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Abstract The parameterization of moist convection contributes to uncertainty in climate modeling and
numerical weather prediction. Machine learning (ML) can be used to learn new parameterizations directly
from high-resolution model output, but it remains poorly understood how such parameterizations behave
when fully coupled in a general circulation model (GCM) and whether they are useful for simulations of
climate change or extreme events. Here we focus on these issues using idealized tests in which an ML-based
parameterization is trained on output from a conventional parameterization and its performance is assessed
in simulations with a GCM. We use an ensemble of decision trees (random forest) as the ML algorithm, and
this has the advantage that it automatically ensures conservation of energy and nonnegativity of surface
precipitation. The GCM with the ML convective parameterization runs stably and accurately captures
important climate statistics including precipitation extremes without the need for special training on
extremes. Climate change between a control climate and a warm climate is not captured if the ML
parameterization is only trained on the control climate, but it is captured if the training includes samples
from both climates. Remarkably, climate change is also captured when training only on the warm climate,
and this is because the extratropics of the warm climate provides training samples for the tropics of the
control climate. In addition to being potentially useful for the simulation of climate, we show that ML
parameterizations can be interrogated to provide diagnostics of the interaction between convection and
the large-scale environment.

Plain Language Summary Small-scale features such as clouds are typically represented
in climate models by simplified physical models, and these simplified models introduce errors and
uncertainties. A promising alternative approach is to use machine learning to train a statistical model
to represent small-scale processes based on output from expensive physics-based models that better
represent the small-scale processes. Here we use idealized tests to explore the implications of incorporating
a machine-learning model of atmospheric convection in a climate model. We find that such an approach can
give accurate simulations of mean climate and heavy rainfall events. The machine-learning model does not
work well for global warming if it is only trained on the current climate. However, it does work well for global
warming if trained on both the current and warmer climates, and it works surprisingly well if only trained on
the warmer climate. We also show that the machine-learning model can be used to better understand the
underlying physical processes.

1. Introduction

General circulation models (GCMs) of the atmosphere and ocean are important tools for climate simulation
and numerical weather prediction. GCMs are based on equations describing resolved dynamics (using the
laws of conservation of energy, momentum, and mass) and parameterization schemes that represent subgrid
processes. Parameterization schemes are necessary because there are insufficient computational resources
to resolve all relevant length and time scales, but they are also the source of considerable uncertainties and
biases (e.g., Bechtold et al., 2008; Farneti & Gent, 2011; Stevens & Bony, 2013; Wilcox & Donner, 2007).

One potential way forward is to use machine learning (ML) to create new parameterization schemes by fitting
a statistical model to the output of relatively expensive physical models that more faithfully represent the sub-
grid dynamics. By minimizing the error between an ML model’s predictions and the known output over many
training examples, ML models can learn complex mappings without being explicitly programmed. ML-based
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parameterizations have been developed for radiative transfer (e.g., Belochitski et al., 2011; Chevallier et al.,
1998) and for convective and boundary-layer processes (Brenowitz & Bretherton, 2018; Gentine et al., 2018;
Krasnopolsky et al., 2010, 2013; Rasp et al., 2018). The use of ML is also currently being explored for subgrid
turbulence modeling for engineering applications (e.g., Ling et al., 2016; Wang et al., 2017).

In contrast to conventional parameterizations, an ML-based parameterization takes a statistical approach and
need not assume a simplified physical model such as the entraining plume that is often used in convective
parameterizations. The resulting GCM is then a hybrid model consisting of a physically based component
and one or more ML-based components (Krasnopolsky, 2013). Such a hybrid approach is particularly attrac-
tive if the most uncertain parameterizations in GCMs (which often include many tunable parameters) can be
replaced with ML-based parameterizations that are training systematically. An alternative approach to lever-
aging high-resolution modeling or observations would be to use them to optimize parameters while still
retaining a physically based subgrid model (cf. Emanuel & Živković-Rothman, 1999; Schneider et al., 2017).

Subgrid moist convection is a good candidate for ML parameterization because cloud-system resolving model
(CRM) simulations are available to generate training data and because conventional parameterizations for
moist convection are responsible for considerable uncertainty in global modeling of the atmosphere. Ide-
ally, a convective parameterization will accurately represent the subgrid fluxes of moisture, temperature, and
momentum associated with convective instability and account for both updrafts and downdrafts, mixing with
the environment, and cloud microphysical processes. Historically, a wide range of approaches have been used
to parameterize moist convection (e.g., Arakawa, 2004). Recent developments include efforts to include the
effects of the spatial organization of convection (Mapes & Neale, 2011) and use of superparameterization in
which CRMs are embedded in GCM grid boxes (Khairoutdinov & Randall, 2001; Randall et al., 2003). Convec-
tive parameterizations affect the vertical structure of temperature and humidity in the tropics (Benedict et al.,
2013; Held et al., 2007) and the ability of GCMs to simulate the Madden Julian Oscillation and other tropical
disturbances (Benedict et al., 2013; Kim et al., 2012). Convective parameterizations also strongly affect how
precipitation extremes are simulated (Wilcox & Donner, 2007), and this helps to explain the large spread in
projected changes in precipitation extremes in the tropics (O’Gorman, 2012).

CRM simulations differ from convective parameterizations in their predictions for the response of convective
tendencies to perturbations in temperature and moisture, both in terms of magnitude and vertical structure
(Herman & Kuang, 2013). Furthermore, superparameterization using embedded CRMs can reduce biases in
GCM simulations (e.g., Kooperman et al., 2016). Thus, it is plausible that ML parameterizations learned from
CRM simulations could outperform conventional parameterizations, and a GCM with an ML parameterization
would be much faster than a global CRM.

In a pioneering study, Krasnopolsky et al. (2013) used an ensemble of shallow artificial neural networks (ANNs)
to learn temperature and moisture tendencies from CRM simulations forced by observations from a region of
the equatorial Pacific. Tendencies from the resulting convective parameterization were compared to tenden-
cies from a conventional parameterization over the tropical Pacific in a diagnostic test, but the key issue of
fully coupling the ML-based convection parameterization to the GCM was not addressed. Two recent studies,
published while this paper was in review, have found that a parameterization of subgrid processes based on a
shallow ANN ran stably in prognostic single-column integrations when the loss function included many time
steps (Brenowitz & Bretherton, 2018) and that a deep ANN trained on tendencies from a superparameterized
GCM lead to stable and accurate integrations in the same GCM (Rasp et al., 2018).

Here we use idealized tests to explore the potential of ML-based parameterization for simulations of climate
and climate change, and we demonstrate ways in which the ML-based parameterization can be used to gain
physical insight into the interaction of convection with its environment. We train an ML-based parameteriza-
tion on the output of a conventional moist-convective parameterization, the relaxed Arakawa-Schubert (RAS)
scheme (Moorthi & Suarez, 1992). We then implement the ML-based parameterization in simulations with
an idealized GCM and compare the results to simulations with RAS. This perfect-parameterization approach
provides us with a simple test bed in which we can cleanly investigate a number of important questions con-
cerning how an ML-based parameterization behaves when implemented in a GCM. As described in detail in
Moorthi and Suarez (1992), RAS is based on a spectrum of entraining plumes and shares many features with
real convection such as sensitivity to humidity and temperature and nonlinear behavior such as only being
active under certain conditions. Since RAS is not stochastic and is local in time and space, the idealized tests
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considered here may be viewed as a best-case deterministic scenario for column-based ML that does not
include the effect of neighboring grid cells or past conditions.

We use a random forest (RF; Breiman, 2001; Hastie et al., 2001) to learn the outputs of the RAS convection
scheme which are the convective tendencies of temperature and specific humidity. Because we train on the
output of RAS, the surface precipitation rate is implied by the mass-weighted vertical integral of the specific
humidity tendency and does not have to be predicted separately. The RF consists of an ensemble of decision
trees, and each tree makes predictions that are means over subsets of the training data. The final prediction
from the RF is the average over all trees. As described in the next section, the RF has attractive properties for
the parameterization problem in terms of preserving physical constraints such as energy conservation, and
we will show that it leads to accurate and stable simulations of climate in the GCM. Running in a GCM is a
nontrivial test of an ML parameterization because errors in the parameterization could push the tempera-
ture and humidity outside the domain of the training data as the GCM is integrated forward in time leading
to large extrapolation errors (cf. Brenowitz & Bretherton, 2018; Krasnopolsky et al., 2008). We also initially
experimented with using shallow ANNs (e.g., a single hidden layer with 60 neurons), but we found that the
resulting parameterization was less robust than the RF and did not conserve energy without a postprediction
correction. We do not discuss these ANN results further given recent advances using different ANN training
approaches and architectures (Brenowitz & Bretherton, 2018; Rasp et al., 2018), and we instead focus on our
promising results for the RF parameterization.

In addition to investigating the ability of the GCM with the RF parameterization to accurately simulate basic
statistics of a control climate, we also investigate whether it accurately simulates extreme precipitation events
and climate change. For extreme events, we show that special training is not needed to correctly capture the
statistics of these events. For climate change, we expect that an ML parameterization trained on a control
climate would not be able to generalize to a different climate to the extent that this requires extrapolation
beyond the training data. Thus, the extent to which generalization is successful can depend on both the mag-
nitude of the climate change and the range of unforced variability in the control climate. Interestingly, we also
show that whether the climate is warming or cooling is important and that generalization across climates is
related to generalization across latitudes. It is also important to know whether training one parameterization
on a combination of different climate states will work well since this would be necessary for transient cli-
mate change simulations. Note that training on different climates is possible when training is based on model
output (e.g., from a global CRM) as long as these simulations can be run for a sufficiently long period in a
different climate.

Another promising aspect of ML is that it can be used to gain insight from large data sets into underlying
physical processes (e.g., Monteleoni et al., 2013). Here we explore whether the RF parameterization can be
analyzed to provide insights into the interaction of convection with the environment. We consider both the
linear sensitivity as has been previously discussed for moist convection (Herman & Kuang, 2013; Kuang, 2010;
Mapes et al., 2017) and feature importance which is a common concept in ML (Hastie et al., 2001) that does
not require an assumption of small perturbations.

We begin by describing the RF algorithm (section 2), the RAS convection scheme and idealized GCM simu-
lations used to generate training data sets (section 3), and the training and validation of the RF convection
scheme (section 4). We discuss the ability of the idealized GCM with the RF scheme to reproduce the control
climate including the mean state and extremes (section 5) and its ability to capture climate change given dif-
ferent approaches to training (section 6). We also show how the RF scheme can be used to provide insight
into the importance of the environmental temperature and humidity at different vertical levels for convec-
tion (section 7). Lastly, we briefly discuss the ability of the RF scheme to represent the combination of the
convection and large-scale condensation schemes (section 8) before giving our conclusions (section 9).

2. ML Algorithm: RF

An RF is an ML estimator that consists of an ensemble of decision trees (Breiman, 2001; Hastie et al., 2001). RFs
are widely used because they do not require much preprocessing and they generally perform well over a wide
range of hyperparameters. The inputs to the RF are referred to as features, and each decision tree is a recursive
binary partition of the feature space. Each leaf of the tree contains a prediction for the output variables that
for continuous output variables is taken to be the mean over the output from the training samples in that leaf.
Predictions of an RF are the mean of the predictions across all the trees, and the purpose of having multiple
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trees is to reduce the variance of the prediction since individual decision trees are prone to overfitting. The
different trees are created by bootstrapping of the training data and by only considering a randomly chosen
subset of one third of the features at each split when constructing the trees. The alternative approach of
considering all of the features at each split, referred to as bagging, gives similar test scores for the problem
investigated here.

Training of the RF is an example of supervised learning in which an ML algorithm and a training data set are
used to learn a mapping between features and outputs (e.g., Hastie et al., 2001). The aim of the training is
to minimize the mean squared error between the known and predicted outputs, and the resulting model is
referred to as a regression model because it predicts continuous variables. Details of the features used and
training of the RF are given in section 4.

One major advantage of using an RF is that predictions are means over subsets of the training data, and
this leads to conservation of energy and nonnegativity of surface precipitation by the RF parameterization.
Nonnegativity of surface precipitation follows immediately since the training samples all have nonnegative
precipitation, and the mean of a set of nonnegative numbers is a nonnegative number. To conserve energy
in a hydrostatic GCM, a convective parameterization that neglects convective momentum transports should
conserve column-integrated moist enthalpy, and this is the case for RAS. Moist enthalpy is a linear function of
temperature and specific humidity in our GCM, and thus, the predicted tendency by the RF of the vertically
integrated moist enthalpy will be zero, ensuring energy conservation. One disadvantage of the RF is that con-
siderable memory must be available when running the GCM in order to store the tree structures and predicted
values.

The property that the RF predictions are averages over subsets of the training data may also improve the
robustness and stability of the RF when implemented in the GCM. In particular, the predicted convective
tendencies cannot differ greatly from those in the training data, even if the RF is applied to input tempera-
ture and humidity profiles that require extrapolation outside of the training data (as can occur when an ML
parameterization is implemented in a GCM).

3. Convection Scheme and Idealized GCM Simulations

Our approach is to use a relatively complex convection scheme, typical of those used in current climate mod-
els, and implement it in an idealized GCM configuration to simplify the analysis of climate and climate change.
The idealized GCM allows us to investigate the interaction between resolved dynamics and convection, but
it does not include important complicating factors such as the diurnal cycle over land and cloud-radiation
interactions.

For the convection scheme, we use the version of RAS that was implemented in the Geophysical Fluid
Dynamics Laboratory (GFDL) AM2 model (Anderson et al., 2004). This scheme is an efficient variant of the
Arakawa-Schubert scheme (Arakawa & Schubert, 1974) in which the cloud ensemble is relaxed toward
quasi-equilibrium. The basis of the scheme is an ensemble of entraining plumes that represent both shallow
and deep convection. As discussed in Held et al. (2007), the AM2 version of the scheme includes an entrain-
ment limiter that is only active for deep convection. The inputs to RAS are the vertical profiles of temperature
and specific humidity as a function of pressure, and the outputs are the tendencies of temperature and specific
humidity. We do not consider convective momentum tendencies.

The idealized GCM is an atmospheric model based on a version of the GFDL spectral dynamical core coupled to
a shallow thermodynamic mixed-layer ocean of depth 0.5 m. There is no land or ice and no seasonal or diurnal
cycles. The GCM is similar to that of Frierson et al. (2006) with the details as in O’Gorman and Schneider (2008)
except that here we use the RAS convection scheme and we allow evaporation of falling condensate in the
large-scale condensation scheme. The top-of-atmosphere insolation is imposed as a perpetual equinox dis-
tribution. Longwave radiation is represented by a two-stream gray scheme with prescribed optical thickness
as a function of latitude and pressure, and there are no water vapor or cloud radiative feedbacks. The spectral
resolution is T42, there are 30 vertical sigma levels, and the time step is 10 min. The RAS scheme is responsi-
ble for most of the mean precipitation in the tropics, with the large-scale condensation scheme contributing
to a greater extent at middle and high latitudes. This idealized GCM configuration (but with a simpler convec-
tion scheme) has previously been found to be useful for investigations of moist atmospheric dynamics and
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the response of precipitation to climate change (e.g., Dwyer & O’Gorman, 2017; O’Gorman, 2011; O’Gorman
& Schneider, 2009).

The simulations with the RAS convection scheme are spun up over 700 days from an isothermal rest state to
reach statistical equilibrium. The simulations are then run for a subsequent 3,300 days, and this period is used
to build training data sets for ML as described in the next section. Simulations with the RF-based convection
scheme are spun up over 700 days from the statistical equilibrium state of the corresponding RAS simulation
and then run for a subsequent 900 days. Simulations without any convection scheme are also used for com-
parison purposes, and these are spun up over 700 days from an isothermal rest state. All figures that present
climate statistics are based on 900 days at statistical equilibrium. The lower boundary condition and the
top-of-atmosphere insolation are zonally and hemispherically symmetric, and thus, differences between
the hemispheres in figures are indicative of sampling errors, except for the climate change results in which the
fields have been symmetrized between the hemispheres to reduce noise.

We consider two climates: a control climate with a global mean surface air temperature of 288 K (similar to
the reference climate in O’Gorman & Schneider, 2008) and a warm climate with a global mean surface air
temperature of 295 K that is obtained by increasing the longwave optical thickness by a factor of 1.4 to mimic
a large increase in greenhouse-gas concentrations.

4. Training and Validation of the RF
4.1. Features and Outputs
The features are the inputs to the RF, and they are chosen here to be the vertical profiles of temperature and
specific humidity (discretized at the vertical 𝜎 levels) and the surface pressure. Given that 𝜎 is pressure nor-
malized by surface pressure, these features are equivalent to the inputs to RAS which are the vertical profiles
of temperature and specific humidity as a function of pressure. Tests in which surface pressure is not included
as a feature in the RF gave similar performance (note that the idealized GCM does not include topography).
We do not include surface fluxes as features since these are not an input to the RAS convection scheme.

The outputs are the vertical profiles of the convective tendencies of temperature and specific humidity. Cumu-
lus momentum transports and interactions of convection with radiation are not predicted since these are
not included in the idealized GCM. The choice of output scaling for temperature versus humidity tendencies
affects how the RF fits the training data. We chose to multiply the temperature tendencies by the specific heat
capacity of air at constant pressure (cp), and the specific humidity tendencies by the latent heat of conden-
sation (L) to give the same units for both tendencies. The quality of the fit is similar if each output is instead
standardized by removing the mean and rescaling to unit variance. The training aims to minimize the mean
squared error summed over all the scaled outputs.

The nonlinear mapping that the RF learns may then be written as y = f (x), where the vector of features is
x = (T,q, ps) and the vector of scaled outputs is y = (cp𝜕T∕𝜕t|conv, L𝜕q∕𝜕t|conv). Here the vectors of tempera-
ture and specific humidity at different vertical levels are denoted T and q, respectively, and ps is the surface
pressure. The time tendencies from convection are the output of the RAS convection scheme and are denoted
𝜕T∕𝜕t|conv and 𝜕q∕𝜕t|conv for temperature and specific humidity, respectively. Since convection is primarily
active in the troposphere, we include the 21 𝜎 levels that satisfy 𝜎 ≥ 0.08. Thus, there are 43 features and 42
outputs.

We choose to have only one RF that predicts the convective tendencies of both temperature and specific
humidity at all the vertical levels considered, and thus, there are 42 outputs at each leaf of each tree. This
column-based approach improves efficiency, and it ensures conservation of energy and nonnegativity of
precipitation as shown below. These two physical constraints would not hold if different RFs were used for pre-
dictions at each vertical level. Note also that we use the same RF for all latitudes (since RAS does not change
depending on latitude) and that the RF is trained on data that includes both convecting and nonconvecting
gridpoints.

4.2. Training and Test Data Sets
The temperature and specific humidity profiles and surface pressure were output and stored from the GCM
once a day immediately prior to the point in the code at which RAS is called, and the convective tendencies
of temperature and specific humidity calculated by RAS were also output and stored. We then randomly sub-
sampled to 10 longitudes for a given time and latitude to make the samples effectively independent. Noting
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that the GCM is statistically zonally symmetric, time and longitude were combined into one sampling index,
and the samples were then randomly shuffled in this index. The first 70% of the samples were stored for train-
ing, while the remainder of the samples were stored as a test data set for model assessment. Lastly, the training
and test data sets were randomly subsampled so that the number of samples used at a given latitude is pro-
portional to cosine of latitude to account for the greater surface area at lower latitudes. (Not including the
cosine latitude factor in sampling does not strongly affect the quality of the fit.) The training samples were
then aggregated across latitudes and reshuffled, such that the final training data set depends only on sample
index and level.

4.3. Fitting of RF and Choice of Hyperparameters
To train the RF, we use the RandomForestRegressor class from the scikit-learn package version 0.18.1
(Pedregosa et al., 2011). An advantage of the RF approach is that there are only a few important hyperparam-
eters and they are relatively easy to tune. We analyzed the error of the RF using 10-fold cross validation on
the training data set from the control climate. We varied the number of trees (n_estimators), the minimum
number of samples required to be at each leaf node (min_sample_leaf ), and the number of training samples
used (n_train). Supporting information Figures S1–S3 show examples of the variations in error with these
hyperparameters. Over the ranges shown, the error decreases with increasing n_estimators, but the decrease
in error is not very great for values above ∼5 (Figure S1); the error decreases with increasing n_train, but the
decrease in error is not very great for values above ∼500,000 (Figure S2); and the error is not very sensitive to
min_sample_leaf (Figure S3).

The final choice of hyperparameters involves a trade-off between the desire to reduce error and the need
for a fast parameterization that is not too large in memory when used in the GCM. In addition, we wanted
to make sure that the size of the training data set would be feasible for generation by a high-resolution
convection-resolving or superparameterized model, with the caveat that training on the output of such mod-
els may differ from what is described here. Based on these considerations and the error analysis discussed
above, we chose to use n_estimators = 10, min_sample_leaf = 10, and n_train = 700,000. With the sampling
approach described above, the training sample size is equivalent to just under 5 years of model output, but
this could be reduced by sampling more often than once a day.

Using the above hyperparameter choices, we fit RF models to the training samples from the control RAS
simulation, the warm RAS simulation, and the combined training samples from the control and warm RAS
simulations. In the combined case, we still used 700,000 samples, and these were chosen after random shuf-
fling the combined data set. The RF trained on the control simulation has an average number of nodes per
tree of 62,250, and it is 110 Mb when stored as integers and single-precision floats in netcdf format for output
to the GCM.

4.4. Validation on Test Data Set
The performance of the RF for the control climate as evaluated based on the test data set is shown in Figures 1
and 2. Note that the RF was not trained on any of the samples from the test data set. We use the coefficient of
determination R2 which is defined as one minus the ratio of the mean squared error to the true variance. R2 for
the tendencies of temperature and specific humidity is above 0.8 in regions where the tendencies are large,
such as the tropical midtroposphere for temperature and the tropical lower troposphere for specific humidity,
with generally higher R2 for temperature as compared to specific humidity (Figure 1). The overall R2 for the RF
is 0.82 as calculated over all test samples and levels, as compared to 0.86 for the training data set. Note that
the RF is specifically designed not to overfit the training data, in contrast to a single decision tree which could
be trained to achieve perfect accuracy on a training data set without achieving good performance on a test
data set.

The surface precipitation is also well captured by the RF (Figure 2) with an R2 of 0.95 and a negligible mean bias
of 7 × 10−5 mm/day. The precipitation from RAS is the mass-weighted integral of the negative of the specific
humidity tendency, and so precipitation does not require an additional prediction by the RF. Interestingly, the
RF predictions of precipitation are reasonably accurate even at high values, and the ability of the RF to capture
extremes of precipitation is discussed further in section 5.

The RF trained on the warm climate does similarly well in predicting the test data set of the warm climate
(Figure S4) with R2 of 0.77 for the tendencies and 0.93 for precipitation. Issues of generalization and application
to climate change are discussed in section 6.
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Figure 1. Coefficient of determination R2 for the convective tendencies from the random forest trained on relaxed
Arakawa-Schubert convective tendencies in the control climate for (a) temperature and (b) specific humidity. Results are
plotted versus latitude and vertical level (𝜎) since the underlying general circulation model is statistically zonally
symmetric. R2 is calculated based on the samples from the test data set of the control climate (9,900 samples for a given
latitude and level), and it is only shown where the variance is at least 1% of the mean variance over all latitudes and
levels.

4.5. Conservation of Energy and Nonnegative Precipitation
As can be seen in Figure 2, nonnegativity of precipitation is ensured by the RF, and this holds because the
predictions of the RF are means over select training samples that all have nonnegative precipitation. Conser-
vation of the column-integrated moist enthalpy, which is linear in temperature and specific humidity in the
GCM, is also ensured for the same reason. The root-mean-squared error in conservation of column-integrated
moist enthalpy in the control climate is negligible at 0.2 W/m2 for both the training data set and the RF pre-
dictions on the test data set. This error in conservation with the RF is substantially smaller than errors of order
50–100 W/m2 that were reported recently for ANN parameterizations (Brenowitz & Bretherton, 2018; Rasp
et al., 2018), with the caveat that these reported conservation errors are not only due to errors in the ANNs
and could be removed with a postprediction adjustment.

5. Implementation in GCM and Simulation of Control Climate

We discussed the performance of the RF in offline tests in the previous section. However, the most important
test of a GCM parameterization is how it performs in simulations with the GCM. We consider the RF to be
adequate as an emulator for climate studies if GCM simulations with the RF can reproduce the mean climate

Figure 2. Scatterplot of instantaneous precipitation from the RAS parameterization versus the random forest trained on
the control climate. Precipitation is the negative of the mass-weighted vertical integral of the specific humidity
tendencies. The samples are from the test data set for the control climate, and only a random subset of 10,000 samples
are shown for clarity. The black-dashed line is the one-to-one line. R2 is 0.95, and the mean bias is negligible at
7 × 10−5 mm/day. RAS = relaxed Arakawa-Schubert.
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Figure 3. Statistics from a simulation of the control climate with the relaxed Arakawa-Schubert parameterization (black)
versus a simulation with the random forest parameterization (red dashed) and a simulation without any convection
scheme (blue). Shown are profiles of (a) tropical equivalent potential temperature versus vertical level (𝜎), (b) tropical
eddy kinetic energy versus 𝜎, (c) zonal- and time-mean precipitation versus latitude, and (d) the 99.9th percentile of
daily precipitation versus latitude. Eddy kinetic energy is defined using eddy velocities with respect to the time and
zonal mean. The tropical equivalent potential temperature and tropical eddy kinetic energy are based on zonal and time
means that are then averaged (with area weighting) over 20∘ S to 20∘ N.

and higher-order statistics of simulations with the original parameterization. We also compare to simulations
without any convective parameterization to give a benchmark for the magnitudes of any errors.

Routines to read in the RF (stored as a netcdf file as discussed above) and to use it to calculate convective
tendencies were added to the GCM which is written in Fortran 90. These routines simply replace the RAS
convection scheme where it is called in the GCM. Introducing the RF-based parameterization into the GCM
did not create any problems with numerical instability in the GCM simulations. The RF is faster than RAS by a
factor of three.

The performance of the GCM with the RF in simulating the control climate is shown in Figure 3. Statistics are
calculated using instantaneous four-times-daily output for temperature, winds, and humidity. Daily accumu-
lations are used for precipitation. The statistics shown are the tropical-mean vertical profiles of equivalent
potential temperature (𝜃e; Figure 3a) and eddy activity as measured by the eddy kinetic energy (Figure 3b)
and the latitudinal distributions of mean precipitation (Figure 3c) and extreme precipitation as measured by
the 99.9th percentile of daily precipitation (Figure 3d). In all cases, the GCM with the RF parameterization cor-
rectly captures the climate as compared to the GCM with the RAS parameterization (compare the black and
red-dashed lines in Figure 3). This is particularly noteworthy for the tropical 𝜃e profile, tropical eddy kinetic
energy, and extreme precipitation since these three statistics are sensitive to how convection is parameterized
and behave quite differently in simulations in which the convection scheme is turned off and all convection
must occur at the grid scale (compare the black and blue lines in Figures 3a, 3b, and 3d). Snapshots of daily pre-
cipitation in Figure S5 illustrate that the RAS and RF parameterizations result in weaker precipitation extremes
and more linear precipitation features in the intertropical convergence zone as compared to the simulations
without a convection scheme. Zonal and time-mean temperature is also well captured by the GCM with the
RF parameterization with a root-mean-squared error of 0.3 K over all latitudes and levels. The GCM with the
RF parameterization generally does well for mean relative humidity, although the values are slightly too low
in the tropical upper troposphere (Figure S6).

Overall, these results suggest that the GCM with the RF parameterization can adequately simulate important
climate statistics, including means, variances of winds (in terms of the eddy kinetic energy), and extremes.
Climate statistics are the focus of this paper, but future work could evaluate the performance of the RF
parameterization for other aspects such as wave propagation and initial value problems.
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Figure 4. Changes in (a) zonal- and time-mean precipitation and (b) the 99.9th percentile of daily precipitation between
the control climate and the warm climate for simulations with the relaxed Arakawa-Schubert parameterization (black),
with the random forest parameterization (red dashed), and with no convection scheme (blue). Changes are expressed as
the percentage change in precipitation normalized by the change in zonal- and time-mean surface-air temperature. The
changes in this figure have been averaged between hemispheres, and a 1-2-1 filter has been applied to reduce noise.

6. Climate Change and Training in Different Climates

We next assess the performance of the RF parameterization when applied to climate change. The RF intro-
duces errors in simulating a given climate, and it is important to quantify the impact of these errors on the
simulated response to a forcing. In addition, it is interesting to know whether an RF trained on a given climate
can generalize to a different climate.

The most conservative approach is to train two RFs: one RF is trained on the control climate and used in a
simulation of the control climate, and the other is trained on the warm climate and used in a simulation of
the warm climate, and climate change is then calculated as the difference between the two climates. With
this approach, the GCM with the RF parameterization accurately captures changes in climate, as shown for
mean precipitation in Figure 4a and extreme precipitation in Figure 4b. Note that RAS gives a strong increase
in precipitation extremes in the tropics, albeit not as strong as when it was implemented in the GFDL coupled
models CM2.0 and CM2.1 (O’Gorman, 2012). The simulations in which the convection scheme is turned off
have a more muted increase in extreme precipitation in the tropics. The GCM with the RF parameterization also
faithfully captures the vertical and meridional structure of warming, with amplified warming in the tropical
upper troposphere and polar amplification of warming in the lower troposphere (Figure 5). The GCM with
the RF parameterization is slightly less accurate for the changes in mean relative humidity (Figure S7), but
these are generally small except near the tropopause where the upward shift in the circulation and thermal
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Figure 5. Change in zonal- and time-mean temperature (K) versus latitude and vertical level (𝜎) between the control
climate and the warm climate for simulations with (a) the relaxed Arakawa-Schubert parameterization and (b) the
random forest parameterization. The contour interval is 1 K, and negative contours are dashed. The temperature
changes have been averaged between hemispheres. The difference between results shown in (a) and (b) over all
latitudes and levels has a maximum absolute value of 1.1 K and a root-mean-square value of 0.2 K.
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Figure 6. Impact of training on different climates for the response to climate change of zonal- and time-mean
precipitation for the relaxed Arakawa-Schubert parameterization (black) and the RF parameterization (red dashed): (a) a
different RF is trained for each climate separately, (b) one RF is trained using combined training data from both climates,
(c), one RF is trained using training data from the control climate only, and (d) one RF is trained using training data from
the warm climate only. Changes are expressed as the percentage change in precipitation between the control and warm
climate normalized by the change in zonal- and time-mean surface-air temperature. The changes in this figure have
been averaged between hemispheres, and a 1-2-1 filter has been applied to reduce noise. RF = random forest.

structure combines with sharp vertical gradients in relative humidity to give large changes in relative humidity
(cf. Sherwood et al., 2010; Singh & O’Gorman, 2012).

Next we assess the performance of different RF training approaches for climate change as illustrated by the
change in mean precipitation (Figure 6). Results for the vertical profile of warming in the tropics are shown in
Figure S8 and lead to similar conclusions. When an RF is trained separately for each climate, the latitudinal pro-
file of mean precipitation change is correctly captured (Figure 6a, repeated from Figure 4a). Training separately
on different climates is not necessarily feasible for simulations of transient climate evolution. An alternative
would be to train one RF using training data from a range of different climate states. We test this approach
here by combining training data from the control and warm climates (but only using 700,000 training sam-
ples in total as before) and training one RF which is then used in GCM simulations of both climates. The GCM
with the RF parameterization performs well in this case, as illustrated for the change in mean precipitation in
Figure 6b, and the control climate is also correctly simulated (not shown).

By contrast, training an RF on the control climate only and applying it in simulations of both the control climate
and the warm climate leads to inaccurate climate change results, with changes in precipitation in the tropics
and subtropics that are incorrect and much too large (Figure 6c). The RF fails to generalize because climate
warming leads to higher temperatures and an upward shift of the circulation and thermal structure (Singh &
O’Gorman, 2012) including the tropopause (Vallis et al., 2015), but there are not examples in the training data
from the control climate with such high temperatures or such a high tropopause as occur in the tropics of
the warm climate. As a result, the vertical profile of tropical warming is severely distorted as shown in Figure
S8c. When the RF trained on the control climate is used to predict the convective temperature tendencies
from the test data set for the warm climate, it has no skill in the tropics equatorward of roughly 25∘ latitude
(Figure 7a). The cutoff latitude at which generalization fails may be estimated as the latitude at which the mean
temperature in the warm climate is equal to the maximum mean temperature (near the equator) in the control
climate. This estimate of the cutoff latitude is 19∘ for near-surface temperatures and 24∘ for temperatures at
𝜎 = 0.5, which is comparable to what would be inferred from Figure 7a. Note, however, that errors in the
convective tendencies in the tropics are spread to other latitudes in the GCM simulations.
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Figure 7. Generalization of the RF to different climates or latitude bands as measured by R2 of the convective
temperature tendencies: (a) test data set from warm climate with RF trained on control climate, (b) test data set from
control climate with RF trained on warm climate, (c) test data set from warm climate with RF trained on extratropics of
warm climate, and (d) test data set from control climate with RF trained on extratropics of warm climate. The
extratropics is defined as latitudes poleward of 25∘ latitude in each hemisphere. R2 is only shown where the variance is
at least 1% of the mean variance over all latitudes and levels. The ability of the warm-climate RF to predict the tropics of
the control climate as shown in (b) comes from the ability of extratropical samples in the warm climate to predict the
tropics of the control climate as shown in (d). RF = random forest.

The climate change considered here is large (increase in global mean surface temperature of 6.5 K), and gen-
eralization might be better for a smaller climate change. In addition, the control simulation does not have a
seasonal cycle or El Niño-Southern Oscillation variability, both of which might help by widening the range of
training examples from the control climate. However, to the extent that an ML-based parameterization must
extrapolate at least at some times when applied to a warmer climate (e.g., during warm El Niño-Southern
Oscillation events), we expect it will not perform well.

Interestingly, training the RF on the warm climate and then applying it in simulations of both the control and
warm climates leads to good results for climate change (Figure 6d). The vertical profile of tropical warming is
also well captured with a peak warming in the upper troposphere that is only slightly too strong (Figure S8d).
Convective tendencies from the test data set of the control climate are well predicted by the RF trained on
the warm climate except at polar latitudes where the tendencies are small in magnitude (Figure 7b).

Why is climate change better simulated when training on the warm climate rather than the control climate?
For a given latitude in the control climate with a certain surface temperature and tropopause height, it is
possible to find training samples at higher latitudes in the warm climate with a similar tropopause height and
surface temperature. Consistent with this argument, if training of the RF on the warm climate is limited to
samples from the extratropics (latitudes poleward of 25∘ latitude in each hemisphere), it fails to predict the
tropics of the warm climate as expected (Figure 7c), but it still does a good job of predicting the tropics of the
control climate (Figure 7d). However, when training is based on the control climate, it is not possible to find
training samples with a sufficiently high surface temperature and high tropopause that are needed for the
tropics in the warm climate (Figure 7a).

The asymmetry in the ability to generalize for climate cooling versus warming ultimately arises from dif-
ferences between the tropics and extratropics. In the tropics, there is weak temperature variability, and a
warming climate quickly leads to problems for generalization. At high latitudes, moist convection is less
important, and there is more internal temperature variability which helps to broaden the range of train-
ing samples and makes it easier to generalize to a cooler climate. The meridional temperature gradient is
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also larger outside the tropics which means that different surface temperatures can be reached by moving a
smaller distance in latitude.

Overall, our results show that the RF parameterization performs well in simulations of climate change when
the training data include samples from both climates. An RF can be trained separately for each climate, or the
training data from both climates can be pooled to train one RF. Training on only the control climate gives poor
results as might be expected. However, training on only the warm climate leads to remarkably good results
for climate change, and this is because a given latitude in the control climate can be predicted by a higher
latitude in the warm climate.

7. Feature Importance of Convection and Sensitivity to Perturbations

ML-based parameterizations could also be useful for building physical understanding about the interaction
of convection with the large-scale temperature, humidity, and wind shear. Building an ML-based parameter-
ization results in a nonlinear mapping that can be subsequently interrogated to learn about the underlying
dynamics. We explore this possibility here in two different ways. First, we use the RF paramerization to
generate a linear-response function for the response of convective precipitation to small perturbations in
temperature, specific humidity, and surface pressure. Second, we use the concept of feature importance which
seeks to measure the importance of the different input features (here temperature and humidity at different
levels and surface pressure) for the RF predictions (e.g., Hastie et al., 2001). The feature importance calculated
here includes information on what features are important for both the occurrence and strength of convec-
tion, and it differs from the importance profiles discussed by Mapes et al. (2017) which we refer to here as linear
response functions.

For both the linear response function and the feature importance, we present results for the RF trained on
the control climate. These results are based on the RAS parameterization, and it would been possible to more
directly calculate the linear response function of RAS without the intermediate step of the RF. However, if
an RF is trained using high-resolution convection-resolving simulations, the RF mapping could be directly
interrogated without the need to run additional CRM simulations perturbed by forcings at different levels.
And as we will show, the feature importance is a useful additional diagnostic for the interaction of convection
with the large-scale environment.

7.1. Linear-Response Function
The linear-response function is similar to those that have previously constructed for moist convection based
on CRM simulations or convective parameterizations (Herman & Kuang, 2013; Kuang, 2010; Mapes et al., 2017).
The input temperature, specific humidity, and surface pressure of samples with nonzero precipitation from the
test data set of the control climate (including all latitudes) are systematically perturbed, and the RF is applied
to the unperturbed and perturbed samples. For simplicity, the resulting changes in the predicted tendencies
from the RF are measured by the perturbation in the predicted surface precipitation rate. The perturbations
are added at each level and for each variable (temperature, humidity, or surface pressure) separately. The
magnitude of the input perturbation is dT = 0.5 K for temperature, dq = 0.5g/kg for specific humidity, and
dps = 0.25 hPa for surface pressure. Both positive and negative perturbations are used, and the reported
sensitivity is the precipitation for the positively perturbed input minus the precipitation for the negatively
perturbed input (thus representing the response to total perturbations of 1 K, 1 g/kg, and 0.5 hPa) averaged
across samples. The 𝜎 levels are unevenly spaced, and so the results for temperature and specific humidity
at a given level are multiplied by 0.05∕d𝜎 to approximately represent the response to a 50-hPa-deep input
perturbation centered at that level. Note that the RF mapping is piecewise constant and not everywhere dif-
ferentiable, but our perturbations are sufficiently large that this is not a problem for estimating the linear
response function, and we have confirmed that the sensitivities are approximately doubled in size when the
perturbations are doubled in size.

The linear response function is shown in Figure 8a and is similar in some aspects to what was found by Mapes
et al. (2017) based on CRM simulations of unorganized convection in radiative-convective equilibrium at trop-
ical temperatures. Note however that our results are for a convective parameterization in a full GCM simulation
and including all latitudes; the maximum absolute values are greater and more similar to what is found by
Mapes et al. (2017) if we only consider the equatorial region (not shown). Surface precipitation increases with
moistening of the atmosphere, particularly at lower levels. This sensitivity is consistent with the positive effect
of moisture on the buoyancy of a lifted parcel through both its initial moisture and the effect of entrainment
of environmental air. However, the sensitivity to moistening is close to zero for levels above 𝜎 = 0.7, unlike
what was found for CRM simulations by Mapes et al. (2017), and possibly indicative of a flaw that is common
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Figure 8. Diagnostics measuring the responsiveness of convective tendencies to input temperature (blue) and specific
humidity (orange) at different vertical (𝜎) levels according to the random forest parameterization trained on the control
climate. (a) Sensitivity of surface precipitation in millimeter per day to perturbations in input temperature and specific
humidity at different vertical levels (𝜎). The total perturbations are 1 K for temperature and 1 g/kg for specific humidity,
and these are applied to samples with nonzero precipitation from the test data set. The sensitivities have been rescaled
to approximately represent the response to a 50-hPa-deep input perturbation centered at a given level. (b) Feature
importance of input temperature and specific humidity at different 𝜎 levels for convection (including both occurrence
and strength of convection). The importance values have been rescaled by 1∕d𝜎 to account for the uneven 𝜎 spacing.
The vertically integrated importance is 0.24 for temperature and 0.75 for specific humidity (the importance of surface
pressure is 0.01).

to convective parameterizations (Derbyshire et al., 2004). Surface precipitation increases for a near-surface
warming but decreases more strongly for a warming higher up, consistent with the effect of warming on the
buoyancy of a parcel lifted from near the surface. For completeness, we note that the response to a surface
pressure perturbation of 0.5 hPa is 0.0015 mm/day.

7.2. Feature Importance
Feature importance is shown in Figure 8b based on the feature importance metric that is implemented in
RandomForestRegressor class of scikit-learn (see Hastie et al., 2001 for a more general discussion). For a given
feature, this metric measures the total decrease in mean-squared error across nodes in a decision tree that
split on that feature, weighting by the fraction of samples that reach a given node, and then averaged across
trees in the ensemble. The resulting importance values are normalized to sum to one over all features. To
account for the uneven spacing of the 𝜎 levels, we multiply the feature importance values for temperature
and specific humidity by 1∕d𝜎. Similar to the results from the linear response function, the results from the
feature importance analysis imply that RAS precipitation is strongly sensitive to low-level moisture and to
temperature near 𝜎 = 0.8. In addition, we find that moisture is generally more important than temperature,
with the vertically integrated importance being 0.74 for specific humidity versus 0.24 for temperature (and
surface pressure is not important at 0.01).

Advantages of feature importance compared to the linear response function include that it does not require
an assumption of small perturbations and that it makes it easy to compare the importance of different
variables (e.g., humidity versus temperature). Note that the linear response functions for temperature and
specific humidity are not directly comparable because they assume a certain size of perturbation in each vari-
able and they have different units. It would also be possible to calculate feature importances for a classifier
trained on the occurrence of convection to determine which features are most important for the occurrence
of convection separately from the strength of convection. On the other hand, the linear response function
gives information on the sign of the response, and the magnitudes of the sensitivities are easier to inter-
pret physically. Thus, both metrics are complementary and can be used together to gain insight from the ML
parameterization into the interaction of convection with the environment.

8. Replacing Both the Large-scale Condensation and Convection Schemes

So far, we have chosen to replace the moist convection scheme with an ML algorithm and to continue using
conventional parameterizations for the large-scale condensation, radiation, and boundary-layer schemes.
When training on the output of high-resolution models, it would be possible to either allow the ML algorithm
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to represent all of these schemes in a GCM or to use it for only some of them. An advantage of replacing all of
the schemes is that there can be significant compensation between tendencies from different schemes and
there is not a clean physical separation of the different processes (e.g., Arakawa, 2004). However, it could be
argued that some of the processes are easier to represent accurately with a conventional parameterization.

To explore this issue, we also tried replacing the sum of tendencies from the moist convection scheme and the
large-scale condensation scheme with an RF. Using the same approach to training the RF as described above
was found to give poor results for relative humidity when the RF was implemented in the GCM (cf. Figures S6a
and S9a), particularly in the extratropical upper troposphere where it can become negative since the GCM
does not enforce positive humidity. We found through experimentation that the problem with the relative
humidity was largely eliminated by adjusting the training approach to take into account the properties of the
large-scale condensation scheme (Figure S9b). We switched to relative humidity as the humidity input feature
since large-scale condensation is sensitive to saturation, we switched the output scaling of the tendency of
specific humidity to L𝜎−3 instead of just L, to more strongly weight the upper troposphere where large-scale
condensation is important for the relative humidity, and we removed the cosine latitude factor in the sampling
used to generate training and test data sets since large-scale condensation is important at higher latitudes.
All other aspects of the training and parameters of the RF remain the same.

The RF with this choice of sampling, features, and output scaling correctly predicts the combined convective
and large-scale condensation tendencies and surface precipitation when applied to the test data set (Figure
S10 and S11), with an overall R2 for the tendencies of 0.83 and for the precipitation of 0.93. When the RF is
implemented in the GCM, replacing both the large-scale condensation and moist convection schemes, it leads
to accurate simulations of the control climate (Figure S12). However, the precipitation response to climate
change is not accurate in the tropics (Figure S13), possibly as a result of the need to simultaneously param-
eterize different processes at different vertical levels, but it would be worthwhile to further explore the best
choices of features and output scalings for this case.

9. Conclusions

We have investigated how an RF-based parameterization of moist convection behaves when implemented
in a GCM in an idealized setting. Encouragingly, the RF parameterization was found to lead to robust and
accurate simulations of the control climate. The use of a decision-tree-based approach made it straightfor-
ward to ensure physical constraints such as energy conservation are preserved by the parameterization. Other
approaches could be used to ensure physical constraints are obeyed (such as adding an adjustment to the
predicted temperature tendencies to exactly conserve energy), but a decision tree approach is attractive in
ensuring they are exactly satisfied to the extent that they hold in the training data. The RF parameterization
was also found to perform well in the GCM in terms of simulation of extreme precipitation events, without
the need for specialized training on those events.

Climate change was accurately simulated when training samples from both the control and warm climate
were used, and combining the training samples from both climates to train one RF was adequate. However,
the RF trained in the control climate did not generalize to the warm climate, and the cutoff latitude at which it
failed to generalize is approximately equal to the latitude at which the mean temperature in the warm climate
is equal to the maximum mean temperature (near the equator) in the control climate. Remarkably, training on
just the warm climate gave good results for climate change. In effect, a given latitude in the control climate is
predicted by samples from higher latitudes in the warm climate. The asymmetry between generalization for
a warming versus a cooling climate relates to the weaker internal temperature variability, weaker meridional
temperature gradients, and greater importance of moist convection in the tropics versus higher latitudes.

We have also illustrated how an ML parameterization can be interrogated to learn about underlying physical
processes. First, the RF parameterization is useful as a means to efficiently generate linear response functions
for small perturbations. Second, the RF parameterization can be use to measure the importance of differ-
ent environmental variables such as temperature and humidity at different levels for convection, without
the need to assume small perturbations. Feature importance could be further investigated separately for the
occurrence of convection and the intensity of convection when it is occurring.

The setting we have used is idealized both in terms of using an aquaplanet GCM and in terms of learn-
ing from a conventional parameterization rather than from high-resolution simulations. Other studies have
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demonstrated that learning from CRM simulations or superparameterized models is feasible (Brenowitz &
Bretherton, 2018; Gentine et al., 2018; Krasnopolsky et al., 2013; Rasp et al., 2018). When training on resolved
convection rather than a conventional parameterization, processing is needed to calculate the appropriate
convective tendencies to train on (e.g., through coarse-graining approaches), and the interpretation of fea-
ture importance and linear response functions are complicated by the presence of other dynamical processes
in addition to moist convection. Some of the interesting issues that remain to be explored include whether
an ML parameterization should be nonlocal in space and time, whether it should be applied in addition to
boundary layer, radiation, and large-scale cloud schemes or replace all of these, and the extent to which
convective-momentum tendencies can be predicted. Feature engineering, akin to our use of relative humidity
and a vertical weighting function in section 8, is likely to be useful in achieving good performance. Extending
to a more realistic GCM with land brings up additional technical problems such as the strong diurnal cycle
over land and the need to predict convection at different elevations in the presence of topography. These are
nontrivial challenges, but our results suggest that the use of ML is promising both for development of new
parameterizations and for new diagnostics of the interaction of subgrid processes with the large-scale.

References
Anderson, J. L., Balaji, V., Broccoli, A. J., Cooke, W. F., Delworth, T. L., Dixon, K. W., et al. (2004). The new GFDL global atmosphere and land

model AM2–LM2: Evaluation with prescribed SST simulations. Journal of Climate, 17, 4641–4673.
Arakawa, A. (2004). The cumulus parameterization problem: Past, present, and future. Journal of Climate, 17, 2493–2525.
Arakawa, A., & Schubert, W. H. (1974). Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. Journal of the

Atmospheric Sciences, 31, 674–701.
Bechtold, P., Köhler, M., Jung, T., Doblas-Reyes, F., Leutbecher, M., Rodwell, M. J., et al. (2008). Advances in simulating atmospheric variability

with the ECMWF model: From synoptic to decadal time-scales. Quarterly Journal of the Royal Meteorological Society, 134, 1337–1351.
Belochitski, A., Binev, P., DeVore, R., Fox-Rabinovitz, M., Krasnopolsky, V., & Lamby, P. (2011). Tree approximation of the long wave radiation

parameterization in the NCAR CAM global climate model. Journal of Computational and Applied Mathematics, 236, 447–460.
Benedict, J. J., Maloney, E. D., Sobel, A. H., Frierson, D. M., & Donner, L. J. (2013). Tropical intraseasonal variability in version 3 of the GFDL

atmosphere model. Journal of Climate, 26, 426–449.
Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
Brenowitz, N. D., & Bretherton, C. S. (2018). Prognostic validation of a neural network unified physics parameterization. Geophysical Research

Letters, 45, 6289–6298. https://doi.org/10.1029/2018GL078510
Chevallier, F., Chéruy, F., Scott, N. A., & Chédin, A. (1998). A neural network approach for a fast and accurate computation of a longwave

radiative budget. Journal of Applied Meteorology, 37, 1385–1397.
Derbyshire, S. H., Beau, I., Bechtold, P., Grandpeix, J. Y., Piriou, J. M., Redelsperger, J. L., & Soares, P. M. M. (2004). Sensitivity of moist

convection to environmental humidity. Quarterly Journal of the Royal Meteorological Society, 130, 3055–3079.
Dwyer, J. G., & O’Gorman, P. A. (2017). Moist formulations of the Eliassen–Palm flux and their connection to the surface westerlies. Journal

of the Atmospheric Sciences, 74, 513–530.
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