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Abstract A measurement of the top quark pair produc-
tion (tt) cross section in proton–proton collisions at the
centre-of-mass energy of 8 TeV is presented using data col-
lected with the CMS detector at the LHC, corresponding to
an integrated luminosity of 19.6 fb−1. This analysis is per-
formed in the tt decay channels with one isolated, high trans-
verse momentum electron or muon and at least four jets,
at least one of which is required to be identified as origi-
nating from hadronization of a b quark. The calibration of
the jet energy scale and the efficiency of b jet identification
are determined from data. The measured tt cross section is
228.5 ± 3.8 (stat) ± 13.7 (syst) ± 6.0 (lumi) pb. This mea-
surement is compared with an analysis of 7 TeV data, cor-
responding to an integrated luminosity of 5.0 fb−1, to deter-
mine the ratio of 8 TeV to 7 TeV cross sections, which is
found to be 1.43 ± 0.04 (stat) ± 0.07 (syst) ± 0.05 (lumi).
The measurements are in agreement with QCD predictions
up to next-to-next-to-leading order.

1 Introduction

Top quarks are abundantly produced at the CERN LHC. The
predicted top quark pair production cross section (σtt) in
proton–proton (pp) collisions, at a centre-of-mass energy of
8 TeV, is 253 pb, with theoretical uncertainties at the level of
5–6%. A precise measurement of σtt is an important test of
perturbative quantum chromodynamics (QCD) at high ener-
gies. Furthermore, precision tt cross section measurements
can be used to constrain the top quark mass mt and QCD
parameters, such as the strong coupling constant αS [1], or
the parton distribution functions (PDF) of the proton [2].

The tt production cross section was measured at the LHC
at

√
s = 7 and 8 TeV [3–18,18–25]. In this paper, a measure-

ment of the tt production cross section in the final state with
one high transverse momentum lepton (muon or electron)

� e-mail: cms-publication-committee-chair@cern.ch

and jets is presented using the 2012 data set at
√
s = 8 TeV,

collected by the CMS experiment at the LHC and correspond-
ing to an integrated luminosity of 19.6 fb−1. To measure the
cross section ratio, where several systematic uncertainties
cancel, the 2011 data set at

√
s = 7 TeV, corresponding to

an integrated luminosity of 5.0 fb−1, has been concurrently
analyzed with a similar strategy to the one developed for
the cross section measurement at 8 TeV. The new measure-
ment agrees very well with the previously published CMS
result [8]. The larger statistical uncertainty of the present
measurement with respect to the previous one is due to the
simultaneous determination of the b tagging efficiency, as
discussed in Sect. 6. Similarly to the 8 TeV analysis, an addi-
tional signal modelling uncertainty has been considered in
the 7 TeV analysis, as reported in Sect. 6.

In the standard model, top quarks are predominantly pro-
duced in pairs via the strong interaction and decay almost
exclusively into a W boson and a b quark. The event sig-
nature is determined by the subsequent decays of the two
W bosons. This analysis uses lepton+jets decays into muons
or electrons, where one of the W bosons decays into two
quarks and the other to a lepton and a neutrino. Decays of
the W boson into a tau lepton and a neutrino can enter the
selection if the tau lepton decays leptonically. The top quark
decaying into a b quark and a leptonically decaying W boson
is defined in the following as the “leptonic top quark”, while
the other top quark is referred to as “hadronic top quark”. For
the tt signal two jets result from the hadronization of the b
and b quarks (b jets), thus b tagging algorithms are employed
for the identification of b jets in order to improve the purity
of the tt candidate sample.

The technique for extracting the tt cross section consists
of a binned log-likelihood fit of signal and background to
the distribution of a discriminant variable in data showing a
good separation between signal and background: the invari-
ant mass of the b jet related to the leptonic top quark and the
lepton � (M�b). The mass of the three-jet combination with
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the highest transverse momentum in the event (M3) is used as
a discriminant in an alternative analysis. The M�b variable is
related to the leptonic top quark mass, while M3 is a measure
for the hadronic top quark mass. Both quantities provide a
good separation between signal and background processes.

The analysis employs calibration techniques to reduce the
experimental uncertainties related to b tagging efficiencies
and jet energy scale (JES). The tt topology is reconstructed
using a jet sorting algorithm in which the b jet most likely
originating from the leptonic top quark is identified. The
b tagging efficiency is then determined from a b-enriched
sample, in the peak region of the M�b distribution, correcting
for the contamination from non-b jets, following the method
described in Refs. [26,27]. The rate of jets that are wrongly
tagged as originating from a b quark is also measured using
data as described in [28]. Independently, the JES is deter-
mined using the jets associated with the hadronically decay-
ing W boson by correcting the reconstructed mass of the
W boson in the simulation to that determined from the data.

The results of the cross section measurements are given
both for the visible region, i.e. for the phase space corre-
sponding to the event selection, and for the full phase space.
The visible region is defined by requiring the presence in the
simulation of exactly one lepton, one neutrino, and at least
four jets passing the selection criteria, as presented in Sect. 5.

This paper is structured as follows: after a description of
the CMS detector (see Sect. 2), the data and the simulated
samples are discussed in Sect. 3, while Sect. 4 is dedicated
to the event selection. The analysis technique and the impact
of the systematic uncertainties are addressed in Sect. 5 and
in Sect. 6. The results of the cross section measurements
are discussed in Sect. 7. Section 8 describes the alternative
analysis based on M3, followed by a summary in Sect. 9.

2 The CMS detector

The central feature of the CMS apparatus is a superconduct-
ing solenoid, of 6 m internal diameter, providing an axial
magnetic field of 3.8 T. Within the solenoidal field volume
are a silicon pixel and strip tracker which measure charged
particle trajectories in the pseudorapidity range |η| < 2.5.
Also within the field volume, the silicon detectors are sur-
rounded by a lead tungstate crystal electromagnetic calorime-
ter (|η| < 3.0) and a brass and scintillator hadron calorimeter
(|η| < 5.0) that provide high-resolution energy and direction
measurements of electrons and hadronic jets. Muons are mea-
sured in gas-ionization detectors embedded in the steel mag-
netic flux-return yoke outside the solenoid. The muon detec-
tion systems provide muon detection in the range |η| < 2.4.
A two-level trigger system selects the pp collision events
for use in physics analysis. A more detailed description of
the CMS detector, together with a definition of the coordi-

nate system used and the relevant kinematic variables, can
be found elsewhere [29].

3 Data and simulation

The cross section measurement is performed using the 8 TeV
pp collisions recorded by the CMS experiment in 2012, cor-
responding to an integrated luminosity of 19.6 ± 0.5 fb−1

[30], and the 2011 data set at
√
s = 7 TeV, corresponding to

an integrated luminosity of 5.0 ± 0.2 fb−1 [31].
The tt events are simulated using the Monte Carlo (MC)

event generators MadGraph (version 5.1.1.0) [32,33] and
powheg (v1.0 r1380) [34,35]. In MadGraph the top quark
pairs are generated at leading order with up to three additional
high-pT jets. The powheg generator implements matrix ele-
ments to next-to-leading order (NLO) in perturbative QCD,
with up to one additional jet. The mass of the top quark
is set to 172.5 GeV. The CT10 [36] PDF set is used by
powheg and the CTEQ6M [37–39] by MadGraph. The
pythia (v.6.426) [40] and herwig (v.6.520) [41] generators
are used to model the parton showering. The pythia shower
matching is done using the MLM prescription [42,43].

The top quark pair production cross section values are
predicted to be 177.3+4.6

−6.0 (scale) ± 9.0 (PDF+αS) pb at

7 TeV and 252.9+6.4
−8.6 (scale) ± 11.7 (PDF+αS) pb at 8 TeV,

as calculated with the Top++ 2.0 program to next-to-next-
to-leading order (NNLO) in perturbative QCD, including
soft-gluon resummation to next-to-next-to-leading logarith-
mic (NNLL) order (Ref. [44] and references therein), and
assumingmt = 172.5 GeV. The first uncertainty comes from
the independent variation of the factorization and renormal-
ization scales, while the second one is associated to variations
in the PDF and αS following the PDF4LHC prescription with
the MSTW2008 68% confidence level NNLO, CT10 NNLO,
and NNPDF2.3 5f FFN PDF sets (Refs. [37,38] and refer-
ences therein, and Refs. [36,39]).

The top quark transverse momentum is reweighted in sam-
ples simulated with MadGraph and powheg, when inter-
faced to pythia, in order to better describe the pT distribution
observed in the data. Based on studies of differential distri-
butions [45,46] in the top quark transverse momentum, an
event weight w = √

w1 w2 is applied, where the weights wi

of the two top quarks are given as a function of the generated
top quark pT values: wi = exp(0.199−0.00166 piT/GeV) at
7 TeV, and wi = exp(0.156 − 0.00137 piT/GeV) at 8 TeV.
This reweighting is only applied to the phase space corre-
sponding to the experimental selections in the muon and
electron channels. The agreement between data and samples
generated with powheg interfaced with herwig is found to
be satisfactory, and no reweighting is applied in this case.

The W/Z+jets events, i.e. the associated production of
W/Z vector bosons with jets, with leptonic decays of the
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W/Z bosons, constitute the largest background. These are
also simulated usingMadGraphwith matrix elements corre-
sponding to at least one jet and up to four jets. The W/Z+jets
events are generated inclusively with respect to the jet flavour.
Drell–Yan production of charged leptons is generated for
dilepton invariant masses above 50 GeV, as those events con-
stitute the relevant background in the phase space of this anal-
ysis. The contribution from Drell–Yan events with dilepton
invariant masses below 50 GeV is negligible, as verified with
a sample with a mass range of 10–50 GeV. Single top quark
production is simulated with powheg. The background pro-
cesses are normalized to NLO and NNLO cross section cal-
culations [47–51], with the exception of the QCD multijet
background, for which the normalization is obtained from
data in the M3 analysis (see Sect. 8). In the M�b analysis the
multijet background is reduced to a negligible fraction (see
Sect. 4) and thus not considered further.

Pileup signals, i.e. extra activity due to additional pp inter-
actions in the same bunch crossing, are incorporated by sim-
ulating additional interactions with a multiplicity matching
the one inferred from data. The CMS detector response is
modeled using Geant4 [52]. The simulated events are pro-
cessed by the same reconstruction software as the collision
data.

4 Reconstruction and event selection

This analysis focuses on the selection of tt lepton+jets decays
in the muon and electron channels, with similar selection
requirements applied for the two channels. Muons, elec-
trons, photons, and neutral and charged hadrons are recon-
structed and identified by the CMS particle-flow (PF) algo-
rithm [53,54]. The energy of muons is obtained from the cor-
responding track momentum using the combined information
of the silicon tracker and the muon system [55]. The energy
of electrons is determined from a combination of the track
momentum in the tracker, the corresponding cluster energy
in the electromagnetic calorimeter, and the energy sum of
all bremsstrahlung photons associated to the track [56]. The
vertex with the largest p2

T sum of the tracks associated to it
is chosen as primary vertex.

Candidate tt events are first accepted by dedicated trig-
gers requiring at least one muon or electron. Lepton isolation
requirements are applied to improve the purity of the selected
sample. At the trigger level the relative muon isolation, the
sum of transverse momenta of other particles in a cone of size
�R =

√
(�φ)2 + (�η)2 = 0.4 around the direction of the

candidate muon divided by the muon transverse momentum,
is required to be less than 0.2. Similarly, for electrons, the cor-
responding requirement is less than 0.3 in a cone of size 0.3.
Events with a muon in the final state are triggered on the pres-
ence of a muon candidate with pT > 24 GeV and |η| < 2.1.

Events with an electron candidate with |η| < 2.5 are accepted
by triggers requiring an electron with pT > 27 GeV.

Tighter pT requirements are applied in the offline selec-
tions. Muons are required to have a good quality [55] track
with pT > 25 GeV and |η| < 2.1. Electrons are identified
using a combination of the shower shape information and
track-electromagnetic cluster matching [56], and are required
to have pT > 32 GeV and |η| < 2.5, with the exclusion of the
transition region between the barrel and endcap electromag-
netic calorimeter, 1.44 < |η| < 1.57. Electrons identified
to come from photon conversions [56] are vetoed. Correc-
tion factors for trigger and lepton identification efficiencies
have been determined with a tag-and-probe method [57] from
data/simulation comparison as a function of the lepton pT and
η, and are applied to the simulation.

Signal events are required to have at least one pp inter-
action vertex, successfully reconstructed from at least four
tracks, within limits on the longitudinal and radial coordi-
nates [58], and exactly one muon, or electron, with an origin
consistent with the reconstructed vertex within limits on the
impact parameters. Since the lepton from the W boson decay
is expected to be isolated from other activity in the event, iso-
lation requirements are applied. A relative isolation is defined
as Irel = (Icharged + Iphoton + Ineutral)/pT, where pT is the
transverse momentum of the lepton and Icharged, Iphoton, and
Ineutral are the sums of the transverse energies of the charged
particles, the photons, and the neutral particles not identified
as photons, in a cone �R < 0.4 (0.3) for muons (electrons)
around the lepton direction, excluding the lepton itself. The
relative isolation Irel is required to be less than 0.12 for muons
and 0.10 for electrons. Events with more than one lepton can-
didate with relaxed requirements are vetoed in order to reject
Z boson or tt decays into dileptons.

The missing energy in the transverse plane (Emiss
T ) is

defined as the magnitude of the projection on the plane per-
pendicular to the beams of the vector sum of the momenta
of all PF candidates. It is required to be larger than 30 GeV
in the muon channel and larger than 40 GeV in the electron
channel, because of the larger multijet background.

Jets are clustered from the charged and neutral particles
reconstructed with the PF algorithm, using the anti-kT jet
algorithm [59] with a radius parameter of 0.5. Particles iden-
tified as isolated muons or electrons are not used in the jet
clustering. Jet energies are corrected for nonlinearities due
to different responses in the calorimeters and for the dif-
ferences between measured and simulated responses [60].
Furthermore, to account for extra activity within a jet cone
due to pileup, jet energies are corrected [53,54] for charged
hadrons that belong to a vertex other than the primary vertex,
and for the amount of pileup expected in the jet area from
neutral jet constituents.

At least four jets are required with pT > 40 GeV and
|η| < 2.5. An additional global calibration factor of the jet
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Fig. 1 Transverse momentum distributions of the first- and second-
leading jet (top), the muon and Emiss

T distribution (bottom) for all rele-
vant processes in the muon+jets channel with the requirement of at least
one b-tagged jet. The simulation is normalized to the standard model
cross section values and pT-reweighting is applied to the tt contribu-
tion. The multijet background is negligible and not shown. The distribu-

tions are already corrected for the b tagging efficiency scale factor. The
hashed area shows the uncertainty in the luminosity measurement and
the b tagging systematic uncertainty. The last bin includes the overflow.
The ratio between data and simulation is shown in the lower panels for
bins with non-zero entries.eps

energy scale is obtained by fitting the W boson mass distri-
bution in the data and in the simulation. The scale factor is
determined as the ratio of the W boson mass reconstructed
from non-b-tagged jet pairs in data and in the simulation.
This scale correction is applied in the simulation to all jets
before the selection requirements are implemented. It largely
reduces the systematic uncertainty related to the jet energy
scale, discussed in Sect. 6.

To reduce contamination from background processes, at
least one of the jets has to be identified as a b jet. The b tagging
algorithm used is the “combined secondary vertex” (CSV)
algorithm at the medium working point [26,27], correspond-

ing to a misidentification probability of about 1% for light-
parton jets (mistag rate) and an efficiency for b jets in the
range 60–70% depending on the jet pT and pseudorapid-
ity. Figure 1 shows kinematic distributions after applying the
b tagging requirement. Good agreement between data and
simulation is observed.

The M�b analysis uses control samples in data for the esti-
mation of the b tagging efficiency, as described in Refs. [26–
28]. Among the four leading jets, three are assigned to the
hadronically decaying top quark through a χ2 sorting algo-
rithm using top quark and W boson mass constraints. The
remaining fourth jet is the b jet candidate assigned to the
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Fig. 2 Distributions of the lepton-jet mass in the muon+jets (left) and electron+jets (right) channels, rescaled to the fit results

leptonically decaying top quark. The b tagging algorithm is
only applied to this b jet candidate.

Owing to differences in the triggers and in the centre-of-
mass energies, in the 7 TeV analysis slightly different selec-
tion criteria are applied on the lepton pT and Emiss

T . The
muon transverse momentum is required to be larger than
26 GeV, while the electron pT has to be larger than 30 GeV.
No explicit Emiss

T requirement is needed in the muon chan-
nel. Events with Emiss

T > 30 GeV are selected in the electron
channel.

5 Visible and total cross section measurements

The number of tt events is determined with a binned
maximum-likelihood fit of distributions (templates), describ-
ing signal and background processes, to the data sample pass-
ing the final selection, by fitting M�b, the invariant mass dis-
tribution of the b jet and the lepton.

The tt visible (σ vis
tt

) and total (σtt) production cross sec-
tions are extracted from the number of tt events observed in
the data using the equations

σ vis
tt = Ntt

L εtt
, σtt = σ vis

tt

A
, (1)

where Ntt is the number of tt events (including both signal
events from the lepton+jets channel considered and events
from other decay channels) extracted from the fit, L is the
integrated luminosity, A is the tt acceptance, and εtt is the tt
selection efficiency within the acceptance requirements out-
lined in the next section. Results are presented for both the
visible and total cross section, in order to separate experi-
mental uncertainties from theoretical assumptions as much
as possible.

One template is used for tt events (both for the tt signal
events and the other tt events passing the selection criteria)
and one template for all background processes (W/Z+jets
and single top quark production). The fit is performed in the
range 0–500 GeV. Figure 2 shows the results for the fit to the
data distributions in the muon and electron channels.

5.1 Acceptance

The tt acceptance A corresponding to the visible phase space
depends on the theoretical model and it is determined at the
generator level by requiring the presence of exactly one lep-
ton, one neutrino, and at least four jets, passing pT and |η|
selection criteria similar to the ones delineated in Sect. 4.
For simplicity a single acceptance definition, corresponding
to the tightest selection criteria, is used for both channels
at each centre-of-mass energy: exactly one muon, or elec-
tron, with pT > 32 GeV and |η| < 2.1, one neutrino with
pT > 40 GeV, and at least four jets with pT > 40 GeV and
|η| < 2.5.

The acceptance values include contributions from other tt
decay channels, in particular from the dilepton channel, at
the level of about 9%.

The acceptance values are provided in Table 1 for the two
generators used in this analysis, MadGraph and powheg.
The acceptance values are in agreement at the 1–2% level
at 8 TeV and at better than 5% at 7 TeV. This different level
of agreement is due to the fact that the common acceptance
definition described above corresponds the tightest pT cri-
teria, i.e. to the pT requirements of the electron channel at√
s = 8 TeV. The reweighted acceptance is determined as

the number of reweighted tt events in the visible phase space,
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Table 1 Average acceptance values for the muon and electron channels
obtained with MadGraph and powheg at

√
s = 7 and 8 TeV, without

and with top quark pT-reweighting applied. The statistical uncertainty
is 0.0004, i.e. below 3%. The theoretical uncertainties are at the level
of 2%, as discussed in the text

A (
√
s = 7 TeV) A (

√
s = 8 TeV)

No rew. With rew. No rew. With rew.

MadGraph 0.0158 0.0156 0.0166 0.0162

powheg 0.0151 0.0149 0.0163 0.0161

i.e. the sum of the weights, divided by the total number of
(non-reweighted) tt events.

The statistical uncertainty in the acceptance calculations
is below 3%. The theoretical systematic uncertainties evalu-
ated by varying the PDFs (Sect. 6) or the matching thresholds
are in the range 0.1–0.2%. Variation of the factorization and
renormalization scale induces a variation of up to 2% in the
acceptance. These variations are already included in the sys-
tematic uncertainties quoted in Sect. 6.

In the following, top quark pT-reweighting [45,46] is
always applied to the visible phase space as it provides a
better agreement between data and simulation. On the other
hand, given that the event weights were only determined in
the phase space corresponding to the experimental selection,
they have not been used for the extrapolation to the total
cross section. Therefore, the non-reweighted acceptance is
used to determine the total cross section. However, rescaling
by the ratio of the values provided in Table 1 would allow a
determination of the total cross section with the reweighted
acceptance. The visible cross section does not depend on the
acceptance A.

5.2 Selection efficiency

The selection efficiency within the acceptance, εtt , is reported
in Table 2. It is determined from the pT-reweighted Mad-

Graph simulated sample as the number of events pass-
ing the selection criteria outlined in Sect. 4, over the num-
ber of events passing the acceptance requirements defined
above. The selection efficiency includes the effects of trig-
ger requirements, lepton and jet identification criteria, and
b tagging efficiency, which is directly determined from data.
A signal selection efficiency within acceptance of 32% in the

muon channel and 21% in the electron channel is determined.
Similar values (37 and 22%, respectively) are obtained at√
s = 7 TeV. For the muon channel the common accep-

tance requirements used for both channels are tighter than
the selection requirements, thus the muon channel efficiency
is significantly larger than the electron channel efficiency.
The tt selection efficiency, Aεtt , is the number of selected tt
events out of all produced tt pairs, in all decay channels.

6 Systematic uncertainties

Systematic uncertainties are determined by varying each
source within its estimated uncertainty and by propagating
the variation to the cross section measurements. Template
shapes and signal efficiencies are varied together according
to the systematic uncertainty considered. The uncertainty is
given by the shift in the fitted cross section and is cross-
checked by repeating its estimation with pseudo-experiments
using simulation. The systematically varied template shapes
are fit to pseudo-data generated using the nominal tem-
plate shapes and normalizations. The validation with pseudo-
experiments shows that the fit performs as expected. All sys-
tematic uncertainties, except the ones related to b tagging and
to the estimation of the multijet background, are common to
both the M�b and the M3 measurements.

The effect of uncertainties in the JES is evaluated by
varying the JES within the pT- and η-dependent uncertain-
ties given in Ref. [60]. The final JES of the simulation is
matched to that in data by applying an additional global cor-
rection factor α to all jet momenta before selection. The α

calibration values are individually determined for nominal
conditions and for each of the variations related to JES and
JER. In addition to the selection described in Sect. 4, two b-
tagged jets are required in order to increase the signal purity.
The mass of the hadronically decaying W boson is recon-
structed as the dijet invariant mass from all combinations of
non b-tagged jets. The dijet invariant mass distributions are
fitted in data and in simulation with a function describing
the W boson signal peak and the dijet combinatorial back-
ground. The α values are determined as the ratios of the fitted
W boson masses in data and in simulation. In the M�b analy-
sis α = 1.011 ± 0.004 is obtained with the nominal samples
both in the muon and electron channels, with variations of
the order of ±1.5% for the samples with down and up varia-

Table 2 Signal selection efficiencies, at
√
s = 8 TeV, determined from simulation using MadGraph.The non-reweighted acceptance from Table

1 is used. The relative statistical uncertainty on εtt is below 3%

Channel εtt (
√
s = 7 TeV) (%) Aεtt (

√
s = 7 TeV) (%) εtt (

√
s = 8 TeV) (%) Aεtt (

√
s = 8 TeV) (%)

μ+jets 37 0.58 32 0.53

e+jets 22 0.36 21 0.35
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Table 3 Components (in %) of the JES uncertainty at 8 TeV in the
muon and electron channels. The correlation coefficients used in their
combination are also shown

Source μ+jets e+jets Correlation

Absolute scale ±0.33 ±0.40 0.0

Global jet scale factor α ±0.59 ±0.39 0.0

Relative FSR ±0.46 ±0.41 1.0

Relative pT ±0.67 ±0.57 1.0

Flavour JES ±1.84 ±1.79 1.0

Flavour JES fragmentation ±0.50 ±0.46 1.0

Flavour JES semileptonic BR ±0.11 ±0.16 1.0

High-pT extra ±0.18 ±0.23 1.0

Single pion ±0.21 ±0.27 1.0

Pileup ±0.35 ±0.31 1.0

Time ±0.17 ±0.24 1.0

Total JES ±2.23 ±2.13 0.9

tions of the JES. The same values are determined by the M3

analysis. This additional calibration reduces the size of the
JES systematic uncertainty by approximately 60%. The JES
uncertainty, reported in Table 3, consists of several sources,
all propagated individually. Details of the individual contri-
butions are explained in [61].

The impact of the jet energy resolution (JER) is esti-
mated by applying η-dependent variations with an aver-
age of ±10%. The JES and JER variations are propagated
to the Emiss

T . In addition, the contribution to Emiss
T arising

from energy depositions not contained in jets is varied by
±10% [60]. The uncertainty related to the pileup modelling
is determined by propagating a ±5% variation [62] to the
central value of the inelastic cross section. Variations in
the composition of the main background processes, W+jets
and Z+jets, are conservatively evaluated by varying inde-
pendently their cross sections by ±30% [63–65]. Additional
uncertainties on the heavy flavour component in W/Z+jets
production are not explicitly taken into account and are
assumed to be covered by the 30% uncertainty. The variation
of the normalization of the single top quark background by
30% gives a negligible contribution. The trigger efficiency
and lepton identification correction factors are determined
with a tag-and-probe method [57] in dilepton events and are
varied within their pT- and η-dependent uncertainties.

Uncertainties from the b tagging efficiency and mistag rate
are evaluated in the M3 analysis by varying the correction fac-
tors within their uncertainties [26,27] quoted in Sect. 8. In the
M�b analysis, on the other hand, the b tagging efficiency for
b jets is measured from data, using the technique described in
Refs. [26–28], on the same selected event sample as that for
the cross section determination, but before b tagging. The
M�b variable is used not only as a cross section estimator,
but also as a b tagging discriminator. The statistical and sys-

tematic uncertainties in the b tagging and mistag efficiencies
are propagated to the statistical and systematic uncertain-
ties in the cross section measurements. For this reason the
statistical uncertainty obtained by the M�b analysis is larger
than the one of the M3 analysis. A systematic uncertainty is
assigned to the choice, based on simulation, of the b-enriched
(for M�b values below 140 GeV) and of the b-depleted (for
M�b in the range 140–240 GeV) regions, by shifting the win-
dows by ±30 GeV. Since the b tagging efficiency and mistag
rate are derived from data and since they are re-determined
when evaluating the effect of the various systematic uncer-
tainties, no additional uncertainties are included. The method
is shown [26–28] to be stable for different b tagging algo-
rithms and working points.

Theoretical uncertainties are taken from detailed studies
performed on simulated samples. They include the common
factorization and renormalization scales, which are varied by
a factor of 1/4 and 4 from the default value equal to the Q2 for
the tt or W/Z+jet events. The effect of the jet-parton match-
ing threshold on tt and W+jets events is studied by varying
the threshold used for matching the matrix element level to
the particles created in the parton showering by a factor of
0.5 or 2. Uncertainties from the choice of PDF are evaluated
by using the Hessian method [66] with the parameters of
the CTEQ6.6 PDF set [67]. Other PDF sets (including their
uncertainties) yield very similar results. The PDFs and their
uncertainties are determined from a fit to collision data yield-
ing the Hessian matrix. Each of the 22 eigenvectors obtained
by diagonalizing the matrix is varied within its uncertain-
ties. The differences with respect to the nominal prediction
are determined independently for each eigenvector and are
added in quadrature. The systematic uncertainty due to the
top quark pT-reweighting procedure described in Sect. 3 is
evaluated as the difference with respect to the measurement
obtained with the non-reweighted sample. Only the variation
due to the template shape is considered, as the correction is
meant to modify the shape only.

A “signal modelling” uncertainty is attributed to the
choice of the generators. It comprises changes in matrix
element and parton shower implementation. The effect of
the matrix element generator is evaluated by using powheg

(instead of MadGraph) interfaced to pythia, while the par-
ton shower modelling is evaluated with powheg and herwig

instead of powheg and pythia. Regarding the two corre-
sponding uncertainties, the former is always positive and the
latter is always negative. For 7 TeV the same values deter-
mined for 8 TeV are used. As discussed in Sect. 7, the “signal
modelling” uncertainty is symmetrized by taking the larger
of the two contributions (±4.4%).

An uncertainty of 2.6% [30] (2.2% [31]) is assigned to
the determination of the 2012 (2011) integrated luminosity.
The resulting effects from all sources are added in quadra-
ture. Tables 4 and 5 provide an overview of the contributions

123



15 Page 8 of 27 Eur. Phys. J. C (2017) 77 :15

Table 4 Overview of the
systematic uncertainties in the
measurement of the tt cross
sections at 8 TeV, both for the
total and the visible cross
sections. For the “signal
modelling” uncertainty the
larger between the matrix
element (ME) and parton
shower (PS) uncertainties is
taken, as explained in Sect. 6.
The correlations assumed for the
combination of the muon and
electron channels are also given

Systematic uncertainty 8 TeV

μ+jets (%) e+jets (%) corr. comb.(%)

Jet energy scale ±2.2 ±2.1 0.9 ±2.2

Jet energy resolution ±0.8 ±0.9 1.0 ±0.8

Emiss
T unclustered energy ±0.1 ±0.3 1.0 ±0.1

Pileup ±0.5 ±0.4 1.0 ±0.5

Lepton ID / Trigger eff. corrections ±0.4 ±0.5 0.0 ±0.5

b tagging method ±0.3 ±0.7 1.0 ±0.3

Background composition ±0.2 ±0.3 1.0 ±0.2

Factorization/renormalization scales ±1.7 ±2.6 1.0 ±1.7

ME-PS matching threshold ±1.3 ±2.3 1.0 ±1.2

Top quark pT-reweighting ±1.1 ±1.2 1.0 ±1.1

Signal modelling for σtt (σ vis
tt

) ±4.4 (±2.2) ±4.4 (±2.4) 1.0 ±4.4 (±2.3)

PDF uncertainties ±2.1 ±1.9 1.0 ±2.1

Sum for σtt (σ vis
tt

) ±6.0 (±4.6) ±6.5 (±5.4) ±6.0 (±4.7)

Integrated luminosity ±2.6 ±2.6 1.0 ±2.6

Total for σtt (σ vis
tt

) ±6.5 (±5.3) ±7.0 (±6.0) ±6.5 (±5.3)

Table 5 Overview of the
systematic uncertainties in the
measurement of the tt cross
sections at 7 TeV, both for the
total and the visible cross
sections. For the “signal
modelling” uncertainty the
larger between the matrix
element (ME) and parton
shower (PS) uncertainties is
taken, as explained in Sect. 6.
The correlations assumed for the
combination of the muon and
electron channels are also
shown.

Systematic uncertainty 7 TeV

μ+jets (%) e+jets (%) corr. comb. (%)

Jet energy scale ±4.8 ±5.2 0.9 ±4.4

Jet energy resolution ±1.4 ±1.1 1.0 ±1.1

Emiss
T unclustered energy <0.05 ±0.3 1.0 ±0.2

Pileup ±0.4 ±0.6 1.0 ±0.5

Lepton ID/trigger eff. corrections ±1.4 ±1.7 0.0 ±0.8

b tagging method ±0.5 ±0.6 1.0 ±0.6

Background composition ±0.5 ±0.4 1.0 ±0.5

Factorization/renormalization scales ±3.7 ±0.4 1.0 ±2.1

ME-PS matching threshold ±2.0 ±1.7 1.0 ±1.8

Top quark pT-reweighting ±1.1 ±1.2 1.0 ±1.1

Signal modelling for σtt (σ vis
tt

) ±4.4 (±2.2) ±4.4 (±2.4) 1.0 ±4.4 (±2.3)

PDF uncertainties ±2.3 ±1.9 1.0 ±2.2

Sum for σtt (σ vis
tt

) ±8.4 (±7.5) ±7.7 (±6.8) ±7.4 (±6.4)

Integrated luminosity ±2.2 ±2.2 1.0 ±2.2

Total for σtt (σ vis
tt

) ±8.7 (±7.8) ±8.0 (±7.1) ±7.7 (±6.7)

to the systematic uncertainty on the combined cross section
measurements in the M�b measurements at 7 and 8 TeV.

7 Results and combination

The results in the muon and electron channels, shown in
Tables 6 and 7, are in good agreement. The combination of
the channel results is performed using the best linear unbi-
ased estimator (BLUE) method [68–70]. Asymmetric sys-
tematic uncertainties are symmetrized for the use with BLUE

by taking half of the full range, except for the “signal mod-
elling” uncertainty, where the maximum, 4.4%, is taken for
σtt . Full correlation is assumed for all systematic uncertain-
ties between the two channels, except for lepton identification
and trigger uncertainties, which are assumed to be uncorre-
lated.

Owing to the additional jet energy calibration from data,
a correlation coefficient of 0.9 is obtained for the overall JES
uncertainty. This correlation is determined from the corre-
lation coefficients in Table 3 and it is compatible with the
value inferred by comparing the combined result with and
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Table 6 Visible cross section
measurements at

√
s = 7 and

8 TeV with the reference
analysis M�b and the alternative
analysis M3 (described in
Sect. 8). Results obtained for
mt = 172.5 GeV with
MadGraph and with powheg

are shown. The uncertainties are
in the order: statistical,
systematic, and due to the
luminosity determination

Analysis Generator Channel σ vis
tt

at
√
s = 8 TeV

M�b MadGraph μ+jets 3.80 ± 0.06 ± 0.18 ± 0.10 pb

e+jets 3.90 ± 0.07 ± 0.21 ± 0.10 pb

Combined 3.80 ± 0.06 ± 0.18 ± 0.10 pb

M�b powheg Combined 3.83 ± 0.06 ± 0.18 ± 0.10 pb

M3 MadGraph μ+jets 3.79 ± 0.05 ± 0.24 ± 0.10 pb

e+jets 3.75 ± 0.04 ± 0.26 ± 0.10 pb

Combined 3.78 ± 0.04 ± 0.25 ± 0.10 pb

M3 powheg Combined 3.88 ± 0.05 ± 0.27 ± 0.10 pb

Analysis Generator Channel σ vis
tt

at
√
s = 7 TeV

M�b MadGraph μ+jets 2.48 ± 0.09 ± 0.19 ± 0.06 pb

e+jets 2.62 ± 0.10 ± 0.18 ± 0.06 pb

Combined 2.55 ± 0.09 ± 0.18 ± 0.06 pb

Table 7 Total cross section
measurements at

√
s = 7 and

8 TeV with the reference
analysis M�b and the alternative
analysis M3 (described in
Sect. 8). Results obtained for
mt = 172.5 GeV with
MadGraph and with powheg

are shown. The uncertainties are
in the order: statistical,
systematic, and due to the
luminosity determination.

Analysis Generator Channel σtt at
√
s = 8 TeV

M�b MadGraph μ+jets 228.9 ± 3.4 ± 13.7 ± 6.0 pb

e+jets 234.6 ± 3.9 ± 15.2 ± 6.2 pb

Combined 228.5 ± 3.8 ± 13.7 ± 6.0 pb

M�b powheg Combined 237.1 ± 3.9 ± 14.2 ± 6.2 pb

M3 MadGraph μ+jets 228.7 ± 2.6 ± 19.0 ± 6.0 pb

e+jets 225.8 ± 2.4 ± 19.1 ± 5.9 pb

Combined 227.1 ± 2.5 ± 19.1 ± 6.0 pb

M3 powheg Combined 238.4 ± 2.8 ± 20.0 ± 6.2 pb

Analysis Generator Channel σtt at
√
s = 7 TeV

M�b MadGraph μ+jets 157.7 ± 5.5 ± 13.2 ± 3.4 pb

e+jets 165.8 ± 6.5 ± 12.8 ± 3.6 pb

Combined 161.7 ± 6.0 ± 12.0 ± 3.6 pb

without the additional calibration. Varying the JES correla-
tion coefficient between 0 and 1 has only a minor effect on
the combined results. For example, the total cross section at
8 TeV varies by less than 0.5%, and the cross section ratio
varies only by approximately 0.1%. A combination based on
the relative statistical precision of the two channels would
also yield compatible results. Variations of the correlations
of other experimental systematic uncertainties have negligi-
ble effect on the combined results.

The integrated luminosity and the pileup uncertainties
are assumed to be fully correlated between channels at the
same centre-of-mass energy, and uncorrelated between 7 and
8 TeV for the cross section ratio.

7.1 Results at
√
s = 8 TeV

The visible cross section obtained from the fit to the M�b

distribution, using MadGraph signal templates for mt =
172.5 GeV, is

σ vis
tt (combined)

= 3.80 ± 0.06 (stat) ± 0.18 (syst) ± 0.10 (lumi) pb.

The statistical uncertainty includes the contribution from the
simultaneous determination of the b tagging efficiency (see
Sect. 6). There is excellent agreement with the measurement
of the visible cross section using powheg for the efficiency
within the kinematic acceptance selected by this analysis.

Using the acceptance values of Table 1, the visible cross
section measurements in the electron and muon channels are
first extrapolated to the full phase space and then combined
to obtain the following total cross section measurement

σtt(combined)

= 228.5 ± 3.8 (stat) ± 13.7 (syst) ± 6.0 (lumi) pb.

The measurements are in good agreement with the theoretical
prediction

σ th.
tt (8 TeV) = 252.9+6.4

−8.6(scale) ± 11.7(PDF+αS) pb

(see Sect. 3), for mt = 172.5 GeV.
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Table 8 Slope values for the muon and electron channels obtained with
linear fits to the cross section values at

√
s = 8 TeV as a function of the

top quark mass. The MadGraph generator is used. The change in sign
is due to the acceptance A

Channel Slope (%/GeV) of σ vis
tt

Slope (%/GeV) of σtt

μ+jets +0.50 ± 0.06 −0.66 ± 0.05

e+jets +0.30 ± 0.04 −0.94 ± 0.05

The BLUE combination yields the following relative
weights of the muon and electron channels, and their cor-
relations, respectively. At 8 TeV they are: 1.07 (1.09), −0.07
(−0.09), with correlation coefficient 0.88 (0.91) for the total
(visible) cross section, while at 7 TeV they are: 0.50 (0.51),
0.50 (0.49), with correlation coefficient 0.71 (0.65). The neg-
ative weights of the electron channel in the combination of
the total and visible cross section at 8 TeV depend on the
choice of the JES correlation coefficient (0.9) used in the
combination. Smaller JES correlation coefficients (0.5 for
the total cross section and 0.2 for the visible cross section)
would yield positive BLUE weights. The negative weights
causes the combined central value, 228.5 pb, to lie outside
the interval of the two individual measurements, as summa-
rized in Tables 6 and 7.

Alternatively, using powheg instead of MadGraph, the
combined total cross section at 8 TeV shifts by +8.6 pb. The
difference, at the level of less than 4%, is mainly ascribed to
the different acceptance for the two generators.

All results are summarized in Tables 6 and 7 for mt =
172.5 GeV. For powheg the same relative systematic uncer-
tainties as determined for MadGraph are used.

7.2 Dependence on the top quark mass at
√
s = 8 TeV

Using simulation, the dependence of the measured total cross
section on the top quark mass is determined to be linear in
the mt range from 161.5 to 184.5 GeV. The top quark mass
value used for the central results is 172.5 GeV. The slope
values reported in Table 8 can be used to linearly adjust the
results in the two channels to other mass values. For mt =
173.3 GeV [71] the adjusted results of the two channels yield
a combined cross section value

σtt(combined,mt = 173.3 GeV)

= 227.4 ± 3.8 (stat) ± 13.7 (syst) ± 6.0 (lumi) pb.

7.3 Results at
√
s = 7 TeV and cross section ratio

At
√
s = 7 TeV the measured cross section, with Mad-

Graph, is

σtt(combined)

= 161.7 ± 6.0 (stat) ± 12.0 (syst) ± 3.6 (lumi) pb.

The measurements are in good agreement with the theo-
retical expectation

σ th.
tt (7 TeV) = 177.3+4.6

−6.0 (scale) ± 9.0 (PDF+αS) pb

at 7 TeV, for a top quark mass of 172.5 GeV.
From the measurements of the total cross section at the

two centre-of-mass energies, a cross section ratio R8/7 is
determined. In the ratio the experimental uncertainties, which
are correlated between the two analyses (at

√
s = 7 or 8 TeV,

in each channel) cancel out, leading to an improved precision
in comparison to the individual measurements at 7 or 8 TeV.
The ratio is first determined in the individual muon (1.45 ±
0.09) and electron (1.41±0.09) channels and then combined.
The measured ratio is

R8/7 = 1.43 ± 0.04 (stat) ± 0.07 (syst) ± 0.05 (lumi).

In the combination of the ratios in the two channels the
theoretical uncertainties, and the jet-related uncertainties are
assumed to be 100% correlated, except the JES uncertainty,
which is taken as 90% correlated. The other experimental
uncertainties are assumed to be uncorrelated. The expected
values of the cross section ratio, for instance R8/7

th. = 1.429±
0.001 (scale) ± 0.004 (PDF) ± 0.001 (αs) ± 0.001 (mt) [2],
for the MSTW08 PDF set and for mt = 173.3 GeV, are in
good agreement with the measurement.

8 Alternative approach at
√
s = 8TeV using M3

In the M3 analysis similar requirements for the selection of
tt lepton+jets decays are used, with slightly different pT-
threshold values. Only the differences with respect to the
main selection are summarized in the following.

At least four jets are required within |η| < 2.5 and with
pT > 50, 40, 30, and 30 GeV in the muon channel, and
pT > 50, 45, 35, and 30 GeV in the electron channel. Slightly
tighter pT selection criteria are applied in the electron chan-
nel because of the larger multijet background. Muons are
required to have transverse momentum larger than 26 GeV.
In the muon channel no explicit requirement is applied on
the missing energy in the transverse plane, while Emiss

T has
to be larger than 20 GeV in the electron channel.

The M3 analysis uses a correction factor of (0.95 ±
0.02) [26,27] to the simulated events to reproduce the differ-
ent b tagging efficiency in data and simulation, and a correc-
tion factor of (1.11±0.01±0.12) [26,27] to take into account
the different probability that a light-quark or gluon jet is iden-
tified as a b jet. These correction factors are determined fol-
lowing Refs. [26,27]. No correction factors are applied in the
M�b analysis, where these efficiencies are determined from
data.

Different strategies to take into account the multijet back-
ground are developed for the M�b and M3 analyses. In the for-
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Fig. 3 Distributions of the M3 mass in the 8 TeV data, for the muon+jets (left) and electron+jets (right) channels, rescaled to the template likelihood
fit results. The last filled bin includes the overflow

mer, this background is reduced to a negligible level thanks
to tighter selection requirements on Emiss

T and on the trans-
verse momenta of the third and fourth jets. In the M3 analysis,
looser selection cuts are chosen and the multijet background
is considered further in the analysis. Since MC simulation
can not adequately reproduce the shape and normalization of
multijet events, this background is thus estimated from data.

Selected multijet events mostly consist of semileptonic
heavy-flavour decays and, in the electron channel, events
in which pions in jets are misidentified as electrons. Such
events feature lepton candidates not coming from W boson
decays and thus not truly isolated. The shape of the accepted
multijet background is extracted from a sideband data sam-
ple where leptons have large relative isolation, greater than
0.17 in the muon channel and 0.2 in the electron channel.
The data sample is selected such that it is rich in multijet
background and poor in tt signal and in other processes such
as W+jets. The remaining tt, W+jets and Z+jets contami-
nation is estimated and subtracted using simulation. Other
backgrounds, for example single top quark production, are
neglected because of their smaller contributions. The nomi-
nal multijet shape is taken as the distribution measured in the
sideband after subtracting the components described above.

The template fit is performed with the M3 distribution in
the range 0–1400 GeV. One single template is used for tt
events (both for the tt signal events and the other tt events
passing the selection requirements) and individual templates
are used for each background process. The tt, single top
quark, W+jets, and Z+jets templates, used in the likelihood
maximization, are taken from simulation, while the multijet
template is estimated from data as described above. Because
of the similarity between the single top quark and the tt tem-
plates, the single top quark contribution is constrained by a

Gaussian distribution of 30% width to its expected value. The
choice of the constraint has a negligible effect on the final
result. The normalization of the signal and background pro-
cesses, including the multijet background, is determined by
the fit itself. The muon and electron channels are combined
with the BLUE method to obtain the quoted combined result.
The measured cross section with the M3 template fit is

σtt(combined)

= 227.1 ± 2.5 (stat) ± 19.1 (syst) ± 6.0 (lumi) pb.

The M3 distributions in the muon and electron channels
are shown in Fig. 3. Good agreement is observed between
data and the templates. The results are compatible with
those of the M�b analysis and are summarized in Tables 6
and 7. The main contributions to the systematic uncertain-
ties of the combined result are, in decreasing order: signal
modelling (4.4%), factorization and renormalization scales
(2.9%), multijet background subtraction (2.2%), JES (2.1%),
PDF (1.6%), and b tagging efficiency and mistag rate (1.5%).
The uncertainty related to the multijet background subtrac-
tion is estimated by evaluating two effects. The subtracted
tt, W+jets, and Z+jets contaminations are varied by 50%. In
addition, we assign an uncertainty to the assumption that the
M3 shape does not vary in different regions of relative lepton
isolation, by repeating the analysis in six different intervals
of the relative lepton isolation.

9 Summary

A measurement of the tt production cross section at
√
s =

8 TeV is presented, using the data collected with the CMS
detector and corresponding to an integrated luminosity of
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19.6 fb−1. The analysis is performed in the tt lepton+jets
decay channel with one muon or electron and at least four
jets in the final state with at least one b-tagged jet. The tt cross
section is extracted using a binned maximum-likelihood fit
of templates from simulated events to the data sample. The
results from the two lepton+jets channels are combined using
the BLUE method.

Techniques based on control samples in data are used to
determine the b tagging efficiency and to calibrate the jet
energy scale. These techniques allow for a better determina-
tion of the corresponding systematic uncertainties, particu-
larly for the JES, which is a dominant source of experimental
uncertainty.

In the kinematic range defined in the simulation with
exactly one muon, or electron, with pT > 32 GeV and
|η| < 2.1, one neutrino with pT > 40 GeV, and at least
four jets with pT > 40 GeV and |η| < 2.5, the measured
visible tt cross section at

√
s = 8 TeV is 3.80 ± 0.06 (stat) ±

0.18 (syst) ± 0.10 (lumi) pb.

Using the MadGraph generator for the extrapolation to
the full phase space, the total tt cross section at 8 TeV is
228.5 ± 3.8 (stat) ± 13.7 (syst) ± 6.0 (lumi) pb. The result of
an alternative analysis, which makes use of the observable
M3, is in good agreement with this value.

Furthermore, the analysis performed using data at
√
s =

7 TeV, yields a total cross section measurement of 161.7 ±
6.0 (stat) ± 12.0 (syst) ± 3.6 (lumi) pb. The measured cross
section ratio, where a number of experimental uncertainties
cancel out, is 1.43 ± 0.04 (stat) ± 0.07 (syst) ± 0.05 (lumi).

All measurements are in agreement with the NNLO the-
oretical predictions.
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