (51)

for any i = 1, 2, . . . ,m. As a consequence,

b̂q,k = −ᾱq,kH−1
∗

m∑

i=1

Pσk(i)

(
∇fσk(i)(x

∗) +O(αk)
)

= −ᾱq,kH−1
∗

m∑

j=1

Pj∇fj(x∗) +O(α2
k) = bq,k +O(α2

k),

where in the second equality we use the fact that ᾱq,k = O(1/ks) = O(αk)
implied by part (i).

5 Extension to smooth component functions

Extending our results to more general smooth functions requires obtaining similar
bounds for the cycle gradient errors which depend on the gradients and Hessian
matrices of the component functions along the inner iterates. In order to be able
to control the change of gradients and Hessian matrices along the iterates, we
introduce the following assumption which has also been used to analyze SGD [26].

Assumption 2 The functions fi are convex on Rn and have Lipschitz continuous
second derivatives, i.e. there exists a constant Ui such that

‖∇2fi(x)−∇2fi(y)‖ ≤ Ui‖x− y‖, ∀x,∀y ∈ Rn,

for i = 1, 2, . . . ,m.
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Under this assumption, by the triangle inequality, ∇2f(·) is also Lipschitz with
constant U :=

∑m
i=1 Ui. When the component functions are quadratics, we have

the special case with U = Ui = 0. We will now see how this assumption makes
it possible to control the change of gradients of the component functions. Smooth
functions f with Lipschitz Hessians are quadratic-like in the sense that the first-
order Taylor approximation to the gradient of f is almost affine (with a quadratic
term controlled by the parameter U) satisfying

∇f(x) = ∇f(x∗) +H∗(x− x∗) + η, ‖η‖ ≤ U

2
‖x− x∗‖2, ∀x, (52)

(see e.g. [19, Section 1.3]) The analysis of Theorem 3 (and Lemma 4 it builds
upon) considers the U = 0 case (see e.g. (39) and (51)) applying a first-order
Taylor approximation to the gradient of the component functions at x = xk0 where
‖x − x∗‖ = ‖xk0 − x∗‖ = O(αk) by Lemma 1. Therefore, when U 6= 0, an extra
correction term η = O(α2

k) needs to be added to the analysis. However, we show
in the next theorem that this correction term does not cause a slow down in the
convergence rate (in terms of dependency in k) compared to the quadratic case
because the q-suffix averages of this O(α2

k) correction term decays like O(1/k).6

We will also need one more technical assumption that appeared in a number
of papers in the literature for analyzing incremental methods to rule out the case
that the iterates diverge to infinity. In particular, this assumption is also made
in [21, Assumption 3.4] for generalizing Theorem 1 on the rate of deterministic IG
from quadratic functions to general smooth functions.

Assumption 3 Iterates {xkj }j,k generated are uniformly bounded, i.e. there exists
a non-empty closed Euclidean ball X ⊂ Rn that contains all the iterates a.s.7

Equipped with these two assumptions, all the results of Theorem 3 extend
naturally with minor modifications. In particular, Pi (which is a constant Hes-
sian matrix in the setting of Theorem 3) needs to be replaced by ∇2fi(x∗) or
∇2fi(xki−1) depending on the context.

Theorem 4 Consider the RR iterations given by (5) with stepsize αk = R
(k+1)s

where R > 0 and s ∈ (1
2 , 1). Suppose that Assumptions 1, 2 and 3 hold. Then the

following statements are true:

(i) For any 0 < q ≤ 1, limk→∞ ks(x̄q,k − x∗) = −aq(s)H−1
∗ v̄ a.s. where H∗ =

∇2f(x∗) is the Hessian matrix at the optimal solution, aq(s) is defined by (33)
and

v̄ :=
1
2

m∑

i=1

∇2fi(x∗)∇fi(x∗). (53)

(ii) We have

x̄q,k − x∗ = rq,k +
1
k
êq,k +

{
O
( log k

k

)
if q = 1,

O( 1
k

)
if 0 < q < 1,

6 This is due to the fact that the sequence α2
k is summable when s > 1/2.

7 Note that if this assumption holds and if fi is three-times continuously differentiable on
the compact set X , then the third-order derivatives are bounded and Assumption 2 holds.
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where ‖êq,k‖ ≤ B̂
√

log(1/δ) with probability 1− δ for a deterministic constant
B̂ = O(1) and

rq,k = −ᾱq,kH−1
∗ v̄ (54)

is deterministic. The constants hidden by O(·) depend only on G∗, L,m,R, c, q, s
and U .

(iii) Let

r̂q,k = −ᾱq,k
[ m∑

i=1

∇2fσk(i)(x
k
i−1)

]−1 m∑

i=1

∇2fσk(i)(x
k
i−1)∇fσk(i)(x

k
i−1)/2.

Then, r̂q,k = rq,k +O(α2
k). It follows from part (ii) that

(x̄q,k − r̂q,k)− x∗ =
1
k
êq,k +

{
O
( log k

k

)
if q = 1,

O( 1
k

)
if 0 < q < 1.

where ‖êq,k‖ ≤ B̂
√

log(1/δ) with probability 1− δ for a deterministic constant
B̂ = O(1).

Proof The proof techniques of Theorem 3 applies directly except that the Taylor
approximation for the gradients of the component functions will have an extra
term compared to the proof of Theorem 3 (see also (52)). Also, instead of Lemmas
2 and 4 that apply to only quadratic functions, their extensions Lemmas 6 and 7
given in the appendix are used in the proof. For the sake of completeness, besides
these changes, we also give an overview of the main modifications required for each
part of the proof:

(i) The expression (39) for the gradient should be modified to include an extra
error term ηj of the form

∇f(xj0) = H∗(xj0 − x∗) + ηj , ‖ηj‖ ≤ U

2
‖xj0 − x∗‖2. (55)

By Lemma 5,
∑
j ηj ≤ U

2 ‖‖x
j
0 − x∗‖2 = O(α2

j ) therefore the sequence ηj is
summable and if averaged decays like O(1/k) without degrading the conver-
gence rate except possibly the constants hidden by O(·).

(ii) The same proof applies by invoking Lemma 7 in lieu of Lemma 4.
(iii) Instead of Lemma 1, we use Lemma 5. The expression (51) on the difference

of gradients needs to be adjusted as

‖∇fσk(i)(x
k
i−1)−∇fσk(i)(x

∗)−∇2fσk(i)(x
∗)(xki−1−x∗)‖ ≤

U

2
‖xki −x∗‖2. (56)

The right-hand side is still O(α2
k) by an application of Lemma 5 therefore the

rest of the proof applies.
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6 An RR algorithm with bias removal

Part (iii) of Theorem 4 (see also part (iii) of Theorem 3) shows that if the esti-
mate of the bias term r̂q,k given by (54) is subtracted from the q-suffix averaged
RS iterates, then the distance to the optimal solution of the q-suffix averaged iter-
ates becomes on the order of O(1/k) for 0 < q < 1 and on the order of O(log k/k)
for q = 1 with high probability. By strong convexity, this translates into a rate of
Õ(1/k2) in the suboptimality of the objective values (where Õ ignores the loga-
rithmic terms in k appearing when q = 1.). We call this “subtraction operation”,
bias removal. Algorithm 1 describes the De-biased Random Reshuffling (DRR)
method with bias removal. In a practical implementation, the number of cycles
can be fixed in advance to a certain number K, and the estimation of the bias can
be done only once at the last (K-th) cycle (see Step (ii) of Algorithm 1) and then
can be subtracted from the averaged iterates.

Algorithm 1 De-biased Random Reshuffling (DRR)
Input: Initial point x0

0 ∈ Rn, number of cycles K ∈ N, suffix averaging parameter q ∈ (0, 1],
stepsize parameters R > 0 and s ∈ (1/2, 1).
Initialization: x̄1,0 = 0 ∈ Rn, v̂0 = 0 ∈ Rn, ᾱ1,0 = 0 ∈ R, Ĥ0 = 0 ∈ Rn×n.

1. For each cycle k = 0, 1, 2, . . . ,K − 1:
(a) Inner iteration.

(i) Pick a permutation σk of {1, . . . ,m} uniformly at random.
(ii) For i = 1, 2, . . . ,m:

Compute xki by: xki = xki−1 − αk∇fσk(i)(xki−1), αk = R
(k+1)s .

// Precompute for the bias estimation only for the last cycle
If k = K − 1, compute v̂i and Ĥi by :

v̂i = v̂i−1 +∇2fσk(i)(x
k
i−1)∇fσk(i)(x

k
i−1)/2, Ĥi = Ĥi−1 +∇2fσk(i)(x

k
i−1)

(iii) Set outer iterate: xk+1
0 = xkm.

(b) Update the simple average of the iterates and the stepsize:

x̄1,k+1 =
k

k + 1
x̄1,k +

1
k + 1

xk0 , ᾱ1,k+1 =
k

k + 1
ᾱ1,k +

1
k + 1

αk

2. If q ∈ (0, 1), compute q-suffix averages from the simple averages:

x̄q,K =
x̄1,K − qx̄1,(1−q)K

1− q , ᾱq,K =
ᾱ1,K − qᾱ1,(1−q)K

1− q .

3. Estimate the bias by the formula (37) : b̂q,K = −ᾱq,KĤ−1
m v̂m in the last cycle.

Output: x̄q,K − b̂q,K .

The bias removal of the DRR algorithm requires an n × n matrix inversion
which requires ≈ n3 arithmetic operations (if there is more structure on the Hes-
sian of fi such as low-rankness or sparsity this could be improved to ≈ n2), but
accelerates the convergence with high-probability. For small or moderate n, this
could be done efficiently and incrementally processing the functions one at a time;
however for large n this may be impractical or infeasible limiting the applicability
of this method. Nevertheless, the expensive matrix inversion step does not need
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to be done at every cycle, it suffices to do it only once at the end of the last cycle.
Figure 2 compares the performance of SGD, RR and DRR methods in terms of
the histogram of the distance to the optimal solution (left panel) and subopti-
mality of the objective function (right panel) on a randomly generated quadratic
example with a dense Hessian matrix with parameters m = 50, n = 20.8 For a fair
comparison, we run all the algorithms with the same amount of CPU time.9 In
particular, in Figure 2 we run DRR for 0.5 seconds including the bias correction
step, and run RR and SGD for the same amount of time. For both SGD and RR,
we use a decaying stepsize αk = R/ks with s = 0.75 and report the averaged iter-
ates. We tune R to the dataset similar to the standard implementations of SGD
methods [10] and set it to R = 1

310−3. All the algorithms are initialized to zero.
The panel on the top and left-hand side of Figure 2 shows the histograms of the
distance to minimizer of the last iterate for RR, SGD and De-biased RR meth-
ods over 500 sample paths where the y-axis denotes the distance to minimizer of
the last iterate and the x-axis denotes the number of occurences over 500 sample
paths. We observe from this histogram that SGD is performing the worst. On the
bottom, left panel, we remove SGD from the picture and compare only RR and
DRR in terms of the histograms of the distance to minimizer. The red line and
the blue lines illustrate the mean values obtained from the histograms of DRR
and RR methods respectively. We see that for the DRR, the histogram is shifted
slightly to the left; i.e. DRR has smaller error on average. On the right-hand side
of Figure 2, we plot the histograms of the suboptimality for RR, DRR and SGD
methods instead where the y-axis denotes the suboptimality in function values of
the last iterate and the x-axis denotes the number of occurences. We see a simi-
lar behavior. We observe that SGD is consistently performing the worst, whereas
DRR has better suboptimality on average (averaging over sample paths). Figure 3
repeats the experiment with a longer time budget of 5 seconds otherwise keeping
all the experimental setup the same including the stepsize, averaging parameter,
initialization and the objective function. We see a clearer separation between the
histograms of the RR method and the DRR method. We see qualitatively similar
results when we run the algorithms for different amount of times and for different
values of the stepsize decay parameter s. These results show that the asymptotic
performance would get better if one removes the bias term and typically we need
more cycles for the bias correction term to be effective. The results also illustrate
the results of Theorem 3 and 4 on the biasedness of the RR iterations in the sense
that asymptotically an improvement can be obtained by subtracting the bias.

Next, we compare RR and DRR methods to another method SAGA [14] which
is a de-biased method that improves on the theory behind variance reduction
methods such as SAG [39] and SVRG [24]. SAGA method can achieve linear con-
vergence in expected suboptimality when the objective is strongly convex. For

8 The quadratic functions fi(x) have the form fi(x) = xTAix+ qTi x+ ri. The matrices Ai
are chosen randomly satisfying Ai = 1

n
RiR

T
i + λI where I is the n× n identity matrix, R is

a random matrix with each entry uniform on the interval [−50, 50] and λ is a regularization
parameter to make the problem strongly convex. We set λ = 5. The vectors qi are random,
each component is uniformly distributed on the interval [−50, 50] and ci is uniform on the
interval [−1, 1].

9 We note that all experiments were performed on a Macbook Pro with an 3.1 GHz Intel
Core i7 processor and 16GB of RAM, using Matlab R2017a running on the operating system
Mac OS Sierra v10.12.5.
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22 M. Gürbüzbalaban et al.

Fig. 2: Comparison of RR, Debiased-RR (DRR) and SGD when component func-
tions are random quadratics with m = 50, n = 20 and with simulation time 0.5
seconds over 500 sample paths. Top, left: Histograms of distk for RR, DRR and
SGD. Bottom, left: Histograms of distk for RR and DRR only (without SGD).
Top, right: Histograms of the suboptimality in objective value for RR, DRR and
SGD. Bottom, right: Histograms of the suboptimality in objective value for RR
and DRR only (without SGD).

Fig. 3: Comparison of RR, De-biased-RR (DRR) and SGD. The simulation frame-
work and parameters are the same as those in Fig. 2 except that the simulation
time is 5 seconds instead for each path.
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many structured problems such as logistic regression and linear regression, SAGA
can be implemented efficiently requiring O(n) memory [14, 22], however in gen-
eral, it requires O(mn) memory to solve the problem (1) (as it stores historical
gradients of all the component functions), which is impractical when m is very
large [14, 22]. This is in constrast with SGD and RR which requires only O(n)
memory to operate, therefore can scale better to large m in general to solve the
problem (1). In the left panel of Figure 4, we compare the expected suboptimality

(a) Comparison of RR, DRR and SAGA (b) Comparison of RR and DRR

Fig. 4: Comparison of RR, De-biased RR (DRR) and SAGA methods in terms
of performance. The y-axis is the expected suboptimality in function value after
k cycles, and x-axis is the number of cycles k. (a): Comparison of RR and DRR
only. (b): Comparison of RR, DRR and SAGA methods.

for the DRR, RR and SAGA methods over 500 sample paths with the same experi-
mental setup for RR and DRR methods including the objective, the stepsize choice
and the averaging with parameter s = 0.75. We first run RR and SAGA methods
and plot expected optimality Ef(xk0)− f(x∗) versus the number of cycles k. Both
RR and SAGA methods have access to the same number of stochastic gradient
evaluations for every k which make them directly comparable as the gradient com-
putations determine the running time. We then run the DRR method (including
the de-biasing step at the last cycle), giving it the same amount of running time
with the other methods for a fair comparison. For the SAGA algorithm we use
the recommended stepsize from [14] for strongly convex objectives. The y-axis of
Figure 4 is the expected suboptimality in a logarithmic scale whereas the x-axis
is the number of cycles. We see on this example that RR and De-biased RR has a
fast progress in the beginning compared to SAGA but when the number of cycles
grows, SAGA eventually outperforms RR and DRR. If the accuracy desired is not
too high (say if being ε = 10−2 of the optimum value f(x∗) is good enough, in this
example f(x∗) ≈ −3.9872), RR and DRR can be good choices; however for higher
accuracy requirements (say ε = 10−4 or smaller), SAGA is a better choice. These
numerical findings are consistent with the fact that SGD-like algorithms have the
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fastest progress in the beginning when the iterates are far away from the optimum,
and they slow down later with a sublinear convergence rate due to the decaying
stepsize needed for guaranteeing convergence [6]. On the right panel of Figure 4,
we compare RR and DRR only (removing the SAGA algorithm) to focus on the
differences between them; otherwise keeping the experimental setup exactly the
same as before. We start seeing a consistent improvement in performance with the
DRR method after k = 300 cycles and the amount of improvement increases when
the number of cycles increases. This is expected as our results regarding the ex-
plicit computation of the bias has an asymptotic nature (see part (iii) of Theorem
3) and our bias estimation gets more accurate as the number of iterations grows.

7 Conclusion

We analyzed the random reshuffling (RR) method for minimizing a finite sum of
convex component functions. When the objective function is strongly convex and
the component functions are smooth, averaged RR iterates converge at rate ∼ 1/ks

to the optimal solution almost surely (which translates into a rate of 1/k2s in the
suboptimality of the objective value) for a diminishing stepsize αk = Θ(1/ks)
with s ∈ (1/2, 1). This is faster than SGD’s Ω( 1

k ) rate. Viewing RR as a gradient
descent method with random gradient errors, this result builds on first showing
that gradient errors Ek satisfying Ek = O(αk) and then relating the gradient
error sequence to an i.i.d sequence to which martingale theory is applicable. Note
that the gradient errors in SGD are larger with a O(1) variance, which leads to a
less accurate gradient descent direction. Beyond RR and SGD comparison, these
results also give insight into the fast convergence properties of without-replacement
sampling strategies compared to with-replacement sampling strategies.

After characterizing the convergence rate of RR, we look into second-order
terms in the asymptotic expansion of the averaged RR iterates and obtain high
probability bounds. We use these bounds to develop a new method that can accel-
erate the convergence rate of RR to O( 1

k2 ) with high probability. Finally, we show
that the O( 1

k2 ) rate can also be achieved in expectation (which is a weaker notion
of convergence with respect to convergence with high probability) for the s = 1
case by adjusting the stepsize to the strong convexity constant of the objective
properly.

A Proof of Theorem 2

Proof By substituting the gradients of the component functions ∇fi(x) = Pix − qi into the
RR iterations given by (5), we obtain the recursion

xk+1
0 =

m∏

i=1

(In − αkPσk(i))x
k
0 + αk

m∑

i=1

m∏

j=i+1

(In − αkPσk(j))qσk(i) (57)

=
(
In − αkP +O(α3

k)
)
xk0 + αk

m∑

i=1

qi − α2
kµ̂σk +O(α3

k), (58)

where P :=
∑m
i=1 Pi and

µ̂σk := −
∑

1≤i<j≤m
Pσk(j)∇fσk(i)(x

k
0). (59)
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Since the component functions are quadratics, the optimal solution can be computed explicitly
and is given by x∗ = P−1∑m

i=1 qi. Then, it follows after a straightforward computation that
(58) is equivalent to

xk+1
0 − x∗ =

(
I − αkP +O(α3

k)
)
(xk0 − x∗)− α2

kµ̂σk +O(α3
k). (60)

We also have

‖µσk − µ̂σk‖ ≤
∑

1≤i<j≤m
‖Pσk(j)‖‖∇fσk(i)(x

k
0)−∇fσk(i)(x

∗)‖

≤
∑

1≤i<j≤m
Lσk(j)Lσk(i)distk = O(distk),

where µσk is defined by (23) with σ = σk. Plugging this into (60),

xk+1
0 − x∗ =

(
I − αkP +O(α2

k) +O(α3
k)
)
(xk0 − x∗)− α2

kµσk +O(α3
k + α2

kdistk).

Taking norm squares of both sides, taking conditional expectations and using the fact that
µσk is bounded (see (26)), we obtain

Eσk

(
dist2

k+1
∣∣xk0) = (xk0 − x∗)T

(
I − 2αkP +O(α2

k)
)
(xk0 − x∗) + 2α2

k〈xk0 − x∗,−µ̄〉
+O(α3

kdistk + α2
kdist2

k + α4
k), (61)

where Eσk denotes the expectation with respect to the random permutation σk and

µ̄ = Eσk (µσk ) = Eσ1 (µσ1 ) .

It follows from Cauchy-Schwartz that for any β > 0,

α2
k

∥∥∥〈xk0 − x∗,−µ̄〉
∥∥∥ ≤ α2

kdistk‖µ̄‖ =
(√

βα
1/2
k distk

) α3/2
k ‖µ̄‖√
β

≤ βαkdist2
k

2
+
α3
k‖µ̄‖2
2β

,

and also

α3
kdistk = α2

k (αkdistk) ≤ α4
k

2
+
α2
kdist2

k

2
.

Plugging these bounds back into (61), using the lower bound (6) on the Hessian H∗ = P and
invoking the tower property of the expectations:

E
(
dist2

k+1
)

=
(
1− αk(2c− β) +O(α2

k)
)
E
(
dist2

k

)
+ α3

k

‖µ̄‖2
β

+O(α4
k).

Plugging in αk = R/ks, it follows from Chung’s lemma [16, Lemma 4.2] that,

E
(
dist2

k+1
)
≤





R2‖µ̄‖2
β(2c−β)

1
k2s + o

(
1
k2s

)
if 0 < s < 1 and 2c− β > 0,

R3‖µ̄‖2
β(R(2c−β)−2)

1
k2

+ o( 1
k2

) if s = 1 and R(2c− β)− 2 > 0.
(62)

Next we choose β to get the best upper bound above. This is done by choosing β = c for
0 < s < 1 and choosing β = (Rc− 1)/R for s = 1 which yields

E
(
dist2

k+1
)
≤





R2‖µ̄‖2
c2

1
k2s + o

(
1
k2s

)
if 0 < s < 1,

R4‖µ̄‖2
(Rc−1)2

1
k2

+ o( 1
k2

) if s = 1 and Rc− 1 > 0.
(63)

By Jensen’s inequality, we have E(distk) ≤
(
E
(
dist2

k+1
))1/2. Therefore, by taking square roots

of both sides above in (62) we conclude.
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B Technical lemmas for the proof of Theorem 3

The first lemma is on characterizing what is the worst-case distance of the all the inner iterates
of RR to the optimal solution x∗. This quantity we want to upper bound is a random variable,
but the upper bounds we obtain are deterministic holding for every sample path. This lemma
is based on Corollary 1 and uses the fact that the distance between the inner iterates are on
the order of the stepsize.

Lemma 1 Under the conditions of Theorem 3 we have max
0≤i<m

‖xki −x∗‖ = O( 1
ks ) where O(·)

hides a constant that depends only on G∗, L,m, c and R.

Proof By Corollary 1,

‖xk0 − x∗‖ = O(
1
ks

), (64)

where O(·) hides a constant that depends only on G∗, L,m,R and c. We have also for any
0 ≤ i < m and k ≥ 0,

‖xki − x∗‖ ≤ ‖xk0 − x∗‖+ ‖xki − xk0‖ = ‖xk0 − x∗‖+ iαk max
`=1,...,i

‖∇fσk(`)(x
k
`−1)‖

≤ ‖xk0 − x∗‖+ (m− 1)
R

(k + 1)s
(
G∗ + max

`=1,...,i
‖∇fσk(`)(x

k
`−1)−∇fσk(`)(x

∗)‖
)

≤ ‖xk0 − x∗‖+ (m− 1)
R

(k + 1)s
(
G∗ + L max

`=1,...,i
‖xk`−1 − x∗‖

)
,

where we used the L-Lipschitzness of the gradient of f where L is given by 19. Using (64) and
applying this inequality inductively for i = 0, 1, 2, . . . ,m− 1 we conclude.

The second lemma is on characterizing how fast on average the outer iterates move (if
normalized by the stepsize) after a cycle of the RR algorithm. This is clearly related to the
magnitude of the gradients seen by the iterates and is fundamental for establishing the con-
vergence rate of the averaged RR iterates in Theorem 3.

Lemma 2 Under the conditions of Theorem 3, consider the sequence

Iq,k =

∑k−1
j=(1−q)k (xj0 − x

j+1
0 )α−1

j

qk
, 0 < q ≤ 1. (65)

Then,

Iq,k =

{
O
( log k

k

)
if q = 1,

O
( 1
k

)
if 0 < q < 1.

In the former case, O(·) hides a constant that depends only on G∗, L,m, c, R, s, q and dist0.
In the latter case, the same dependency on the constants occurs except that the dependency
on dist0 can be removed.

Proof It follows from integration by parts that for any ` < k,

−
k−1∑

j=`

(xj0 − x
j+1
0 )α−1

j = α−1
k (xk0 − x∗)−α−1

` (x`0− x∗)−
k−1∑

j=`

(xj+1
0 − x∗)(α−1

j+1−α−1
j ). (66)

Next, we investigate the asymptotic behavior of the terms on the right-hand side. A conse-
quence of Corollary 1 and the inequality 25 is that

α−1
k ‖xk0 − x∗‖ =

(k + 1)s

R
‖xk0 − x∗‖ ≤

LmG∗
c

+ o(1) = O(1), (67)

and therefore

|α−1
k+1 − α

−1
k |‖xk0 − x∗‖ =

(k + 2)s − (k + 1)s

(k + 1)s
α−1
k ‖xk0 − x∗‖ =

((
1 +

1
k + 1

)s − 1
)
α−1
k ‖xk0 − x∗‖

≤ s

k + 1
α−1
k ‖xk0 − x∗‖ ≤

sLmG∗
c

1
k + 1

+ o(
1

k + 1
) = O(

1
k + 1

),
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where O(·) hides a constant that depends only on L,G∗, c,m and s. Then, setting ` = (1− q)k
in (66), it follows that

∥∥
k−1∑

j=`

(xj0 − x
j+1
0 )α−1

j

∥∥ ≤ ‖α−1
k (xk0 − x∗)‖+ ‖α−1

(1−q)k(x(1−q)k
0 − x∗)‖ (68)

+
k−1∑

j=(1−q)k
‖xj+1

0 − x∗‖|α−1
j+1 − α−1

j |.

= O(1) + ‖α−1
(1−q)k(x(1−q)k

0 − x∗)‖+O
( k−1∑

j=(1−q)k

1
j + 1

)
. (69)

We also have

‖α−1
(1−q)k(x(1−q)k

0 − x∗)‖ =

{
α−1

0 dist0 if q = 1,
O(1) if 0 < q < 1,

(70)

where the second part follows from (67) with similar constants for the O(·) term. As the
sequence 1

j+1 is monotonically decreasing, for any k > 0 we have the bounds

k−1∑

j=(1−q)k

1
j + 1

≤ 1
(1− q)k + 1

+
∫ k−1

(1−q)k

1
x+ 1

dx ≤
{

1 + log k if q = 1,
1 + log( 1

1−q ) if 0 < q < 1.
(71)

Note that when q = 1 this bound grows with k logarithmically whereas for q < 1 it does not
grow with k. Then, combining (69), (70) and (71) we obtain

‖Iq,k‖ ≤
∥∥∑k−1

j=` (xj0 − x
j+1
0 )α−1

j

∥∥
qk

=

{
O
( log k

k

)
if q = 1,

O
( 1
k

)
if 0 < q < 1,

as desired which completes the proof.

Lemma 3 Let σ be a random permutation of {1, 2, . . . ,m} sampled uniformly over the set of
all permutations Γ defined by (4) and µ(σ) be the vector defined by (23) that depends on σ.
Then,

µ̄ = Eσ
(
µ(σ)

)
=

1
2

m∑

i=1

Pi∇fi(x∗), (72)

where Eσ denotes the expectation with respect to the random permutation σ and µ̄ is defined
by (29).

Proof For any i 6= `, the joint distribution of (σ(i), σ(`)) is uniform over the set of all (ordered)
pairs from {1, 2, . . . ,m}. Therefore, for any i 6= `,

Eσ
[
Pσ(i)∇fσ(`)(x

∗)
]

=
m∑

i=1

m∑

i 6=j,j=1

Pi∇fj(x∗)
m(m− 1)

=

∑m
i=1 Pi

∑m
j=1∇fj(x∗)−

∑m
j=1 Pj∇fj(x∗)

m(m− 1)
= −

∑m
j=1 Pj∇fj(x∗)
m(m− 1)

,

where we used the fact that ∇f(x∗) =
∑m
j=1∇fj(x∗) = 0 by the first order optimality

condition. Then, by taking the expectation of (74), we obtain

Eσ(µ(σ)) = −
m∑

i=1

i−1∑

`=0

E
[
Pσ(i)∇fσ(`)(x

∗)
]

=
m∑

i=1

i−1∑

`=0

∑m
j=1 Pj∇fj(x∗)
m(m− 1)

=

∑m
j=1 Pj∇fj(x∗)

2
,

which completes the proof.

Lemma 4 Under the conditions of Theorem 3, the following statements are true:
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(i) We have
Ek = αkµ(σk) +O(α2

k), k ≥ 0, (73)

where Ek is the gradient error defined by (8), O(·) hides a constant that depends only on
G∗, L,m,R and c and

µ(σk) = −
m∑

i=1

Pσk(i)

i−1∑

`=1

∇fσk(`)(x
∗) (74)

is a sequence of i.i.d. variables where the function µ(·) is defined by (23).

(ii) For any 0 < q ≤ 1, limk→∞ Yq,k = µ̄ a.s. where Yq,k =
∑k−1

i=(1−q)k
Ej

∑k−1
j=(1−q)k

αj
.

(iii) It holds that
‖µ(σk)‖ ≤ LmG∗. (75)

Proof (i) As component functions are quadratics, (8) becomes

Ek =
m∑

i=1

Pσk(i)(x
k
i−1 − xk0) = −

m∑

i=1

Pσk(i)αk

i−1∑

`=1

∇fσk(`)(x
k
`−1),

where we can substitute

∇fσk(`)(x
k
`−1) = ∇fσk(`)(x

∗) + Pσk(`)(x
k
`−1 − x∗). (76)

Then an application of Lemma 1 proves directly the desired result.
(ii) We introduce the normalized gradient error sequence Yj = Ej/αj . By part (i), Yj =

µ(σj) + O(αj) where µ(σj) is a sequence of i.i.d. variables. By the strong law of large
numbers, we have

lim
k→∞

∑k−1
j=0 µ(σj)

k
= Eµ(σj) = µ̄ a.s., (77)

where the last equality is by the definition of µ̄. Therefore,

lim
k→∞

∑k−1
j=0 Yj

k
= lim
k→∞

(∑k−1
j=0 µ(σj)

k
+

∑k−1
j=0 O(αj)

k

)
= µ̄ a.s.,

where we used the fact that the second term is negligible as
∑k−1
j=0 αj/k = O(k−s) → 0.

As the average of the sequence Yj converges almost surely, one can show that this implies
almost sure convergence of a weighted average of the sequence Yj as well as long as weights
satisfy certain conditions as k →∞. In particular, as the sequence {αj} is monotonically
decreasing and is non-summable, by [15, Theorem 1],

lim
k→∞

Y1,k = lim
k→∞

∑k−1
j=0 αjYj∑k−1
j=0 αj

= lim
k→∞

∑k−1
j=0 Ej∑k−1
j=0 αj

= µ̄ a.s. (78)

This completes the proof for q = 1. For 0 < q < 1, by the definition of Yq,k, we can write
Y1,k = (1− wk)Yq,k + wkY1,(1−q)k where the non-negative weights wk satisfy

wk =

∑(1−q)k−1
j=0 αj
∑k−1
j=0 αj

→k→∞ (1− q)1−s < 1.

As both Y1,k and Y1,(1−q)k go to µ̄ a.s. by (78), it follows that

lim
k→∞

Yq,k = lim
k→∞

Y1,k − wkY1,(1−q)k
1− wk

= µ̄ a.s

as well for any 0 < q < 1. This completes the proof.
(iii) This is a direct consequence of the triangle inequality applied to the definition (74) with

Li = ‖Pi‖ and L =
∑m
i=1 Li.
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C Techical Lemmas for the proof of Theorem 4

We first state a result which follows from adapting existing results from the literature to our
setting. It extends Corollary 1 from quadratics to smooth functions.

Corollary 2 Under the setting of Theorem 4, we have

distk ≤
RM

c

1
ks

+ o(
1
ks

),

where the right-hand side is a deterministic sequence, M := LmG∗ and G∗ is defined by (24).

Proof The result [21, Theorem 3.2] on the asymptotic convergence of incremental gradient
implies that all the iterates converge to the optimum, i.e. xki → x∗ for every i fixed as k goes
to infinity. Let Xε be the closed ε-ball around the optimum, i.e. Xε := {x ∈ Rn : ‖x− x∗‖ ≤
ε}. Clearly, the iterates will be contained in this ball when k is large enough, i.e. for every
ε > 0 there exists k0 (that may depend on ε) such that xki ∈ X for any k ≥ k0 and for all
i = 1, 2, . . . ,m. By [21, Theorem 3.2], we have also

lim sup
k→∞

ksdistk ≤
RMε

c
, (79)

where Mε := LmGε and Gε := max1≤i≤m supx∈Xε
‖∇fi(x)‖ is the largest norm of the

gradients of the component functions on the compact set Xε. If we let ε go to zero, we can
replace Gε with G∗ = max1≤i≤m ‖∇fi(x∗)‖ and Mε with M in (79). This completes the proof.

Building on this corollary, we obtain the following results.

Lemma 5 Under the conditions of Theorem 4, all the conclusions of Lemma 1 remain valid.

Proof The proof of Lemma 1 applies identically except that instead of Corollary 1 we use its
extension Corollary 2.

Lemma 6 Under the conditions of Theorem 4, all the conclusions of Lemma 2 remain valid.

Proof The proof of Lemma 2 applies identically with the only difference that the bound on
distk = ‖xk0 − x∗‖ is obtained from Corollary 2 instead of Corollary 1.

Lemma 7 Under the conditions of Theorem 4, the following statements are true:

(i) We have
Ek = αkv(σk) +O(α2

k), k ≥ 0, (80)

where O(·) hides a constant that depends only on G∗, L,m,R, c and U and

v(σk) = −
m−1∑

i=0

∇2fσk(i)(x
∗)
i−1∑

`=0

∇fσk(`)(x
∗).

(ii) It holds that
‖v(σk)‖ ≤ LmG∗, (81)

where

v̄ := Ev(σk) =
m∑

i=1

∇2fi(x∗)∇fi(x∗)/2. (82)

(iii) For any 0 < q ≤ 1, limk→∞ Yq,k = v̄ with probability one where

Yq,k =

∑k−1
i=(1−q)k Ej∑k−1
j=(1−q)k αj

. (83)
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Proof For part (i), first we express Ek using the Taylor expansion and the Hessian Lipschitz-
ness as

Ek =
m∑

i=1

(
∇2fσk(i)(x

k
0)
)

(xki−1 − xk0) +O(U‖xki−1 − xk0‖2)

= −
m∑

i=1

(
∇2fσk(i)(x

k
0)
)

(xki−1 − xk0) +O
(
α2
kU

∥∥∥∥
i−1∑

`=1

∇fσk(`)(x
k
`−1)

∥∥∥∥
)
.

By Lemma 5, we have ‖xk` − x∗‖ = O(αk) with probability one. Then, by the gradient and
Hessian Lipschitzness we can substitute above

∇fσk(`)(x
k
`−1) = ∇fσk(`)(x

∗) +O(αk), ∇2fσk(`)(x
k
`−1) = ∇2fσk(`)(x

∗) +O(αk),

which implies directly Equation (80). The rest of the proof for parts (ii) and (iii) is similar to
the proof of Lemma 4 and is omitted.
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