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Abstract

In this thesis a scheme is proposed for interpolation of spatially subsampled images.
The theoretical formulation is based on the fundamental assumption that luminance
remains constant along the generalized “path of motion” of a pixel in the image plane.
This Constant Luminance Model (CLM) of the intensity function in turn leads to a
constraint equation, the solution to which is used to compute the unknown intensities.
Due to the generalized nature of the algorithm, the most highly visible artifact associ-
ated with previously developed methods is significantly suppressed, thereby resulting
in noticeably enhanced reconstructed images.
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Chapter 1

Introduction

The problem of spatial interpolation arises in many applications, among which are
interlaced-to-progressive-scan conversion!, VCR freeze-frame for which better verti-
cal resolution is sought by displaying the entire picture frame instead of just one
field, image spatial expansion, and video standards conversion between European
and American systems in which vertical resampling must be performed to convert
between the 625 f’%f:; and the 525 }l;—;-‘—"?n’—e scan rates. The approaches to this problem,
which have been used in the past, can be classified into two main categories.

The first comprises “blind” methods which consider an image simply as a two-
dimensional matrix whose element values are the pixel intensities. Schemes involving
pixel replication (i.e., zero-order hold), local averaging (i.e., first-order hold), and

polynomial interpolation (including spline) all fall under this category. A compara-

tive study of these methods and a thorough discussion of B-spline image filtering is

1One example is the conversion of CCIR 601 interlaced video [1] to and from the progressive scan
Source Input Format (SIF) video which must be performed at the pre and postprocessor blocks of
current MPEG-based digital transmission system proposals.



presented by Hou and Andrews [2].

The second classification of spatial interpolation methods consists of those which
have as their premise some realistic and intuitive model of an image, based <n which
a scheme is developed for computing the unknown intensities. These methods are by
far the most promising in comparison with those of the first category.

The algorithm presented in this thesis is a generalization of previous work by Mar-
L tinez, Lim_and Isnardi [3, 4] in which they describe a frame reconstruction method
based on the Line Shift Model (LSM), an essentially motion-compensated interpo-
lation scheme where the dimensionality of the motion is one less than that of the
well-known problem of video-sequence temporal interpolation?. In the problem of
deinterlacing, for example, Martinez [3, 5] performs vertical interpolation by com-
puting shifts between small neighborhoods of adjacent field lines, based on the LSM.
Once computed, these displacements are projected onto adjacent field lines, in order
to pinpoint the pixels whose intensities correspond to the current pel. It then be-
comes straightforward to extract the unknown intensity of the pel associated with

the computed shifts. Figure (1-1) illustrates this algorithm.

This scheme, for the most part, produces interpolated i:nages of noticeably high
quality, as Figure (1-2) depicts. The figure consists of the original picture frame, one
of the interlaced fields, and the reconstructed frame obtained by applying the LSM-

based interpolation algorithm of Martinez. As can be noted, however, along contours

which are close in slope to the horizontal, such spatial movement computations lead to

2 Appendix (A) reviews the 3-dimensional motion-compensated spatio-temporal interpolation al-
gorithm, which is an extension of the 2-dimensional problem, along with its associated mathematical
concepts.

10
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Figure 1-1: Line Shift Model Algorithm

displacement values beyond the dypamic range imposed by the small neighborhood
assumption of the LSM. Therefore, it becomes necessary to force a zero value on
such displacements. This makes the performance of the algorithm in such regions
equivalent to that of line averaging, thereby causing all of the artifacts of first-order
interpolation, most notably blurring, to manifest themselves along these contours in
the processed image.

The proposed algorithm addresses this problem. A model is introduced whereby
an image is considered to be composed of concentric circular arcs or “scan curves.”
Subsequently, the “motion” of a pixel along any contour in the image takes on a
parametric nature in which the angular coordinate is radius-dependent (i.e., I(¢(r),7)
becomes the two-dimensional image model). There are advantages to modeling the

pixel motions as radially parametric. In computing the angular displacement, only

11



those contours which are circles centered at the origin yield the artifacts produced
by the previous method. Generally speaking, there are far fewer such curves in
typical images than horizontal ;E:dges, and, more importantly, a subjective evaluation
of numerous pictures has shown that the human visual system is far less sensitive to
artifacts in such regions than it is to the prevailing ones along horizontal or vertical
directions.

Furthermore, the proposed algorithm improves upon previous results by making
not only the origin of the coordinate system but also the method of interpolation pel-
adaptive (i.e., Martinez’s method ic incorporated in the processing scheme in order
to handle particular types of contours). By using a simple edge detection scheme,
it is determined whether or not an artifact-producing-contour is present at the pixel
being processed. If so, the proper interpolation scheme is selected and, based on
the orientation of the contour, the coordinate system is changed to one wherein the
edge is no longer a curve centered at or near the origin. The corresponding pixel
displacement is then solved for, and the proper intensities are used in computing
the unknown one. In this manner, even the radial artifacts mentioned earlier are

suppressed.

12



(c)

Figure (1-2):
(a) Original Image

(b) One Fieid
(c) LSM-Based
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Chapter 2

Development of a Generalized

Spatial Constraint Equation

2.1 Introduction

We now introduce the fundamental concepts that form the basis of a novel spatial
interpolation algorithm. A Generalized Spatial Constraint Equation (GSCE) is for-
mulated, using three different methods, each of which casts new intuitive insight over
the previous derivations. Underlying the discussion that follows, is a principle gen-
erally referred to as the Constant Luminance Model (CLM), which introduces the
notion of a parametric “path of motion” for every pixel. The model further asserts
that a pel’s intensity remains constant as it traverses this path. The path can reside
along edges or simply in uniform regions of pict-res with varying degrees of unique-
ness. In uniform regions, many legitimate paths exist, whereas along edges, the set is

restricted to those which run parallel to the discontinuity. A path crossing the edge

14



contour is unacceptable because it violates the constant luminance assumption.

The goal, therefore, is to estimate the motion (i.e., the displacement which causes
the pixel to undergo the least amonnt of luminance variation), in order to determine
the originating and terminating coordinates of the path. The constant luminance
assumption may then be invoked and the intensities of the terminal nodes (which
ought to be equal) may be assigned to the pixel with the unknown luminance. This

process is then iterated for every pel with an unknown intensity.

2.2 Derivation Based on Taylor Expansion

Let I(p,r) denote the intensity of the point (p,r) on the image plane. The CLM
then states that this intensity remains constant along the pixel’s path of motion as it
“moves” to the differentially close neighborhood coordinate (¢ + dp,r + dr). Hence,

we have

I +do,r +dr) = I(p,r) . (2.1)

The desired Generalized Spatial Constraint Equation (GSCE) is obtained by expand-
ing the left-hand side of Equation (2.1) by its Taylor series and equating it with the
right-hand side, I(p,r). We know, in general, that the Taylor series expansion of a

scalar-valued function of a vector-valued argument is given by [6]

P(t+a) =3 =(a- V)p(e) (2.2)

n=o 1t

In our case, ¥(-) = I(-) is the image intensity function, t = (¢, r) is the coordinate

15



vector of the point being processed, a = (dy, dr) is the differential displacement vec-

tor, and V = (%, %)

of the relevant functions and variables yields

is the gradient operator. Rewriting Equation (2.2) in terms

8 B
I(e+de,r+dr) = I(e,r)+ (dsog— +dr—-) I(p,r) +

1 L a\?
— —_ 2
51 (dtp +dr o ) I(p,m) + (2.3)

where we can reasonably approximate the left-hand side with the first two terms,

which are linear, and neglect the effect of all higher order ones. This implies

oI (yp,r) 3l(p, 1)
5o +dr—- (2.4)

o +do,r+dr)=I(p,r) +dp

Comparing Equation (2.1) with Equation (2.4), we note that

oI al i
I(p,r) + d‘Pa + dra— = I(p,7) (2.5)
oI oI
d(pa + d’l‘a = 0 (26)
dpdl 0OI .
arog o =0 (2.7)

Defining v, = %f as the angular shift (i.e. units of °/f), the desired Generalized
T

Spatial Constraint Equation (GSCE) becomes

ar al
v"'(/, + — 87‘ =0. (2.8)

16



2.3 Derivation Based on Radial Differentiation

The GSCE can be derived from the CLM in a much more straightforward manner
by recognizing that the radial derivative of I(¢(r),r) must be zero as a consequence
of the luminance remaining constant over the parametric, radius-dependent path of

motion of the pixel being processed. In other words, we must have

d
7 1le(r),r) = 0 (2.9)
dpol 01
E@'FE =0 (2.10)
oI oI
— 4+ = =0 2.11
U‘Pa(p + ar ] ( )

where Equation (2.11) is identical to the GSCE (2.8) which was obtained in Sec-

tion (2.2) .

2.4 Derivation Based on the Concentric Circular

Shift Model (CCSM)

The GSCE may be formulated more intuitively, as was the 7ine Shift Model (LSM) of
Isnardi and Martinez [3, 4]. Consider a region of the image in the vicinit; of the point
(0, 7a), whose luminance is to be computed. Given that the choscn neighborhood is
sufficiently smai!, it would be reasonable to consider adjacent concentric arcs of the
image to be related simply by an angular shift v, as denoted by the circular “scan

lines” ry and r; in Figure (2-1). This, with the Constant Luminance Model (CLM),

17



imply that the intensities of the points on two adjacent arcs, corresponding to the

terminal nodes of the path of motion, are equated as follows

I(p(r),r) = I(p — Bp,10) = Io(p — Ayp) , (2.12)

where Ay = v,(r — 19). Hence we have

I(p(r),r) = Lo(@(r)) , (2.13)

where

P(r) = o — Ap = —vy(r — o) (2.14)

By taking the partial derivative of the intensity I(y(r),r) with respect to each of the

variables, we obtain

or _ g
dp 93 Ip
oLy
= — 2.15
= (2.15)
and similarly,
or _ 2Ldp
o — 9p or
oI 9p
_ 9lop 2.16
dw Or ( )

18
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@ : Subsampled Image Pixels
O : Computed Pixel

Figure 2-1: Concentric Circular Shift Model

Referring to Equation (2.14), we can rewrite Equation (2.16) as follows

oI oI
= (- A7
67' a‘p( v‘P) ) (2 1 )
which by rearranging the terms yields
01 oI
— 3+ =0 2.18
Ve Op Or (2.18)

This is identical to the GSCE (2.8) obtained in Section (2.2) .

19



2.5 Proof of Generality

We now illustrate how the GSCE is a generalization of Martinez’s (3, 5] spatial con-

straint equation. Letting r = y, we know that dr = dy and

I(p(r),r) = I(v(y),y)

Therefore, the radial derivauv.ve is given by

2 1p(r)or)

Lemma 1 For an image intensity function, I, the following relation holds:

= %I (e(¥),y)

_ door o
T dydyp Oy
= 0

dpol _dsol
dy dp ~ dy 9z’

Proof:

L 1w),) =

Oldz
drdy
i1'(<.0(y) y) =
dy &
oldp
dody

8Idz oI
drdy ' dy
%I(w(y),y) - g—;
dldp 81
dpdy " 3y
d oI

@I((P(y)v y)— '5,‘7

20
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However, since I(z(y),y) and I(¢(y),y) are simply different representations of the

same function, we know that

Therefore, we have

4501 _ do 01
dy 0z ~ dy 9y
and this completes our proof.

Applying the result of Lemma (1) to Equation (2.22) yields

dz 8l 8l _

4yas oy
Defining v = Z—; we have
vg + -a—I =0
gz  dy

(2.28)

(2.29)

(2.30)

(2.31)

which is Martinez’s spatial constraint equation for vertical interpolation. A similar

argument holds for horizontal interpolation, which corresponds to the case where

r==o.

2.6 Summary

In this chapter three different methods of deriving the Generalized Spatial Constraint

FEquation (GSCE)

v _6_I+QI__0
Y9p " Or

21
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which governs the pixel displacement, v, have been presented. Although the deriva-
tions have ranged from mathematical to intuitive, all have been premised on the fun-
damental concept underlying motion-compensated interpolation schemes, the Con-
stant Luminance Model (CLM). In Chapter 3 it will be shown how the GSCE may
be solved in order to obtain an estimate for the displacement, v,, corresponding to

each unknown pixel intensity.
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Chapter 3

Solution of the Generalized

Spatial Constraint Equation

3.1 Introduction

Now that a GSCEF has been formulated, we focus our attention on the problem of
computing the desired displacement, v,. We know from the Concentric Circular Shift
Model (CCSM) that the solution of the GSCE can be thought of as the angular shift
between “adjacent” circular arcs surrounding the pixel being processed. By applying
the GSCE on a local neighborhood basis, we can find the least-squares estimate of
v, which can, in turn, be projected ont‘o the adjacent arcs in order to find the points
to whose intensities the current pixel luminance corresponds. Furthermore, we will
note that in estimating v, it is necessary to compute the image gradient values at the
local neighborhood points. This is done by using a parametric polynomial expansion

method where the image is locally modeled as a linear combination of a set of basis

23



functions. The vector of the local image model parameters (z.e., the coefficients which
multiply each of the basis functions to determine the overall linear combination) are
determined on a pel-adaptive basis so that the model is updated according to local

image characteristics.

3.2 Computation of the Angular Displacement

Normally it is impossible to find a displacement, v,,, such that the GSCE is satisfied
at all points within a two-dimensional neighborhood of the pel being processed. This
is due to the fact that the GSCE must be solved in terms of the displacement, v, at

N points in the vicinity of the unknown pixel. That is, we must have

(&) (5,) -
6‘pPl ¢ 81'1,‘

Py bt or Py

where the P;’s make up the N points of the local neighborhood over which the GSCE

) (3.1)

is applied. This set of N equations in one unknown can be rewritten in vector form

as

I‘,,v‘,, + I,. =0 y (32)

or equivalently as

Lo, = 1., (33)

24



where I, and I, are the angular and radial partial derivatives, respectively, of the

intensity vector
Ilp
I= : , (3.4)

- IIPN <4 Nx1

and are given by )
aI
dp

Py

oI

e a¢

Pn INx1

and

[ oI

or P,
I = : . (3.6)

?_I_
_81‘

Py JNx1

To solve for the angular displacement, v,,, we can multiply both sides of Equation (3.3)
by LT to obtain

Ly, = ~L"L (3.7)

which is equivalent to

LI, = ~L71, . (3.8)

25



Furthermore, knowing that I,7I, = ||L,||? is a scalar, we simply divide both sides of

Equation (3.8) by J|I,||* to obtain the displacement, v,, as follows:

Ty
vy = - (3.9)

1Ll
It is important to note that the displacement, v, of Equation (3.9) denotes not an
exact solution of the over-constrained system of equations (3.1), but rather a least-
squares solution of it. This can be shown by introducing a constraint residual [3, 5]

vector, £ = [e1, ..., en]”, in Equation (3.2) as follows:
Lv,+I. =€ . (3.10)

In crder to find the displacement, v, for a particular spatial position, we assume
that the required image gradients at a set of N points in the neighborhood of that
coordinate are known!. We can then find the displacement corresponding to the pel
being processed, by using a least-squares estimator to solve the following minimization
problem:

min {||€]|*}

(Vy)

: T
min{ (Lo, +1)" (v, + 1)} (3.11)

N
min e.-2} , 3.12
in{>- (3.12)

1Section (3.3) deals with the problem of computing the local image gradients.

26



where

,  i=1,...,N. (3.13)

denotes the residual at the i** point, P; , of the neighborhood. Hence, the equivalent

minimization problem, which is to be solved, is given by

) } : (3.14)

Since the minimization problem depicted by (3.14) involves a quadratic in v, the

g
ar

. oI

P;

solution can be obtained by solving a linear equation.

N
Differentiating the expression, ||€]|* = > €, with respect to v, yields

)]
+ o) )|
ARCAICRIE

. .. d
Setting the derivative, — {||€||?}, equal to zero we have
§ dv
7]

Lo (22 ) (2
(pp.. ¢ "=1 BSOP' or

oI

P,‘+E‘.

i=1

d n . d J&( a1
d—%{ueu} = d@{z (%

N T
oI
2 z (U¢ 6_(,;

=1 5

N oI
22 vv(%

i=1

) =0 , (3.16)
P

27



which leads to the solution

)G
(2 )

=1
Comparing Equation (3.9) with (3.17) we note that the two forms in which the

_Z(%

=1

’"') . (3.17)

'Ug,—_-

angular displacement, v, has been written are identical, sinrce we know

o1
or P,
LTI, = [2{ o1 ] : (3.18)
op|p d¢|p,
_8_{
I or P
N (a1 oI
_ o ol 3.19
'.};; (&p P or P ( )
and
N (o] \
LI = —_— . 3.20
I §(a¢ P‘) (3.20)

3.3 Computation of the Luminance Gradients

In order to compute the displacement, v, using Equation (3.9}, we need to evaiuate
the vectors I, and I, at the neighborhood points P;, 1 < ¢ < N. This requires
evaluation of the intensity gradients at those neighborhood points. To this end, we

follow a procedure analogous to Martinez’s.
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3.3.1 Parametric Image Model Approximation

We propose a parametric model for the local image intensity function whereby the

luminance space is considered to be spanned by a set of P basis functions, as depicted

by the following equation:

P
f(‘Par) = Zfi'/’j(tpa 7‘) . (3’21)

Rewriting Equation (3.21) in vector form, we have

I(p,r) = 9TF (3.22)
where ) ]
¢1(<p,1’)
U= : , (3.23)
I‘pP((P) 1‘)
- 4 Px1
and ) ]
f
F=] : (3.24)
fp
- < Px1

denote the basis function vector and the luminance mcdel parameter vector, respec-

tively. The basis function vector comprises a set of P basis functions, which in our

29



simulations were the following (note that P = 5):

Pi(pr) =1  ha(pr)=¢  Ys(pr)=r
(3.25)

¢4 ((,0,7‘) =(P2 ¢5 ((P,T) =ry
Moreover, the luminance model parameter vector, F, consists of P coefficients corre-
sponding to the P basis functions. To find the optimal signal model parameters, f;,

we introduce and minimize a least-squares error criterion as follows:

min {63} 12} [Ipkrre) —f(sok,rk)]’} (3.26)

(fJ
M P 2

min Z [I(tpk,rk) - Z fj‘l,bj((pk,rk)] . (3.27)

i) [k=1 =1

The minimization problem (3.27) involves soiving a set of M equationsin P unknowns.
This can be shown by setting the derivative of the squared error, ||&l|?, equal to zero,

as depicted by the following:

%{”80"2} = ‘(‘lfl—{z [I(‘Pk,rk) I(‘Pkark)]} (328)
M d ?
= Z—— (ks Tx) Zf:¢: Pk Tk) (329)
k=1 de
= “2Z¢j(¢k,rk)[ ks k) Zf;¢1(¢k,rk)} (3.30)
k=1 i=1
=0 . (3.31)
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This implies that we must have

P
I(ps, ) = Y fivi(r,6) =0, k=1,..

=

Equation (3.32) can be rewritten as

P
Y- fivilen,m) = I(pr1,m)

=1

P
> fivilem,rm) = I(om,TM)

=1

M. (3.32)

(3.33)

The over-constrained set of M equations in P unknowns depicted by (3.33), in turn,

can be rewritten in matrix form as

AF =

il
e

where )
( Yi(e1,71) ... Pp(p1,m1)
A=
i Yi(em, ™) ... Yp(em,T™) Lisp
and
I(‘Phrl)
I=
I{om,
- ((PM rM) 4 Mx1
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(3.34)

, (3.35)

(3.36)



It is known from fundamental principles of linear algebra, that the least squares

solution to the inconsistent system (3.34) satisfies
ATAF = ATI . (3.37)

Provided that the columns of A are linearly independent, AT A, which is a square

P x P matrix, will be invertible and the least squares solution will be given by
F = (ATA)7ATI . (3.38)

At this juncture, it is worth noting that the parameters N and M referred to through-
out the discussion, are completely independent of one another. The quantity, N, rep-
resents the number of points in the neighborhood of the unknown pel, and we have
denoted these points by P; where 7 € {1,...,N}. It is at these points that the image
gradient needs to be determined in order to compute the displacement, v,. However,
in order to compute these image gradients, the intensities at a set of M pixels about
every P; are needed. In our simulations, we used the same number for both M and

N, but this need not be the case.
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3.3.2 Computation of the Gradient Vectors, I, and I,

Having computed the image model parameter vector, F, we can compute the image

gradients at any point by referring to Equation (3.21). The gradients are given by

E f,a'/” =0, F |, (3.39)

j=1

&p

and

}: fig? ‘M’ =¥ TF | (3.40)

where i ]
o

Vo= | , (3.41)

o0r
| Op lpxi

and

8¢ |

ar
g, =| : : (3.42)

0%
L 9r dpxa

We can now rewrite I, and I, as follows:

I,=G,F (3.43)

and

I =G.F, (3.44)
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where

9 |p, ¢ |p, ¥, |Pl
G, = ; = : (3.45)
on| 0w 07
| | 9% |py 00 |py] Jyep & 7 'Pvdnxp
and )
or P, ar P v, A
G, = : - (3.46)
B L P Ivep " IPv Inxp

are the basis function gradient matrices.
With the image model parameter vector computed, Equations (3.9), (3.43) and
(3.44) yield the following estimate for the angular displacement:

__F'G,7G,F

Vp = (3.47)
’ IG, Fi*

3.4 Summary

In this chapter, the mathematical development of a solution for the Generalized Spatial
Constraint Equation (GSCE) has been outlined, and it has been shown that the
proposed spatial interpolation algorithm is highly efficient in that the displacement,
v,, computations involve only simple vector/matrix operations. Furthermore, the
solution obtained is optimal in the least squares sense, since that is how the underlying

error minimization criteria have been defined.
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Chapter 4

Development of a
Contour-Adaptive Interpolation

Algorithm

4.1 Introduction

In this chapter we address the implementational issues of the rovel spatial interpola-
tion algorithm, the theory for which was established in Chapters 2 and 3. Recall that
we proved the Generalized Spatial Constraint Equation ( GSCE) to be an extension of
Martinez’s spatial constraint equation {3, 5]. This property is utilized in constructing
a cotour-adaptive algorithm which is capable of resolving a more general class of edge
orientations than is the Line Shift Model (LSM)-based method propbsed by Martinez

3, 5].
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4.2 Improvements Due to Increased Adaptivity

The proposed algorithm utilizes both the Concentric Circular Shift Model (CCSM)
and the Line Shift Model (LSM) in computing the unknown intensities. When a pixel
is attempted for processing, its local neighborhood is examined for the orientation of
the edge on which it resides. An “edge factor,” 6, is introduced which contains this
orientation information. This edge analysis is performed by selecting three different
sets of “adjacent arcs” around the pel being processed, as shown in Figure (4-1). The

“edge factor” is then defined as

L
6=§|I‘,—P(.+££_) 3 (4.1)

where L, an even number, represents the number of points used in the orientation
analysis, and T'; denotes the intensity of the :** point.

Notice that the three sets of arc pairs in Figure (4-1) will yield the smallest “edge
factor” for those contours to which they are perpendicular or nearly so. The CCSM
is utilized with the proper origin (i.e., at one of the top corners of the image) if
the minimum § corresponds to the curved arcs which are centered at one of the top
image corners. Otherwise, Martinez’s scheme is implemented. The algorithm selects
the method (i.e., CCSMor LSM) and the coordinate origin (i.e., top-left or top-right)
so as to give preference to edges which are relatively perpendicular to the arc pairs,

thereby minimizing the possibility of edge artifacts.
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Figure (4-2) shows a high-level system diagram of the adaptive CCSM-based
spatial interpolator, and Figure (4-3) shows the improvements due to the contour-
adaptive algorithm, where the edge artifacts present in Martinez's LSM-only method

are significantly suppressed.
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Figure 4-1: Edge Factor Analysis (a) Top Left Origin. (b) Top Right Origin (c) LSM
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Figure (4-3):

(a) LSM-Based
(b) CCSM-Based
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Chapter 5

Algorithmic Refinements and

Further Research

5.1 Introduction

In this chapter, a few areas which may be of interest for future research endeavors are
suggested. A set of possible refinements to the algorithm is presented, and potential

extensions to a more general class of problems are discussed.

Further algorithmic refinements to the CCSM-based spatial interpolation method

presented by this thesis, include:

o Adaptive selection of the radial distance, dR, between the “adjacent arcs” which

are used in the displacement computations and luminance assignments.

e Development of a more elaborate and adaptive edge detection, and origin selec-

tion scheme.
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e Development of a more accurate local neighborhood model to be used in com-

puting the necessary image gradients.

Another area of further research which can benefit from the theory presented in this
thesis is the extensibility of the CCSM-based approach to the more general problem

of three-dimensional spatio-temporal interpolation.

5.2 Algorithmic Refinements

The algorithm presented in this thesis may be further improved by introducing ad-
ditional adaptivity factors which would increase its robustness. In this section we

briefly review the suggestions listed above.

5.2.1 Adjacent Arc Pair Radial Distance Selection

One feature of the proposed spatial interpolation scheme which can be an immediate
target for refinement is the selection of the radial distance between the “adjacent arcs”
that are used in the computation of the displacement, v,. Throughout the discussions,
reference to this measure has been deliberately left ambiguous, since in the current
implementation, the distance is manually selected from the range, 0.5 < dR < 1.3
pel units, based on subjective considerations, and remains constant throughout the
processing iterations.

Depending on the amount of local image detail, however, this fixed quantity may
be too high or too low. In areas of a picture where finer details are present, for

example, smaller radial distances produce better results, for selection of large values
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would cause the intensities assigned to the unknown pixels to be grabbed from distant
points, which may not even lie on the object to which the unknown pels belong. This
will cause erroneous luminance values to be assigned to the pixels being processed,
thereby causing some degradation in the reconstructed image. On the other hand,
too small a radial distance in areas with low detail may not yield a sufficient dynamic
range to gain optimum results. Hence, a method which utilizes some measure of local
image detail is required, in order to dynamically select a proper value for the radial

distance between the adjacent arcs; local variance is one such measure.

5.2.2 Edge Detection and Origin Selection

The edge detection and origin selection method used in the current implementation of
the CCSM-based spatial interpolation algorithm, is fairly simple and crude. A more
elaborate method of determining the edge factor, §, would enhance the reconstructed
images by yielding a better assessment of the local edge orientations, which would,
in turn, result in a more accurate determination of the appropriate coordinate origin
to be used in resolving the displacement, v,.

Use of directional polynomials is proposed in determining the local edge orien-
tations. Discussion on this special class of polynomials may be found in established
books on algebraic geometry. What is hoped to be gained by using directional polyno-
mials is greater freedom and accuracy in the selection of the coordinate origin. In the
current implementation, the ;zelection is limited to one of the top image corners. This
is not the optimal choice for all edge orientations. By using directional polynomials
one can base the selection of the origin on the exact orientation of the local edge, in
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order to adaptively determine the optimal origin at every pel processing iteration.

5.2.3 Local Neighborhood Image Model

Further improvement may be made by modeling the local image more accurately for
the purpose of finding the neighborhood luminance gradients. The basis function
expansion parameters used in the current implementation work reasonably well, but
they are by no means intended to be normative, and more sophisticated parameters
may be substituted for the ones currently installed in the system. The inherent
advantage of the algorithm presented in this thesis is that it is highly modular, in that
many of the components can be easily replaced with more efficient and improved ones
without affecting the specification requirements imposed on the other computational

modules.

5.3 Extension of the CCSM-based Algorithm to

Three Dimensions

The concepts underlying the two-dimensional spatial interpolation scheme presented
in this thesis may be extended to three dimensions as was Martinez’s Line Shift
Model (LSM)-based approach. This topic is discussed to some reasonable depth in

the Appendix.
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Appendix A

Vertico-Temporal Image Sequence

Interpolation

A.1 Introduction

The concepts and notions underlying the Concentric Circular Shift Model (CCSM)
may be easily extended to the most general class of three-dimensional problems where
an image sequence undergoes resampling in all coordinate directions: horizontal, ver-
tical, and temporal. Naturally, one can extend the notion of concentric circles to that
of concentric spheres which may shift in any direction relative to each other, as long as
their conincident centers remain stationary. The problem of interpolation, therefore,
becomes one of computing the relative spherical shift between the neighborhood of
points about the unknown pel on each of the “adjacent spherical surfaces.” Once this
spherical displacement has been determined, the Constant Luminance Model (CLM)

is invoked, in order to determine the pels whose intensities correspond to that of the
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unknown one.
For illustration purposes, however, we will develop the mathematics for that spe-
cial case of three-dimensional problems in which resampling is performed on the

vertical and temporal coordinates only. This is done for two reasons:

e The mathematical basis for the less general problem of simultaneous vertical
and temporal (i.e., vertico-temporal) interpolation is analogous to that of the
spherical case, and no new concept is embedded in the discussion of the latter

which would make its coverage more educational.

e The theory of vertico-temporal interpolation has a broader range of applications,
the most well-known of which is the problem of video standards conversion
between European and American systems where only temporal (i.¢., frame rate)

and vertical (i.e., line rate) resampling has to be performed.

We, therefore, apply the CLM by making the fundamental assumption that the
luminance function remains constant along a radially parametric path in the y-t plane
(i.e., the vertico-temporal plane), or a plane parallel to it. In order to implement this
theory, we extend the CCSM to include a cylindrical coordinate space representa-
tion for the luminance function, where the notion of the circularly shifting concentric
circles of the two-dimensional interpolation problem is generalized to one of shifting
coaxial cylinders, where the cylindrical shift has an additional degree of freedom rela-
tive to the two-dimensional model. This is depicted in Figure A-1, where the middle
cylinder represents the one on which the unknown pel resides. The unknown pixel’s

motion is estimated, and the trajectory is reflected onto the local neighborhoods on
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y D Computed Pixel
®  Original Pixels

Figure A-1: Coaxial Cylirdrical Shift Model

the two “adjacent cylindrical surfaces” in order to determine the unknown intensity.
It is also worth noting that this Coaxial Cylindrical Shift Model is a more generalized
version of the three-dimensional Cartesian extension of Martinez’s LSM, the Planar

Shift Model (PSM), which is depicted in Figure A-2.
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Known Frame Unknown Frame Known Frame

b

Figure A-2: Planar Shift Model

A.2 Theoretical Formulation

Our fundamental assumption requires that the “radial derivative” of the intensity be
zero along the motion trajectory of the unknown pixel. This leads to the Generalized
Vertico- Temporal Constraint Equation (GVTCE) as follows:

d
Z1(@(r),8(r),r) = 0

0Idz 0dIdd 0dI

odr "o tor = "
oI oI oI
L + ey + > 0, (A1)
dz do . .
where v, = - and vy = 7, are the velocity components which need to be computed

in order to perform the verticc-temporal interpolation.
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Note that unlike the case in the well-known spatio-temporal constraint equation,
the path of differentiation along which our GVTCE velocity components, v, and vy,
are optimally computed, is not necessarily parallel to the temporal axis. Note also that
our constraint equation reduces to Martinez’s two-dimensional spatial interpolation

equation when we set 6(r) = 0, Vr. In that case, vg = 0 and r =y, and we obtain:

dz dr
Vp = ET—' = 2‘5 =7 (A.2)
oI oI
> " o (A-3)
and hence,
oI oI
v—a; + -a—il' =0 . (A4)

As was the case in the two-dimensional problem, it is impossible to find a velocity
vector, v = [v,,v9]T, such that the GVTCE (A.1) is satisfied at all points within a
three-dimensional region around the pel being processed. Therefore, once again we

introduce an error measure, €, as follows:

oI oI oI
‘é-;-i-vg%-{--a-;—é . (A5)

Ur

In order to find the velocity vector, v, corresponding to a particular unknown pel, we
assume that the required image gradients at a set of N points in the neighborhood of

that position are available. We can then find the velocity vector for the desired pixel
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using a least squares estimator as follows:

N
min (Z e.-z) s (A.6)
where

, (A7)

P; represents the #** point in the neighborhood. The minimization problem can then
be restated as follows:

| ar :
(J:l,l‘ll)lo) |:§ (vr 3z P,-) ] . (A.8)

Since the above expression is quadratic in both v, and vy, the solution can be obtained

oI

3I+
. Or

vy —
o8 P

P;

by solving a set of two linear equations in two unknowns.

N
Differentiating the expression, Z €:2, with respect to v, and vy, we obtain:
i=1

DY ]
a |&( or ol al
A = a(»[;(’vrapi ‘vo’b—éﬁ'{-a;ﬂ)]
| N[( a1 ol al oI
= 2; ('D,- am n + Vo — ao + -51: ” '5-‘; r (Ag)

oI

N
= 22 U,-(a

P.) (5,

oI

=1

)+(31) (3]

}
q) e
ARENEN
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P ve oz
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To find the optimal solution, we allow A = 0 and B = 0. This is equivalent to the
following set of equations:

(51 -+ () ()] -5 (21) (8) -
B (31) (5] E(30) - £(5) (1) -

‘ (A.11)
which we can, in turn, rewrite in matrix form as follows:
Nofar| T Mfar \ (a1
> ("a‘; 2\ 5, ) |20 v,
=1 P; i=1 F; 2 F;, =
N N
y (4 ) oI ) v
-1\ 9z|p, 90| p. =i\ 99,
& (1] ) (2
_ i=1 O P; ar P;
& (ol | (e
mi\a0|p) \or|p
(A.12)

Solving Equation (A.12) yields the desired least squares optimal values for the two

velocity components, v, and vg.

A.3 Computation of the Partial Derivatives

A problem which needs to be addressed at this point is the computation of the actual

or ar . o1
oz’ 96’ " ar

and vg, may be computed from the matrix Equation (A.12). In order to compute these

luminance partial derivatives , so that the velocity components, v,
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gradients, we model the luminance function in cylindrical coordinates. Once again,
as we did in the two-dimensional spatial interpolation problem, we use a parametric
polynomial expansion method to model the local image. It should be noted, however,
that this model only serves to facilitate computation of the motion parameters, v,
and vy, and should not be used in calculation of the desired intensities which require
subpixel accuracy.

We propose the following model for the luminance function:

I(z,0,r)= fj £;®;(z,0,r), (A.13)

=1

where the f;’s are the luminance function model parameters which we have to esti-
mate, and the ®;(z,8,r)’s form a set of P basis functions used to span the image

function space. A possible set of such basis functions is given below:

o, (z,0,r)=1  ®(z,8,r)=z  P3(z,0,r)=10
®,(z,0,r)=r  B5(z,0,r) =2 Pg(z,0,r)=6> . (A.14)

&;(z,0,r)=2z6 &3(z,0,r)=z1r &9(z,0,r)=10

With Equation (A.12) specified, and the local image gradients computed, the task
of solving for the unknown velocity components, v, and vg, becomes as straightforward

as that of the two-dimensional interpolation algorithm.
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