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Studies of inclusive four-jet production with two b-tagged jets
in proton-proton collisions at 7 TeV

V. Khachatryan et al.
*

(CMS Collaboration)
(Received 12 September 2016; published 8 December 2016)

Measurements are presented of the cross section for the production of at least four jets, of which at
least two originate from b quarks, in proton-proton collisions. Data collected with the CMS detector at the
LHC at a center-of-mass energy of 7 TeV are used, corresponding to an integrated luminosity of 3 pb−1.
The cross section is measured as a function of the jet transverse momentum for pT > 20 GeV, and of
the jet pseudorapidity for jηj < 2.4 (b jets), 4.7 (untagged jets). The correlations in azimuthal angle
and pT between the jets are also studied. The inclusive cross section is measured to be
σðpp → 2bþ 2jþ XÞ ¼ 69� 3ðstatÞ � 24ðsystÞ nb. The η and pT distributions of the four jets and
the correlations between them are well reproduced by event generators that combine perturbative QCD
calculations at next-to-leading-order accuracy with contributions from parton showers and multiparton
interactions.

DOI: 10.1103/PhysRevD.94.112005

I. INTRODUCTION

The production of jets with large transverse momenta
(pT) in high-energy proton-proton (pp) collisions originates
from parton-parton scattering, a process well described by
quantum chromodynamics (QCD), the theory of the strong
interaction. The cross section is evaluated as the convolu-
tion of the partonic cross sections and the parton distribu-
tion functions (PDF) in the proton. At the CERN LHC, the
inclusive cross section measured for high-pT jet production
[1–3] is in good agreement with the predictions of
perturbative QCD (pQCD) calculations at next-to-leading
order (NLO) accuracy.
Multijet final states allow studies of further features of

pQCD. While at leading order (LO) a parton pair (dijet) is
produced in a single parton scattering (SPS); additional jets
at lower momenta can originate from two other sources.
Either they arise from additional gluon radiation from SPS,
or they result from double parton scattering (DPS) proc-
esses where two different pairs of partons from the two
protons collide independently. The SPS processes provide
tests of higher-order pQCD calculations as well as of the
parton shower evolution. The contributions from DPS
processes increase with center-of-mass energies as the
gluon density becomes large at low values of longitudinal
momentum fraction in the protons. Experimentally, SPS
and DPS contributions can be separated by exploiting the
different final-state topology of the two processes. Final
states arising from SPS exhibit strong azimuthal and pT

correlations among all final jets, while DPS final states
predominantly have a back-to-back topology only for each
of the independently produced jet pairs. Measurements of
DPS signals have been performed at different collision
energies and for different channels [4–10]. At 7 TeV,
exclusive four-jet final states have been measured by
CMS [11], and W+dijet production has been studied by
ATLAS [12] and CMS [13]. Various DPS-sensitive final
states have also been measured without a direct extraction
of the DPS signal by CMS [14,15] and ATLAS [16,17].
The present study complements the four-jet measurement
[11] by selecting events with jets originating from bottom
quarks (denoted as “b jets”). In a four-jet sample, the
SPS and DPS contributions can be disentangled by
exploiting the differences expected in the angular and
momentum correlations of the measured jets, as discussed
in Refs. [18–20]. The requirement of b jets allows grouping
the four jets into two pairs according to their flavor, and
selecting them with lower pT thresholds than in the
untagged case, thereby facilitating the identification of
DPS contributions present in the data sample.
This paper presents a measurement of DPS-sensitive

observables in heavy-flavor multijet final states. The results
are compared to the predictions of various Monte Carlo
(MC) event generators using fixed-order NLO matrix
elements, and including the contributions of parton showers
and multiple parton interactions (MPI). The latter processes
are needed, in particular, to describe the softer hadronic
production coming from the “underlying event” (UE). The
MC generators used implement the DPS component as a
high-pT extension of the modeling of MPI at pT values of
the order of 3–5 GeV [21]. The parameters that control the
simulation of softer MPI are assumed to be the same for
the generation of MPI at higher-pT scales, i.e., of DPS
processes. This assumption is used for the predictions
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based on either LO or NLO matrix element calculations.
The MC event generators generally simulate MPI starting
from the scale corresponding to the hardest parton-parton
scattering provided by the matrix element calculation. In
LO event generators, such as PYTHIA and HERWIG++, such a
scale is the pT of the partons participating in the hard
scattering, while in NLO dijet generators, e.g., POWHEG, or
multijet generators (without NLO virtual corrections), such
as MADGRAPH, the pT of the additional outgoing partons in
the matrix element calculation is also relevant for the
definition of the MPI scale. Comparing the predictions
of these generators with DPS-sensitive observables in data
is an important step to validate the extrapolation from soft
to hard MPI, and thereby the matching of the matrix
element calculations to the simulation of the UE.
The paper is organized as follows. In Sec. II, a brief

detector description is presented along with details of the
MC simulations. In Sec. III, the event selection and analysis
strategy are described, while Sec. IV illustrates the correc-
tions applied to the data and the systematic uncertainties
that affect the measurement. Section V presents the results,
which are then summarized in Sec. VI.

II. THE CMS DETECTOR AND MONTE
CARLO SIMULATION

The central feature of the CMS apparatus is a super-
conducting solenoid, of 6 m internal diameter and 15 m in
length, which provides a magnetic field of 3.8 T. Charged-
particle trajectories are measured using silicon pixel and
strip trackers that cover the pseudorapidity region jηj < 2.5.
An electromagnetic crystal calorimeter (ECAL), and a
brass/scintillator hadron calorimeter (HCAL) surround
the tracking volume and cover the region jηj < 3.0. A
forward quartz-fiber Cherenkov hadron calorimeter extends
the coverage to jηj ≤ 5.2. Muons are measured in the range
jηj < 2.4 in gas-ionization detectors embedded in the steel
flux-return yoke of the magnet. The CMS experiment uses
a two-level trigger system consisting of a level-1 trigger
based on custom hardware using signals from the muon
detectors and the calorimeters, and a high level trigger
(HLT) based on a farm of computers that have access to the
full data for each event. A more detailed description of the
CMS detector can be found elsewhere [22].
Samples of multijet events are produced with the

following MC event generators:
(i) PYTHIA 6.426 [23], PYTHIA 8.185 [24], and HERWIG+

+ 2.5.0 [25]. All of them use LO 2 → 2 matrix
elements. The PYTHIA 6 and PYTHIA 8 event gen-
erators simulate parton showers ordered in pT and
use the Lund string model [26] for hadronization,
while HERWIG++ assumes parton showers with
radiated gluons ordered in emission angle (angular
ordering), and uses a cluster fragmentation model
[27] for hadronization. The PYTHIA and HERWIG++
samples are generated with transverse momentum of

the outgoing partons p̂T > 15 GeV. The con-
tribution of MPI is also simulated in PYTHIA and
HERWIG++. The PYTHIA 6 event generator with tune
Z2� [28] uses a model [29] where MPI are inter-
leaved with parton showering. Predictions obtained
with PYTHIA 6 and PYTHIA 8 with the CUETS1 tunes
[21] are also considered. These use the CTEQ6L1
PDF set [30] and include an improved set of UE
parameters [21]. The HERWIG++ event generator
with two tunes to LHC data, UE-EE-3 [31] with
the MRST LO�� PDF set [32,33] and UE-EE-5-
CTEQ6L1 [34] with the CTEQ6L1 PDF set, is also
used for comparison. The parameters of the hadro-
nization model are determined from LEP data for
both PYTHIA [35] and HERWIG++ [31].

(ii) POWHEG 1.0 [36,37] matched to the PYTHIA 8 parton
showers including a simulation of MPI. The POW-

HEG event generator uses NLO dijet matrix elements
implemented via 2 → 2 and 2 → 3 diagrams. These
matrix elements include only LO effects for the four-
jet configuration of the present analysis. For the
hard-scattering process, the HERAPDF1.5NLO [38]
PDF set is used with a minimum p̂T of 5 GeV. The b
quarks are treated as massless in the matrix element
calculation. The UE provided by PYTHIA 8 is
simulated with the CUETS1 tune, which uses the
HERAPDF1.5LO [38] PDF set and reproduces with
very high precision UE and jet observables at
various collision energies. Since the POWHEG pre-
dictions contain both real and virtual corrections for
the dijet matrix elements, they are used as the
reference baseline in the present analysis. Therefore,
the full theoretical uncertainty is provided for the
POWHEG simulation, while only the central predic-
tions are provided for the other MC simulations.

(iii) MADGRAPH 5.1.5 [39] interfaced with PYTHIA 8.
The MADGRAPH predictions use a LO multijet
matrix element with up to four final-state partons,
calculated with the CTEQ6L1 PDF, and a simulation
of the UE provided by PYTHIA 8 tune CUETM1 [21],
which uses the NNPDF2.3LO PDF set [40,41]. The
pT sum of the four partons, HT, is required to be
HT > 50 GeV, and the b quarks are treated as
massless. The matching scale between the matrix
element calculations and the parton shower simu-
lation is taken to be 10 GeV, within the kT-MLM
scheme [42]. Underlying event data are well de-
scribed by this combination of matrix elements plus
parton showers with a proper UE tune [21].

The detector response is simulated in detail with the
GEANT4 package [43]. All simulated samples are processed
and reconstructed in the same manner as collision data. The
multijet final state can be mimicked by various background
sources, such as Drell-Yan and W boson production
associated to jets, and top-antitop events. The size of these
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backgrounds is estimated with PYTHIA 8 and found to be
negligible, with a cross section in the measured phase space
less than 0.5% of that for pure QCD multijet events.
Therefore, these background sources are neglected in the
following.

III. EVENT SELECTION

This analysis uses data from pp collisions at
ffiffiffi
s

p ¼
7 TeV recorded with the CMS apparatus in 2010 corre-
sponding to an integrated luminosity of 3 pb−1. The data
were collected at low luminosity (< 0.2 × 1033 cm−2 s−1),
and consequently with low probability of multiple pp
interactions in the same bunch crossing (pileup). These
running conditions correspond to a fraction of the total
integrated luminosity of 36 pb−1 collected in 2010. The
mean number of interactions per bunch crossing is
around 1.6 for this sample, which results in small pileup
effects in the measured distributions. The MC samples are
reweighted to the number of interactions in the data in
order to match the multiplicity of reconstructed primary
vertices.
For the present study, three HLT single-jet trigger sets

are analyzed: one with jet pT threshold of 15 GeV is
used for leading jets with 20 < pT < 50 GeV, a second
with pT threshold of 30 GeV for leading jets with
50 < pT < 140 GeV, and a third with pT threshold of
50 GeV for leading jets with pT above 140 GeV. In the
region 20 < pT < 80 GeV, the trigger efficiency is less
than 100%, increasing from 45% for leading jets with
pT ≈ 20 GeV. A correction is thus applied as a function of
the leading jet pT and η. For leading jet pT > 80 GeV, the
trigger is fully efficient. The choice of such regions is a
compromise between statistics and reliability of the trigger
efficiency correction.
The physics objects used in this analysis are particle flow

(PF) jets [44]. The PF algorithm [45] combines information
from all relevant CMS subdetectors to identify and recon-
struct all particle candidates in the event, namely leptons,
photons, and charged and neutral hadrons. The energy of
the muons is obtained from the corresponding track
momentum. Charged hadrons are reconstructed from tracks
in the tracker. The energy of the electrons is determined
from a combination of the track momentum at the main
interaction vertex, the corresponding ECAL cluster energy,
and the energy sum of all bremsstrahlung photons attached
to the track. Photons and neutral hadrons are reconstructed
from energy clusters in the ECAL and HCAL, respectively;
only clusters far away from the extrapolated position of
any track are used. Jets are reconstructed from the four-
momenta of the PF candidates with the anti-kT algorithm
[46] with a distance parameter of 0.5. A tight quality
selection [47] is applied to suppress unphysical jets, i.e.,
jets resulting from noise in the ECAL and/or HCAL. Each
jet is required to contain at least two PF candidates, one of
which has to be a charged hadron. The jet energy fraction

carried by neutral hadrons, photons, muons, and electrons
must be less than 90%. With these criteria, jets are selected
with an efficiency greater than 99% and a misidentification
rate (i.e. the probability of selecting fake jets, like e.g.,
those originating from leptons or calorimeter noise) smaller
than 0.5% for jet pT > 20 GeV. A jet pT correction is
applied to both data and simulation to account for the
nonlinear response of the calorimeters and other instru-
mental effects. These corrections are based on in situ
measurements using dijet, γ þ jet, and Zþ jet data
samples [48].
A primary vertex (PV) is identified by a collection of

tracks measured in the tracker. If more than one PV is
present, the vertex with the highest sum of the squared pT
of the tracks associated to it is selected. The selected vertex
is required to be reconstructed from at least five charged-
particle tracks and must satisfy a set of quality require-
ments, including jzPVj < 24 cm and ρPV < 2 cm, where
zPV and ρPV are the longitudinal and transverse distances
of the PV from the nominal interaction point in the CMS
detector.
The b jets are identified by using information on the

secondary decay vertex of the b hadrons, the impact
parameter significance, i.e., the three-dimensional impact
parameter divided by its resolution, and the tracks
and jet kinematics [49], through the so-called “combined
secondary vertex” (CSV) discriminant. A loose selection
[49] is used in the b-tagging algorithm, which gives a b-
tagging efficiency on single jets larger than 75% for jet
pT > 20 GeV, with a maximum of 85% at pT ≈ 150 GeV,
as estimated by simulation studies with the PYTHIA 6
sample. The light-flavor (u, d, s quark or gluon) mistag
probability is 20%, 10% and 15% for pT ≈ 20, 75 and
300 GeV, respectively, for jηj < 2, increasing to 35% for
jets in the region 2.0 < jηj < 2.4. This loose selection
provides a high-statistics sample, though with relatively
few genuine b jets. After requiring the two b tags, the b jet
purity, i.e. the percentage of selected events where both
tagged jets originate from b quarks, is about 12% for this
loose selection. The highest-pT (leading) b-tagged jet is a
genuine b jet in 18% of the selected events, while the
fraction of events where the second-highest-pT (sublead-
ing) b-tagged jet originates from a b quark is about 14%.
There is a high degree of correlation between the purities of
the leading and the subleading jets. From simulation
studies, about 65% of the selected events with a true
leading b jet also contain a true subleading b jet. The b jet
purity of the medium selection for the b-tagging algorithm
[49] is 58% for the current analysis. Since the results
obtained with the medium selection are consistent with
those obtained with the loose selection within the system-
atic uncertainties, we use the latter results, which have
higher statistical accuracy.
The correction for the events with four jets that pass

the selection criteria but for which the two b-tagged jets
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are not genuine b jets is performed through the unfolding
procedure employed to obtain stable-particle level dis-
tributions (Sec. IV). The amount of this type of back-
ground is estimated from the purity of the measured
distributions. The measurement of the b jet purity is
based on fits of the track counting high efficiency
(TCHE) distributions [49] of each b-tagged jet with
three different shape templates obtained from MC sim-
ulation, corresponding to the TCHE values for light-
quark and gluon, charm, and bottom jet flavors. The
TCHE discriminant corresponds to the second-highest

impact parameter significance among all selected tracks
belonging to the considered jet. The b jet purities
measured in the data and those in the simulation differ
by 2%–7%. Scale factors (SFb-purity), depending on jet pT

and η, are applied to the simulation to correct for this
difference. By applying SFb-purity to the simulated events,
the b jet purity of the data sample passing the analysis
criteria is consistent with that of the MC simulation.
Compatible results are obtained if the CSV discriminant
of the b-tagged jets is used in the fitting procedure,
instead of TCHE distributions. The b jet purity of the
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selection is estimated in the data separately for leading
and subleading b-tagged jets in different bins of pT
and η.
Additional scale factors (SFb-tag) are applied to the

simulation in order to match the b-tagging efficiencies
measured in data [49]. They depend on the jet pT, η, and
flavor, and range between 0.9 and 1.1.
A further reweighting as a function of p̂T is applied to the

LO generators used for data correction, in order to improve
their description of the measured distributions.
Events with at least one PV and at least four jets with

pT > 20 GeV are selected for the analysis: two of the four
jets are the two b-tagged jets with highest pT within
jηj < 2.4, while the other two are the remaining highest-
pT jets selected within jηj < 4.7 without any b-tagging
requirement. If two or more b-tagged jets are present, the
two with the highest pT are taken as the “b quark jet pair”
(referred to as bottom hereafter). The “untagged jet pair”
(referred to as light hereafter) is taken as the remaining two
leading jets. The two different η ranges are chosen because
the absence of the tracker in the forward region does not
allow b jets to be identified for jηj > 2.4.
About 60 000 events are left in the data after the offline

selection described above. In Fig. 1, the shapes of the pT
and η distributions of the leading b-tagged and the leading
untagged jet are compared to predictions of PYTHIA 6 and

HERWIG++, before unfolding to the stable-particle level.
These shapes are well described by both MC simulations in
the central region and over the whole range of pT, while
there are differences of up to 20%–40% for the most
forward pseudorapidities (jηj > 3).
Differential cross sections (referred to as “absolute cross

sections” hereafter) as a function of pT and η of each of the
four jets are measured in this analysis. In addition, differ-
ential distributions normalized to the total number of
selected events (referred to as “normalized cross sections”)
are measured as a function of jet correlation variables very
similar to those used in the four-jet analysis of Ref. [11],

(i) the difference in azimuthal angle (in the plane
transverse to the beam axis, in radians) between
the jets belonging to the light-jet pair,

Δϕlight ¼ jϕlight1 − ϕlight2 j; ð1Þ

(ii) the balance in pT of the two light jets,

Δrel
lightpT ¼ j~plight1

T þ ~plight2
T j

j~plight1
T j þ j~plight2

T j ; ð2Þ

(iii) the azimuthal angle ΔS between the two dijet pairs,
defined as

ΔS ¼ arccos

�
~pTðbottom1; bottom2Þ · ~pTðlight1; light2Þ

j~pTðbottom1; bottom2Þj · j~pTðlight1; light2Þj
�
; ð3Þ

where bottom1 (bottom2) and light1 (light2) are the leading
(subleading) jets of the bottom and light-jet pairs, respec-
tively, and ~pTðbottom1; bottom2Þ and ~pTðlight1; light2Þ the
momentum vectors of each pair, obtained as the vectorial
sum of the momenta of the bottom and light jets,
respectively.
Results of the jet correlation observables are presented as

distributions normalized to the number of events measured
in the selected kinematic region. Such normalized distri-
butions are affected by smaller systematic uncertainties
than the absolute cross section measurements.

IV. CORRECTIONS AND SYSTEMATIC
UNCERTAINTIES

Particle-level distributions are inferred from the recon-
structed data by correcting for selection efficiencies
and detector effects. The results are corrected to particle
level by applying an iterative unfolding [50] as imple-
mented in the ROOUNFOLD package [51]. Particles are
considered stable if their mean path length cτ is greater
than 10 mm. MC jets are identified as b jets at the
particle level if a b quark is found within a cone of radius

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔηÞ2 þ ðΔϕÞ2

p
¼ 0.3 around the jet axis. The

background consisting of events with four jets that pass
the selection criteria but for which the b-tagged jets are
not genuine b jets is corrected for with PYTHIA 6 tune Z2�,
after applying the SFb-tag and SFb-purity scale factors. The
correlation between events selected at the reconstructed and
particle levels is then studied by constructing the response
matrix. The response matrix quantifies the migration
probability between the particle-level and reconstructed
quantities, as well as the overall reconstruction efficiency. It
is obtained for each observable with the PYTHIA 6 tune Z2�
sample. Diagonal terms in the response matrix correspond
to particle-level quantities that are reconstructed in the
same bin after detector simulation. Off-diagonal terms
represent the probability of migration between bins at
the particle level and bins at the reconstructed level. As
an example, Fig. 2 shows the response matrices for the pT
and the η of the leading b-tagged and the leading untagged
jet. They exhibit a diagonal structure, with off-diagonal
terms less than 30%–40%. The bin widths are larger than
the detector resolution at each bin.
The response matrix obtained with PYTHIA 6 is used for

the data unfolding. As a cross-check, a sample of events
generated with HERWIG++ tune UE-EE-3 is unfolded with
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the PYTHIA 6 response matrix. All distributions agree with
the generated ones within 9%–20%. The iterative unfolding
procedure is regularized by limiting the number of iter-
ations to a certain value for each measured distribution. The
optimal number of iterations is determined by minimizing
the difference between the distributions measured in the
data and the ones obtained by applying backwards the
detector effects to the unfolded distributions. The number
of iterations ranges between 2 and 4 depending on the
observable. As expected, the statistical uncertainties of
the unfolded distributions are larger than those of the

reconstructed data. The unfolding to particle level includes
corrections for jet resolution, flavor misidentification, and
pileup effects. The results are presented in the kinematic
region defined in Table I.
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FIG. 2. Response matrices obtained with the PYTHIA 6 tune Z2� simulation for the transverse momentum (left) and pseudorapidity
(right) of the leading b-tagged (top) and leading untagged (bottom) jets.

TABLE I. Phase space for the cross section measurement.

At least four jets pT > 20 GeV

Two leading b jets jηj < 2.4
Two leading other jets jηj < 4.7
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All significant sources of systematic uncertainties are
investigated and the corresponding uncertainty is calculated
for each distribution. The total uncertainty is obtained by
summing up the individual contributions in quadrature. The
following systematic effects are considered:

(i) Model dependence. The response matrix obtained
with PYTHIA 6 is used for the final correction, and the
difference between this and that obtained with
HERWIG++ is taken as a measure of the model
dependence of the unfolding, resulting in an un-
certainty ranging from 9% to 20%.

(ii) Jet energy scale (JES). The momentum of the jets is
varied according to the uncertainty associated with
the reconstructed pT [48]. The resulting uncertainty
is of the order of 20%–25% (5%) for the absolute
(normalized) cross sections.

(iii) Jet energy resolution (JER). The JER differs for data
and simulation by 6%–19% [48] depending on the η
range, and introduces a systematic uncertainty of
4%–8% in all results.

(iv) Pileup reweighting. The effect of the pileup re-
weighting procedure is evaluated and found to be
negligible (< 0.1%).

(v) B-tagging scale factor (SFb-tag). The values of the
scale factors are varied by 10% for each jet flavor
[49]. This variation results in an uncertainty of 15%–
18% for absolute cross sections and of 1%–2% for
the normalized ones.

(vi) B jet purity. The b jet purity of the sample is
evaluated by fitting separately the TCHE distribu-
tion of the leading and of the subleading b-tagged jet
in bins of pT, η and ΔS. The difference between the
unfolded results when using the SFb-purity obtained
from the two fits is used as a systematic uncertainty,
resulting in values of 10%–12% for the absolute
cross sections and 1%–2% for the normalized
distributions.

(vii) Trigger efficiency. The trigger efficiency correction
is varied within its uncertainty and the resulting
corrections are applied to the data. These variations
result in an uncertainty ranging from 1% to 6%.

(viii) Integrated luminosity. The systematic uncertainty on
the luminosity of the 2010 data, affecting the
absolute cross sections, is 4% [52].

The dominant source of uncertainty is the JES, which is
considered as correlated among the measured bins. The

TABLE II. Systematic and statistical uncertainties affecting the absolute and the normalized cross sections for each measured
observable: each source of uncertainty is specified and the value is the average over all the bins of the observable. The 4% uncertainty
from the integrated luminosity is included in the total uncertainty affecting the absolute cross sections. The total uncertainty is obtained
by summing the individual experimental uncertainties quadratically. The theoretical uncertainties, listed in the last two columns, affect
all the predictions. The systematic uncertainties in the normalized cross sections are smaller than those for the absolute cross sections,
since, among others, they are not affected by the migration effects from outside the selected phase space.

Measured observable Model JES JER SFb-tag SFb-purity Trigger efficiency Stat Total incl. int. lumi, PDF Scale
Absolute cross sections

b-tagged jet pT 20% 25% 4% 15% 12% 6% 4% 38% 10% 10%
Untagged jet pT 10% 25% 4% 15% 12% 6% 4% 34% 10% 10%
Jet jηj ≤ 3 10% 25% 4% 15% 12% 5% 4% 34% 15% 10%
Jet jηj > 3 20% 35% 4% 15% 12% 5% 4% 45% 50% 15%

Normalized cross sections
Δϕlight 13% 5% 1% 2% 1% 1% 4% 15% 5% 2%
Δrel

lightpT 13% 5% 7% 2% 1% 1% 4% 16% 5% 2%

ΔS 20% 5% 10% 2% 2% 1% 4% 23% 10% 2%

TABLE III. Inclusive cross section for pp → 2bþ 2jþ X for jet pT > 20 GeV, with b jets within jηj < 2.4, and
the other jets within jηj < 4.7. The measurements are compared to the MC predictions.

Sample PDF Cross section (nb)
Data … 69� 3ðstatÞ � 24ðsystÞ
POWHEG+PYTHIA 8 tune CUETS1 HERAPDF1.5 65� 12
POWHEG+PYTHIA 8 tune CUETS1 MPI off HERAPDF1.5 31� 6

PYTHIA 6 tune Z2� CTEQ6L1 77� 15
PYTHIA 6 tune CUETS1 CTEQ6L1 77� 15
HERWIG++ tune UE-EE-3 MRST LO�� 44� 8
HERWIG++ tune UE-EE-5C CTEQ6L1 47� 9
PYTHIA 8 tune CUETS1 CTEQ6L1 96� 18
MADGRAPH+PYTHIA 8 tune CUETM1 CTEQ6L1 39� 7
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following aspects of the theoretical uncertainty affecting
the POWHEG predictions are also evaluated:

(i) PDF uncertainty. The choice of the PDF set
influences the theoretical predictions. The uncer-
tainty related to the PDF is determined by generating
predictions with various PDF eigenvectors. As the
central PDF set, the HERAPDF1.5NLO together
with the PYTHIA 6 tune CUETS1 is used.

(ii) Scale uncertainty. The default renormalization
and the factorization scales (μR and μF) in the
matrix element calculations are chosen to be equal
to the leading jet pT value. The uncertainty related
to the μR and μF choices is estimated by using
POWHEG interfaced to the UE simulation provided
by PYTHIA 8 tune CUETS1-HERAPDF. Six combi-
nations of the (μR=pT, μF=pT) scales, (0.5, 0.5),
(0.5, 1), (1, 0.5), (1, 2), (2, 1), and (2, 2), are used.
The scale uncertainties are evaluated by taking the
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envelope of the predictions obtained with the listed
scale choices.

A summary of all the systematic effects is given in
Table II.

V. RESULTS

The absolute differential cross sections are measured as a
function of the jet pT and η, along with the normalized
cross sections as a function of the jet correlation variables.
In Table III, the cross section is given, and compared to
predictions from different event generators at the particle
level. The POWHEG event generator interfaced with PYTHIA

8 tune CUETS1, referred to in the following as POWHEG,
reproduces the measured cross section best. However, if the
MPI simulation is switched off, the same POWHEG pre-
dictions, referred to in the following as “POWHEG MPI-off,”
underestimate the value of the measured cross section.
All predictions are consistent with the data within uncer-
tainties, although MADGRAPH+PYTHIA 8 tune CUETM1
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(MADGRAPH in the following) tends to underestimate the
data, and PYTHIA 8 to overestimate them.
In Fig. 3, the absolute differential cross sections as a

function of the pT and η of the selected jets are shown
compared to predictions from POWHEG. Figures 4 and 5
present the same differential cross sections as ratios of
theoretical predictions from various MC event generators to
the data. The POWHEG predictions reproduce very well the
measurements as a function of pT and η of each jet, in both
the central and forward regions. The other MC simulations
also describe the data satisfactorily, although HERWIG++
tune UE-EE-5C and MADGRAPH are systematically lower
than the data. Similar conclusions about HERWIG++ and
MADGRAPH have been already drawn for inclusive [21] and
exclusive four-jet [11] final states.
Figures 6–8 show the normalized differential cross

sections as a function of the correlation observables,
Δϕlight, Δrel

lightpT, and ΔS. The data are compared to the
MC simulations considered previously. In addition, pre-
dictions from POWHEG MPI-off are also shown. All MC
simulations that include MPI contributions describe the
data well. This is remarkable given that the predictions are
based on MPI models tuned to data at softer scales
(pT ≈ 3–5 GeV). Conversely, POWHEG MPI-off is ruled
out by the data, especially at low values of Δrel

lightpT (<0.1)
and for values of ΔS smaller than 2. This is a clear
indication for the need of MPI contributions. The discrep-
ancy between the measurement and the POWHEG MPI-off
predictions goes up to 60% in the low ΔS region, while for
the four-jet events of Ref. [11] the disagreement is of about
40%. This shows that heavy-flavor multijet production with
common jet threshold is more sensitive to a DPS contri-
bution than an untagged four-jet sample with asymmetric
pT thresholds. The fact that the normalized distribution as a
function of Δϕlight is also described reasonably well by
POWHEG MPI-off reflects the limited DPS sensitivity of this
observable, as already observed for exclusive four-jet final
states [11].
In summary, predictions using LO or NLO dijet matrix

elements matched to the simulation of MPI effects repro-
duce the measured normalized cross sections, whereas
those without MPI fail to describe them. This study
demonstrates the presence of DPS in the data and confirms
the sensitivity to such contributions of the jet correlation
variables ΔS and Δrel

lightpT.

VI. SUMMARY

A study of events with at least four jets, at least two of
which are b jets, in proton-proton collisions at 7 TeV is
presented. The data, corresponding to an integrated lumi-
nosity of 3 pb−1, were collected with the CMS experiment
in 2010. The two b jets must be within pseudorapidity
jηj < 2.4, and the two other jets must be within jηj < 4.7.
The transverse momenta of all the jets are required to be

greater than 20 GeV. The cross section is measured to be
σðpp → 2bþ 2jþ XÞ ¼ 69� 3ðstatÞ � 24ðsystÞ nb. The
differential cross sections as a function of the pT and η of
each of the four jets are presented, along with the cross
sections as a function of kinematic jet correlation varia-
bles. The results are compared to several theoretical
predictions with and without contributions from double
parton scattering. The models based on leading order or
next-to-leading-order dijet matrix element calculations,
matched to parton shower and including MPI contribu-
tions, describe well the differential cross sections as a
function of pT and η in the whole measured region. The
differential cross sections as a function of the jet corre-
lation variables are poorly reproduced by models that do
not include contributions from MPI. Specifically, the
predictions of POWHEG interfaced with PYTHIA 8 without
the simulation of multiple parton interactions under-
estimate the cross sections as a function of ΔS and
Δrel

lightpT in the regions of the phase space where a DPS
signal is expected. These results demonstrate, for the first
time, the sensitivity of kinematic jet correlation variables,
such as ΔS and Δrel

lightpT, to DPS processes in multijet final
states with heavy quarks.
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