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Abstract This paper proposes a simple low memory architecture for comput-
ing discrete wavelet transform (DWT) of high-resolution (HR) images on low-
cost memory-constrained sensor nodes used in visual sensor networks (VSN)
or Internet of Multimedia Things (IoMT). The main feature of the proposed
architecture is the novel data scanning technique that makes memory require-
ment independent of the image size. The proposed architecture needs only
(30S) words of memory, where S is the number of parallel processing units
and a critical path delay (CPD) equal to the delay of a multiplier (Tm). Fur-
thermore, a multiplierless version of this architecture is also proposed which
reduces the CPD to Ta<Tm (where Ta is the delay of an adder). In order to
evaluate their effectiveness, the proposed architectures are coded in HDL and
implemented on same FPGA board. Their performance is also compared with
other state-of-the-art low memory DWT architectures. The experimental re-
sults show the superiority of the proposed architectures in terms of memory
and CPD compared to existing DWT architectures. Moreover, the reduction in
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CPD to Ta indicates that the operating frequency can be scaled up by several
factors and can be chosen depending upon the application. Compared to one
of the best state-of-the-art DWT architecture, proposed multiplierless archi-
tecture (with S =4) needs 57.37% less LUT’s and 64.39% less flip-flops for HR
image of dimension 2048×2048. Moreover, the proposed architecture needs no
LUTRAM and DSP, whereas the existing architecture requires 3264 LUTRAM
and 24 DSP’s. Thus the proposed multiplierless architecture is superior to the
existing state-of-the-art architecture and is suitable for IoMT/VSNs.

Keywords Discrete Wavelet Transform · visual sensor networks · high-
resolution images · image coders · low memory architecture · Internet of
Multimedia Things

1 Introduction

1.1 Motivation

Wireless sensor networks (WSN) consists of network of sensors deployed over
a geographical area. The sensors also form foundation technology of Internet
of Multimedia Things (IoMT) [1], [2]. The IoMT is a smart system which
connects all things to the Internet for information sensing, data computing
and exchange. More and more devices are likely to be linked through IoMT
in future [3], [4]. WSN, therefore can be considered as a link between the
cyber world and the real world [5]. The cameras can be integrated with sen-
sor nodes to form visual sensors. Many such interconnected sensors constitute
the Visual sensor networks (VSN) [6], or Wireless multimedia sensor networks
(WMSNs). However, the available memory and power of these sensors are
extremely low [7]. Moreover, the VSN and hand-held portable-multimedia de-
vices, which are very popular nowadays support low bit-rates. In order to
facilitate visual communication through these sensors there is need to de-
sign efficient image/video coding schemes that can be implemented over these
memory and power constrained VSN.

Discrete Cosine transform (DCT) and Discrete Wavelet transform (DWT)
are among the most popular transforms and are widely used in the field of im-
age processing [8]. DCT is used in Joint Photographic Experts Group (JPEG).
Moreover, the implementation of DCT requires less memory as compared to
DWT. But DCT is applied on blocks within images, which leads to blocking
artifacts. Also the performance of DCT is inferior in comparison to DWT at
lower bit-rates [9]. The demand for good quality images at lower bit-rates is
increasing day-by-day.

DWT is applied on the complete image and do not suffer with blocking
artifacts. Also DWT has the feature of multi-resolution by which a signal can
be analyzed in both space and frequency domain. Moreover, DWT has high
energy compaction property. Due to these features, DWT is becoming popular
day-by-day and is used in many applications like bio-medical signal processing,
bio-medicine, computer graphics and real-time processing [10]. Also DWT is
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used for transforming the image in JPEG 2000 [10]. But all the nice features
of DWT come at the cost of increased memory requirement for implementing
it. All the rows of the image are filtered (one-by-one) by low-pass filter (LPF)
and high pass filter (HPF) followed by down-sampling by a factor of two,
resulting in two sub-bands L and H respectively. Applying the filters on the
row is termed as one dimensional DWT (1D-DWT). After this the columns of
L and H subbands are filtered by LPF and HPF followed by downsampling
by a factor of two resulting in final sub-bands LL, LH, HL and HH. This
corresponds to one level of two dimensional DWT (2D-DWT). For computing
higher levels of 2D-DWT, the same procedure as stated above is applied on
the LL sub-band [11].

As it is clear from above that the complete image needs to be stored in
RAM for applying DWT on it, resulting in large memory requirements. For
a gray-scale image of size N × N , the memory required by DWT would be
8N2 bytes (if floating point filter coefficients are used) [12]. Furthermore, the
memory requirement of DWT increases linearly with the image size. There
is increasing demand of high-resolution (HR) images nowadays. Thus work-
stations equipped with high-end processors may also face difficulty in imple-
menting DWT especially for HR-images. This memory issue also limits the
implementation of DWT for HR images on low-cost wireless visual sensor
nodes or hand-held portable multimedia-devices which have 10 kB RAM [13].

Researchers realized this problem and proposed various solutions for reduc-
ing the memory required in transforming the image by DWT. The work on
memory reduction of DWT can be classified mainly in four categories namely
line-based DWT, stripe-based DWT, block-based DWT and fractional wavelet
filter (FrWF). There are various architectures for computing 2D-DWT. Almost
all the architectures require arithmetic resources (like adders, multipliers, mul-
tiplexers, etc.) and memory element. The conventional row-column DWT re-
quires a large amount of memory for its implementation. The memory required
by the architectures of 2D-DWT can be classified into three types namely:
transposition memory, temporal memory and frame memory. Transposition
memory is used for storing the coefficients obtained after row-wise filtering
of the image lines. Temporal memory is needed for storing the partial results
generated in the column processing. Frame memory is needed for the storage
of the coefficients of LL subband [14], [15]. There has been significant effort
for reducing the memory required in computing 2D-DWT which are discussed
in the next subsection.

1.2 Literature Survey

The first effort to reduce memory for one-dimensional (1-D) DWT is made
in [16]. There are basically two approaches for implementing the 2D-DWT
namely convolution scheme and lifting scheme. In comparison to convolution
based methods, lifting based methods need less arithmetic resources, perform
in-place computation and they have in-built parallelism. However, lifting based
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architectures have the drawback that they need a long critical path delay
(CPD) [15]. The various popular low memory techniques to implement 2D-
DWT can be categorized into three categories namely: Line-based approaches
( [9], [17–19]); block-based approaches ( [20–22]); and stripe-based approaches
( [23–28]). In the line-based approach, the DWT technique is applied on lines of
an image. In block-based techniques, the DWT approach is applied on blocks
of an image. The stripe-based approach is combines both the line-based and
block-based approach and applies the DWT technique on wider image blocks.
Corresponding to the three methods of low-memory DWT (i.e. line, block and
stripe), there are three different scan methods (i.e. line-based scanning, block-
based scanning and stripe-based scanning respectively) used in architectures
for reducing the memory requirement.

Line based DWT was initially used in decoder in [29]. Its use in computing
DWT coefficients of image both at the encoder and reconstruction at decoder
is proposed in [9] and [17]. Architectures based on line-based scanning are
proposed in [30–39]. Modified versions of line based scanning methods are
used in the architectures proposed in [40–44].

Amongst the line based architectures [30–35], the design of [33] needs mem-
ory of the order of 5.5N words (where N×N is the dimension of gray-scale
image) and is lowest among all. The transposition and temporal memory of [33]
are 2.5N and 3N respectively. The architectures proposed in [31] and [43], have
reduced the transposition memory to a fix size i.e., 3 and 4 words respectively.
However, this reduction in transposition memory is achieved at the cost of
larger temporal memory (of size 4N). Even though the architectures proposed
in [40] and [41] need a constant transposition memory of 4 words, the tempo-
ral memory increases to 5.5N . The designs proposed in [42] and [43] also have
a constant transposition memory size but they require temporal memory of
size 4N . The design in [44] has reduced the temporal memory to 3N and also
needs less hardware resources. However, it still needs a transposition memory
of size N and the reduction in hardware resources is achieved at the expense
of higher computational cycles.

Among the line based and modified line based architectures the works
in [30], [32], [33], [36], [41], [42] and [43] are based on lifting scheme. Differ-
ent strategies have been adopted for reducing the CPD in the architectures
of [30], [32], [33], [36], [41], [42], [43], [45] and [46] with trade-offs in arithmetic
resources, external bandwidth and memory size. The design of [31] and [43]
have also achieved a shorter critical path delay of Tm (where Tm is the delay of
multiplier). But, this is achieved at the cost of large number of pipeline regis-
ters. Among the lifting based architectures ( [30], [32], [33], [36], [41], [42], [43],
[45] and [46]), all the architectures (except [33]) are not appropriate for paral-
lel processing and VLSI implementation due to their irregular structure [47].
In [47], a modified stripe based scanning method is proposed and based on it
a new parallel lifting based DWT architecture is designed. This architecture
requires only 3N+24S words of memory where S is the number of parallel
processing units. Also, the CPD of this architecture is Tm+Ta. Another lifting
architecture of 2D-DWT using 5/3 filter based on symmetric mask-based al-
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gorithm is proposed in [48]. The benefit of this architecture is that it does not
require any temporal memory and its transposition memory is also less than
the conventional architectures based on lifting scheme. However, this architec-
ture needs more additions and multiplications than others. Also this method
is not fit for 9/7 filter as it demands large mask [14]. A detailed survey of
lifting architectures for DWT can be found in [49].

The authors in [36–38] have proposed line based lifting scheme for both for-
ward and inverse DWT. However, the architecture of [37] requires 9N storage
cells and complexity of the order of O(N2) clock cycles. Combined line based
architecture for 9/7 and 5/3 filter presented in [38] needs more resources.

A dual line scan technique in which two consecutive rows or columns are
scanned simultaneously is proposed in [43] and [50] to reduce the internal mem-
ory size. The architecture proposed in [43] and [50] need memory only for 2×2
transposing registers. However, for an image of size N×N , these architectures
require internal memory size of 4N .

Block based architectures for DWT are presented in [27], [51–53]. Though
the design proposed in [51] has high throughput, it requires large transposition
and temporal memories. Furthermore, this design demands a large number of
arithmetic resources. Despite the design presented in [52] uses only two row
processors, two column processors and two memory modules, yet its mem-
ory control logic is complex, which is O(N2) clock cycles. The architecture
proposed in [53] results in reduced internal memory size but at the cost of
increased computation time and external bandwidth.

Stripe based DWT architectures are proposed in [14], [15] and [54]. The
temporal memory is eliminated in the architecture proposed in [14], but for
storing the subband coefficients it requires a large line buffer. Moreover, the
memory of this design increases as the length of filter increases. Also for the
same throughput, this design requires more arithmetic resources than the de-
signs of [33] and [44]. Moreover, the architecture has a complex control scheme
and its level 2 and level 3 processing units have irregular structure. Further-
more, the design of [14] needs more memory and arithmetic resources than the
one proposed in [15]. The stripe based architecture of [54] is only for 1D trans-
form. A modified stripe based design is presented in [55], which has overlapping
of 8 columns per stripe for 9/7 filter. This results in longer computation time.
Another approach for implementing stripe-based DWT is discussed in [26]
which does not require overlapping of pixels. However, this method needs a
large memory.

For implementing multi-level or higher levels of DWT there are two op-
tions namely; folded architecture [51] and pipelined architecture [14], [33].

The folded architectures require a frame memory of N2

4 [15]. This memory
size is large and so an external RAM is normally used for on-chip imple-
mentations [14]. On the other hand the pipelined architectures need lesser or
no frame memory at all. Moreover their throughput is also high. However,
the above benefits of pipelined architectures comes at the cost of increased
arithmetic resources [15]. A pipeline architecture, without any transposition
memory and frame buffer is proposed in [56]. However, the design is based on
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non-separable approach for computing 2-D DWT, which is not popular ow-
ing to its higher computational requirements than the separable approach of
implementing 2-D DWT. Given the same throughput rate, the non-separable
approach needs M

2 times more computations than the separable 2-D DWT,
where M ×M is the order of 2D wavelet filter.

Recently in [57], the authors have developed an architecture for computing
multi-level 2-D DWT using dual data scanning scheme (which doubles the
throughput per cycle). The authors have combined several 2-D DWT units to
make a parallel multi-level architecture, for computing up to six-levels of 2-D
DWT. Although this architecture does not require any frame buffer words,
it requires 13N on-chip storage words. Also the design is slightly larger than
that of [35]. The folded architectures of [34] and [39], also compute multi-level
2D-DWT level-by-level. These approaches use serial processing and hence the
computation time increases with the increase in level of transform.

Another scanning technique named as interlaced read scan algorithm (IRSA)
is proposed in [58], with the aim of decreasing the transpose memory-size of
the dual mode lifting DWT structure. The transposing memory of this method
with 5/3 filter is 2N . However, this architecture has a long CPD which may
limit its use in real time applications. Recently another multiplier-less 2-D
DWT architecture using lifting scheme is proposed in [59]. It proposes a new
dual Z-scanning technique which helps in reducing the transposition buffers
and latency. This architecture also has the merit that it has a simple data path
and control path as compared to the design presented in [34], which needs 4N
temporal line buffers to compute 2-D DWT of N ×N image.

The work in [60] proposes an architecture for implementing DWT utilizing
both canonical signed digit (CSD) and distributed arithmetic. The architecture
is multiplierless and requires only 7 adders for its implementation, but it has
complex controller. The authors in [61] have proposed a new DWT architecture
in which they have replace the CSD multiplier with 16-bit radix 8 booth
multiplier. The proposed architecture is fast but requires larger area compared
to existing DWT architectures. In [62], an internal folded architecture for
implementing multi-level DWT is presented. This architecture is tailored for
applications requiring hardware acceleration and optimization. However, this
design requires approximately 6N words of memory. There are some other
efficient architectures of DWT [63, 64], but they are for its three dimensional
implementation which is out pf the scope of this work.

Recently Fractional wavelet filter (FrWF) [12], [13] is proposed to com-
pute 2D-DWT of images with minimum memory requirements. For a gray
scale image of size 512× 512, FrWF requires only 4.6 kB of random access
memory (RAM). Recently, architectures of FrWF [65] (both with multipliers
and multiplierless). Although these architectures have reduced the memory
requirement to 2N +14, they are not suitable for calculating transform of HR-
images on low-cost sensors nodes. This is because the memory requirement
of HR-images by these architectures exceed 10 kB (memory available on low-
cost sensor nodes [13]). Moreover, there is repetitive reading of image lines in
FrWF which increases its complexity. In this paper we have modified FrWF
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and proposed an architecture targeted for computing DWT of HR-images on
low-cost sensor nodes used in WMSNs/IoMT.

1.3 Contribution of this paper

In this paper, we propose a novel architecture with low-memory requirements
for computing DWT coefficients of an image. To the best of our knowledge,
the proposed architecture is one of the best (in terms of power consumption,
CPD and area) among the existing state-of-the-art low memory techniques for
computing DWT coefficients in which the memory requirement is independent
of the image size. A new data scanning technique of reading the pixels is
used in this work which exploits the spatial redundancies in the calculation of
the transform coefficients. The CPD of proposed architecture is equal to the
delay of multiplier (Tm). Furthermore, a multiplierless version of the proposed
architecture for 5/3 filter is also presented in this paper. The advantage of the
multiplierless version of the proposed architecture is that the CPD is reduced
to the delay of an adder (Ta, where Ta<Tm). The architecture is implemented
in FPGA and the results show that the proposed architecture is better than
the other state-of-the-art low memory DWT architectures in terms of CPD
and on chip power.

The rest of the paper is organized as follows. In Section 2, conventional
DWT and FrWF are briefly reviewed in order to explain the memory issues in
their implementation. In Section 3, the proposed architecture along with the
scanning technique is discussed in detail. Results and its related discussions
are presented in Section 4. Finally the paper is concluded in Section 5.

2 Memory issues in existing DWT

In this section, the conventional approaches of computing the 2D-DWT of im-
ages are briefly described and then the memory issue in their implementation
is highlighted.

2.1 Conventional DWT

The one dimensional DWT (1D-DWT) of a signal is computed by separately
filtering the signal by LPF and HPF followed by downsampling by a factor of
2. The coefficients obtained after filtering by LPF and HPF followed by down-
sampling are known as approximations and detailed coefficients respectively.
For a 1D signal of dimension N , there are N

2 approximation coefficients and N
2

detail coefficients. For computing 1D-DWT, the downsampling combined with
convolution operation can be mathematically represented as given in eqn. (1)
and eqn. (2) respectively [13].

© 2020 Springer Science+Business Media, LLC, part of Springer Nature
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a(i) =

j=bnl
2 c∑

j=−bnl
2 c

x2i+j .lj i = 0, 1, ........,
N

2
− 1 (1)

d(i) =

j=bnh
2 c∑

j=−bnh
2 c

x2i+j+1.hj i = 0, 1, ........,
N

2
− 1 (2)

Where lj and hj denote the jth element in the impulse response of LPF and
HPF coefficients respectively, x2i+j denotes the (2i+ j)th sample of the signal
and nl and nh are the number of coefficients in LPF and HPF respectively. The
symbol bxc denotes the largest integer less than or equal to x. The symbols
a(i) and d(i) denote the ith approximation and detail coefficient respectively.
For computing 1D-DWT of an image, all the rows are filtered by LPF and
HPF followed by downsampling operation, resulting in two sub-bands namely
L and H respectively. If the original image is of dimension N ×N , then both
the L and H sub-bands are of dimensions N × N

2 .
For computing 2D-DWT, 1D-DWT is further applied on all the columns

of the L and H sub-bands to obtain the LL, LH, HL and HH sub-bands;
each of dimension N

2 ×
N
2 . Although the above procedure of computing 2D-

DWT of an image is simple, it requires the complete image to be stored in
system’s RAM. As such conventional DWT needs 8N2 bytes (with floating
point filter coefficients) for calculating transform of gray-scale image of size
N × N [12]. Thus the conventional approach cannot be used for computing
DWT of images on low-cost handheld multimedia devices and low cost visual
sensors. Recently an alternate technique named as Fractional wavelet filter
(FrWF) is proposed in literature [13], which reduces the memory requirement
in computing the DWT of images to such an extent, that an image of size 256×
256 (8 bits/pixel) would require only 2.304 kB of RAM. The FrWF technique
and the memory requirement in it’s implementation is briefly discussed in
subsequent subsection.

2.2 Fractional Wavelet Filter (FrWF)

Fractional wavelet filter (FrWF) is an alternative way of computing DWT of
images, which uses the concept of Vertical filter area (VFA) in order to reduce
the computation memory. The VFA (shown in Fig. 1) is an area selected in
the image which covers the same number of rows of the image as the number
of coefficients in LPF. The original image and the sub-bands are assumed to
be stored in SD-card. For a gray-scale image of dimension N ×N , the FrWF
uses only three buffers each of size N . From the VFA, one image line at a
time is only stored in buffer ‘s’. Then fractional subband wavelet coefficients
ll(i, j, k), lh(i, j, k), hl(i, j, k) and hh(i, j, k) are computed from current image
line stored in buffer ‘s’. For example, the ll(i, j, k) coefficient is calculated as
given in eqn. 3 [13].
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Vertical filter area

(VFA)

Row-length (nl)

Fig. 1 Schematic representation of Vertical filter area in an image.

ll(i, j, k) = lj .

m=bnl
2 c∑

m=−bnl
2 c

s2k+m.lm (3)

Where i = 0, 1, ........, N
2 -1; is the index of (i + 1)th VFA (each VFA contains

nl lines of image) with vertical position of VFA as 2i; j= −bnl

2 c,..., b
nl

2 c;
determines the current input line to be read in buffer ‘s’ as 2i + j, from the
present VFA; k = 0, 1, ....., N

2 -1 indicates the present position of the filter
horizontally within the current VFA; s2k+m is the (2k + m)th sample of the
signal; lm and hj are the mth and jth LPF and HPF coefficients respectively
and nl is the number of coefficients in LPF.

The fractional sub-band wavelet coefficients of each line in VFA are iter-
atively summed up to compute the final coefficients of four sub-bands. For
example, LL sub-band is obtained by iteratively summing the fractional sub-
band wavelet coefficient ll(i, j, k), for all j in VFA according to eqn. 4.

LL(i, k)+ = ll(i, j, k),∀j (4)

Each VFA helps to compute the coefficients of one line of each of the
four sub-bands. The VFA is then shifted vertically by two lines to achieve
vertical downsampling by a factor of 2, until entire image is covered. For a
gray-scale image of dimension N ×N , FrWF requires a memory of 9N bytes
for filters with floating point coefficients and 5N bytes for filters with fixed
point coefficients [13]. Despite the FrWF requires much smaller memory for
its implementation compared to conventional DWT, it’s memory requirement
depends on image size. Therefore, FrWF may not be suitable for computing
DWT of high-resolution images on low-memory platforms. An alternative ap-
proach of computing DWT coefficients is to apply the FrWF on segments of an
image line as proposed in Segmented FrWF (SFrWF) in [66]. This approach
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reduces the memory requirement further below that needed by FrWF but the
complexity of this approach is greater than that of FrWF. From complexity
point of view SFrWF may not be suitable for low-cost handheld multimedia
devices which are limited in terms of memory as well as computation power.
Also, in [66] no architecture for SFrWF is presented.

As discussed earlier, the memory requirement of FrWF depends on image
size, as it processes and stores one complete image line at a time. One of the
objective of the proposed work is that the memory requirement to compute
DWT coefficients of image should be independent of image size, so that high-
resolution images may be processed in a memory limited environment. In this
paper, we propose a new scanning method to scan the pixels within a VFA,
such that the DWT coefficients can be computed using fixed size (independent
of image size) memory. The novel scanning technique and related discussions
are presented in next section.

3 Proposed Architecture

The conventional approach of computing DWT scans the pixels of an image
in mortan scan order, i.e. the image lines are read successively one after the
other (all pixels of an image line are read at a time), filtered and downsampled
to obtain L and H subband coefficients. After this column wise scanning of L
and H subband coefficients are done (i.e. columns are read consecutively). This
scanning order requires complete image to be stored in system’s RAM. In order
to reduce the memory requirement, FrWF uses a different scan order. It selects
a VFA and within the current VFA, the rows are read in mortan scan order.
As discussed earlier, this approach requires one complete image line to be kept
in buffer at any time. In order to further reduce the memory requirement and
to make it independent of the image size, a novel data scanning technique
is proposed in this paper which is discussed next. Also, the architecture of
proposed method with and without multipliers are presented subsequently.

3.1 Data Scanning and basic concept

In the proposed method, first a VFA which encloses nl (equal to the number
of coefficients in LPF) number of rows is selected in the image stored in secure
digital card (SD-card) as shown in Fig. 1. This VFA is same as that in FrWF.
Within this VFA, a horizontal sliding window (HSW) of size nl×nl is selected.
In Fig. 2, the scanning order is shown for first HSW (I-HSW). The pixels of
the other HSW are also scanned in the same fashion. In order to explain the
proposed scanning method, we have considered DWT computation with 5/3
biorthogonal filter (nl = 5) as depicted in Fig. 2. The initial position of HSW
is shown as first HSW (I-HSW). Within a HSW, filtering is performed row-
wise by aligning the central coefficient of LPF with central pixel of each row
and the central coefficient of HPF is aligned with one pixel offset within HSW
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* * * * * * * * * * * * * * * * * * * * 
* * * * * * * * * * * * * * * * * * * *  
* * * * * * * * * * * * * * * * * * * * 
* * * * * * * * * * * * * * * * * * * * 
* * * * * * * * * * * * * * * * * * * *

* *
* *
* *
* *
* *

First horizontal 

sliding window 

(I-HSW) II-HSW
III-HSW

Vertical filter area (VFA)
Symmetrically extended 

coefficients

Fig. 2 Data Scanning method for 5/3 filter in a VFA (∗ represents a pixel).

as shown in Fig. 3. The filtered coefficient of the row thus obtained are then
multiplied by corresponding LPF and HPF coefficients and saved in a buffer.
The process is repeated on each row in HSW and the values in buffer are
successively updated to obtain one coefficient of each of LL, LH, HL and
HH subbands according to equations (5)-(8).

LL(k, v) =

j=nl∑
j=1

lj−3.

m=bnl
2 c∑

m=−bnl
2 c

x(j,m+2).lm (5)

LH(k, v) =

j=nh∑
j=1

hj−3.

m=bnl
2 c∑

m=−bnl
2 c

x(j,m+2).lm (6)

HL(k, v) =

j=nl∑
j=1

lj−3.

m=bnh
2 c∑

m=−bnh
2 c

x(j,m+3).hm (7)

HH(k, v) =

j=nh∑
j=1

hj−3.

m=bnh
2 c∑

m=−bnh
2 c

x(j,m+3).hm (8)

In the above equations lm and hm are the mth coefficient of LPF and
HPF respectively; nl and nh are the number of coefficients in LPF and HPF
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* * * * * 
* * * * * 
* * * * * 
* * * * * 
* * * * * 
l-2    l-1   l0    l1    l2 

    h-1   h0    h1   

  l-2 

   l-1  

 l0   

 l1 

  l2 

    h-1

   h0  

  h1   

HSW

for horizontal low pass filtering

for horizontal high pass filtering

for vertical high

 pass filtering

for vertical low pass filtering VFA

Fig. 3 Alignment of filter coefficients for a HSW.

respectively; x(j,m+2) is the (m + 2)th coefficient of jth line of current HSW;
LL(k, v), LH(k, v), HL(k, v) and HH(k, v) are the coefficients of LL, LH,
HL and HH subbands respectively at the indices (k, v); where k = 0, 1,
...., N

2 − 1 represents the (k + 1)th HSW in a VFA and v = 0, 1, ..., N
2 − 1

represents the (v + 1)th VFA. It should be noted that symmetric extension
needs to be done at the image boundaries in order to avoid border effects
(as shown in Fig. 2). For example a signal q=[q0, q1, q2, q4, q5, q6, q7] would be
symmetrically extended at boundaries for filtering with LPF of length 5 as
qext=[q2, q1, q0, q1, q2, q4, q5, q6, q7, q6, q5].

The best part of the proposed method is that vertical filtering need not be
done separately. Rather the values obtained after horizontal filtering within
HSW are multiplied by corresponding LPF and HPF coefficients (as shown
in Fig. 3). The HSW is slided by 2 pixels after computing the coefficients of
the subbands related to that HSW each time, till all the pixels of a VFA are
covered. For an image of dimension N×N , the HSW would be shifted N

2 times
within a VFA. Since for each HSW, one coefficient of each of the four subbands
will be computed. Therefore for each VFA, one row of N

2 coefficients of each
of the four subbands would be calculated. Once the process is completed for
a VFA, it is shifted down by two lines (to incorporate vertical downsampling
by a factor of 2). The above procedure is repeated for each VFA. Since VFA
is also shifted N

2 times, applying the above process for each VFA, the N
2 rows

of each of the four subbands are obtained.

The number of computation cycles depends on the scanning order and is
estimated as follows. It is assumed that in one cycle one line from HSW is
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read. For reading nl (nl is the number of coefficients in LPF) lines of HSW, nl

cycles are needed. The HSW is shifted in the VFA N/2 times. This requires
a total of nl.N

2 number of clock cycles are required for reading all the pixels

in a VFA. The VFA is shifted down N/2 times, so a total of nl.N
2

4 number of
clock cycles are needed for reading all the pixels of the image. Thus, for 5/3

filter bank, 5N2

4 number of cycles are needed.
It should be noted that the image and VFA are assumed to be stored in

SD-card similar to the approach used in [12], [13], [15], [27]. A SD-card is a
reasonable extension for use in portable devices and sensor nodes, since the
image and transformed coefficients has to be stored somewhere. Also, it is
hardly feasible to instantly send out the coded transformed coefficients to the
network, since there may be network congestion or some other internal ongoing
operation with higher priority, therefore there may be a need of storing the
coefficients [67]. Only the pixels of HSW are read individually in the scanning
order shown in Fig. 2, and multiplied by filter coefficient and then stored in a
buffer. The data in the buffer is updated until the final sub-band coefficients
are calculated. With each shift of the HSW, subband coefficients are generated
which need to be stored. Thus dedicated update buffers for each subband are
only required. In this way the temporal memory of the length of the row is
not required in our proposed architecture. Moreover, for faster computation
the pixels can be read in parallel. However this would result in more memory
requirement. The architecture based on the new data scanning technique is
discussed in the next subsection.

For better understanding of the proposed architecture, we have added a
high-level design flow of the complete process used in this work which is shown
in Fig. 4. It should be noted that the original image is stored in external SD-
card from which the pixels are read as and when needed. At a time only a
row of pixels from the HSW is read, which makes the proposed architecture’s
memory independent of the image dimension. The pixels are fed to the top
level of the architecture as shown in Fig. 5. The subband coefficients computed
are saved in the SD-card. The computation of the subband coefficients and
detailed discussion of the top level of the architecture are described in next
section.

3.2 Proposed low memory Architecture

The top level architecture for 5/3 filter is shown in Fig. 5. The architecture
consists of multiple tree blocks, a multiplexer block and a control block. The
number of tree blocks depends on the filter size. For a LPF with number of
coefficients nl, (nl + 1)/2 tree blocks will be used. In Fig. 5, T1, T2 and T3
are three tree blocks shown for 5/3 filter. The input data is fed to all the
blocks concurrently. The computation inside each block is determined by the
control block. The outputs of all the tree blocks are multiplexed. Once the
computation of a subband coefficient inside a tree block buffer is complete, it
is relayed to the output for storage. Although, the architecture is explained
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External

SD-card

Read pixels 

from  a row of 

HSW one at a 

time

Top level of 

the 

architecture

save the computed 

subband coefficeints

Fig. 4 High level design flow of the complete process.

T1

T2

T3

Control block

Mux s

block

LL

LH

HL

HH

Select and

 load lines

Select line

Data in

Fig. 5 Top Level of the Architecture

for 5/3 filter, a slight modification in the architecture needs to be done for
implementing the proposed architecture with other filters. For 9/7 filter, the
number of Tree blocks would be 5. However, the number of B-blocks used in
a T tree will be same and the layout of B blocks will also be the same for any
filter length.

The various blocks used in the proposed architecture are as follows:
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XXX

XXX

XXX

XXX

XXX

XXX

I B-block

II B-block

III B-block

+++ buffer LL

+++

+++

+++

input

buffer LH

buffer HL

buffer HH

h1

h0

h1

h0

h1

h0

h1

h0

h1

h0

h1

h0l0

l2

l0

l2

l0

l2

l1

l1

l1

Pipeline

 registers

Fig. 6 Schematic view of a Tree block (T-block)

3.2.1 Tree Block

A tree block (T-block) consists of three basic computation block units along
with four adders and four registers as shown in Fig. 6. The input data is
multiplied twice through the data path and stored in the buffer. By inserting
pipeline registers in the path, the critical path delay (CPD) is Tm (delay
of a multiplier). Each T block requires 4 words of memory in the form of
buffer registers and 6 words for pipeline registers. With each incoming pixel
coefficient, the intermediate result is stored in the buffer and updated till the
final coefficient of the sub-band is obtained, as discussed in the data scanning
method.

3.2.2 Basic computation block

The basic computation block (B Block) consists of multipliers and multiplexers
(Mux’s) as shown in Fig. 7. A Mux is used to select which filter coefficient is to
be multiplied by the current input. (The 5/3 biorthogonal filter is symmetric,
hence l−2 = l2, l−1 = l1, h−1 = h1). Two such units are required for concurrent
low-pass and high-pass filtering for each input. In Fig. 6, the I B-block is used
to obtain the L and H sub-band coefficients. This corresponds to the row-
wise 1-D filtering in case of conventional DWT. These L and H sub-band
coefficients are fed as inputs to II B-block and III B-block respectively. The
input of II B-block is multiplied by LPF and HPF coefficients and updated
to compute a coefficient of LL and LH subband (eqn. 5, eqn.6). Likewise the
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X

input

X

L subband

coefficient

H subband

coefficient

l0

l2

h1

h0

l1

Fig. 7 Schematic view of a basic computation block (B-block)

input of III B-block is multiplied by LPF and HPF coefficients and successively
updated to compute a coefficient of HL and HH subband (eqn. 7, eqn.8).

3.2.3 Mux’s block

The Mux’s block, as shown in Fig. 8, consists of four multiplexers. The output
of the three T-blocks are fed as the inputs of these multiplexers. In Fig. 8,
LLT1, LHT1, HLT1 and HHT1 are the outputs of T1 block. The outputs of
T2 blocks are LLT2, LHT2, HLT2 and HHT2. Similarly, LLT3, LHT3, HLT3

and HHT3 are the outputs of T3 block. Out of the three coefficients of LL
subband, i.e. LLT1, LLT2 and LLT3, only one coefficient is selected at a time
from the multiplexer and it is stored as a coefficient of LL subband in the
SD-card. Likewise one coefficient at a time of LH, HL and HH subbands are
selected by the multiplexer to be saved in the SD-card.

As discussed in previous subsection that VFA is shifted by two lines which
leads to overlapping of image lines in multiple VFA’s, leading to multiple
reading of image lines. Thereby increasing the number of computation cycles
of the proposed architecture. In order to reduce the number of computation
cycles, the pixels can be read in parallel. The parallel processing would result
in faster computations. However, the hardware resources will increase by a
factor of S (number of parallel processing units). Thus there exists a trade-
off between hardware resources and speed. Furthermore, as seen from Fig. 7,
the B-block uses multipliers, which increases the CPD. The use of multipliers
can be avoided using the concept of shift and add if the filters used have
integer multiplications and divisions. The multiplierless implementation of the
proposed architecture with 5/3 filter bank is presented in the next subsection.
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X

select

select

select

select

Fig. 8 Schematic view of Mux’s block.

3.3 Multiplierless architecture

The proposed architecture can also be implemented without the use of multi-
pliers. The benefit of multiplierless approach is that it reduces the critical path
delay (CPD) from Tm to Ta, Ta<Tm (where Ta and Tm are the delay of an
adder and a multiplier respectively). Since coefficients of 5/3 filter bank, given
in Table 1, have integer multiplication and division, they can be obtained by
shift and add operations only. Using the concept of shift and add, the com-
putation block discussed earlier can be simplified as shown in Fig. 9, for low
pass 5/3 filter. Similar implementation can be done for 5/3 HPF coefficients.
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Table 1 5/3 Filter Coefficients

LPF coefficients Value HPF coefficients Value

l−2 − 1
8 h−2 0

l−1
2
8 h−1 0

l0
6
8 h0 − 1

2

l1
2
8 h1 1

l2 − 1
8 h2 − 1

2

4 Results and discussion

In this section, implementation of the proposed architectures and hardware re-
sources are presented. For comparison purpose, one of the best existing state-
of-the-art low memory 2D-DWT architecture proposed in [47] and our architec-
tures are modeled in HDL and the post implementation results are compared
on a common platform xczu6cg-ffvb 1156 board (Zynq UltraScale+) FPGA.
Input pixel width used is 8 bits and datapath width is 16 bits. The designs
are synthesized for gray-scale standard test images of dimension ranging from
256× 256 to 2048× 2048. The image of dimension 256× 256 is ‘Cameraman’,
of dimension 512× 512 is ‘Lena’, of dimension 1024× 1024 is ‘Man’and of di-
mension 2048× 2048 is ‘Bike’. The power utilization is measured at the same
operating frequency for both the architectures by implementing the architec-
tures in Vivado. The proposed architectures are also compared with other
state-of-the-art low memory DWT architectures in terms of various hardware
parameters.

Output

Select

Three shift and 

complement (l-2)

Two shift (l-1)

One shift + Two 

shift (l0)

Two shift (l1)

Three shift and 

complement (l2)

Input Output

Select

Three shift and 

complement (l-2)

Two shift (l-1)

One shift + Two 

shift (l0)

Two shift (l1)

Three shift and 

complement (l2)

Input

Fig. 9 Multiplierless block for 5/3 LPF.
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Table 2 Hardware utilization and power consumption for different image sizes

Parame-
ters

Proposed multiplierless Hu. et. al [47] (S=4)

S = 1 S = 2 S = 4 256×
256

512×
512

1024×
1024

2048×
2048

LUT 502 1032 1935 1665 2057 2907 4539
LUT-
RAM

- - - 392 784 1632 3264

FF 318 636 1272 1776 2032 2548 3572
DSP - - - 24 24 24 24
Total
power

0.691W 0.799W 0.875W 0.925W 0.942W 0.957W 0.972W

Logic
delay

0.67
ns

0.67
ns

0.67
ns

3.211
ns

3.211ns 3.211
ns

3.211
ns

Table 3 Comparison between existing and proposed architectures for one level 2D-DWT.

Archit-ecure Number of
slice registers

Number of
slice LUTs

CPD

Rafi et. al. [68] 511 433 3.040 ns
Proposed 450 410 0.67 ns

4.1 Hardware Estimation

As already discussed in Fig. 5, the proposed architecture to compute 2D-
DWT using 5/3 filter consists of 3 T-blocks, a Mux Block and a control block.
The Mux block consists of 4 multiplexers, one each to select LL, LH, HL and

2D-DWT

T-block (3S)           Control block               Mux block (S)            

Buffer (4)   Adder (4)     B-block (3)            

Mux (2)   Multiplier (2)     Pipeline (2)

                                          register             

Mux (4)

Fig. 10 Hardware resource tree.
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Table 4 Comparison between existing and proposed architectures for one level 2D-DWT.
S represents the number of parallel processing units.

Archit-
ecure

Number
of
adders

Number
of multi-
pliers

Memory Comp-
utation
Cycles

Critical
path
delay
(CPD)

Zhang
2012 et.
al. [56]

16 10 4N + 37 N2/2 Tm

Mohanty
et. al. [44]

16S 9S 4N + 20S N2/2S Tm + 2Ta

Hu et.
al. [47]

16S 10S 3N + 24S N2/2S Tm + Ta

Goran et.
al. [69]

22 17 4N N2 Tm + Ta

Rafi et.
al. [68]

16 8 4N+25 N2/2 +
N+7

2Ta

Zhang
2016 et.
al. [70]

32 20 13N N2/2 Tm

Darji et.
al. [71]

12 6 6.5N N2/2 +N 2Ta + Tm

Proposed 12S 18S 30S 5N2/4S Tm

Proposed
(Multipli-
erless)

30S 0 30S 5N2/4S Ta

HH subband coefficients for storage in SD-card from the corresponding out-
puts of the T-blocks. If parallel processing is incorporated in this architecture,
the number of T-blocks would then be 3S and number of Mux blocks would
be S (where S is the number of parallel processing units). Furthermore, each
T-block consists of 3 B-blocks, 4 adders and 4 buffers (refer Fig. 6) and each
B-block has 2 Mux, 2 multiplier and 2 pipeline register (refer Fig. 7). The hi-
erarchical tree for estimating hardware of the proposed architecture is shown
in Fig. 10. The number of adders and multipliers are 12S and 18S respectively
and total number of registers in the data path are 30S (12S buffers in 3S T-
blocks and 18S pipeline registers from 9S B-blocks). The hardware resources
in terms of number of adders and number of multipliers and number of reg-
isters (memory) of the proposed architectures are listed and compared with
other state-of-the-art low memory DWT architectures in first three columns
of Table 4.
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4.2 Performance Comparison

Table 2 compares different parameters of the proposed multiplierless archi-
tecture with one of the best existing low-memory state-of-the-art DWT ar-
chitecture [47] by actually implementing both the architectures on a common
platform xczu6cg-ffvb 11156 board (Zynq UltraScale+) FPGA. The results
shown are for gray-scale images of dimension ranging from 256 × 256 up-to
2048 × 2048. Furthermore, the proposed multiplierless architecture is imple-
mented for S =1, S =2 and S =4, and the architecture of [47] is implemented
for S =4. It is worth mentioning here that the parameters (mentioned in Ta-
ble 2) of proposed multiplierless architecture is independent of image size.
Whereas, the parameters of Hu. et. al [47] increases as the image dimension
increases. As we target high-resolution (HR) images, the results of image size
2048× 2048 and for S =4 are compared.

From Table 2, it is clear that the proposed multiplierless architecture (S
=4) requires 57.37% less look up tables (LUT) and 64.39% less flip-flops (FF)
than corresponding values of Hu. et. al [47] for 2048× 2048 image dimension.
The proposed architecture needs no LUTRAM and DSP, whereas the architec-
ture of [47] requires 3264 LUTRAM and 24 DSP’s. The proposed architecture
is also superior to the architecture in [47] in terms of logic delay. The logic
delay of the proposed architecture is 79.13% less than that of [47]. Also the
proposed architecture needs less power than the architecture of [47]. It should
be noted that the power requirement of proposed architecture is independent
of image dimension, whereas it increases with image dimension for the ar-
chitecture of [47]. Thus the multiplierless architecture has an edge over the
architecture of [47].

The Table 3 compares the number of slice registers, slice LUTs, and CPD
of proposed multiplierless architecture with that of [68]. It can be inferred from
this table that the proposed architecture requires less number of slice registers
and slice LUTs compared to the architecture of [68]. Moreover, the CPD of
proposed architecture is less than that of [68].

From Table 4, it can be observed that the memory requirement of the
proposed architectures are the lowest compared to the other considered ar-
chitectures. The best part of the proposed architectures is that their memory
requirement is independent of the image dimension. So our proposed archi-
tectures can be used for computing DWT coefficients of even HR images on
low-cost handheld multimedia devices/VSN/IoMT. On the other hand, the
memory requirement of the other architectures are dependent on the image
size and may not be suitable for computing transform coefficients of HR images
on low-cost memory-limited handheld multimedia devices/VSN/IoMT.

It can be observed from Table 4 that the proposed architecture with multi-
pliers needs less number of adders than the other considered architectures and
some more multipliers than the other architectures. However, the proposed
multiplierless architecture requires no multiplier but it needs more adders
than other architectures. From implementation point of view, implementing
an adder is much simpler than a multiplier.
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It can also be inferred from Table 4 that the CPD of the proposed ar-
chitecture is same as that of [56] and [70] but less than other existing archi-
tectures. Furthermore, the CPD of the proposed multiplierless architecture is
least among all the architectures mentioned in Table 4. The reduction in the
CPD to Ta also bolsters the balancing of effective computation time as the
operating frequency can be scaled up by several factors and can be chosen de-
pending upon the application. If the CPD is less then the operating frequency
can be increased.

Most of the architectures receive input pixels in parallel fashion and there-
fore require less computational cycles. Our design’s single unit, reads pixels in
serial and due to overlapping in VFA the computational complexity is high.
Using multiple modules and reading pixels in parallel, computational time of
our design can also be reduced. In contrast, due to low hardware requirement
of each individual module, the proposed architecture provides more flexibility
which makes it suitable for different applications. The time and area-on-chip
can be traded-off as per the application and the independence of memory of
the image size provides a big plus in scalability.

5 Conclusion

High memory consumption is one of the main constraint in implementing 2D-
DWT of images on low-cost visual sensors used in IoMT. In this work, we have
focused on reducing the memory requirement in computation of 2D-DWT co-
efficients and proposed architectures for the same. The proposed architectures
do not require any temporal memory for their implementation. Furthermore,
memory requirement of the proposed architectures are independent of image
size. This makes it easy for transforming even high-resolution images by DWT
using these architectures. The multiplierless version of the architecture reduces
the CPD to Ta, making it the smallest among the state-of-the-art low memory
2D-DWT architectures. The efficiency of the proposed architectures are eval-
uated and compared with other existing state-of-the-art low memory DWT
architectures. The results clearly show that the proposed architectures are
at par with other state-of-the-art low memory DWT architectures in terms
of number of arithmetic resources needed and superior to them in terms of
memory requirement and CPD. Furthermore, the proposed multiplierless ar-
chitecture needs less on-chip power and has lower logic delay than one of the
best existing state-of-the-art DWT architecture. These features make the pro-
posed architecture suitable for transforming HR images on low-cost portable
devices and VSN. An interesting future research direction is to use artificial
intelligence to decide the number of parallel processing units to be used ac-
cording to the application requirement.
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