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Autoencoder‑bank based design 
for adaptive channel‑blind robust transmission
Hossein Safi1, Mohammad Akbari2* , Elaheh Vaezpour2, Saeedeh Parsaeefard3 and Raed M Shubair4,5

1 Introduction
To reliably transmit data from a source to a destination, conventional communication 
systems employ multiple independent blocks which are separately optimized to perform 
isolated functions (e.g., source/channel coding, modulation, channel estimation, equali-
zation) [1]. However, such a divided architecture is known to be sub-optimal [2], and 
thus, achieving optimal performance through the end-to-end optimization of a commu-
nication system retains appealing for carrying out further investigations [3].

Recently, considerable advances in Deep Learning (DL) have empowered research-
ers to efficiently perform end-to-end learning of communication systems [3]. This way, 
transmitter (Tx) and receiver (Rx) can be trained in an end-to-end fashion under a spe-
cific performance metric and channel model [4]. Accordingly, via modeling the Tx and 
Rx as neural networks (NNs), autoencoders (AEs) have emerged as a useful tool for 
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The idea of employing deep autoencoders (AEs) has been recently proposed to 
capture the end-to-end performance in the physical layer of communication systems. 
However, most of the current methods for applying AEs are developed based on the 
assumption that there exists an explicit channel model for training that matches the 
actual channel model in the online transmission. The variation of the actual channel 
indeed imposes a major limitation on employing AE-based systems. In this paper, 
without relying on an explicit channel model, we propose an adaptive scheme to 
increase the reliability of an AE-based communication system over different channel 
conditions. Specifically, we partition channel coefficient values into sub-intervals, train 
an AE for each partition in the offline phase, and constitute a bank of AEs. Then, based 
on the actual channel condition in the online phase and the average block error rate 
(BLER), the optimal pair of encoder and decoder is selected for data transmission. To 
gain knowledge about the actual channel conditions, we assume a realistic scenario 
in which the instantaneous channel is not known, and propose to blindly estimate it 
at the Rx, i.e., without any pilot symbols. Our simulation results confirm the superior-
ity of the proposed adaptive scheme over existing methods in terms of the average 
power consumption. For instance, when the target average BLER is equal to 10−4 , our 
proposed algorithm with 5 pairs of AE can achieve a performance gain over 1.2 dB 
compared with a non-adaptive scheme.
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end-to-end modeling of the physical layer of communication systems [5]. In particular, 
such a setup is enabled to optimize Tx and Rx without being limited to conventional 
component-wise optimization methods, and hence, moving away from carefully opti-
mized sub-blocks to adaptive and flexible NNs [6]. Using offline data-set, AEs can be 
trained and optimized for a practical communication system, and this architecture can 
outperform the conventional separable design of the physical layer of such systems.

Owing to these benefits, a number of studies on employing AEs in the physical layer of 
communication systems has been reported [6–10]. Particularly, the idea of end-to-end 
learning of communication systems through deep NN-based AEs has been applied to 
an orthogonal frequency division multiplexing (OFDM)-based communication system 
in [6]. Moreover, the authors in [7] investigated the problem of joint source and channel 
coding of structured data (i.e, natural language) over a noisy channel and attained lower 
word error rates by developing an AE-based system. A new AE-based peak-to-average 
power ratio reduction scheme has been proposed in [8]. The authors in [9] developed 
an AE-based deep learning architecture to model a multiuser single-input multiple-out-
put communication system. The work in [10] employs an AE to find proper constella-
tions and corresponding receiver when a radar system coexists with the other interfering 
wireless systems.

Furthermore, there exist some studies on DL-based wireless transmission systems in 
which different functionalities of physical layer have been modeled and investigated as 
a deep NN (DNN). In this regard, ref [11] presents an overview of physical layer DL 
and the state of the art for fifth-generation of wireless and beyond systems. Mean-
while, the potential of DL approaches to address problems in the physical layer has 
been shown in several recent studies. More precisely, a novel method for synthesizing 
new physical layer modulation and coding schemes for communications systems using 
a learning-based approach is proposed in [12]. The dynamic interference channel in a 
communication system has been investigated in [13], modulation recognition has been 
studied in [14], radio fingerprinting has been evaluated in [15], and medium access 
control mechanisms have been studied in [16]. Furthermore, the authors in [17] inves-
tigated mobile edge computing networks for intelligent internet of things (IoT), where 
multiple users have some computational tasks assisted by multiple computational access 
points. Accordingly, a system is devised by proposing an intelligent off-loading strategy 
in which the deep reinforcement learning algorithm is used to automatically learn the 
optimal offloading strategy. An NN is also trained to predict the offloading action, where 
the training data is provided by the environment. Also in [18], a DL-based ultra reli-
able multi-user multiple-input multiple-output (MIMO) detector for 5G enabled IoT 
is proposed, where the system is operating in interfering environments correlated over 
the time or frequency domain. To this end, an iterative detection framework including 
a conventional symbol-by-symbol detector and a deep convolutional neural network 
(DCNN) is utilized, where the DCNN is used to suppress the interfering signals by cap-
turing their characteristics through deep learning.

Nevertheless, most of these prior works assume an exact mathematical channel model 
to perform training. More precisely, in an end-to-end communication system, the chan-
nel is considered as a layer in the NN. Thus, to backpropagate error during the training 
phase, the AE needs to know the gradient of the channel transfer function. Moreover, to 
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capture the maximum end-to-end performance, considered channel model in the train-
ing phase must match the actual channel model in the online transmission phase. This 
imposes a major limitation on employing AE-based approaches to achieve maximum 
end-to-end performance of a communication system when the actual channel varies 
over the time. To cope with this problem, prior works have proposed different online 
training methods based on measured data during online transmission. For instance, the 
work in [2] considers training the DL-based system using a channel model, and then 
fine-tuning the Rx with measured data. However, fully capturing of end-to-end perfor-
mance is not possible since no fine-tuning is done at the Tx side in this approach. More-
over, the authors in [19] approximate the loss function gradient with respect to the Tx 
parameters and develop an alternating algorithm for end-to-end training without chan-
nel model knowledge. This algorithm iterates between two phases: (i) training of the Rx 
using the true gradient of the loss, and (ii) training of the Tx based on an approximation 
of the loss function gradient. However, this method takes more samples to converge and 
is relied on a two phase time-consuming training paradigm over online transmission, 
thus decreasing the link availability.

To mitigate the need for undergoing complex online training over actual channels as 
well as to obtain the maximum end-to-end performance of a communication system, we 
propose a robust adaptive scheme for data transmission over a random channel with no 
specific mathematical model using an AE bank. For online transmission, we assume a 
realistic scenario where the instantaneous channel gain is not known to Tx/Rx. Thus, we 
need to estimate the channel gain at the RX and feed it back to the Tx. Then, based on 
the actual channel conditions in the online transmission phase, the pair of encoder and 
decoder that satisfies the system average block error rate (BLER) constraint is selected 
for data transmission. To increase bandwidth efficiency, as well as to avoid data framing 
at the Tx, we propose a method to estimate the channel blindly, i.e., without using any 
pilot symbols. We then compare the proposed blind method for channel estimation with 
existing methods in terms of average BLER of the system. It is worth mentioning that, in 
this paper, the term “robust” indicates that, by using the proposed adaptive scheme, the 
performance of the system will not be affected by channel variations over the time, and 
hence, the communication system can deliver solid performance during transmission.

Our major contributions can be summarized as follows:

• A robust AE-based transmission scheme consists of n pairs of AE, each of which 
corresponds to a specific sub-interval of possible values of channel coefficients, is 
proposed. Considering the instantaneous channel state, the AE that satisfies the best 
BLER is selected for data transmission in the online transmission phase.

• In a realistic scenario where the instantaneous channel gain is not known to Tx/Rx, 
a bandwidth-efficient blind channel estimation is proposed which avoids any pilot 
transmission. Therefore, the proposed scheme does not impose additional overhead 
that arises in prevalent pilot-based schemes.

• We evaluate performance of the proposed adaptive scheme in terms of the required 
number of encoders and decoders and also the average power consumption to sat-
isfy a BLER constraint for data transmission. In this regard, we seek to balance an 
inherent tradeoff between the deployment cost (represented by the required number 
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of encoders and decoders), and the system performance (represented by the average 
power consumption and target BLER).

The rest of this paper is organized as follows. Section 2 briefly presents our method for 
modeling and evaluating the considered DL-based system. Section 3 describes our sys-
tem model including the end-to-end communication system and the channel estimation 
methods. In Sect. 4, we present our adaptive transmission scheme. In Sect. 5, we pre-
sent the numerical results of the proposed adaptive scheme and system performances. 
Finally, we conclude the paper in Sect. 6.

2  Methods
The inspiration for an end-to-end deep learning model, also known as, AE , is rooted in 
the functioning of the proposed method in this study. More precisely, Fig. 1 represents 
the layered structure of the end-to-end deep learning-based communication system 
modeled as an AE. Accordingly, without relying on an explicit channel model, we pro-
pose an adaptive scheme to increase the reliability of an AE-based communication sys-
tem over different channel conditions. During the training process, the input symbols, 
modeled as one-hot vectors, go through the AE where the weights of the neural nodes 
are initialized with random values. After that, the weight vectors of the nodes will be 
tuned. The main training goal is to minimize the loss function and maximize the accu-
racy of the whole process. Using TensorFlow framework [20], the performance of the 
proposed DL-based method is numerically evaluated. TensorFlow is an end-to-end open 
source platform for machine learning. It has a comprehensive and flexible ecosystem of 
tools, libraries, and community resources that lets researchers push the state-of-the-art 
in learning and provides some facilities for the developers to easily build and deploy ML 
powered applications as well [20]. Accordingly, one can build and train machine learn-
ing models easily using intuitive high-level APIs like Keras with eager execution, which 
makes for immediate model iteration and easy debugging. As a result, to model and 

Fig. 1 The layered structure of an end-to-end deep learning-based communications system modeled as an 
autoencoder
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simulate the proposed design as well as to build and train the deep neural network, we 
use Keras [21] with TensorFlow in its back-end. Moreover, the set of parameters for sim-
ulation is provided in Tables 1 and 2.

3  System model
3.1  End‑to‑end communication system (autoencoder)

As thoroughly expressed in [2] and depicted in Fig.  1, an AE describes a NN that is 
trained to reconstruct the input at the output. As the information must pass each layer, 
the AE will have to find a robust representation of the input message at every layer. Here, 
we assume a DL-based communication system modeled as an AE. Particularly, the AE 
includes three main blocks, namely, the Tx, the Rx, and channel, as shown in Fig. 1. The 
input message s ∈ M = {1, 2, ...,M} has been received by the Tx. Here, we have M = 2b 
where b is the number of bits per message. Before entering to the dense layers, the input 
message is transformed into a one-hot vector sm of dimension M which consists of a 
single element equal to “1” in position m, whereas all other elements are equal to “0”. 
The one-hot vector is then sent to the hidden dense layers, where at each layer an activa-
tion function is applied individually to each element of the input vector. Table 3 shows 
some commonly used activation functions in the dense layers of an AE. After passing 
the one-hot vector through the multiple dense layers at the Tx, the transmitted signal 
x = [x[1], . . . , x[L]] is formed for L discrete channel uses. Accordingly, for the considered 
setup, the data rate is defined as r = b

L (bit/channel use). It is worth noting that, given a 
certain power constraint and for a feasible rate r, the AE-based system that is trained to 
minimize a loss function, can automatically build zero-error codes (which is the case in 
our considered model). However, due to the problems such as vanishing and exploding 
gradients [22], there may be no guarantee for finding an optimal capacity-achieving code 
especially in deep NNs. Therefore, the problem of designing capacity-approaching codes 
is an interesting future research topic in this domain and is beyond the scope of this 
work.

Furthermore, the Tx last layer normalizes the transmit vectors to guarantee that the 
average energy per symbol is equal to a predefined value Es =

[
1
L
�x�22

]

 , where �·�2 is the 

Euclidean norm.
The channel is implemented by including both fading and noise layers whose output 

y = [y[1], . . . , y[L]] , i.e., a noisy and distorted version of x , is given by

where h is the channel gain1 , and w ∼ N
(
0, σ 2

L IL
)
 is a zero-mean additive white Gauss-

ian noise (AWGN) vector with noise variance σ 2
L .

At the Rx side, the received signal y is passed through multiple dense layers to reach 
the last layer. Accordingly, at this layer, a softmax activation function is utilized where 
its output consists of an estimate of the corresponding posterior probability vector 
p ∈ R

M over all possible messages. The index of the element of p with the largest value 
is returned to estimate the transmitted message ŝ based on the maximum a posteriori 

(1)y = hx + w,

1 It is worth mentioning that, the NN architecture is not able to perform complex operation and complex numbers are 
represented by two real numbers. As a result, all channel gains are real-valued.
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(MAP) criterion. Moreover, we utilize the mean square error (MSE) as the loss function 
of the training process. This way, the loss function is obtained as

Also, the BLER of considered setup is obtained as

where ps is the a priori probability of transmission message s. Since the message prob-
ability distribution is commonly assumed to be uniform, we have ps = 1

M.

3.2  Challenge in training over physical channel

To fully exploit the end-to-end performance of an AE-based communication system, 
channel model in the training phase must match the actual channel over which the sys-
tem is supposed to communicate. Nevertheless, for an actual system, the channel is not 
perfectly known and varies over the time. Therefore, an AE that is trained over a specific 
realization of the channel may not deliver the expected performance with the change in 
channel conditions. Thus, AE should be re-trained from scratch for each new channel 
condition in order to minimize the loss function and BLER which is a time-consuming 
process that greatly restricts the link availability and reliability. In this paper, we propose 
to obviate this practical limitation by employing an AE bank consisting of multiple pairs 
of trained encoder and decoder for different channel conditions. Subsequently, regard-
ing the actual channel state in the online transmission phase, one pair of trained encoder 
and decoder is selected for data transmission. To this aim, we estimate the channel gain 
at the Rx and feed it back to the Tx. The details of the proposed adaptive scheme are pro-
vided in Sect. 4. To monitor actual channel conditions for adopting the adaptive scheme, 
and depending on whether pilot symbols are used or not, two methods for estimating 
the channel gain of the considered AE-based communication system are presented in 
the sequel.

3.2.1  Channel estimation using pilot symbols

We assume that the pilot symbol s′ is transmitted. Therefore, the channel output y′ cor-
responding to the encoded signal x′ is given by

Given x′ , one can obtain an estimate of the channel gain, h, by applying the maximum-
likelihood (ML) criterion as

where �·,·� denotes the dot product. Although estimating the communication channel 
via pilot symbols results in an accurate estimation, adopting this approach requires data 

(2)L(sm,p) = �(sm − p)�22.

(3)Pe =
∑

s∈M

Pr(s �= ŝ)ps,

(4)y′ = hx′ + w.

(5)

ˆhML = arg max
h

P(y′|x′; h)

= arg min
h

∣
∣y′ − hx′

∣
∣2

=

�x′,y′�

�x′,x′�
,
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framing at the Tx side which leads to the loss of data rate and increases the required 
channel bandwidth. In the sequel, we propose a near optimal method for channel esti-
mation without using pilot symbols.

3.2.2  Blind channel estimation

To increase the bandwidth efficiency by avoiding pilot symbols and, at the same time, to 
decrease the system complexity by avoiding data framing at the Tx, here, we tend to esti-
mate the channel in a blind way, i.e., without using any pilot symbols. For this purpose, 
we assume that the encoded symbol is accumulated during an observation window com-
posed of K intervals. As a result, at each interval k, k ∈ {1, . . . ,K } , the received signal (or 
equally the channel output) is obtained as

Squaring both sides of (6) implies that

Since the term w[k]2 is much smaller than w[k] i.e., w[k]2 ≪ w[k] , we can  reasonably  
neglect w[k]2 and approximate (7) as

By performing summation over k, (8) can be reformulated as

where τy = 1
KEs

∑

k y[k]
2 , and w′′ is a zero-mean white Gaussian noise with variance 

σ 2
=

4h2σ 2
N

KEs
 . Therefore, τy has a Gaussian distribution with a mean equal to h2 and vari-

ance σ 2 . By using the ML criterion, a blind estimate of the channel is attained as

Moreover, by employing a buffer at the Rx, the communication system can support a 
real-time decision-feedback channel estimation process.2

4  Adaptive transmission scheme
In this section, an adaptive transmission scheme is proposed for the AE-based com-
munication system to increase the system reliability over different channel conditions. 
Meanwhile, we aim to minimize the number of trained encoder-decoder pairs required 
for the communication link with the average BLER and transmit power constraints 

(6)y[k] = hx[k]+ w[k].

(7)
y[k]2 = (hx[k]+ w[k])2

= h2x[k]2 + 2hx[k]w[k]+ w[k]2.

(8)y[k]2 ≃ h2x[k]2 + 2hx[k]w[k].

(9)τy ≃ h2 + w′′,

(10)
ˆhBL = arg min

h

∣
∣
∣τy − h2

∣
∣
∣

2

=

√

τy.

2 It is worth noting that, in the online phase, the communication system only needs to estimate the channel blindly and 
feeds it back to the Tx and Rx. Here, the delay occurs only for accumulating the first K bits to perform the first channel 
estimation. After that, by using the buffer at the Rx, the estimation updates symbol by symbol and there will be no delay 
for performing channel estimation.
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under different channel conditions. Figure 2 depicts the four-step structure of our pro-
posed adaptive DL-based transmission scheme. Each step is described as follows.

The first step is offline training. Different pairs of the encoder and decoder in the AE 
bank are trained offline over different channel conditions. Since the AE-represented 
communication system should be applicable for any type of channel without a tractable 
mathematical model, in this paper, we assume there is no channel model information. As 
a result, the channel fading block acts as a random gain block where its input is multi-
plied by a random number (i.e., the instantaneous channel gain) to produce the output3. 
We divide the interval of channel gains, h = [hmin, hmax] , into n sub-intervals. There-
fore, the channel gain interval is obtained as

Accordingly, in the training phase, we have n fading blocks for which the gain of each 
block is randomly selected from its associated sub-interval. Then, AEi (the ith pair of 
encoder and decoder for each sub-interval, i ∈ {1, . . . , n} ), is trained under the assump-
tion that the channel gain in the channel layer of AEi lies in (hi − 1, hi] . After training, 
the trained encoders and decoders are employed with fixed parameters (i.e, the input 
and output weights and bias of the neurons remain constant during online transmis-
sion). As a result, each trained pair is optimized for a specific channel condition and is 
used when the practical channel conditions are within the same interval as the one used 
in the training. Note that, by training the system for each sub-interval, the associated 
encoder carefully learns a robust representations x of the different symbol s regarding to 

(11)
h = [[hmin, h1], (h1, h2], . . . , (hn-1, hmax]]

︸ ︷︷ ︸

n sub-intervals

.

Fig. 2 Four-step structure of the proposed adaptive transmission scheme for the DL-based communication 
system

3 Although this is indeed an appealing theoretical idea to model the end-to-end system as a whole learning system, its 
biggest drawback impeding practical implementation is that the gradient of the instantaneous channel transfer function 
should be known [2]. Generally, there is no tractable mathematical model in a real-world communication system. More 
precisely, in the context of AE, the actual channel is generally considered as a black box for which only the inputs and 
outputs can be observed. Here, we just need to perform some simple measurements at different time intervals to deter-
mine the range of the channel gain variations.
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the possible distortions created by the channel at that interval. Therefore, the whole sys-
tem is expected to deliver a robust performance over a wide range of channel conditions.

The second step is channel estimation during online transmission. As we mentioned in 
Sect. 3.2, the Rx can perform channel estimation by employing two methods, i.e., using 
pilot symbols and blind estimation. For estimating the channel via pilot symbol, the Tx 
should enclose transmit data in different frames and insert pilot symbols into the frames 
which results in less bandwidth efficiency. To avoid this, the Rx can also perform blind 
channel estimation over an observation window as thoroughly discussed in Sect. 3.2.2.

In the third and fourth steps, first, the estimated channel gain at the Rx, ˆh , is fed back 
to the Tx. Next, if ˆh lies in the ith sub-interval, the ith pair of encoder and decoder is 
selected for sending and receiving data. We summarize the main steps of the proposed 
adaptive transmission scheme in Algorithm 1.

It should be noted that the robust performance of the proposed adaptive scheme 
comes at the expense of using multiple pairs of encoder and decoder instead of using 
one pair which increases the deployment cost. Clearly, this price should be paid for 
being agnostic to the actual channel during training phase. This gives rise to a natural 
question: what is the minimum number of pairs of encoder and decoder which satisfies 
a target level of performance for the considered system. In the sequel, we propose an 
answer to this question by evaluating the performance of the proposed adaptive scheme 
in terms of average power consumption and deployment cost to fulfill a predetermined 
average BLER. More precisely, we impose a target average BLER, Pt

e , as a constraint for 
the system, and minimize the number of encoder and decoder pairs (or equally the num-
ber of sub-intervals n) to satisfy the BLER constraint under different channel conditions. 
Hence, the optimization problem can be formulated as 

 Note that, in the optimization problem (12), the minimum number of encoder and 
decoder pairs should be found under different channel conditions and average transmit 
power. From the system performance’s perspective, the more encoders and decoders, the 

(12a)
min n

(12b)s.t. ¯Pe ≤ Pt
e .
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more robust is the system which is designed for different channel conditions. Therefore, 
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Fig. 3 Average BLER versus SNR when the instantaneous channel gain, ĥ , is estimated by using two methods, 
i.e., pilot symbol method, and blind estimation method. The parameters for the AE are set as follows: M = 16 , 
L = 7 , and n = 5

Table 1 Layout of autoencoder

Parameter # Output shape

Tx

  Input 0 {0, 1}M

  Dense (Relu) 72 R
M

  Dense (Relu) 72 R
M

  Dense (linear) 63 R
L

  Normalization 14 R
L

Channel

  Random gain 14 (non-trainable) R
L

  AWGN 14 (non-trainable) R
L

Rx

  Dense (Relu) 64 R
M

  Dense (Softmax) 72 R
M

Table 2 Parameters for the autoencoder setup

Parameter Value

Optimizer Adam

Loss function MSE

Epoch 150

Batch size 45

Trained samples 105

Test samples 106
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finding the optimum number of encoders and decoders requires balancing an inherent 
tradeoff between the cost of system deployment and desirable performance. This trade-
off is thoroughly studied in Sect. 5.

5  Numerical results and discussion
In this section, we evaluate the numerical results of the proposed adaptive transmission 
scheme in the DL-based communication system. We use Keras [21] with TensorFlow 
[20] in its back-end in order to build and train our deep NN. For training, we use a vari-
ant of stochastic gradient descent (SGD) known as Adam with widely accepted thumb 
rule for the parameter values as follows, learning rate η = 0.001 , β1 = 0.9 , and β2 = 0.99 
[2]. Also, the set of parameters for each pair of encoder and decoder (the AE) is provided 
in Table 1.

We first compare the proposed blind method for channel estimation with pilot esti-
mation in terms of average BLER. To this aim, we plot the average BLER of the consid-
ered system when different methods for channel estimation are employed in Fig. 3. The 
results of this figure are obtained by assuming M = 16 and L = 7 , thus r = 4

7 . Moreo-
ver, in Fig. 3, we assume a communication system employing binary phase-shift keying 
(BPSK) modulation and a Hamming (7, 4) code with either binary hard-decision decod-
ing or soft decoding against the BLER achieved by the trained AEs as a baseline system 
for comparison. From the results of this figure, first, we can observe that given the same 
information transmission rate, r = 4

7 , the performance of the DL-based system is bet-
ter than that of communication system employing Hamming code. It is worth mention-
ing that, the DL-based system does not employ any error control coding approach for 
the noisy channel, and it still outperforms a classical communication system that utilizes 
error control schemes. Second, for the considered rate in our setup, the proposed blind 
method for channel estimation achieves an acceptable level of accuracy (SNR gap less 
than 0.3 dB for L = 7 in our setup) compared with the pilot estimation. Thus, proposed 
blind estimation method can be applied in our considered adaptive scheme.

To investigate the tradeoff of finding the optimum number of encoder and decoder 
over different channel conditions, we have presented curves of average BLER as a func-
tion of transmit power for different number of sub-intervals, n, and for the case of an 
AE with M = 16 , and L = 7 in Fig. 4. Firstly, as expected, our considered system gives 
its worst performance in terms of average BLER when one pair of encoder and decoder 
is used for all channel conditions, i.e., when n = 1 (non-adaptive scheme). Indeed, this 
worst performance highlights the necessity of employing a robust transmission scheme 

Table 3 List of activation functions used in the AE layers

Activation functions

Name Function Output range

Linear sm (−∞,+∞)

Relu max(0, sm) [0,+∞)

Softmax e
sm

∑

m
sm

 (0, 1)

Sigmoid 1
1+e−sm

 (0, 1)

tanh tanh(sm) (−1, 1)
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over different channel conditions. Subsequently, by applying our adaptive scheme, one 
can observe that the performance of the considered system improves by increasing n. On 
the other hand, from a specific number onwards (e.g., n = 8 in our setup), increasing the 
number of sub-intervals (or equally the number of pairs of encoders and decoders), does 
not necessarily improve the system performance. This can be justified by the fact that, 
in this case, the n pairs of encoder and decoder are trained over closed sub-intervals 
(i.e., nearly the same channel conditions) as the number of these sub-intervals increases. 
Hence, when the sub-interval is short, those pairs of encoder and decoder trained over 
close sub-intervals deliver the same performance when they are used in actual chan-
nel conditions. Hence, the improvement of performance is negligible in this situation. 
Finally, as it is depicted in Fig. 4, the minimum value of average transmit power, as well 
as the minimum number of pairs of encoder and decoder can be obtained to satisfy the 
average BLER constraint in Eq. (12). For instance, as we can observe from Fig. 4, for a 
target average BLER equal to 10−4 , our proposed algorithm with n = 5 can achieve a 
performance gain over 1.2 dB in terms of average power consumption compared with a 
non-adaptive scheme.

Finally, to better evaluate the performance and effectiveness of the proposed scheme, 
we have carried out another evaluation by contrasting the performance of our pro-
posed scheme with the proposed scheme in [2], referred as fine tuning,4 under a practi-
cal optical wireless scenario. More precisely, we consider a free space optical channel 
under moderate atmospheric turbulence regime, which has been experimentally proven 
to have a log-normal distribution [23], and compare the performance of our proposed 
scheme with the fine tuning method. We note that, since optical wireless channel 
is quasi-static [24], the channel can be estimated with good accuracy and fed back to 
the transmitter, thus making it an appealing practical case for employing our proposed 
AE-based communication systems. From the result of Fig.  5, one can readily observe 

15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20

10-5

10-4

10-3

Fig. 4 Average BLER versus pt for different numbers of sub-intervals n. The parameters for the AE are set as 
follows: M = 16 , L = 7

4 In this approach the encoder is trained again in the online phase.
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that our proposed scheme outperforms the fine tuning approach. The reason for the 
enhancement is that, compared to [2] which uses an unchangeable encoding strategy 
over different channel conditions (or equally, it just fine tunes the receiver, resulting in 
sub-optimal performance), our proposed scheme is able to use different encoder to gen-
erate a robust representation of transmitted massages for different channel conditions 
(messages that will be least affected by random channel variations). Hence, the effect of 
channel uncertainties on the performance of the learning-based systems is decreased, 
and the proposed scheme outperforms the fine tuning method with more than 2dB mar-
gin in the power consumption.

6  Conclusion
In this paper, we proposed an adaptive scheme to increase the reliability of an AE-based 
communication system over different channel conditions. Accordingly, we divided the 
interval of random channel gains into n sub-intervals and assigned n pairs of encoder 
and decoder to each interval. The encoders and decoders are trained offline, and, regard-
ing the actual channel state in the online transmission phase, one pair of trained encoder 
and decoder is selected for data transmission. To this aim, we estimated the channel gain 
at the Rx and fed  it back to the Tx without using any pilot symbols. We showed that, 
compared with a non-adaptive scheme, by using the proposed adaptive method, the DL-
based system can deliver a robust performance in terms of average BLER over different 
channel conditions. Also, it is observed that our proposed adaptive scheme can achieve 
a performance gain in terms of average power consumption to achieve the same average 
BLER as existing methods.
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AE: Autoencoder; AWGN: Additive white Gaussian noise; BLER: Block error rate; BPSK: Binary phase shift keying; DL: Deep 
learning; MAP: Maximum a posteriori; ML: Machine learning; NN: Neural networks; Rx: Receiver; SGD: Stochastic gradient 
descent; Tx: Transmitter.
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Fig. 5 Performance of the proposed AE-based systems versus fine tuning approach proposed in [2] over the 
lognormal fading channel
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