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Abstract:
This paper describes the use of spatially-sparse inputs to influence global changes in the behavior
of Dynamic Movement Primitives (DMPs). The dynamics of DMPs are analyzed through
the framework of contraction theory as networked hierarchies of contracting or transversely
contracting systems. Within this framework, sparsely-inhibited rhythmic DMPs (SI-RDMPs) are
introduced to both inhibit or enable rhythmic primitives through spatially-sparse modification
of the DMP dynamics. SI-RDMPs are demonstrated in experiments to manage start-stop
transitions for walking experiments with the MIT Cheetah. New analytical results on the
coupling of oscillators with diverse natural frequencies are also discussed.

Keywords: Dynamic movement primitives, central pattern generators, contraction analysis,
nonlinear oscillators, legged locomotion, networked systems.

1. INTRODUCTION

There is a growing body of evidence that motor primitives
may form the basis for a rich set of sensorimotor skills in
humans and animals (Mussa-Ivaldi et al., 1994; Bizzi et al.,
1995; Rohrer et al., 2004; Hogan and Sternad, 2012). From
walking to grasping, the composition of primitive attrac-
tors could provide robustness as behaviors are generalized
and recycled from past experience. Primitives may, in a
sense, represent a compression of experience, capturing
accumulations of knowledge that may be drawn on to sim-
plify online control. This use of motor primitive techniques
in biological systems would be well supported by the un-
derlying nature of evolutionary change. Indeed, evolution
necessarily proceeds through the accumulation of stable
intermediate states (Simon, 1962), building upon existing
functional frameworks through stably layered complexity.

The use of dynamic movement primitives (DMPs) (Ijspeert
et al., 2012) has sought to embody these principles for the
development of sensorimotor skills in robotics. Dynamic
movement primitives are systems of coupled ordinary dif-
ferential equations that represent a target attractor land-
scape for robot motion. The attractor landscapes can be
learned through demonstration (Ijspeert et al., 2002) or
crafted through manual design. The landscapes of DMPs
may represent attractors for a wide range of rhythmic and
discrete movements (Schaal, 2006; Pastor et al., 2009).

Rhythmic DMPs are closely related to the mimicry of
biological Central Pattern Generators (CPGs) (Marder
and Bucher, 2001) within robotics (Ijspeert, 2008). A
hallmark of CPGs in biological systems is that a low-
dimensional set of inputs can be used to orchestrate co-
ordinated patterns of high-dimensional oscillatory motor
control signals. Stable oscillations of Andronov-Hopf os-
cillators (Chung and Slotine, 2010) have been employed

for pattern generation in bioinspired control of locomo-
tion in air (Chung and Dorothy, 2010) and water (Seo
et al., 2010). Stable phase oscillators (Ajallooeian et al.,
2013b) have been supplemented with sensorimotor feed-
back to stabilize quadrupedal locomotion (Ajallooeian
et al., 2013a; Barasuol et al., 2013). Across these results,
low-dimensional inputs are capable to smoothly reshape
high-dimensional target behaviors for dynamic machines.

Despite the popularity of DMP/CPG frameworks, anal-
ysis of couplings between coordinated primitive modules
has largely been lacking in the literature. Contraction
analysis (Lohmiller and Slotine, 1998) provides modular
stability tools which may help to guide the architecture
of more flexible and robust DMP/CPG frameworks. A
preliminary analysis of discrete DMPs through contraction
theory was provided in (Perk and Slotine, 2006), with new
analysis in this paper using transverse contraction theory
(Manchester and Slotine, 2014b; Tang and Manchester,
2014). Contracting systems are characterized by an expo-
nential forgetting of initial conditions, providing a notion
of stability without committing in advance to a particular
trajectory. Such a notion is desirable from a practical
standpoint, as success in situations form grasping a cup
to running down a cliff are hardly characterized by unique
solutions.

The composition of primitive contracting systems suggests
a promising approach for robust online synthesis from off-
line knowledge (Lohmiller and Slotine, 1998; Perk and
Slotine, 2006; Slotine and Lohmiller, 2001; Manchester
et al., 2015). As we will see, contracting systems provide
an abstraction of their performance, namely a contrac-
tion metric, contraction rate, and associated contraction
region, which compactly characterize properties and ro-
bustness of composition. Contraction metrics, which guide
online control, might be learned offline through drawing on
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experience, or through evolution, enabling application in
systems beyond the limitations of current control synthe-
sis tools. Experiments in learning stable attractors from
demonstration (Khansari-Zadeh and Billard, 2011) can be
cast as convex problems through a contraction viewpoint
(Ravichandar and Dani, 2015). This suggests that a notion
of motor stability resembling contraction could guide a
form of sensorimotor learning with favorable convergence.

These burgeoning extensions of contraction analysis of-
fer an opportunity to understand and extend seemingly-
complex robot control frameworks. The main contribu-
tions of this paper are to provide an analysis of Dynamic
Movement Primitives (DMPs) within the framework of
contraction and to introduce a new functional tool for
DMPs through spatially-sparse inhibition. Contraction
analysis of DMPs provides new results related to scal-
ing primitives in space through general diffeomorphisms,
on the stability of rhythmic DMPs in general networked
combinations, and robustness to parameter heterogeneity
in coupled oscillators. Aside from using low-dimensional
inputs to shape rhythmic high-dimensional behavior, we
show that DMPs can be globally shaped through spatially-
sparse modification to the DMP vector fields. This exten-
sion, which we call sparsely-inhibited DMPs (SI-DMPs) is
used to manage start/stop transitions for phase oscillators
in locomotion experiments with the MIT Cheetah robot.

The paper is organized as follows. Section 2 presents
DMPs and draws on commonality across varied implemen-
tations in the literature. Section 3 provides preliminaries
on contraction analysis, which are then used to analyze
the stability of DMPs. Section 4 builds on this analysis
with an extension to sparsely inhibit Rhythmic DMPs.
Section 5 presents the validation of these results to inhibit
oscillations that drive locomotion in a walking gait for the
MIT Cheetah robot. A short discussion and concluding
remarks are provided in Section 6.

2. DYNAMIC MOVEMENT PRIMITIVES

Dynamic movement primitives (Ijspeert et al., 2012) are
systems of ordinary differential equations which can be
used to generate target kinematic behaviors for robotic
systems. While there are many implementations of DMPs
within the literature, a single DMP (i.e. not coupled to
any others) is generally structured as a hierarchy of three
separate systems: a reference system, canonical system,
and transformation system (Ijspeert et al., 2012). We begin
by providing examples of these systems in the literature,
and then describe their common general properties.

2.1 Discrete (Point-To-Point) Motion Primitives

Discrete DMPs encode point-to-point motions, shaping
both the behavior of the kinematic targets, as well as
transients along the approach. Letting g represent a goal
configuration, the state (y, ẏ, x) ∈ R3 of a point-to-point
DMP may be chosen to evolve as (Ijspeert et al., 2012)

τ ÿ = k(g − y)− bẏ + f(x) (1)

τ ẋ = −αxx (2)

where k ∈ R+, b ∈ R+ provide spring and damper values
for a desired attractor towards the goal g, τ ∈ R+ a

temporal scaling factor and f(x) a forcing function. The
variables (y, ẏ) encode a position and velocity for the
output of the DMP, while x is a phasing variable which
smoothly decays to zero. The forcing function f(x) can
shape the transient behavior through phased-based forcing
through Gaussian basis functions

f(x) =

∑
i Φi(x)wi∑
i Φi(x)

x, Φi(x) = exp

(
− (x− ci)2

2σ2
1

)
(3)

It is common to learn weights wi for these forcing functions
through demonstration (Ijspeert et al., 2012), with learn-
ing accomplished through least-squares methods. In order
to increase smoothness of the output, reference systems
may be employed to filter external commands, for instance
with an externally provided goal gext(t)

ġ = αg(gext(t)− g) . (4)

Beyond translating the goal, adjustable attractor land-
scapes through spatial and time-based scaling have been
sought as key characteristics within implementations of
DMPs (Ijspeert et al., 2012).

Consistent with the literature (Ijspeert et al., 2012) (1)
is called a transformation system while (2) is called a
canonical system. The role of the canonical system is
to provide a notion of phase, while the transformation
system uses the phase to shape the attractor landscape.
Rhythmic primitives generalize this framework through
the inscription of oscillations into the canonical system.

2.2 Rhythmic Motion Primitives

Letting x = (x1, x2) ∈ R2, represent a new canonical
system state, a choice for rhythmic DMP dynamics is

τ ÿ = k(g − y)− bẏ + f(x) (5)

τ ẋ1 = ωx2 + ρ(r2 − x21 − x22)x1 (6)

τ ẋ2 = −ωx1 + ρ(r2 − x21 − x22)x2 (7)

The ẋ = fx(x) dynamics in (6)-(7) are a stable Andronov-
Hopf oscillator at radius r. 1 The forcing function f(x)
provides phase-dependent forcing through von Mises bases

f(x) =

∑
i Φi(θ(x))wT

i∑
i Φi(θ(x))

x, Φi(θ) = exp

(
cos(θ − θi)− 1

2σ2
1

)
where the angle of x denoted θ(x) = atan2(x2, x1). Filters
similar to (4) may be added to smoothly shape references,
such as the nominal center of oscillation g or the oscillation
amplitude r, in response to changes in external reference.

2.3 Commonalities

Across these examples, and across the literature, there is
a great deal of commonality in the varied implementations
of DMPs. As highlighted previously, we can typically
decompose each DMP into three separate subsystems:

ṙ = fr(r, rext) (Reference System) (8)

ẋ = fx(x, r) (Canonical System) (9)

ẏ = fy(x,y, r) (Transformation System) (10)

where r ∈ Rnr the reference state, rext ∈ Rnr an exter-
nal command, x ∈ Rnx the canonical (phase) state, and

1 This definition differs slightly from previous canonical systems in
polar coordinates (r, θ) (Ijspeert et al., 2012). A stable limit cycle for
x simplifies analysis for rhythmic DMPs here.



y ∈ Rny the transformed output. Within the categoriza-
tions provided by contraction theory, reference systems are
contracting in r, canonical systems are transversely con-
tracting in x, and transformation systems are contracting
in y. The next section provides more precise definitions of
these terms and details the implications for architecting
complex networks of DMPs.

3. CONTRACTION ANALYSIS OF DMPS

3.1 Contraction Preliminaries

Consider an system with state x ∈ Rn and dynamics

ẋ = f(t,x) . (11)

Given an initial condition x at time t = 0, x(t) denotes
the flow along (11) for t seconds. We define

A(t,x) =
∂f

∂x

∣∣∣∣
x(t)

(12)

with its symmetric part As = 1
2

(
A + AT

)
. For a sym-

metric matrix Q ∈ Rn×n we define its eigenvalues in non-
increasing order λ1(Q) ≥ λ2(Q) ≥ · · · ≥ λn(Q). We note
that A(t,x) defines a linear time-varying system on virtual
displacements δx around x(t) according to δẋ = A(t,x)δx.

Definition 1. (Lohmiller and Slotine, 1998) A system is
said to be contracting in a forward invariant region C if
any two solutions of (11) from different initial conditions
converge to one another exponentially. Contraction can be
characterized by the existence of a symmetric, uniformly
positive definite metric M(t,x) : R × C → Rn×n and a
contraction rate λ > 0, such that

Ṁ + AT M + M A ≤ −2λM

for all t ∈ R and x ∈ C.

Contraction metrics provide a differential change of vari-
ables for the differential dynamics. Given a metric M(t,x),

a smooth factorization of M(t,x) = ΘT (t,x)Θ(t,x) with
Θ(t,x) ∈ Rn×n provides a differential change of basis

δz(t) = Θ(t,x) δx(t) .

Contraction conditions in δx coordinates
d

dt
δxTMδx = δxT

(
Ṁ + ATM + MA

)
δx (13)

≤ −2λδxTMδx (14)

are equivalent to the following in δz:

d

dt
δzT δz = 2δzTFsδz ≤ −2λδzT δz (15)

where F =
(
ΘA + Θ̇

)
Θ−1 is called a generalized Jaco-

bian of A associated with the differential change of coor-
dinates Θ. Thus, the contraction conditions are equivalent
to the existence of a differential change of coordinates
Θ such that λ1(Fs) ≤ −λ. As a matter of convention,
contraction rates λ will be expressed as positive numbers,
and the eigenvalues of the associated generalized Jacobian
uniformly negative.

All of the above results apply to the use of the Eu-
clidean norm to characterize convergence. This can be
generalized (Lohmiller and Slotine, 1998). Take any norm
| · | : Rn → R, with its induced norm denoted ‖ · ‖. The

associated matrix measure µ is defined as µ(A) =
limh→0+

1
h (‖I + hA‖− 1), originally introduced in (Lozin-

skii, 1959; Dahlquist, 1959). See (Vidyasagar, 2002) for a
more current treatment and (Desoer and Haneda, 1972)
for relevant early applications. Under the Euclidean norm,
λ1(Fs) ≤ −λ is equivalent to µ(F) ≤ −λ. More generally
a system is contracting if there exists a matrix measure
such that µ(F) ≤ −λ. It is important to emphasize that
the freedom in norm is separate from and in addition to the
freedom in metric when it comes to obtaining contraction
certificates. Throughout the manuscript, unless otherwise
specified, the Euclidean norm is assumed.

For systems which possess orbits, such as Rhythmic DMPs,
perturbations in phase are persistent in time and thus can-
not be contracting. However, relaxing contraction along
the flow the of the system provides a useful related prop-
erty of Transverse Contraction.

Definition 2. (Manchester and Slotine, 2014b) An au-
tonomous system is said to be transverse contracting in
a compact, strictly forward invariant region K if any two
solutions of (11) from different initial conditions converge
to one another exponentially up to a monotonic reparame-
terization of time. Transverse contraction is characterized
by the existence of a time-invariant symmetric, uniformly
positive definite metric M(x) : K → Rn×n and a contrac-
tion rate λ > 0. Such that

δxT
(
Ṁ + AT M + M A + +2λM

)
δx ≤ 0 (16)

for all x ∈ K and for all δx 6= 0 with f(x)TM(x)δx = 0.

Intuitively, (16) relaxes the contraction condition along
the vector field f(x) by enforcing that only displacements
transverse to the flow need be contracting. A main im-
plication of a system being transverse contracting applies
when the region K does not have an equilibrium.

Proposition 1. (Manchester and Slotine, 2014b) If f(x) 6=
0 for all x ∈ K and f transverse contracting on K, then the
solution to (11) from any initial condition in K approaches
a unique limit cycle.

Theorem 1. Suppose the system (11) is autonomous and
has a compact transverse contraction region K. Then there
exists a differential change of coordinates δy = Θ(x)δx
such that its generalized Jacobian F satisfies λ1(Fs) = 0
and λ2(Fs) < 0 uniformly.

Proof. See Appendix A.

3.2 Scaling in Space and Time

A central requirement of DMPs is an ability to scale
primitives in space and time (Ijspeert et al., 2012). A con-
traction viewpoint readily provides a new result towards
a general class of system scaling operations. Assume a
transformation system ẏ = fy(y,x, r) contracting in y
under metric M(y,x, r), and a smooth diffeomorphism
y′ = T(y). Letting J = ∂T

∂y , time-scaled dynamics for y′

can be formed to follow

τ(t) ẏ′ = J(y) fy(y,x, r)|y=T−1(y′) (17)

with τ(t) > 0 uniformly. This system is contracting in y′

under metric M′ = J−TMJ−1. An analogous result holds
for a diffeomorphism applied to a transverse contracting



system. Scaled primitives in time and in space have been
pursued to shape transformation systems in R2 and R3

(Ijspeert et al., 2012). The above result suggests this
approach can be employed more broadly to shape DMP
dynamics on Rn. For instance, given a an Andronov-
Hopf oscillator in R2 with appended state dynamics ẋ3 =
−x3, . . . , ẋn = −xn, this transverse contracting system
in Rn could be sought to provide a target canonical
limit cycle in an n-DoF robot arm through design of a
diffeomorphism T.

A useful special case of the above result pertains to ho-
mogeneous transformations with scaling. When T(y) =
sRy + yT, for R ∈ SO(ny), s ∈ R+, yT ∈ Rny , the
entire attractor landscape for y undergoes rotation, scal-
ing, and translation when applied to y′. Thus, contracting
systems can be viewed in a sense as mother systems,
akin to wavelets, with scaling in space and time providing
contracting daughter systems. Additive copies of differ-
ent daughter systems could be be sought, similar to the
linear combinations of primitive attractors found in frogs
(Mussa-Ivaldi et al., 1994; Slotine and Lohmiller, 2001). In
this light, a contraction viewpoint may also allow primi-
tives to be used for multi-scale approximations of attractor
dynamics, providing bases for the coarse and fine grains of
motion in a precise theoretical context. The optimization
of such multi-scale transformations, as opposed to learning
underlying contracting dynamics themselves, presents a
new area for study in DMP learning.

3.3 Combination Properties

Contracting systems possess useful compositional proper-
ties, retaining contraction through system combinations
such as parallel interconnections, hierarchies, and certain
classes of negative feedback (Lohmiller and Slotine, 1998).
Combinations of transverse contracting and contracting
systems enjoy similar properties in certain cases (See
Manchester and Slotine (2014b) for details). We state three
results which will simplify the stability analysis of DMPs.

Proposition 2. (Lohmiller and Slotine, 1998) If f1(t,x1)
contracting, and f2(t,x2,x1) contracting for each fixed
x1, then the hierarchy ẋ1 = f(t,x1), ẋ2 = f(t,x2,x1) is
contracting.

Proposition 3. (Manchester and Slotine, 2014b) If f1(x1)
contracting, and f2(x2,x1) transverse contracting for each
fixed x1, then the hierarchy ẋ1 = f(x1), ẋ2 = f(x2,x1) is
transversely contracting.

Proposition 4. (Manchester and Slotine, 2014b) If f1(x1)
transverse contracting, and f2(x2,x1) contracting for each
fixed x1, then the hierarchy ẋ1 = f(x1), ẋ2 = f(x2,x1) is
transversely contracting.

3.4 Contraction Analysis of DMPs

Discrete DMPs such as (1)-(2) employ a canonical system
that is exponentially stable – and thus contracting. We
introduce the following generalization.

Theorem 1. Assume a discrete DMP wherein (8) is con-
tracting in r, (9) contracting in x, and (10) contracting in
y. Then the overall hierarchy (8)-(10) is contracting.

Canonical
System

Reference
System

Transformation 
System

Canonical
System

Reference
System

Transformation 
System

Rhythmic DMPs

Discrete DMPs

Transverse Contracting Contracting

Fig. 1. Contraction analysis readily admits stability spec-
ifications for discrete and rhythmic DMPs.

Proof. In the spirit of Perk and Slotine (2006). Applying
Proposition 2 to (8) in hierarchy with (9) shows that (8)-
(9) is contracting jointly in r,x. Repeated application of
this system in hierarchy with (10) provides the desired
result. This is sketched in Figure 1. 2

A similar result holds in the case of rhythmic DMPs,
wherein a transverse contracting canonical system perco-
lates the transverse contraction property to the rhythmic
DMP as a whole. Its proof follows Thm. 1, except using
Propositions 3 and 4. This result is depicted in Figure 1.

Theorem 2. Assume a rhythmic DMP wherein (8) is con-
tracting in r, (9) transverse contracting in x, and (10)
contracting in y. Then, for a fixed external reference rext
the overall hierarchy (8)-(10) is transverse contracting.

In the case of N coupled DMPs (rhythmic or discrete),
assume a single reference vector r, with canonical states
x = {x1, . . . , xN}, and transformation states y =
{y1, . . . , yN}. Theorems 1 and 2 can be used to assert
contraction for the coupled attractors. We discuss the case
of CPGs to illustrate the application of this result.

CPGs can be interpreted to represent a network of rhyth-
mic DMPs with coupling exclusively through phase vari-
ables x. Assuming a common reference vector r for N
DMPs, as shown in Fig. 2 for N = 4, coupled diffusively
through their phase variables x1, . . . ,xN . Assume further
that coupling occurs through neighbors Ni according to:

ṙ = fr(r, rext) (18)

ẋi = fx(xi, r) +
∑
j∈Ni

Kij(xj − xi) (19)

ẏi = fyi(yi,xi, r) (20)

for some set of gains matrices with each Kij = Kji and
(Kij)s > 0 . When fx is an Andronov-Hopf oscillator as
in (6)-(7) with gains Kij = kI, the canonical systems
are guaranteed to asymptotically synchronize (Chung and
Slotine, 2010) (i.e. x1 = · · · = xN ). Combining syn-
chronization results from Wang and Slotine (2005) with
contraction results from Manchester and Slotine (2014b)
allows this result to be generalized.

Theorem 3. Assume a network of N rhythmic DMPs (18)-
(20) whose individual uncoupled dynamics (fr, fx, fyi) sat-
isfy the assumptions of Thm. 2. Let Ai = ∂fx/∂x|xi

and
LK the symmetric part of the weighted block-Laplacian
matrix (Wang and Slotine, 2005) from the graph G with
edges ∪i{i} × Ni. If G is connected and
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Fig. 2. Network of coupled rhythmic DMPs with common
reference system (R), coupled canonical systems (C),
and transformation systems (T).

λN+1(LK) > maxiλmax(Ais) (21)

uniformly, then (18)-(20) is transverse contracting.

Proof. Graph connectivity and (21) guarantee asymp-
totic synchronization of canonical states (Wang and Slo-
tine, 2005). Transverse contraction of the reduced system
ż = fx(z, r) (to which each xi converge) implies transverse
contraction of the coupled systems. Thm. 2 then ensures
transverse contraction for the coupled DMPs. 2

Remark 1. Note that the requirement of a common ref-
erence system in Thm. 3 satisfies input-equivalence con-
ditions from previous synchronization studies (Pham and
Slotine, 2007). The results on combination properties from
this previous work could be pursued to analyze couplings
between yet other modules in the DMP network.

Remark 2. Suppose V ∈ Rn(N−1)×nN with orthonormal
rows, such that its nullspace represents the synchroniza-
tion subspace for the x dynamics. Then (21) can be
phrased equivalently as maxi µ(Ai) + µ(−VLKVT ) < 0.
This follows from (Russo and Slotine, 2011, Theorem 3)
and the fact that µ(A+B) ≤ µ(A) +µ(B) for any matrix
measure. Recent work (Davison et al., 2016) has shown
that, in comparison to a Euclidean contraction analysis,
nonsmooth Lyapunov analysis can achieve tighter critical
coupling strength bounds within certain parameter ranges
for coupled neural oscillator models. This suggests that
a practitioner may consider the conditions maxi µ(Ai) +
µ(−VLKVT ) < 0 under different norms to limit required
coupling gains. See also (Russo et al., 2013) for a more gen-
eral discussion on matrix measures for contraction analysis
of networked systems.

3.5 Coupled Oscillators with Multiple Frequencies

Contraction analysis also sheds light onto the case when
heterogeneous canonical oscillators with multiple frequen-
cies are coupled in networked combinations. When cou-
pling systems to the physical world, natural passive dy-
namics of compliant mechanisms (Williamson, 1999) or
low-level control loops (Seo et al., 2010) might be fixed.
The coupling of these systems with CPG oscillators re-
quires reasoning about coupled heterogeneous oscillators.
Despite empirical observations on the robustness of such
couplings to heterogeneity (Seo et al., 2010), analytical
results are largely lacking. We provide a brief discussion
below which shows the capability of tools from transverse
contraction to describe these phenomena. The implications
of these results extend beyond robotics, and e.g., may

illuminate entrainment mechanisms when driving spiking
neurons, as in (Mainen and Sejnowski, 1995).

Assume that the feedback-coupled oscillators (19) are not
identical, but instead are each parameterized continuously
by parameters ωi ∈ P.

ẋi = fx(xi, r,ωi) +
∑
j∈Ni

Kij(xj − xi) (22)

It is assumed that each uncoupled system ẋi = fx(xi, r,ωi)
is transverse contracting for ωi ∈ P.

Proposition 5. Assume a nominal parameter selection
ω0 ∈ int(P) such that, when each ωi = ω0, the coupled
canonical systems (22) are transverse contracting with
rate λ > 0 under a metric M(x) in a region K with no
equilibria. Then, there exists an open set W ⊂ P such
that ω0 ∈ W and, if each ωi ∈ W then the coupled
heterogeneous oscillators (22) are transverse contracting
on K under M(x). The coupled system asymptotically
approaches a unique limit cycle O with period T > 0.

Proof. Transverse contraction is a topologically open con-
dition, with transverse contraction rate λ > 0 uniformly
on the compact strictly forward invariant region K. The
condition that the coupled oscillators with ωi = ω0 have
no equilibrium on K is also an open condition. Thus, if
fx(xi, r,ωi) depends continuously on ωi, there is an open
set W containing ω0 such that when each ωi ∈ W, 1) K
remains forward invariant, 2) transverse contraction condi-
tions under M(x) hold with rate ελ for some ε > 0, and 3)
the coupled heterogeneous oscillators have no equilibrium
in K. When each ωi ∈ W, Proposition 1 guarantees a
unique limit cycle O with common period T > 0. 2

Intuitively, this result is reminiscent of how contraction at
a point can be extended to contraction within a guaranteed
basin of attraction (Lohmiller and Slotine, 1998).

Note that when each ωi ∈ W, each xi is bounded due
to forward invariance of K. Thus, the mismatch di =
fx(xi, r,ωi)− fx(xi, r,ω0) remains bounded. Viewing the
heterogeneous oscillators with ωi 6= ω0 as a disturbance
on the case when each ωi = ω0,

ẋi = fx(xi, r,ω0) +
∑
j∈Ni

Kij(xj − xi) + di (23)

Let d = {d1, . . . ,dN} collect the disturbances and suppose
supt |d(t)| = d. Robustness results from Wang and Slotine
(2005) guarantee the existence of r > 0 (dependent on
M alone) such that all |xj − xi| ≤ r

λd after exponential
transient. This implies that as gains Kij are increased,
synchronization errors can be made arbitrarily small.

Transverse contraction analysis allows for us to further
assert a region where the limit cycleO must reside. Assume
a transverse contracting system with rate λ subject to
disturbance d. It is straightforward to show, using Euler-
Lagrange conditions on the geodesics underlying M(x)
(Singh et al., 2017), that any perturbed trajectory stays
within a tube of radius R

λ d around its unperturbed tra-
jectory. Again, R > 0 depends on M alone. This result
is stated formally and proved in Appendix A.2. Thus, for
parameters near the homogeneous parameter set, the limit
cycle O for the heterogeneous oscillators varies continu-
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Fig. 3. Left: Uncoupled heterogeneous Van der Pol oscilla-
tors with ẋi1 = xi2 and ẋi2 = −ω2

i xi1 +µi(1−xi1)xi2.
Right: With diffusive coupling Kij = diag(4, 4). New
results guarantee a common period for changes in pa-
rameter heterogeneity within an open set, and conti-
nuity of the resulting periodic orbit across parameters.

ously. Figure 3 shows an example of coupling heteroge-
neous Van der Pol oscillators. Coupled oscillators reach a
common period despite significant heterogeneity.

Remark 3. It is interesting to note that transverse con-
traction on a simply connected K implies contraction on
K (Manchester and Slotine, 2014a) due to results from
(Leonov et al., 1996, Thm. 3.1) and (Manchester and Slo-
tine, 2014b, Thm. 4). Thus, for parameter changes beyond
W, the coupled system may remain transverse contracting
but on a new, and simply connected region. In this case,
parameter differences result in contracting behavior. Thus,
since the system is autonomous, it will tend towards a
unique equilibrium.

4. SPARSELY-INHIBITED RHYTHMIC DMPS

We have seen that DMPs allow a sparse set of reference
inputs rext to effectively shape the high-dimensional at-
tractor landscape of discrete and rhythmic DMPs. This
sections builds towards the ability switch between rhyth-
mic and discrete DMPs through only spatially-sparse mod-
ification to the vector fields of the canonical system.

4.1 Local Influence of Contracting Dynamics

Here we show that if a transverse contraction region
contains a contraction region, then all trajectories tend to
a unique equilibrium. This will be a motivating mechanism
in sparse control of transverse contraction.

Theorem 4. Consider an autonomous system. Let K a
transverse contraction region and C a contraction region.
Furthermore, assume that K ∩ C 6= ∅. Then, within
K ∪ C there is a unique equilibrium x∗. Such x∗ satisfies
x∗ ∈ K ∩ C and the solution from any initial condition
x0 ∈ K ∪ C satisfies x0(t)→ x∗ exponentially as t→∞.

Proof. Since C contracting, there is a unique equilibrium
x∗ contained in C. Furthermore, the solution from any ini-
tial condition xc ∈ C∩K satisfies xc(t)→ x∗ exponentially

as t→∞. Since K strictly forward invariant, this implies
that x∗ ∈ C ∩K. In addition, by K transverse contracting,
there exists a strictly monotonic reparameterization of
time κ(t) such that the solution from any initial xk ∈ K
satisfies xk(t)→ x∗(κ(t)) = x∗ exponentially. 2

Remark 4. This theorem may be combined with contrac-
tion tools for sequential composition methods (Burridge
et al., 1999; Tedrake et al., 2010) as proposed in (Slotine
and Lohmiller, 2001). All states in the outer contraction
region K are funneled to states in an inner contraction
region C in the above theorem. In this spirit, a discrete set
of controllers i = 0, . . . , nc which provide nested regions
Ci ⊂ Ki could be sought to guide controller switching. If
each Ci ⊂ Ki+1, then for any initial condition x ∈ K0 a
nesting of the above theorem ensures the existence of a
switching sequence which transports x(t) to Cnc . Contrac-
tion metrics may represent a more flexible alternative to
Lyapunov-based characterizations of composability, as ex-
isting Lyapunov-based methods rely on explicit reference
trajectories.

With this theorem as motivation, we consider how the ad-
dition of a contracting vector field influences a transverse
contracting system.

Proposition 6. Assume two vector fields ẋ = f1(x) and
ẋ = f2(x) such that f2 renders a compact region C
contracting with rate λ2 under a metric M(x). Then, there
exists some α0 > 0 such that for all α > α0 the vector field
ẋ = f1(x) + αf2(x) is contracting on C under M.

Proof. Let f = f1 + αf2 for α > 0. Then

Ṁ + ATM + MA ≤ ∂M

∂x
· f1 + AT

1 M + A1M− 2αλ2M

since f2 contracting under M with rate λ2. Let

β = inf

{
b ∈ R | ∀x ∈ C, ∂M

∂x
· f1 + AT

1 M + A1M < bM

}
Letting α0 = β

2λ2
it follows that any α > α0 renders f1+αf2

contracting on C under M. 2

4.2 Application to Sparse Inhibition of Rhythmic DMPs

Proposition 6 can be used to sparsely inhibit networks of
rhythmic DMPs. Assume a network as (18)-(20) with cou-
pling only through canonical variables x = {x1, . . . ,xN}.
Also assume that the network satisfies the assumptions of
Thm. 3. The coupled canonical dynamics for x decompose
into the sum of a nominal transversely contracting com-
ponent and a semi-contracting coupling component

d

dt
x = Fx(x, r)− L x

where Fx = {fx(x1, r), . . . , fx(xN , r)} and L is the block-
Laplacian matrix of the network satisfying Ls = LK as
defined previously. Note that LK is positive semi-definite
quantity, and due to connectedness of the graph, LKx = 0
iff x1 = · · · = xN . Assume now that an additional
influence g(x1), contracting in the identity metric, is added
to the dynamics for ẋ1. Then

d

dt
x = Fx(x, r)− L x + [g(x1)T ,0, . . . ,0]T (24)

Letting finh = −L x + [g(x1)T ,0, . . . ,0]T , examining the
symmetric part of the Jacobian in x reveals:



Fig. 4. SI-DMPs are applied to provide rhythmic oscilla-
tions for a four-beat amble gait.

δxT
∂finh
∂x

δx = −δxTLKδx + δxT1

(
∂g

∂x1
+

∂g

∂x1

T
)
δx1

Yet, since g contracting under the identity metric, the
above is negative definite. Thus finh is contracting.

Intuitively, a connected network topology allows contrac-
tion for a single node to percolate to contraction for the
coupled network. In this light, (24) decomposes as the sum
of a transverse contracting vector field with a contracting
vector field. Prop. 6 thus ensures that for strong enough
coupling gains and a strong enough influence of g(x1),
the entire coupled transversely contracting network will
transform into a contracting network through influence
of g(x1) alone. Indeed, since the transverse contraction
conditions admit a unique orbit, such influence can be
activated locally, anywhere along the orbit, in order to
capture the oscillations of the entire network.

With this general networked systems view, sparse control
could likely be applied to other contexts as well, for
instance to modulate biochemical oscillations in the brain
(Mainen and Sejnowski, 1995; Canter et al., 2016). When
oscillations follow predictable patterns, spatially sparse
control allows the natural dynamics of the system to
provide convergence to a desired area before expending
effort. Such mechanisms could potentially offer energetic
benefits in the application of inhibition in biochemical
processes.

Remark 5. The ability to sparsely influence the qual-
itative behavior of large networks is also reminiscent
of leader-follower networks and oscillator death through
topologically-sparse network modification (Wang and Slo-
tine, 2005). The behavior of coupled oscillators have also
shown an ability to inhibit or incite oscillations through
temporally-sparse forcing (Gérard and Slotine, 2006).

Remark 6. The conditions of a bidirectional coupling
Kij = Kji can be relaxed to consider directional couplings
in the case that Kij = K = KT > 0 for a fixed K. The
sparse inhibition result holds if all nodes are reachable
from the inhibited node (Caughman and Veerman, 2006).

5. EXPERIMENTS WITH THE MIT CHEETAH

This section describes experiments using SI-DMPs with
the MIT Cheetah robot. The MIT Cheetah is a quadrupedal
robot driven by brushless DC-electric motors capable of
force-controlled operation with an ability to render ground

reaction forces at rates of up to 100 Hz (Wensing et al.,
2016). These actuator capabilities and simple-model-based
control enable the Cheetah to bound at speeds of up to 6
m/s (Park et al., 2017) and to autonomously jump over ob-
stacles (Park et al., 2015). Moving towards a more diverse
set of gaits, the use of CPGs provides a promising method
to stabilize the gait pattern from step to step and to
smoothly transition this pattern between gaits. We report
here on the use of SI-DMPs to manage start-stop transi-
tions in a four-beat amble gait as show in Figure 4. A video
is provided online at https://youtu.be/v4d4CrKX1k0.

The reference system for the application of Rhythmic
DMPs consists of a desired speed v and turn rate γ. Both
are provided through a first-order low-pass filter

v̇ = αr(vext − v) (25)

γ̇ = αr(γext − γ) (26)

Four Andronov-Hopf oscillators are used for all-to-all
phase coupling with gains Kij = kI to synchronize the
leg phases. Rotational invariance of the Andronov-Hopf
dynamics admits a change of variables to encode the
desired phase offset φij

2 between each leg, which is
dependent on gait. Under such a change of variables, the
coupled canonical systems take the form

ẋi = fx(xi, r) +
∑
j∈Ni

Kij(R(φij)xj − xi) (27)

where R(φij) is a rotation matrix of angle φij . Three joints
per leg with angles θmi m ∈ {1, 2, 3} are controlled through
transformation systems according to phase-and-reference-
based goals gmθ and gm

θ̇

θ̈mi = km(gmθ (xi, r)− θmi ) + bm(gm
θ̇

(xi, r)− θ̇mi ) (28)

To approximate these dynamics, torques commanded to
the motors are selected as τmi = Jmi θ̈

m
i + τmi,fb where

Jmi is an estimated motor rotor inertia and τmi,fb(t) allows
external feedback coupling from body states. In practice,
these feedback torques are formed using a virtual model
controller (Pratt et al., 2001) as in previous work (Ajal-
looeian et al., 2013a). While their influence is important
for the overall control of the balance, the inclusion of these
terms is not expressly addressed through the present CPG
analysis. Their inclusion in analyzing postural stability
represents and important area of future work.

Figure 5 shows the application of Sparsely-Inhibited
Rhythmic DMPs to generate an amble gait in the MIT
Cheetah. At t = 108.3s, a contracting dynamic g(x1) =
kinh(x1,d − x1) is switched active for states with |x1,d −
x1| ≤ r0 with x1,d = [1, 0]T and r0 = 0.3. Figure 6 shows
the influence of this contracting dynamic on top of the
nominal Andronov-Hopf dynamics. Transverse contraction
of the uninhibited network guarantees that the state x1

reaches the region C, while switching on g(x1) when x1 in C
guarantees contraction of the network. At t = 112.4s, this
sparse influence is disabled, and high-dimensional oscilla-
tions resume. Figure 7 shows the canonical states across
this transition, with contraction through sparse inhibition,
and return to transverse contraction upon removal.

2 This approach holds under looser conditions that only require
rotational invariance of fx under rotations by φij for all (i, j) ∈ G.
That is, fx(xj , r) = R(φij)T f(R(φij)xj , r) ∀(i, j) ∈ G.
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Fig. 5. Target kinematics for hip and knee joints during an
amble gait with Sparsely-Inhibited Rhythmic DMPs.
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6. DISCUSSION

A number of additions to these frameworks could be natu-
rally pursued. As legged systems make a break contact
with the environment beyond laboratory settings, han-
dling environmental uncertainties is of paramount impor-
tance. Contact sensing, while not available in the current
experiments, could be integrated to synchronize footfall
timings despite touchdown perturbations. The robustness
properties of contracting systems (Lohmiller and Slotine,
1998) encourage the applicability of this method to handle
such inevitable disturbances in unstructured terrains.

Additional mechanisms to provide coupling from the trans-
formation systems in the canonical dynamics, as in (Seo
et al., 2010), could be studied to craft responses from
disturbances in challenging terrain. Individual limbs could
weakly inhibit oscillations, with voting from all limbs re-
quired to overcome the threshold of Prop. 6. More exactly,
given dynamics g1, . . . ,gN contracting in the identity met-

ric, nonnegative inhibition weights α1, . . . , αN could be
selected based on feedback such that

finh(x) = −L x + [α1g1(x1)T , . . . , αNgN (xN )T ]

in (24). Note that the contraction rate of finh increases
monotonically with each αi, allowing a consensus for
inhibition to render Fx(x, r) + finh contracting, even for
weak couplings L. Individual gains αi could be clamped
such that an effect of majority voting would be required
to inhibit oscillations. Voting may be pursued within the
context of winner take all networks (Rutishauser et al.,
2010) which admit principled analysis via contraction.
More broadly, decentralized feedback could be studied to
provide networks of inhibition. Cascades of inhibition are
found commonly in the brain (Pfeffer et al., 2013) perhaps
providing a universal building block for complex reasoning
akin to NAND-based logic.

A main challenge in the use of the DMPs for terrain
robust legged locomotion rests in addressing the role of
body-state feedback in the CPG dynamics. Indeed, the
current work does not reason about the contact forces
that the limbs are exerting on the world as they move,
and it is these contact forces which must be managed
to stabilize the body in more challenging scenarios. The
modular nature of contraction analysis provides promise
that this analysis could be addressed in stages, without
immediately requiring high-dimensional verification that
is beyond the range of existing tools.

ACKNOWLEDGEMENTS

The authors would like to thank Prof. Sangbae Kim for
use of the MIT Cheetah robot to conduct experiments.

REFERENCES

Ajallooeian, M., Pouya, S., Sproewitz, A., and Ijspeert,
A.J. (2013a). Central pattern generators augmented
with virtual model control for quadruped rough terrain
locomotion. In IEEE ICRA, 3321–3328.

Ajallooeian, M., van den Kieboom, J., Mukovskiy, A.,
Giese, M.A., and Ijspeert, A.J. (2013b). A general family
of morphed nonlinear phase oscillators with arbitrary
limit cycle shape. Physica D, 263, 41–56.

Barasuol, V., Buchli, J., Semini, C., Frigerio, M., Pieri,
E.R.D., and Caldwell, D.G. (2013). A reactive controller
framework for quadrupedal locomotion on challenging
terrain. In IEEE ICRA, 2554–2561.

Bizzi, E., Giszter, S.F., Loeb, E., Mussa-Ivaldi, F.A.,
and Saltiel, P. (1995). Modular organization of motor
behavior in the frog’s spinal cord. Trends Neurosci,
18(10), 442–446.

Burridge, R.R., Rizzi, A.A., and Koditschek, D.E. (1999).
Sequential composition of dynamically dexterous robot
behaviors. Int J Robot Res, 18(6), 534–555.

Canter, R.G., Penney, J., and Tsai, L.H. (2016). The
road to restoring neural circuits for the treatment of
alzheimer’s disease. Nature, 539(7628), 187–196. URL
http://dx.doi.org/10.1038/nature20412.

Caughman, J.S. and Veerman, J.J.P. (2006). Kernels of
directed graph laplacians. Elect J Combinatorics, 13.

Chen, L. and Slotine, J.J.E. (2012). Note on metrics in
contraction analysis. NSL report, MIT.



Chung, S.J. and Slotine, J.J. (2010). On synchronization
of coupled hopf-kuramoto oscillators with phase delays.
In IEEE Conf. on Decision and Control, 3181–3187.

Chung, S.J. and Dorothy, M. (2010). Neurobiologically
inspired control of engineered flapping flight. Journal of
Guidance, Control, and Dynamics, 33(2), 440–453.

Dahlquist, G. (1959). Stability and error bounds in the
numerical integration of ordinary sifferential equations.
Trans. Roy. Inst. Tech. Stockholm, 130.

Davison, E.N., Dey, B., and Leonard, N.E. (2016). Syn-
chronization bound for networks of nonlinear oscillators.
In 54th Annual Allerton Conferecence on Communica-
tion, COntrol and Computing.

Desoer, C. and Haneda, H. (1972). The measure of a
matrix as a tool to analyze computer algorithms for
circuit analysis. IEEE Transactions on Circuit Theory,
19(5), 480–486. doi:10.1109/TCT.1972.1083507.

Gérard, L. and Slotine, J.J. (2006). Neuronal networks
and controlled symmetries, a generic framework. eprint
arXiv:q-bio/0612049.

Hogan, N. and Sternad, D. (2012). Dynamic primitives of
motor behavior. Biol. Cybernetics, 106(11-12), 727–739.

Ijspeert, A.J. (2008). Central pattern generators for
locomotion control in animals and robots: A review.
Neural Networks, 21(4), 642 – 653.

Ijspeert, A.J., Nakanishi, J., Hoffmann, H., Pastor, P.,
and Schaal, S. (2012). Dynamical movement primitives:
Learning attractor models for motor behaviors. Neural
Computation, 25(2), 328–373.

Ijspeert, A.J., Nakanishi, J., and Schaal, S. (2002). Learn-
ing attractor landscapes for learning motor primitives.
In Advances in NIPS 15, 1547–1554. MIT Press.

Khansari-Zadeh, S. and Billard, A. (2011). Learning stable
nonlinear dynamical systems with gaussian mixture
models. IEEE Trans. on Robotics, 27(5), 943–957.

Leonov, G.A., Burkin, I.M., and Shepeljavyi, A.I. (1996).
Frequency Methods in Oscillation Theory, volume 357 of
Mathematics and Its Applications. Springer.

Lohmiller, W. and Slotine, J.J.E. (1998). On contraction
analysis for non-linear systems. Automatica, 34(6), 683–
696.

Lozinskii, S.M. (1959). Error estimate for numerical
integration of ordinary differential equations. i,. Izv.
Vtssh. Uchebn. Zaved. Mat., 5, 222–222.

Mainen, Z. and Sejnowski, T. (1995). Reliability of spike
timing in neocortical neurons. Science, 268(5216), 1503–
1506.

Manchester, I.R., Tang, J.Z., and Slotine, J.J. (2015).
Unifying classical and optimization-based methods for
robot tracking control with control contraction metrics.
In Proceedings of ISRR.

Manchester, I.R. and Slotine, J.J.E. (2014a). Combination
Properties of Weakly Contracting Systems. ArXiv e-
prints. arXiv:1408.5174.

Manchester, I.R. and Slotine, J.J.E. (2014b). Transverse
contraction criteria for existence, stability, and robust-
ness of a limit cycle. Sys. & Control Letters, 63, 32–38.

Manchester, I.R. and Slotine, J.E. (2015). Control con-
traction metrics: Convex and intrinsic criteria for non-
linear feedback design. CoRR, abs/1503.03144. URL
http://arxiv.org/abs/1503.03144.

Marder, E. and Bucher, D. (2001). Central pattern
generators and the control of rhythmic movements.

Current Biology, 11(23), R986 – R996.
Mussa-Ivaldi, F.A., Giszter, S.F., and Bizzi, E. (1994).

Linear combinations of primitives in vertebrate motor
control. PNAS, 91(16), 7534–7538.

Park, H.W., Wensing, P.M., and Kim, S. (2017). High-
speed bounding with the mit cheetah 2: Control design
and experiments. Submitted to Int J Robot Res.

Park, H.W., Wensing, P., and Kim, S. (2015). Online
planning for autonomous running jumps over obstacles
in high-speed quadrupeds. In Proc. of RSS.

Pastor, P., Hoffmann, H., Asfour, T., and Schaal, S. (2009).
Learning and generalization of motor skills by learning
from demonstration. In IEEE ICRA, 763–768.

Perk, B.E. and Slotine, J.J.E. (2006). Motion Primitives
for Robotic Flight Control. eprint arXiv:cs/0609140.

Pfeffer, C.K., Xue, M., He, M., Huang, Z.J., and Scanziani,
M. (2013). Inhibition of inhibition in visual cortex:
the logic of connections between molecularly distinct
interneurons. Nat Neurosci, 16(8), 1068–1076.

Pham, Q.C. and Slotine, J.J. (2007). Stable concurrent
synchronization in dynamic system networks. Neural
Networks, 20(1), 62 – 77.

Pratt, J., Chew, C.M., Torres, A., Dilworth, P., and Pratt,
G. (2001). Virtual model control: An intuitive approach
for bipedal locomotion. Int J Robot Res, 20(2), 129–143.

Ravichandar, H. and Dani, A. (2015). Learning contract-
ing nonlinear dynamics from human demonstration for
robot motion planning. In Proceedings of DSCC. ASME.

Rohrer, B., Fasoli, S., Krebs, H.I., Volpe, B., Frontera,
W.R., Stein, J., and Hogan, N. (2004). Submovements
grow larger, fewer, and more blended during stroke
recovery. Motor Control, 8(4), 472–483.

Russo, G., di Bernardo, M., and Sontag, E.D. (2013).
A contraction approach to the hierarchical analysis
and design of networked systems. IEEE Transac-
tions on Automatic Control, 58(5), 1328–1331. doi:
10.1109/TAC.2012.2223355.

Russo, G. and Slotine, J.J.E. (2011). Symmetries, stability,
and control in nonlinear systems and networks. Phys.
Rev. E, 84, 041929. doi:10.1103/PhysRevE.84.041929.

Rutishauser, U., Douglas, R.J., and Slotine, J.J. (2010).
Collective stability of networks of winner-take-all cir-
cuits. Neural Computation, 23(3), 735–773.

Schaal, S. (2006). Dynamic movement primitives-a frame-
work for motor control in humans and humanoid
robotics. In Adaptive Motion of Animals and Machines,
261–280. Springer.

Seo, K., Chung, S.J., and Slotine, J.J. (2010). Cpg-based
control of a turtle-like underwater vehicle. Autonomous
Robots, 28(3), 247–269.

Simon, H.A. (1962). The architecture of complexity. Proc.
of the American Philosophical Society, 106(6), 467–482.

Singh, S., Majumdar, A., Slotine, J.J., and Pavone, M.
(2017). Robust online motion planning via contraction
theory and convex optimization. In ICRA submission.

Slotine, J.J. and Lohmiller, W. (2001). Modularity, evo-
lution, and the binding problem: a view from stability
theory. Neural Networks, 14(2), 137 – 145.

Tang, J. and Manchester, I. (2014). Transverse contraction
criteria for stability of nonlinear hybrid limit cycles. In
IEEE Conf. on Decision and Control (CDC), 31–36.

Tedrake, R., Manchester, I.R., Tobenkin, M., and Roberts,
J.W. (2010). LQR-trees: Feedback motion planning via



sums-of-squares verification. Int J Robot Res, 29(8),
1038–1052.

Vidyasagar, M. (2002). Nonlinear Systems Analysis. Clas-
sics in Applied Mathematics. SIAM.

Wang, W. and Slotine, J.J.E. (2005). On partial contrac-
tion analysis for coupled nonlinear oscillators. Biological
Cybernetics, 92(1), 38–53.

Wensing, P.M., Wang, A., Seok, S., Otten, D., Lang,
J., and Kim, S. (2016). Proprioceptive actuator de-
sign in the MIT cheetah: Impact mitigation and high-
bandwidth physical interaction for dynamic legged
robots. Submitted to IEEE Trans. on Robotics.

Williamson, M.M. (1999). Robot Arm Control Exploiting
Natural Dynamics. Ph.D. thesis, MIT.

Appendix A. SELECTED PROOFS

A.1 Proof of Theorem 1

A partial sketch of this result was originally offered in
(Manchester and Slotine, 2014b).

By the results of Chen and Slotine (2012), if a system is
transverse contracting with rate λ, there exists a singular
metric Ms with rank n− 1 such that Msf = 0 and

Ṁs + ATMs + MsA ≤ −2λMs . (A.1)

Such a solution is given by

Ms =

∫ ∞
0

V(t,x)TQ(x(t))V(t,x)dt

where Q(x) = Q(x)T ≥ 0, Q(x) bounded, rank(Q(x)) =
n − 1, and Q(x)f(x) = 0 over the transverse contraction
region. V(t,x) is the fundamental matrix of the linear time
varying system

v̇ =

(
A− ffT

fT f
(A + AT )

)
︸ ︷︷ ︸

Av

v .

That is V(0,x) = I, and V̇(t,x) = Av(t,x)V(t,x). The
singular metric Ms is used as a starting point towards
a full-rank metric with the desired eigenstructure on an
associated generalized Jacobian.

Letting π(x) = fT /|f | and Π(x) ∈ R(n−1)×n complete
a smooth orthonormal basis, it follows that Ms can be
written as

Ms = ΠT (x) M̃s(x) Π(x)

for some symmetric positive definite M̃s(x) ∈ R(n−1)×(n−1).

We note that the differential dynamics satisfy

˙δx = A(t,x)δx

and further observe that δx(t) = f(x(t)) is a solution to
the differential dynamics. Defining the differential change
of variables [

δz1
δz2

]
=

 fT

|f |2

M̃1/2
s Π


︸ ︷︷ ︸

Θx

δx

Since δx(t) = f(x(t)) a solution to the differential dynam-
ics, it follows that δz1(t) ≡ 1, δz2(t) ≡ 0 is a solution to
the different differential dynamics for δz. Thus

d

dt

[
δz1
δz2

]
=

[
0 A12(t,x)
0 A22(t,x)

] [
δz1
δz2

]
We further observe that, by construction,

d

dt
δzT2 δz2 =

d

dt
δxTMsδx (A.2)

= δxT
(
Ṁs + ATMs + MsA

)
δx (A.3)

≤ −2λδxTMsδx (A.4)

= −2λδzT2 δz2 . (A.5)

Thus, the subspace of differentials from δz2 possess a
contracting dynamic which drives the indifferent δz1 sub-
system. While this generalized Jacobian for δz has eigen-
values with the desired structure, the symmetric part of
this generalized Jacobian does not. To obtain the desired
eigenstructure on the symmetric part of the generalized Ja-
cobian, a further state transformation is pursued through
construction of a new metric for δz.

We consider the following structure for a metric over δz:

Mz(x) =

[
1 MT

21(x)
M21(x) M22(x)

]
.

The rate of change in differential length is given as

d

dt

(
δzTMzδz

)
=

d

dt

(
δzT1 δz1

)
+

d

dt

(
δzT2 M22δz2

)
+

d

dt
2
(
δzT2 M21δz1

)
= δzT2

(
Ṁ22 + M22A22 + AT

22M22

+M21A12 + AT
12M

T
21

)
δz2

+ 2δzT2

(
Ṁ21 + AT

22M21 + AT
12

)
δz1

We’ll first attempt to determine a solution M21(x) and
then for M22(x). Towards canceling cross terms above, we
seek a solution to

Ṁ21 + AT
22M21 + AT

12 = 0 . (A.6)

Proposition 1. A solution to (A.6) is given by

M21(x) =

∫ ∞
0

UT
2 (τ,x)AT

12(τ,x)dτ

with
d

dt
U2(t,x) = A22(t,x) U2(t,x) U2(0,x) = I

Proof. By construction. Equation A.6 is equivalent to

UT
2 (t,x)

(
AT

22(t,x)M21(t,x) + Ṁ21(t,x)
)

(A.7)

=−UT
2 (t,x)AT

12(t,x) (A.8)

which in turn is equivalent to

d

dt

(
UT

2 (t,x) M21(t,x)
)

= −UT
2 (t,x)AT

12(t,x) .

Integrating both sides over the interval (0,∞) provides:

−UT
2 (0,x) M21(0,x) =

∫ ∞
0

−UT
2 (t,x) AT

12(t,x)dt

The right hand side converges since, due to (A.5),
‖U2(t,x)‖ ≤ Ce−λt for some C > 0. 2

Letting M21 as prescribed:



d

dt

(
δzTMzδz

)
= δzT2

(
Ṁ22 + M22A22 + AT

22M22+

M21A12 + AT
12M

T
21

)
δz2 (A.9)

Letting Q = QT > 0 and r < λ we form M22 by solving
the differential equation:

Ṁ22 + M22A22 + AT
22M22 + 2rM22

+M21A12 + AT
12M

T
21 + Q = 0 (A.10)

Proposition 2. A solution to Equation A.10 is given by

M22(x) =

∫ ∞
0

e2rtUT
2

(
M21A12 + AT

12M
T
21 + Q

)
U2 dt

with each shorthand M21 = M21(t,x), A12 := A12(t,x),
U2 := U2(t,x).

Proof. Analogous to the solution for Equation A.6, Equa-
tion A.10 is identical to requiring

d

dt

(
e2rtU2(t,x)TM22(t,x)U2(t,x)

)
(A.11)

= −e2rtU2(t,x)T
(
M21A12 + AT

12M
T
21 + Q

)
U2(t,x)

(A.12)

Integrating both sides over the interval (0,∞) again pro-
vides the desired result. 2

Remark 1. In order to ensure Mz > 0 it follows that
M22 must satisfy M22 > M21M

T
21. Q can be scaled by

a suitable factor to meet this requirement without loss of
generality to the previous development.

Putting these ingredients together, it follows that

d

dt

(
δzTMzδz

)
= −δzT2 (Q + 2rM22) δz2 (A.13)

A smooth factorization of Mz = ΘT
z Θz finally gives rise

to a subsequent change of differential coordinates δy :=
Θzδz. Letting Θ := ΘzΘx, from (A.13) it follows

d

dt

(
δxTΘTΘδx

)
=

d

dt

(
δyT δy

)
(A.14)

=2δyTFsδy (A.15)

=− δzT2 (Q + 2rM22) δz2 (A.16)

Thus, Fs is negative semidefinite and has rank n− 1.

A.2 Disturbed Transverse Contracting Systems

Proposition 3. Suppose (11) autonomous, transverse con-
tracting on a compact K with rate λ under metric M(x).
Let x(t) the solution from some initial condition x0. Sup-
pose a solution xd(t) to the disturbed system

ẋd = f(xd) + w(t)

from the same initial condition x0. Suppose w uniformly
bounded |w(t)| ≤ w and xd(t) ∈ K for all possible
realizations of w(·). Then ∀t > 0, infτ |xd(t)−x(τ)| ≤ R

λw,
where R > 0 depends only on M.

To prove the result, we will argue the existence of a control
u(t) to the virtual system

ẏ = f(y)u (A.17)

with initial condition y(0) = x0 such that |xd(t) −
y(t)| ≤ R

λw. Note that conditions on M being a control
contraction metric for (A.17) are necessary and sufficient

for M to be a transverse contraction metric for (11)
(Manchester and Slotine, 2015).

Towards a proof of this result, let

γ(x1,x2) : {γ(·) ∈ C∞([0, 1],K) s.t.
∂

∂s
γ(s) 6= 0

∀s ∈ (0, 1), γ(0) = x1, γ(1) = x2}
the set of smooth paths in K from x1 to x2. Further, let

d(x1,x2) := inf
γ∈γ(x1,x2)

∫ 1

0

√
γs(s)

TM(γ(s))γs(s)ds

the Riemann distance, where γs := ∂
∂sγ. Similarly, let

e(x1,x2) := inf
γ∈γ(x1,x2)

∫ 1

0

γs(s)
TM(γ(s))γs(s)ds

the Riemann energy satisfying e(x1,x2) = d(x1,x2)2.

Proof. Let γ(·) the geodesic between xd(t) and y(t) at
some time t. From the formula for the first variation of
energy (Manchester and Slotine, 2015)

1

2
D+e(xd(t),y(t)) =γs(0)TM(xd)(f(xd) + w)

− γs(1)TM(y)f(y)u (A.18)

where D+ denotes the upper Dini derivative. The con-
trol contraction metric allows the Riemannian energy
to be effectively used as a control Lyapunov function.
In this light, the control contraction metric conditions
imply a Artstein/Sontag CLF condition (Manchester
and Slotine, 2015) that if γs(1)TM(y)f(y) = 0 then
γs(0)TM(xd)f(xd) < −λe(xd,y).

It follows that at each time, there exists u such that

γs(0)TM(xd)f(xd)− γs(1)TM(y)f(y)u < −λe(xd,y)

Suppose M = ΘTΘ and let δ(s) = Θ(γ(s))γs(s).
Since the velocity field of a geodesic is parallel along
the geodesic, e(xd,y) = γs(s)

TM(γ(s))γs(s), ∀s ∈ [0, 1].
This further implies |δ(s)| = d(xd,y) (Singh et al., 2017).
Under this control, and through application of the Cauchy-
Schwarz inequality (A.18) provides

1

2
D+e(xd(t),y(t)) ≤d(xd(t),y(t))|Θ(xd(t))w(t)|2

− λe(xd(t),y(t)) (A.19)

Letting θ = supx∈K ‖Θ(x)‖ and w = supt |w(t)|, it follows

from the comparison lemma that d(xd(t),y(t)) ≤ θ
λw

∀t ≥ 0. Suppose θ > 0 such that θ2I ≤ ΘTΘ. Then
θ|xd(t)−y(t)| ≤ d(xd(t),y(t)). It finally follows that with
R = θ/θ, |xd(t) − y(t)| ≤ R

λw. Note that R is an upper
bound on the condition number of Θ. 2


