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Abstract

The field of nonlinear optics is currently, and unfortunately, restricted to high-power appli-
cations. Available materials do not yet have large enough nonlinear coefficients to reduce the
large power requirements. However, new organic materials based on stilbene and stilbazole
chromophores crystallized with a variety of counterions open new possibilities for low power
observable nonlinear phenomena. The next significant step is to accurately characterize the
second and third order susceptibilities of these materials. In this thesis, over 50 different
organic compounds were evaluated. The powder forms of the materials were tested using
a scattered harmonic intensity powder test for both second and third order nonlinearities
at a fundamental wavelength of 1.907 um. The most significant of the materials exhibited
second harmonic efficiencies of roughly 1000 to 2500 times Urea. The best third order ma-
terials exhibited efficiencies approximately 50 to 200 times DimethylAmino NitroStilbene
(DANS). Crystals of one of the materials, DimethylAmino Stilbazolium Tosylate (DAST),
were grown and characterized using a second harmonic Maker Fringe measurement at 1.907
pm. The DAST crystals exhibited a d;; coefficient of 600+£100 pm/V with a coherence
length, L., of 2.61+0.3 um. The measurements showed a dy2 coefficient of 230450 pm/V,
L.=1.719.2 pm. These results gave a FOM of approximately 4000 (pm/V)2 An evaluation
of the measurements relative to current materials and device requirements is presented.
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Chapter 1

Introduction

Optics, the study of light, is a field that has been investigated for many centuries. However,
the interaction of light and matter has only recently received attention. Not until the birth of
quantum mechanics in the early and middle twentieth century, could a true understanding
of light-matter interactions be developed. With a clearer picture of the nature of light
and atoms, and with the basic principles of quantum mechanics substantiated, the field of

nonlinear optics was born.

1.1 Nonlinear Optics

Initially, scientists believed that the propagation of light in a medium was a linear phenom-
ena. As a beam propagates through a material, the electric field component of the heam
induces a polarization. This polarization is due to electronic oscillations around the partic-
ular atoms that compose the material, and may he altered by ionic motion which perturhs
the electron distribution. Typically, these oscillations are modeled as a simple mass-spring
system. From this model, an expression for the induced polarization can be derived as in

equation 1.1

P=P,-¢xE (1.1)

In equation 1.1, x is the dielectric susceptibility, E is the electric field component of
the propagating beam, and P, is the characteristic polarization of the material. For most

commonly encountered circumstances, the linear approxiniation to the polarization gave



reasonable results. More recent research has indicated that Maxwell’s equations, and con-
sequently the wave equation, are not entirely linear in a medium. Most materials can
successfully be approximated as linear, as the coefficients for the higher order, or nonlinear,
terms are extremely small. Under the proper conditions, however, these nonlinearities can
yield observable phenomena. In such cases, the linear approximation breaks down, and the

expression for the polarization must then be written as in equation 1.2.

P=P,+ eox(l)E + ¢s‘,x(2)E2 + eox(a)Es + ...eox(")E” (1.2)

The dielectric susceptibility has been expanded to include higher order terms. In many
cases, the polarization is written in terms of nonlinear coefficients d and C which represent
second and third order nonlinearities, respectively. The relationship of the ncnlinear optical

coefficients to their respective susceptibilities is governed by the expressions in 1.3 and

1.4.[28][4)[33]

X3

dijk = = (1.3)
(3)

Ciji = —X"‘;H (1.4)

The d and C coefficients are tensor quantities and may be represented in matrix form
when contracted notation is used. The simplified notation arises from the fact that j
and k in equation 1.3 are interchangeable (similar simplifications apply to the third order
coefficients, but will not be dealt with here). The implication is that dijk = dikj, known as

Kleinman symmetry.[6] The simplification of the various indices is then given by 1.5.

zr =1
yy =2
zz=3
yz=zy=4 (1.5)

Tz=zzx =25

zy=yr =6
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The contracted indices result in a 3x6 matrix representation for d that operates on the
E? column tensor to produce the components of the second harmonic polarization. The

matrix multiplication is given in equation 1.6.

(B2 )

E}
P diy diz diz dig dis dyg £
P, | =1 dn daa daz day dys dys ’ (1.6)
2E,E,
P, d3; di3z dsz dzq dis dag
2E.E,
| 22,5, |

Symmetry considerations in most materials may simplify the matrix. Many times,
certain elements go to zero or have the same magnitude as other tensor components within
the matrix, simplifying the polarization expressions significantly. Under certain conditions,
all elements may simultaneously go to zero. Specifically, for any crystal structure that is
centrosymmetric the d;;. tensor vanishes. Centric crystals require that a reversal of the signs
of the electric field components cause a reversal of the sign of the polarization. However,
since the polarization goes as the square of the fields, sign reversal has no effect, as shown
in 1.7. Therefore, centrosymmetric crystals have a vanishing d coefficient, d;;x = 0. Unlike
second order nonlinearities, third order effects do not require acentric crystallization to

obtain non-vanishing third order susceptibilities. [4]

— Pi = —diji E;Ep # diji(— E;)(- Ex) (1.7)

As is common in power series expansions, higher order coefficients tend to drop off
rapidly. The expanded susceptibilities are no different. Direct fourth order and higher
order effects generally do not produce measurable phenomena in existing materials, except
when large intensities are used at the absorption resonance frequencies of the material.
For this reason, many of the useful applications of nonlinear optical effects rely on second
and third order responses. The effects important to the work detailed in this paper are:

tfrequency conversion, the Pockel’s electro-optic effect, and the optical Kerr effect.
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1.1.1 Frequency Conversion

One of the most common observable nonlinear optical phenomena is the generation of new
frequencies from an incident wave. Typically, the conversion process is considered in the
realm of sum and difference frequency generation. Consider an optical beam composed of

two plane waves having frequencies w; and w,, respectively, as given in equation 1.8.

_ El(wl)(eiw.t +e-iu;t) + Ez(wz)(e"“’" + e“""")

E 2

(1.8)

If the given wave were incident on a nonlinear material, a polarization would be induced
in the medium. This polarization is given in 1.2. The incident field in 1.8 may be sub-
stituted into the expression for the polarization to arrive at equation 1.9; the substitution
for the nonlinear optical coefficients has been made. The expression for the total polariza-
tion contains dc terms, terms at the incident wave frequencies, and terms at the sum and

difference frequencies.

El(wl)(eimt + e—-:’wlt) + Ez(wz)(eiw:t + e—iw,t) N

P= Po + fox(l) [

2
2d;; [Ef(wl) ;r E}(ws) , Ef(:n ) (¢t 4 ¢ttt
+M1)2Eﬂ(ei(wl+w:)t 4 emilwrtealty
+El(w1)E2(w2)(ei(w|—w,)t+ emitwr—wnty] .. (1.9)

2

The expression can be rewritten, grouping the induced polarizations by frequency. The
result is given in 1.10.
P= Po + Pdc + Pwl.wz + PZW; + P2wg + Pw|+w; + Pwl -wjy (110)

The interesting terms in the polarization are those pertaining to the newly created
frequencies at the second harmonic and at the sum and difference frequencies given in 1.11,

1.12, and 1.13.

12



dij i i i2w —i
Py, = Pay, + P2y, = 7’ [Ef(wl)(e‘z"’“ + e7i21t) 4 B2 (w,) (e e 2"”t)] (1.11)

Poyur = dij [Ex (1) By(w) (e 72)t 4 emilrmenlt)] (1.12)
Pu, i = dij [By (1) Ba(wy) (€1 ea)t  emilertont)] (1.13)

Therefore, given a material with a nontrivial d coefficient, and an incident field composed
of two separate, unequal frequencies, the resultant output will have components at the
seco~d harmonic frequencies, and at the sum and difference frequencies. For a significant
second order nonlinear coefficient, the harmonic, sum, and difference frequencies will he at
observable intensities. Similar equations hold for third order nonlinearities, and a sizable
C coefficient.

Under certain conditions, the nonlinearity of the material can be greatly enhanced.
Consider the wave indicated in 1.8 now with a single frequency, w; = w; = w. Under this
condition, the terms in equation 1.9 condense to oscillations at the fundamental frequency,
w, and the second harmonic, 2w. For a sizable d;; component, a monochromatic incident
beam will yield outputs at the fundamental and at the second harmonic (in reality, there
will be output components at a variety of frequencies, all of which will be multiples of the
fundamental created by cascaded frequency summations).

To account for observable harmonic generation, the macroscopic physical systemn must
be accounted for. Typically, an incident beam generates second harmonic fields throughout
the bulk. The second harmonic generated at one point and having propagated to a second,
will constructively or destructively interfere with the second harmonic wave generated at
the new location. Ultimately, the phase-mismatch can be given by the difference in the

propagation vector of the fundamental and harmonic beams, as shown in 1.14.

Ak = 2k, — ko (1.14)

For a nonzero phase-mismatch, the second harmonic generated at one point and that
at another point yield a spatial interference pattern within the material. The total second
harmonic power will be proportional to this interference pattern and may be given by the

sinc?(z) function shown in 1.15.

13



sin?(
AkL\?
2

The distance within the material over which the two waves completely constructively

o)

PZw (08 (115)

or destructively interfere is called the coherence length. This maximum interference occurs
wherever the phase-mismatch is a multiple of 7. The coherence length may then be given

by equation 1.16.

T A

L. = Ak~ 4(ng, — ny,)

(1.16)

The coherence length and the spatial interference pattern become useful tools in the
measurement of nonlinearities in a material. As a crystal is rotated in a heam, the optical
length within the material changes. Consequently, the spatial interference pattern adjusts
with angle resulting in output fringes. From the fringes, a coherence length and a nonlinear

optical coefficient can be determined for a given material.

1.1.2 Linear Electro-optic Effect

The most widely used ronlinear phenomena is the linear electro-optic effect, also known
as the Pockel’s effect. In any system where the material characteristics can be effected
by a field, the response is considered nonlinear. In the case of frequency conversion, the
nonlinearities arise due to the electric field component of the incident optical wave. However,
material changes can also occur due to an externally applied electric field and still yield
nonlinear results. In this case, the phase or amplitude characteristics of a propagating wave
can be altered, as opposed to the frequency.

The linear electro—optic effect is expressed in terms of a tensor quantity, r. The various
components of the electro—optics tensor, also called the Pockel’s coefficient, can he simplified
using a contracted notation similar to that used for the d coefficient. The simplification

results in a 6x3 matrix as shown in 1.17.

14



( T11 Ti12 Ti3 \
Ta1 T22 T23

r31 732 733 ( i 17)
T4 T42 T43

Ts1 Ts2 Tb3

\ Te1 Tez Tes |

The resultant tensor represented by the matrix operates on the E column tensor to yield
the changes in refractive index due to an applied field. In almost all cases, syramietry consid-
erations cause the matrix to reduce to a markedly simplified form. In addition, assuming an
appled field in a single direction the overall multiplication reduces greatly. Consider, as an
example, the linear electro-optic effect in potassium dihydrogen phosphate (KDP), which
crystallizes in a tetragonal space group, point group 42m.[33] The only nonzero elements
of the tensor are r4; = rgz and rg3. To simplify things further, suppose the applied electric
field is sclely in the z direction. The resulting index ellipsoid may be given as in equation

1.18.

22 + y2
nl

2
z
+ o + 2rg3E.zy =1 (1.18)

To find the reaulting change in n due to the applied field, the expression in 1.18 must he
rearranged. A coordinate iransformation may be performed to obtain the resulting equation

given in 1.19.

zlz ylz zlz
;T"';f'*';!_:l (1.19)
) v 2

The z axis remains unchanged due to the absence of termns in 1.18 that effect the z
component. On the other hand the components of z and y experience an identical change.
The symmetry of 1.18 results in a coordinate transformation of 456°. The resulting index
ellipsoid is given in 1.20.

1 1”2 1 n, %
F+1‘03E1 "+ ;‘rGSEx y +n_’=l (1.20)

Typically, resE; is significantly less than ;}; and can be treated as a small change, An.

By using the differential relation given in 1.21, the indices of refraction on the transformed

16



axes, z' and y', can be derived. The three indices are given in 1.22.

dz = —-;-a:ad (;13) (1.21;

1
Ny = Ny — —nﬂran,

2
1
Ny =n, + EnﬂresE, (1.22)
ng =n,

The electro—optic effect is a second order nonlinear phenomena, where an applied field
induces changes in the material characteristics. The effect is similar to the changes induced
in a material by a sufficiently intense optical field. In fact, the Pockel’s coefficient can be
related to the d coefficient through the relation given in 1.23, where ionic contributions

have not been accounted for.[33]

diji (1.23)

Tijk = —
€ii€j5

1.1.3 Optical Kerr Effect

Second order nonlinear phenomena involve changes in a medium induced by an applied
electric field. However, the Lonlinear polarization expression, equation 1.2, is a Taylor
series expansion and includes higher—order terms as well. While many of the higher-order
terms may be neglected, The third order terms have the potential to induce changes in the
material proportional to the square of an applied electric field. In the electro-optic realm,
this is considered the quadratic electro-optic effect and is usually neglected in the presence
of a linear phenomenon (although Kerr cells are useful in certain instances).

The square of an electric field is also proportional to an incident intensity. Thus third
order effects may result in material changes due to the intensity of an incident optical heam.

The effect is typically characterized as a refractive index change as shown in equation 1.24.[1]

n=n,+ J|E? (1.24)

In the expression for n, n, is the linear refractive index, 7 is the optical Kerr coefficient,

16



and E is the electric field component of the optical beam. Often, the Kerr effect is expressed

in terms of & nonlinear refractive index, ny, as shown in 1.26.[12)

n=n,+nf =n,+ An, (1.28)

The result of an intensity dependent refractive index change is a phenoirena known
as self-focusing. A beam incident on a nonlinear aterial will experience refractive index
changes across the wave front due to local intensity variations, and the wave front will begin
to converge or diverge (depending on the sign of n;). Ultimately, the beam undergoes a
self-induced lensing effect within the material.

The self-focusing, or self-defocusing, phenomenon is the basis for a number of nonlinear
measurement techniques. Using a focussed incident heam, and carefully analyzing the
output, one can measure the nonlinear refractive index. From nj,, the third order nonlinear
coefficient can be determined; such measurements serve &s the basis for z-scan and pump-

probe tests.

1.2 Applied Nonlinear Optics

Nonlinear optical materials produce interesting phenomena. However, the attraction of
improved materials goes well beyond purely scientific interest. In many physical systems,
the effects of a nonlinear medium may produce useful devices. The realizable applications
of optical nonlinearities are sparse because of the power constraints. For the majority of
materials, the second and third order coefficients are too low, requiring very high powers in
either incident optical beams or externally applied fields, to produce usable output.

The most commonly used nonlinear phenomenon is the linear electro-optic effect. The
devices that utilize the Pockei’s effect are electro-optic modulators, of which there are
numerous examples. For amplitude and phase modulation of a propagating beam, low
frequency applied fields can be used in longitudinal or transverse device structures. For
modulation at high frequencies and large bandwidths, traveling wave modulators are typi-
cally used. In addition, electro-optic modulators may also be used to deflect incident heams
of light. The currently available materials provide good modulating capability at low fre-
quencies. However, optical signals carry information at higher bandwidths and with lower

loss and power dissipation than electrical signals in metallic conductors. To create a high

17



bandwidth modulator, materials with low dielectric constants are necessary, to provide a
reduction in the velocity mismatch between RF and optical waves.[18] Furthermore, for
commercial uses the stability and damage thresholds must be improved over existing ma-
terials. Finally, increased linea: electro-optic coefficients allow lower voltages to he applied
to obtain the same results, reducing overal! power requirements.

Efficient frequency doubling has also recently become a highly investigated phenomenon,
Frequency doublers for high-power lasers have been the primary use of nonlinear phenomena
at optical frequencies. However, over the past few years, applications of efficient frequency
doubling at low powers have become important. Notably, applications have arisen in data
storage and duplicating techniques utilizing gallium arsenide (GaAs) lasers operating in
the 100 mW range.[23] Therefcre, to obtain useful and efficient conversion to the doubled
frequency at such relatively low powers, materials with significantly higher second order
nonlinear coefficients than those currently available are necessary. Furthermore, the mate-
rials must be processable to create integrated devices for these new applications.

Third order nonlinear phenomena have also hecome significant. New device possibil-
ities have been suggested in signal processing, amplification, beam steering, and image
processing.[4] The most promising potential use of third order materials is in “all-optical”
computing, where two third-order nonlinear processes become important. First, integrated
device technology for beam steering to send the beam where necessary would he required.
Second, optical spatial light modulation would play a major role in fully optical devices.[4]
Such modulators are typically electro-optic devices; however, all-optical modulators may

become real devices with good quality third order nonlinear materials.

1.3 Nonlinear Optical Materials

The applications of nonlinear optics have been limited by the lack of suitable materials.
Nonlinear optical materials have been &available for frequency conversion and other limited
applications. However, currently available materials require powers of 100 W to 10 kW to
obtain observable nonlinear optical phenomena.[25] Therefore, by producing new materials
with higher nonlinear coefficients, the powers necessary to produce useful effects may he
reduced. The work done in this paper advocates the use of organic materials over traditional

inorganics to achieve improved performance.
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Nonlinear optical effects are due to a polarization created by irtense electric or electro-
magnetic fields. The polarization has already been discussed for bulk materiuls (see section
1.1). However, the source of the bulk effects is found at a molecular level. The polarization

is given by the field-dependent induced dipole moment shown in 1.26.

1= po+aE + BE? 4+ yE3 4 ... (1.26)

In equation 1.26, y, is the natural dipole moment, a is the polarizability, 3 is the hyper-
polarizability, and v is the second hyperpolarizability of the molecule.[4! The polarizability
constants of the material describe the molecular response to perturbation by electric fields
or electromagnetic radiation, and thus give rise to the source of nonlinearities at a molecular

level.

1.3.1 Inorganic Compounds

Traditionally, nonlinear materials have been inorganic. Such notable crystals as the previ-
ously discussed KDP, lithium niobate, and potassium titanyl phosphate (KTP) have been
widely used for frequency doubling in high power lasers or electro-optic modulation. Un-
fortunately, the applications are limited due to the relatively low nonlinear response of even
the best phase matched materials. The lack of significant nonlinearities comes from the
atomic or molecular mechanism responsible for the phenomena.

Inorganic compounds typically form ionic bond structures. Many of the molecules have
a significant hyperpolarizability, 3, and therefore have a large second order dipole response.
At the molecular level, a large second order response indicates that the electron cloud
surrounding the ion experiences substantial oscillations when driven by a sufficiently intense
field. The nonlinear effect arises from dipolar contributions of an ion and all of its neighbors.

Induced polarization in the inorganic family of nonlinear materials is a result of elec-
tronic motion about the atom: in the lattice structure of the crystal. As the electron cloud
surrounding a particular ion in the crystal oscillates, electrostatic interactions with neigh-
boring ions cause distortions, which give rise to the nonlinear optical phenomena. The
distortions of the electron cloud motion are due to lattice vibrations, or phonon contribu-
tions, that alter the separation of the ions increasing or decreasing the Coulombic potential

and adjusting the force acting on the electron cloud.[18] Inherently, because ionic motion is
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much slower than electronic motion, ionic contributions enhance Pockel’s and dc Kerr effects
(low frequency effects), but do not contribute to nonlinear effects involving solely fields at
optical frequencies. In addition, the ionic contribution usually implies a large low—frequency

dielectric constant, an undesirable property when considering device architecture.[31]

1.3.2 Organic Compounds

The use of organic media as a means of producing nonlinear optical phenomena is a recent
discovery. However, there have already been significant advances resulting in such materials
as 2-methyl-4-nitroaniline (MNA) and 4-dimethylamino-nitrostilbene (DANS). These ma-
terials rival the most widely used inorganic nonlinear media, but the crystallization process
is not yet widely understood and therefore, the organics have not yet made a dent into the
scientific and commercial uses of nonlinear optical materials.

Organic materials offer the possibility of rivaling or even besting inorganic materials in
nonlinear response. There are additional advantages to these substances as well. Organic
materials can be engineered with a high degree of accuracy to produce enhanced characteris-
tics. The nature of organic molecules implies that electronic, not ionic, motion will generate
optical responses. Inherently, electronic responses are faster than ionic and result in greatly
increased response times.[18] In addition, these materials offer the potential for large, broad-
band electro-optic coefficients while maintaining relatively small low--frequency dielectric
constants.[18] Additionally, the damage thresholds are at least comparable to those of in-
organic materials.[28] Ultimately, organic materials may be more readily usable for devices
where their inorganic counterparts proved insufficient.

As with inorganic materials, many of the organic molecules have significant hyper-
polarizabilities.[21] The bond structures, on the other hand, are typically covalent. The
dipole moment arises from oscillations of electrons along the length of the molecule. The
dipolar oscillations can be enhanced through careful engineering of the molecular structure.
The length of the molecule corresponds directly to the length of electric dipole induced in
the material. The increased dipole length subsequently results in a larger dipole moment.
Furthermore, an alternating bond structure facilitates electron motion along the molecu-
lar length. The conjugated structure is one in which the honds alternate: single-double,
double-triple, single-triple or some combination thereof. Finally, a properly substituted

system is also known to enhance molecular nonlinear response, where electron donors and
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Figure 1-1: DimethylAmino Stilbazolium Tosylate

acceptors are carefully placed to create a large electric dipole moment.[16] The molecular
systems studied here were based on a strategically designed system, an example of which,
dimethylamino stilbazolium tosylate (DAST), is given in figure 1-1.

The magnitudes of the macroscopic nonlinearities depend critically on the molecular
packing arrangement. Third order effects are observed in nearly all phases of matter, hut
can be significantly enhanced through proper molecular orientation.[13] However, second
harmonic generation requires that the molecules exist in a noncentrosymmetric environ-
ment to obtain sizable bulk effect.[15] Unfortunately, large electron-donating and electron--
withdrawing substituents invariably resuit in large molecular dipoles, whose neutral dipolar
interactions tend to drive the crystallization into a centric struzture. It has been suggested
that strong coulombic interactions may override dipolar ones and result in acentric crys-
tal structures. In fact, this approach was extended to a series of organic salts in which a
cationic chromophore with a large molecular hyperpolarizability, 3, was crystallized with a
variety of counterions.[2][21](7]

The work discussed in this paper concentrates on the measurements of the second and
third order optical nonlinearities in some of the recently uncovered organic salts.[21](2]
The family of salts investigated is based on the stilbene and stilbazole chromophores com-
bined with a number of counterions inciuding the tosylate and mesylate ions. Chapter two
describes the theory underlying the techniques used for the measurement of nonlinear co-
efficients. Chapter three gives the experimental setup and procedures used to perform the
tests. Chapter four gives the results of the experiments and an analysis of these results to
obtain values for the coefficients. Chapter five contains concluding remarks regarding the

relative potential of these tests and materials for future use.
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Chapter 2

Nonlinear Optical

Characterization

As discussed in chapter 1, optical nonlinearities are a result of a polarization induced in
a medium. The expression for the induced polarization, equation 1.2, can be rewritten to
form an expression in terms of an effective dielectric susceptibility. The result is given in

equation 2.1.

P =P, + &[x!) + xDE + xPE? 4+ .. x(WEE (2.1)

The effective dielectric susceptibility is now represented as an expansion with higher
order terms that are dependent on increasing powers of the incident electric fiecld. The field
dependence of the nonlinear terms in x is the key to measuring the second and third order
susceptibilities, x(2) and x(3), respectively. By using an incident beam to generate nonlinear-
ities within the sample material, a careful analysis of the output can lead to measurements
of the coefficients (fourth order and higher order terms do not produce measurable output
except under extremely rare conditions). This method, the use of the field dependence, is
the most widely used measurement method forming the basis for many techniques: Powder

tests, Maker Fringe tests, Z-scan measurements, and Pump-probe tests.
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Figure 2-1: Scatter pattern for reflection measurement

2.1 The Powder Test

The powder technique was initially detailed in the work of Kurtz and Perry [8]. This method
is a qualitative test that allows for a general classification of the magnitude of the second
or third order optical nonlinearity in a given material. The classification is relative to a
reference substance that has already been well characterized, in this work, Urea. The test
is relatively simple to conduct and involves illuminating a powdered sample with a laser
and ob: rving the second or third harmonic intensity generated.

The original test, as proposed by Kurtz and Perry, used a transmission technique
whereby the sample was illuminated at normal incidence and the transmitted intensity
was measured. However, in this work a reflection technique is proposed in which the sam-
ple is illuminated at an oblique incident angle and the reflected second or third harmonic
intensity is measured. The powder material is not placed in index matching fluid and thus
the scatter pattern of the reflected power is nearly Lambertian [8] as shown in figure 2-1.

Additionally, the various compounds and their differing phases are unsized; but typical
particle dimensions are on the order of 50 to 1560 um. The sample container is constructed
to accommodate a sample layer approximately 400 to 500 pum thick. The diameter of the
incident beam is approximately 5 mm. The experiment is conducted in the region where
particle size is significantly smaller than the sample layer thickness which is, in turn, signif-
icantly smaller than the incident beam diameter. Operating in this region insures that the
incident beam strikes a large number of particles with random orientations, thus providing
a statistical average. Furthermore, the particle sizes are assumed to he significantly larger

than the coherence length of the material, avoiding any correlations between the second or
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Figure 2-2: Maker Fringe measurement rotation

third harmonic intensities generated by individual particles.

The fundamental wavelength for the powder tests is 1.907 um. This wavelength is
chosen because some of the stilbazole and stilbene based organic salts have large ahsorption
resonances in the visible region of the spectrum. However, these same materials are nearly
transparent at 1.907 um and at the second harmonic wavelength of 953.5 nm. In addition,
many of the compounds are also transparent at the third harmonic wavelength of 635.7 nm.
Both the second and third harmonic tests are conducted in identical fashion using different

filters where appropriate.

2.2 The Maker Fringe Test

Unlike the powder test detailed in the previous section, the Maker Fringe test is a quantita-
tive test that will yield nuinerical results for the second and third order nonlinear coefficients,
d;; and C;j, respectively. However, the tests are similar in that both provide results relative
to a reference material. The reference material used for the Maker Fringe tests is a single
crystal of lithium niobate, LiNbO3. This technique was first suggested in the work of Maker
and others [17], and expanded upon by Kurtz and Jerphagnon [5]. To obtain measurements
of the nonlinear coefficients, a single crystal of a material is placed at the focus of a heam
and rotated from a positive angular inclination to the beam, through normal, to a negative
angular inclination, as shown in figure 2-2. As the crystal is rotated, the second or third

harmonic output is measured.
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2.2.1 Second Harmonic Measurements

Under ideal circumstances, the second harmonic generated within a bulk nonlinear crystal
is proportional to a sinc?(z) function, where z includes terms to account for the variation
in optical path length in the material due to angular rotation. The full expression for the

second harmonic power may be given by equation 2.2 [28].

L2w? 1
el

Ak
2 plainc? ( =
Se.c3A d;; P sinc ( 5 L) (2.2)

n2ny,
In this expression, L is the crystal thickness at normal incidence, w is the frequency of
the fundamental beam, A is the “spot size” of the beam (for our purposes the spot size is
w2, where w, is the beam waist at the focus for a gaussian beam), d;; is the second-order
nonlinear coefficient, P, is the incident fundamental power, and Ak is the phase mismatch
(Ak = 2k, — k3,). The expression given in 2.2 is valid only when the sample is considered
thin. Under this assumption, L is less than the confocal parameter, 1‘}:- Therefore, changes
in the beam diameter within the crystal due to diffraction or refraction can he neglected.
The Maker Fringe curves are based on transmitted second harmonic power, and thus
involve some additional complexity. To account for fresnel losses as the beam passes into
and out of the crystal, two transmission factors are included. The first, T,(8), incorporates
the fresnel losses at the front surface in the fundamental beam, that is, at frequency w.
The second, T>,(8), accounts for fresnel losses at the back surface in the second harmonic
output, at frequency 2w. Additional correction factors need to be included to take into
account the various causes of departure from the ideal case. These additional terms include
corrections for multiple reflections, R(f), a beam size correction, B(8), and the angular
dependence of the d;; coefficient, p(6), where @ is the angle of incidence. Including these
terms results in the most general expression for the second harmonic power generated in,

and transmitted through, a nonlinear crystal, as given in equation 2.3.

2,2
Pzw=[Lw] 1

3o | mEn PO Tou(O) R(O)B(0)p(0)sinc’ (%’EL) (2.3)

This expression may be simplified for the materials and circumstances specific to the
work discussed in this paper. For materials with low refractive indices, the multiple re-
flection factor, R, is close to unity, and independent of 8 [5]. In addition, when operating

in the region where the crystal thickness, L, is less than the confocal distance, no beam
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correction factor, B, is necessary [5]. Finally, by carefully choosing the orientation of the
crystallographic axis, rotation axis, and fundamental electric field polarization, and by in-
corporating angular rotation into changes in optical path length, the angular dependence of
d;j can be eliminated, forcing p equal to unity. This leaves simply the transmission factors.
The transmission factors, T,,(6) and T},(0), are obtained from the solution of Maxwell’s
equations for transverse electric fields (those used in this work) with the appropriate bound-

ary conditions, and are given in equations 2.4 and 2.5.
T.(0) = 2cos@ (2.4)

n, cos 8! + cosf

2na, cos 03, (cos @ + n,, cos 8, )(n,, cosbl, + ny, cos )
(n2w cos 6}, + cos )3

TZw(o) = (2.5)

In these formulas, 6], and 6}, are the internal angles for the fundamental and second
harmonic beams, respectively. These internal angles are shown in figure 2-3.
The internal angles can be converted to functions of the original angle of incidence, 8,

through the application of Snell’s law.

. (sin@
6., = arcsin (—n——)

w

. [siné
6,,, = arcsin ( )
N2y
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Application of Snell’s law to internal angles in the equations for the transmission coeffi-
cients, T,(0) and T, (), results in expressions dependent solely on the angle of incidence.

The single variable transmissior. factors are then given by equations 2.6 and 2.7.

2cos@
T.(0) = n,, €OS [a.rcsm (mno)] Iy (26)
Tpu(6) = 2ny, cos [arcsm (ﬂ:f)]

(n2u cos [aresin (2¢)] + cos6)’

(cos 6 + n,, cos [a.rcsin (s:‘:ﬂ)] ) X
(n,,, cos [arcsin (si::ﬂ)] + ngy, cos [a.rcsin (%:—f)]) (2.7)

The next step is to simplify the sinc(z) function in the expression for the second har-

monic power. By factoring out the denominator and expressing the phase mismatch, Ak,
in terms of w and the indices of refraction, the expression for the total second harmonic

power transmitted by the crystal may be given be equation 2.8.

— 1 1 2 2 . 2 (Ak )
Faw = [2eoc1rw2] n2ng,(n, — nz“)zdup T.(6)Tu(0) sin 3 L (2.8)

The argument of the sin function may be simplified using appropriate assumptions
about the coherence length and the optical path length in the crystal. The coherence
length of a material is defined as the distance in the medium over which the power generated
at different points completely constructively or destructively interferes. For example, the
second harmonic signal generated at one point and having propagated a coherence length
within the medium will be exactly out of phase with any second harmonic signal generated
at the second location. Similarly, a distance of two coherence lengths would result in the
signals being completely in phase. This implies that the coherence length is a result of a

phase mismatch of = as shown in equation 2.9.

AkL.=m (2.9)

Realistically, the coherence length is an angle-dependent quantity. However, a good
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approximation is to assume that it is reasonably constant and instead incorporate the
angular dependence into the optical path within the crystal. Thus, the coherence length
may be defined as in equation 2.10.

A

Lo L(0) = 7 = Urpo —10)

(2.10)

Incorporating the angular dependence into the optical path length and substituting for
the internal angles results in a new crystal thickness L/(9) as given in 2.11.
L

L) = cosG’ - cos [arcsm (':‘o)] (2:11)

The coherence length and angular-dependent optical path length may now be used to

simplify the argument of the sin function as shown in 2.12.

AHmL wA

(2.12)

kL'(O) % I(, 1

L(0) cos [a.rcsin (%'1—97]

Using the angle dependent expressions for the transmission coefficients and the sim-
plifications of the arguments to the sin function, an expression for the total transmitted
second harmonic power as a function of the indices of refraction, the crystal thickness, the
coherence length (at normal incidence), and the angle of incidence can be derived. Given
that L, L (0), n.,, and n,, are material constants, the expression for the transmitted second

harmonic power is dependent solely on the angle of incidence, 6, as given in 2.13.

P2.(6) = [2eoc11rwz] n2 nzu(ni - ny,)? dlszz T (6) 2. (6) sin*($(6)) (2.13)
where
m L 1
¥(6) = ELc(O) cos [arcsin (':::. )] (14
T,(6) = 2cos@ (2.15)

n, cos [arcsin (-’%’)] + cos @

2ng, cos [arcsm ( 'iz )]

T5.(0) =
2(0) ) +c030)

X

(nz.,, cos [arcsm (nz...
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(coso + n, cos [arcsin (‘_i'_:““_a)]) X

(n.,, cos [arcsin (%)] + n3, cos [arcsln (%g)]) (2.16)

The expression for the total transmitted second harmonic power predicis the shape of the
curve for a specified thickness of a given material. The equations simplify remarkably when
used, in conjunction with a reference material, to compute an element of the d coeflicient
tensor. Using the Maker Fringe experimental results to calculate a d;; coefficient is a two
step process. First a coherence length is calculated from the minima of the measured data.
Second, using a reference material and the peak of the envelope curve of the fringes, a d;;
coefficient can be computed.

The first step, calculating the coherence length, does not require a reference material.
These calculations are based on the locations of the minima of the fringes for the particular
material. Returning to equation 2.13, the oscillations, or fringes, are a result of the sin?(v/)
portion of the expression. The zeros, or minima, occur where sin(y) goes to zero as shown

in 2.17, where the internal angle substitution has again heen made.

i = sin z L " 1 | = 2.17
sin(¥) = (2 Lc(0) cos [arcsin (%‘u—')]) ’ (217)

This is true for the condition given in 2.18, where m is an integer.

I L 1 =mnr
2 L(0) cos [arcsin (%ﬂ

(2.18)

While the value of m is unknown, two adjacent minima can be given by m and m + 1.
This assumption yields two expressions for the m** and m*" 4 1 minima as given in 2.19 and

2.20, where 0,, and 0,,+, are the incidence angles that give the m*" and m'* 4 1 minima.

_r L 1
" 2 Le(0) pos [arcsin (".ﬁ,‘f“)]

r L 1

-2_14.,(0) co8 [nrcain (ll_n:_g_‘;u_)]

mn (2.19)

(m+1)r=

(2.20)

Subtracting these two expressions yields 2.21.
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L 1 1
= ELc(O) (cos [arcsin (&:?-ﬂj] - cos [nrcsin (ﬁ!'!.h)]) (2.21)

Algebraic simplification finally results in an expression from which the coherence length

of the material may be calculated based on the minima alone, as given in equation 2.22

L 1 1
L(0)= 2 (cos [a.rcsin (%ﬂﬂ " cos [arcsin (!':—:m)]) (2.22)

The second portion of the d;; coefficient calculation requires some reworking of the
expression for the second harmonic power. The peak power, or peak of the envelope curve, is
the significant quantity; thus the sin(t) term in equation 2.8 goes to unity. This assumption

ar.d some algebraic simplification yields expression 2.23.

2w?
eoc3TwiAk?

Py = [ ] = :md,?jpgr,,(o)r,.,,(o) (2.23)

Substitution of the expression for the coherence length, L(0) = J%, results in expression

2.24.

= w? 1 2 2 p2
Pao = e¢c31r3w3] g e (O PLTL(0)T2u(6) (2.24)

To compute the d;; coefficient, the expression for the second harmonic power of the
sample is divided by that of a known reference material. The peak of the envelope occurs at
normal incidence, the two transmission factors are assumed to he similar in magnitude at
normal incidence for botk the sample and reference materials, and will thus he neglected.
Performing the division (the s subscript indicates sample, and r indicates reference) yields

expression 2.25.

P,  |A%a) mio L (O)ER
P, [0 sk 12, (0)d2 P2

Equation 2.25 can be simplified using considerations of the setup. The same fundamen-

(2.25)

tal frequency and optics setup was used for heth the sample and the reference materials;
therefore the quantity in brackets is identical for both and can he dropped. Furthermore, the

same fundamental intensity was used and thus can also be eliminated. These simplifications
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result in the ratio of second harmonic powers given in 2.26.

P, _ "Z,,nzu, Lz,(o)d_f
Pro. 13z, T2.(0) @

(2.26)

A final rearrangement gives the expression for the d;; coefficient given in 2.27.

_ Py, LC-(O)EU_. N2y,
d, = dr‘/Pzw, L. (0)n. ‘/nzw' (2.27)

In expression 2.27, d, is a component of the d coefficient tensor of the reference material,

P, and P;,, are the measured peaks of the fringe envelopes. L., and L., are the previously
calculated coherence lengths, and n,,, n,,, nz.,, and ny,, are the indices of refraction at

the fundamental and second harmonic, respectively.

2.2.2 Third Harmonic Measurements

In a fashion similar to that used for the second harmonic measurements, the third order
nonlinear coefficients of many materials can also be theoretically predicted and measured.

The expression for third harmonic generation in a bulk nonlinear crystal is given in equation
2.28. [30]

2,.2
Psw=ll2Lw] 1

eyl v, C%Plsinc? (.Az_"z,) (2.28)
As before, L is the crystal thickness, w is the frequency of the fundamental heam, A is
the “spot size” (rw? for a gaussian beam), C;; is the third order nonlinear coefficient, P,
is the incident power, and Ak is the pkase mismatch (Ak = 3k, — k3,,).
The setup for conducting the third harmonic measuremments is identical to that used
for second harmonic experiments with the appropriate filters replaced. The same approx-
imations used to simplify the second harmonic expression may also he used here. Thus,

the expression for transmitted third harmonic power from a bulk nonlinear crystal may he

given in 2.29.

12L%w?
€3ci A3

P, = [ ] ﬂﬂ,:'au CLP3T,(0)Ts.(0)sinc? (-Az—LL) (2.29)

T.(9) and T3,(0) are transmission factors serving the same purpose as those for the

second harmonic, where instead of second harmonic the third harmoric transmission factor
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has been substituted. These transmission factors are given in equations 2.30 and 2.31 where

the internal angle substitutions have already been made.

2cos8

T.(0) = n, cos [arcsin (!-},9“1)] + cos @

(2.30)

2ng,, cos [&r“i“ ("‘?f)]

(n;.,, cos [arcsin ] + cos 0)

(cu0 + o e (229)])

(rocon [ (229Y] 4 mco [acin (229} aan

Nay

T3.(0) =

To obtain the expression for total third harmonic power transmitted through the crystal,
the argument of the sinc(z) function may be simplified. The same definition for coherence
length may be used as given in equation 2.9, but expressed for third harmonic phase mnis-

match, given in 2.32.

A

Le = L(0) = Ak 6(n3, — n,)

(2.32)

Finaily, the same simplifications used previously result in an expression for the total
transmitted third harmonic power as a function solely of the angle of incidence, 8, given in

2.33.

Pa.(0) = 363c::"w‘] nd naw(n.].; - ngy)? CiPuTu(6)Tau(6) sin’ (¥(0) (2.33)
h
- o) = 1= . (2.34)
T2 Lc(0) cos [arcsin (ﬂ,ﬂl)] '
T,(0) = 2cos6 (2.35)

n,, cos [arcain ('}31)] + cos @
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oo i 8] )
(cosa + n, cos [arcsin (%)]) X

o () s o ()]

This expression for third harmonic power predicts the shape of a given thickness of a

Ta,(9) =

57 X

material. However, to calculate an element of the C coefficient tensor frorn experimental
data, this expression, in simplified form, must be used in a relative measurement. In this
case the coherence length is again calculated from the minima of the experimental curve
and the C;; coefficient from the ratio of peak powers of the test material and a reference.
The same simplifications used for the second harmonic power apply equally well for the
third harmonic tests. The coherence length is therefore given identically by equation 2.22,

rewritten here.

L(0)= % (cos [msinl(%ﬂ)] " o [arcsirli (—‘:‘,—:m)])

The expression for the third harmonic power can be simplified using the same assump-

(2.37)

(]

tions as were used for the second harmonic expression to yield equation 2.38.

CLP3T,(6)Ts.(9) (2.38)

P - 48uw? 1
% = lecAntwiAk? | n3n,,

A final substitution can he made for the coherence length using L.(0) = %%» which
results in 2.39.

L(0)CF PIT.(0)T.(6) (2.39)

2
P3w=[ 48w ] 1

e2cinriwl | ndn,,

To obtain a value for the C; coefficient, the ratio of peak powers for a sample and
a reference material is used. The two transmission factors are assumed to he similar in
magnitude for both materials at normal incidence and are thus dropped from the expression.

Thus, the ratio is given in expression 2.40, where the s subscript indicates sample and r

indicates reference.

33



Py, [e’o:'a:"—l'w,] ﬁ,—u;Lg.(O)cij

Pro, |t | i L2 (0C2P2

edeiniw]

(2.40)

Equation 2.40 may be simplified. The same fundamental frequency and intensity are
used in an identical setup for the reference and sample experiments. Therefore, the en-
tire term in brackets may be dropped as can the incident fundamental intensity. These

simplifications result in expression 2.41.

P3w. - nifnawl' L?:.(O) C.z
Pa,.,, - nf},.na.,,, Lzr(O) C,?

(2.41)

Finally, rearranging the simplified expression yields one for calculating the C;; coefficient

from measured data given in 2.42.

_ Paw, Lc.(o) ne, ; naw,
Co = Cr\| Pow. ..(0) () \ o, (2:42)

In expression 2.42, C, is a component of the C cocfficient tensor of the reference material,
Ps,, and P, are the measured peaks of the fringe envelopes. L., and L., are the previously
calculated coherence lengths, and n,,, n,,, ns,,, and ns,, are the indices of refraction at

the fundamental and third harmonic, respectively.

2.3 Alternative Characterization Methods

In addition to the powder test and the Maker Fringe test, some new methods for charac-
terizing the nonlinear optical coefficients of various materials have been recently proposed.
These new methods hold out the promise of being able to accurately quantify the optical
coefficients using an absolute measurement as opposed to a relative one, while avoiding the
complexities of three and four-wave mixing experiments. Two such methods are the z-ican

technique and the pump-probe test.

2.3.1 The Z-Scan Technique

The z-scan technique is 8 method used to measure the nonlinear refractive index of a single
crystal sample. [11] The nonlinear refractive index, ns, is defined as shown in equation 2.43,

in relation to the total refractive index of the material.
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n=n,+nl =n,+ An, (2.43)

In expression 2.43, n, is the linear refractive index, and I is the incident intensity. The
configuration used to perform this test is shown in figure 2-4, where the normalized trans-
mittance, T, is given by gf-. The z-scan technique allows determination of hoth the sign and
magnitude of the nonlinear refractive index. The sign of n, comes from the self-focusing or
self-defocusing effects of the nonlinear medium on the beam. For a inedium with a positive
nonlinear refractive index placed in front of the original focus, the focal point of the beam
will be shifted toward the medium resulting in a decrease in the normalized transmittance.
Furthermore, this same medium placed after the original focus, causes the heam to focus
slightly more than with no medium resulting in an increased transmittance. Thus, as the
medium traverses a path starting in front of the focus, through, and then beyond the focus,
the value of T drops to a valley, then rises through a peak hefore normalizing back to one.
This pattern for the transmittance is shown in figure 2-5.[11]

The opposite effects are observed for a medium with a negative nonlinear refractive
index. The peak in the transmittance occurs first and then the valley follows. Recognition
of this pattern reveals the sign of n,.

The magnitude of the nonlinear refractive index can also be calculated from z-scan
measurements. To simplify the calculations, the experiment is typically perforined under
the conditions where the medium can be considered thin. That is, the sample length is
small enough, such that changes in the beam diameter within the sample due to diffraction
or refraction can be neglected.[11] With these assumptions, the phase change, A¢, at the

exit surface of the material may be given by 2.44. [12]
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.
A¢ = A, P ) (2.44)
1+5

where
1-eoL
—_— 2.4
= (2.45)

2
A®, = %Ano

2, is the location of the beam waist, z is the position relative to the waist, a is the
absorption coeflicient, L is the sample thickness, w(z) is the beam waist at a position z, r
is the radial component of the gaussian beamn, and A, is the phase distortion. The phase
distortion can be linked to the measured normalized transmittance as shown in equation

2.46. [12]

AT,_, =T, - T, ~ 0.405|A%,|, |A%,| <™ (2.46)

An, can be related to n, via the relation shown in 2.43. The nonlinear refractive index
can easily be transformed into a rough approximation of the third order nonlinear coeflicient,
C;; or x(3), via equation 2.47. [28]

x®) % eenony (2.47)

In the expression for x(3), n, is the linear refractive index and can be obtained from a

simple Brewster’s angle measurement, and c is the speed of light in vacuum.
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Figure 2-6: Pump-probe test configuration

2.3.2 Pump-probe Tests

The pump-probe test is conducted in a fashion similar to that of the z-scan measurements.
However, in this case an initial pump pulse initiates the change in the refractive index
due to n;. A probe pulse is then incident on the sample and the phase change due to
the alteration of the refractive index is measured. From these measurements a' third order
nonlinear coefficient can be calculated.

The pump-probe tests use an interferometric means to generate a phase shift that can
be measured. By adjusting the translation stage and altering the delay of the probe pulse
the phase shift due to material nonlinearities can be measured. The phase shift can then he
converted to a value for the nonlinear refractive index {dependent upon the polarization),

from which various elements of the x(3) tensor can be calculated.[10]
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Chapter 3

Experimental Procedure

The procedure used to take the measurements of the nonlinear materials was broken down
into three separate areas. The first part of the experiment was to prepare the samples.
For the powder tests, a powder portion of each sampie had to he ground and placed in
a transparent container made from fused silica. The samples for the Maker Fringe tests
were single crystals of the materials grown from solution and mounted on fused silica slides.
The second part of both the powder tests and the Maker Fringe tests was characterizing
the experimental setup to account for any anomalies due to the optics that were used.
Finally, the experiments were run from computer for improved accuracy, requiring software

to control the experiments.

3.1 Powder Sample Preparation

Prior to preparing any of the powder samples, the glass containers were constructed. These
containers were created from a fused silica slide, three fused silica cover slips, and an ul-
traviolet epoxy that was index matched to the glass. The first step was to bond one of the
cover slips to the glass slide, flush with an edge. Enough epoxy was applied so that there
were no gaps between the cover slip and the slide. A second cover slip was placed on the
glass slide, approximately five millimeters down from the first, and bonded in the same way.
The entire unit was then placed under a longwave ultraviolet light to cure. The uncovered
vessel is shown in figure 3-1.

The powder samples tested here were based on the stilbene and stilbazole chromophores,

as mentioned earlier. These materials were produced by a group of organic chemists at the
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Figure 3-1: Uncovered container for powder tests

General Electric Corporate Research and Development Center.[3] The resultant powders
were then used as the source material for the powder tests. The various samples prepared
and tested are shown in appendix B along with reference numbers that will he used through-
out the discussion of the results. Approximately 20 to 30 grams cf a given sample were
placed in a mortar. The sample was then ground until no more visible changes in particle
size were noticed with continued grinding. A small amount of the pulverized material was
then placed in the 5 mm gap of a pre-prepared, uncovered container. The material filled
the gap in the vessel, but formed a thin enough layer so that the top cover slip laid perfectly
flat. The epoxy was applied in a circle around the sample, the cover slip was placed on top,
and the entire vessel with the sample was placed under the ultraviolet light to cure; after
the curing process the sample was tagged with a reference number and recorded. The entire
process resulted in an airtight container with approximately 30 to 49 square millimeters of
surface area for beam exposure. The final container is shown in figure 3-2.

There were some intricacies to note with regards to the powder sample preparation.
In some cases, the materials were particularly hygroscopic. These samples underwent a
visible phase change from an anhydrous form to an hydrate during the grinding process, and
therefore were re-prepared without grinding. In some of the most extreme cases, the samples

were prepared in an environment less humid than the ambient air, such as a nitrogen—filled
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Figure 3-2: Final container for powder tests with powder sample

glove box. However, in all cases both the hydrate and the anhydrate materials were kept
and tested.

3.2 Crystal Growth and Mounting

The Maker Fringe tests were conducted using single crystals of the materials. These crystals
were grown from a saturated solution by carefully controlling the temperature. First, a
double-walled glass vessel was filled with methanol and connected to a constant temperature
bath, circulating water between the first and second walls of the container. The water was
heated, and consequently so was the methanol. The organic material to he grown was
added, in powder form, to the methanol until the solution became saturated. The vessel
was then sealed with a seeder string immersed in the center. The temperature of the bath
was slowly lowered (%o to 1° per day) to allow a slow crystallization process. The process
was continued over a period of one to two weeks; at the point where no further substantial
growth was noted, the crystals were harvested from solution.

It was found that this process tended to be inefficient in utilizing the available material
in solution. The inefficiency was a result of depletion zones that formed around the crystal

surfaces — areas where the organic material concentration was markedly lower than the
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surrounding solution. To correct for this problem, a dc motor was used to slowly rotate the
seeder string back and forth, preventing the generation of depletion zones in vhe solution.

The harvested crystals were placed in glass containers, which were then placed i..side
vacuum chambers filled with a highly water-absorbent material (for example dri-rite). The
purpcse here was to dry any methanol still on the crystal surfaces and to prevent any
ambient water absorption by some of the more hygroscopic materials. Following drying,
each crystal was mounted onto a fused silica slide.

The crystals were mounted on the slides using an epoxy that was cured via exposure to
longwave ultraviolet light. However, the bond material was sensitive to the laser light heing
used, damaging easily upon exposure. Therefore, the optical path through the crystals had
to be free of any epoxy. The crystals were mounted by placing a drop of hond on the slide
and manipulating the very corner of a crystal into it. With the crystal mounted, the slide
and crystal were placed under the ultraviolet lamp to cure. Once the epoxy had sufficiently
hardened, the mounted sample was placed back into the covered vacuum chambers until

the tests were run.

3.3 Experimental Setup

The powder tests and Maker Fringe experiments were run using an identical optics setup.
However, due to differences in the tests, different devices were needed for mounting and
manipulating the samples. The signal detection and amplification schemes where basically
the same for both measurements. Finally, the tests were run via computer and required

slightly different software for each.

3.3.1 Optics Layout

The optics setup used for the measurements is shown in figure 3-3. The same setup was
used for both types of experiments. The linearly-polarized, fundamental beam of a 20 Hz,
unseeded, Q-switched Nd:YAG laser, at a wavelength of 1.064 yun, was Raman shifted out
to 1.907 pm. A 60 cm path-length cell pressurized to 500 psi with high-purity hydrogen
gas, Hz, provided high-order Stokes and anti-Stokes Raman shifted light, collinear with
the incident beam (for a discussion of the Raman scattering process the reader is referred

to appendix A). A Pellin broca prism and circular aperture selected the 1.907 um beam
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from the output of the cell. A caicite polarizer provided the proper polarization to carry
out the tests. In addition, for both the Maker Fringe and powder tests a reference arm
was used to normalize out pulse-to-pulse fluctuations of the laser. A plane--parallel silicon
window was placed in the beam path at an angle of incidence of 40°. The fresnel reflection
for a transverse electric field was then uicu as the input beam for the reference arm; ai
the given angle of incidence the ratic of transmitted to reflected intensity was 1.5 {I, =
0.6; R, = 0.4). The material in the reference arin was a powder sample of dimethylamino
stilbazolium tosylate (DAST) in a fixed mount. DAST was used as a normalizing sample
because the second harmonic signal was sensitive to pulse width and energy fluctuations; in
addition, the large second harmonic signals produced were easily detected. During the third
harmonic tests, the laser intensity was increased. To prevent damage to the DAST sample
in the reference arm, a Corning glass filter (optical density 0.92 at 1.907 s, #5850) was
placed in the optical path of the reference arm.

The different measurements provided by each type of test required separate devices for
holding and manipulating the samples. The powder test samples were held in a stationary
position aligned with the beam incident on a portion of the sample. The Maker Fringe tests,
on the other hand, required that the sample be carefuily aligned in the beam and rotated.

Therefore, the area indicated in figure 3-3 as sample mount was different for each test.

3.3.2 Powder Test Mount

The powder tests were conducted under conditions that minimized sample-to-sample fluc-
tuations. To avoid any induced deviations, each sample was held at a rigidly fixed inclination
to the beam that did not vary between samples. In addition, the entire spot size of the
beam was incident on each sample. These conditions required that the samples be easily in-
terchangeable but that the mount that held them stay fixed in position. To comply with the
requirements, a pinch-type filter mount was used. The setup used to hold and manipulate
the powder samples is shown in figure 3-4.

To replace samples the pinch was loosened and the current sample removed. The new
slide was placed in the filter mount and the pinch was tightened. As mentioned previously,
each sample container was prepared in an identical manner; the filter mount was fixed at a
given height and inclination to the beam and, therefore, there were no variations in height

from sample to sample. Furthermore, the consistency of the height and ease of sample
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access guaranteed that the detection scheme remained unchanged from sample to sample.

3.3.3 Maker Fringe Mount

The Maker Fringe tests did not have the rigid sample-to-sample consistency constraints
that were placed on the powder tests. However, the sample had to be meticulously aligned
and carefully rotated such that the axis of rotation was perpendicular to the beam and the
two intersected at the front facet of the crystal. Intersection of the rotational axis and the
beam in the bulk of the crystal, or other forms of misalignment, produced nonviable resuits
as the beam tended to walk—off the sample during rotation. In addition, the crystallographic
axes had to be aligned with respect to the polarization of the incident beam to avoid any
problems with angular dependences in the nonlinear coefficients. Therefore, the sample
mount required mobility in all six degrees of freedom, one for rotation and the other five for
alignment. The sample mounting device used for the Maker Fringe tests is shown in figure
3-5.

The rotational stage on which the rest of the mount was placed was a Newport Optics
series 496 automated rotational stage controlied by a Newport PMC400 controller. The
rotation was handled by an Apple Macintosh IIx connected via a general purpose interface
bus (GPIB). The stage handled the rotation of the crystal through the incident beam. A
three axis, manually controlled, translation stage provided omni-directional positioning,
while two cross-connected, manual rotational mounts provided precise control of roll and

pitch. The sample was mounted onto the face of rotational stage A (see figure 3-5) via
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Figure 3-6: Maker Fringe sample mount

adhesive. Each individual sample required only that the alignment be precise with respect
to the rotational axis, crystallographic axis, and incident heam; however, sample-to-sample

fluctuations in position were not relevant.

3.3.4 Signal Detection and Amplification

The same optical setup was used for tests conducted at the second harmonic, 953.6 nm,
and third harmonic, 635.7 nm. Therefore, the detection scheme had to provide significant
detection and amplification ability at both wavelengths. In addition, the effects of noise
had to be minimized.

Signal detection was provided by zero-biased, large-area (1 cm?), silicon PIN photo-
diodes. The signal from the photodiodes was amplified using a low-noise transimpedance
amplifier. A two-channel boxcar integrator, triggered off of the laser, sampled the amplified
pulses. The voltage cutputs of the boxcar integrator were then digitized and collected via
an Apple Macintosh IIx computer, running Labview ((©National Instruments) software.

The same detection scheme was used for all the experiments conducted. However, in
order to select the second or third harmonic signals, glass and interference filters were
placed directly in front of the detectors. For second harmonic tests, a short-pase glass filter
(Schott RG-9) absorbed the 1.907 um fundamental beam but transmitted the 953.56 nm
signal with 73% efficiency. A bandpass interference filter centered at 950 nm selected the
second harmonic signal. For third harmonic tests, a bandpass glass filter (Schott KG-3)
absorbed both the fundamental and second harmonic signals, but transmitted the 635.7
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signel with 71% efficiency. A bandpass interference filter centered at 633 nm was then used
to discriminate the third harmonic signal from multi-phcton fluorescence.

3.4 Data Acquisition

The collection of the data from the boxcar integrator was handled via an Apple Macintosh
IIx computer, running Labview software ((¢)National Instruments). The software, however,
was slightly different for each test. The powder tests required simple averaging over a series
of laser pulses. The Maker Fringe tests, on the other hand, required averaging over a series
of pulses while simultaneously handling stage rotation. In both cases, the raw data was

analyzed to obtain usable information.

3.4.1 Powder Tests

The powder tests required a simple averaging algorithm. The software allowed any number
of pulses to be averaged. For the work conducted here, 1000 pulses were averaged. Each
channel of the boxcar integrator (the sample and the DAST reference) was read simulta-
neously. The channels were sampled at one-half of the Q-switch frequency of the laser to
insure that each pulse was separate and independent of any previous pulses. (in this case
only every other pulse was recorded). The voltage of the sample arm was divided by that of
the reference arm to normalize out fluctuations. The software then summed the arbitrary
intensity-dependent voltages returned over 1000 pulses and divided by 1000. The soft-
ware returned a number representative of the measured second or third harmonic intensity
generated by a particular sample.

The powder efficiencies of the samples were calculated from measurements of a material
to which the numbers could be referenced. For the second harmonic measurements, the
samples were referenced to Urea; for third harmonic tests, the signals were referenced to
dimethylsmino nitrosilbene (DANS). Urea and DANS were tested periodically over the
course of the powder measurements to maintain a consistent value for referencing. Once
the raw data had been collected the arbitrary intensity-dependent numbers returned by
the software for each sample were divided by those returned for Urea or DANS (depending
on the second or third harmonic test being run). The ratio of sample to reference gave a

powder efficiency for the tnaterial.
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3.4.2 Maker Fringe Tests

The Maker Fringe tests required a slightly more complex program than did the powder
tests. The same averaging routine was used, as pulses were read off hoth channels of the
boxcar integrator simulta.ieously, summed and normalized. The sampling was again carried
out at one-half of the Q-switch frequency, averaging over some number of pulses. However,
in addition to averaging the pulses, the software also had to drive the rotational stage and
keep track of the degree of rotation at which the current sampling was taking place.

The controls for the tests had to he flexible to allow the speed and accuracy of the test
to be manipulated. The software allowed any number of pulses to be averaged; fifty pulses
were averaged here. The test could be run from any initial inclination to the heam to any
final inclination, with varying incremental step size (0.01° to any upper level step size). The
software recorded the averaged value and the degree at which that average was taken; the
information was dumped into a standard ASCII file.

The d;; coefficients could only be calculated when the measurements of a particular
material were compared relative to a substance with a known nonlinear optical coefficient.
Therefore, samples were run in pairs. First, a lithium niobate (LiNbO3, d33 = 30 pm/V)
reference crystal was run, followed by a sample. The analysis of the raw data was carried
out using the Kaleidagraph software package on an Apple Macintosh IIx. The coherence
length of each material was calculated from their respective curves via a second order curve
fit to local minima. The ratio of the peak powers was then used to derive the value for the

particular tensor component of the d coefficient being measured (see chapter 2).
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Chapter 4

Results and Analysis

The measurements conducted by both the powder tests and Maker Fringe tests returned
raw numbers dependent on the intensity of the second or third harmonic generated by a
particular material. However, in both cases the raw data needed some analysis to obtain
qualifying results for the second or third harmonic powder efficiencies, or for the various

elements of the d coefficient tensor.

4.1 Powder Test Data

The powder tests were conducted for two separate wavelengths. The second harmonic tests,
at 953.5 nm., were referenced to Urea. The third harmonic measurements, at 635.67 nm.,
were referenced to DANS. Over fifty different materials were tested based on the stilbene and
stilbazole chromophores. Multiple pcwder efficiencies are reported for compounds exhibiting
polymorphism.

The raw data for the second and third harmonic measurements along with the second
and third harmonic powder efficiencies are given in tables 4.1 through 4.6. The materials
are listed by reference numbers that associate measurements with the specific substances
listed in appendix B. The numbers given for Urea(A1) and DANS(AB), are representative
of a number of measurements performed over the course of the entire test. The tables are
broken down into base chromophore, substituent group, and counterion as classified by the
reference numbers.

The accuracy of the powder tests was subject to sizable experimental error. There were

large fluctuations in the measurements due to a variety of reasons. The samples were unsized
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and the varying particle sizes produced sizable differences in measurements. In addition, the
method in which the samples were prepared may have influenced the molecular orientation
and resulted in altered intensities. Furthermore, fluctuations in the output energy of the
laser played a significant role in restricting experimental accuracy. Taking into account the
sources of experimental error as compared with other recent measurements made at other

locations{2][21], the powder test results are valid to within +15%.

Table 4.1: Organic reference compounds

[Ref. No. | Material | SHG Data (mV) | SHG Eff. | THG Data (mV) [ THG E. |

Urea 0.031 [ 1 00 [ 00 ]
A2 MNA 2.973 100 0.5 13
A3 MNMA 0.651 20 0.044 1.1
A4 Trimons 0.0047 0.2 0.025 0.6
Ab DANS 0.008 0.3 0.04 1
A6 4-OH NS 0.010 0.3 0.02 0.5
A7 POM 0.840 30 0.043 1.1

4.2 Maker Fringe Results

The Maker Fringe tests were conducted for second harmonic measurements only. In addi-
tion, due to the difficulty of obtaining single crystals of sufficient quality, only the d;; and
dy2 components were measured for dimethylamino stilbazolium tosylate (DAST) relative to

a lithium niobate reference.

4.2.1 Lithium Niobate

The two tensor components of the nonlinear optical coefficient were measured relative to a

1 mm thick, z—cut single crystal of lithium niobate (LiNbO3), shown in figure 4-1.
Lithium niobate crystalizes in trigonal space group C3,, point group 3m.[33] The second

order nonlinear optical coefficient may be given by the contracted notation tensor given in

4.1,

0 0 0 0 dyg —di;
—dga dz2 0 dis O 0 (4.1)
dy; dy daa 0 0 0
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Table 4.2: 1-N-Methyl Stilbazolium salts powder results

Ref. No. | SHG Data(mV) | SHG eff. | THG Data(mV) | THG EA. |
B1 0.0 0.0 0.03 0.8 |
B2 25.6 830 0.46 12
B3 29.4 950 1.61 40
B4 6.45 210 1.02 26
B5 0.002 0.1 0.025 0.6
B6 7.13 230 0.28 7
B7 6.3 200 0.60 15
B8 1.55 50 0.092 2
B9 31.1 960 8.1 200
B10 0.06 2 0.0 0.0
B11 82 2600 2.2 55
B12 9.93 310 0.92 23
B13 0.004 0.1 0.0 0.0
Bl4 0.0 0.0 0.005 0.1
B15 22.4 700 1.24 31
B16 2.82 91 0.18 5
B17 8.84 290 0.072 2
B18 2.26 73 0.09 2
B19 9.3 300 1.84 50
B20 3.88 125 0.32 10
B21 6.36 205 1.96 50
B22 8.31 270 2.88 70
B23 4.12 135 0.12 3
B24 0.021 0.7 0.02 0.5
B25 0.16 b 0.0 0.0
B26 0.004 0.1 0.0 0.0
B27 0.0 0.0 0.017 0.4
B28 0.0 0.0 0.0 0.0
B29 0.0 0.0 0.0 0.0
B30 0.004 0.1 0.024 0.6
B31 0.01 0.3 0.0 0.0
B32 0.031 1 0.0 0.0
B33 0.017 0.6 0.0 0.0
B34 0.003 0.1 0.0 0.0
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Table 4.3: 3-N-Methyl Stilbazolium salts powder results

l Ref No. | SHG Data(mv) | SHG eff. | THG Data(mV | THG Eff. |
0.0 0.0 0.026
CZ 0.003 0.1 0.0027 0.1
C3 0.0 0.0 0.018 0.5
C4 0.0 0.0 0.002 0.1
C5h 0.0 0.0 0.0192 0.5
C6 0.003 0.1 0.0 6.0
C7 0.00 0.0 0.031 0.8
C8 0.003 0.1 0.022 0.6
C9 0.0 0.0 0.0 0.0
Table 4.4: 1-O Stilbene salts powder results
[ Ref. No. | SHG Data(mV) [ SHG eff. | THG Data(mV) [ THG Eff.

D1 0.089 2.2
| D2 0.0 0.0

0.0 0.0
0.0 0.0

Table 4.5: Modified Stilbazole salts powder results

[Ref. No. [ SHG Data{mV) | SHG eff. | THG Data(mV) | THG ER. |

E1l
E2

70.001
0.0

0.3
0.0

0.02

0.0

0.5
0.0

Table 4.6: General unclassified salts powder eff.

l Ref No. I SHG Data (mv) | SHG Eff. I THG Data (mV)

F2
F3
F4
Fb
F6
F7
F8

0.004
0.24
0.008
0.007
0.0
0.0
0.01
0.0

0 1
8
0.3
0.2
0.0
0.0
0.3
0.0

THG ER. |

0.0 |
o.o 0.0
0.0 0.0
0.01 0.3
0.0 0.0
0.0 0.0
0.0 0.0
0.0 0.0
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Figure 4-1: X-cut LiNbO; reference sample

The resulting 3x6 matrix operates on the E? column tensor to yield the total polarization

vector, P. The polarization vector is given in 4.2.

(ng

Ej
P, 0 0 0 0 dip —-dz
E?
Py | =] —daz do2 0 dyg 0 0O (4.2)
2EzEu
P, d3; ds; dszs 0 O 0
2E.E,
\ 2E.E,

The multiplication of the matrices in 4.2 produces the three vector components of the
polarization. For lithium niobate, the d33 component of the nonlinear coefficient tensor was
used as the reference measurement. The only component of the polarization that can he

dependent on the d3; element is P,. The resultant z—component of the polarization is given

in 4.3.

P, = d3 E} + d3, E] + d33E? (4.3)

Therefore, by illuminating the sample with a z—polarized incident beam (E, = E, = 0)
and measuring the second harmonic output, the das coefficient can he calculated. The index
of refraction for lithium niobate at 1.907 pm, n,, is 2.1281; at 963.6 nm, ny, is 2.1625, [30)
These values give a coherence length of 14.078 um, from equation 2.10. The theoretical

Maker Fringe curve based on the equations given in chapter 2, for a 1 mm thick crystal
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Figure 4-2: Theoretical Maker Fringe curve for LiNbO3 d3;

of lithium niobate with the given values for the indices of refraction, the coherence length,
and a dgg coefficient of 30 pm/V is given in figure 4-2.

An example of the Maker fringe measurements made on lithium niobate is given in
figure 4-3. To use the lithium niobate maker fringe data for d;; coefficient calculations,
the coherence length needed to be calculated from the observed results. A second order,
parabolic, curve fit to each minima yielded the incidence angles given in 4.4. The fringes
are symmetric about normal incidence. Therefore, for more accurate determinations of the
angles that yield the minima the corresponding positive and negative incidence angles are

averaged.

—Omy1 = —36.62°
6, = —20.45°
+0p = 20.1145° (4.4)

+0my1 = 36.367°
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0m = 20.282°

0m+1 = 36.49°

To obtain a value for the coherence length, the two angles of incidence are substituted
into equation 2.22. The substitution yields a coherence length, L.(0), of 14 um for a
crystal length of 1 mm. This is in good agreement (+ 1 %) with the expected value of
14.078 um derived from the indices of refraction. In cases where the data provided more
than two minima on each side of normal incidence, more than one coherence length can
be calculated. In theory, the coherence length from any two adjacent minima should not
differ. However, in practice, small discrepancies (misalignment, crystal imperfections, etc.)
can yield slightly varying coherence lengths; and ar average of the various lengths is used.
Having characterized the reference sample, Maker fringe data on the sample materials can

be evaluated.
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4.2.2 DimethylAmino Stilbazolium Tosylate (DAST)

The only material for which the Maker Fringe measurements were done was DAST. This
material crystallizes in the monoclinic space group Cc, point group m.[2][29] The Cc-m
space group—point group configuration has a tensor given in contracted notation by the 3x6

matrix in 4.5.[33]

dyy dy2 diz 0 dig 0
0 0 © dyy 0 dy (4.5)
d3; dsz dsz 0 dzs O

The matrix representing the nonlinear optical tensor operates on the E? column tensor

to yield the components of the polarization vector. The vector multipiication is given in

4.6.

( B2 )
Ez
P dyy di diz 0 dyg 0 Y
E?
Py = 0 0 0 dg4 0 dge (46)
3E,E,
P, d3y; da; dzzs 0 dzs O
2E.E.
\ 2E.E, |

The crystals, as they were grown, carried the = and y axes in the plane and were normal
to z, as shown in figure 4-4. Therefore, the incident field could not be z-polarized and
the z—component of the output polarization was zero. The z— and y-directed polarizations

simplify to the equations in 4.7 and 4.8.

P = dy E? + dy,E} (4.7)
P, = 2d3E, E, (4.8)

Nlumination of the DAST crystal with a singularly polarized incident heam will yield
only a z—directed output polarization. For a z—-polarized incident beam { E,, = 0), the output
polarization becomes dependent on d;; only. Thus by using such an incident polarization
and measuring the output second harmonic power, the d;; coefficient may he measured.

Similarly, using a y—polarized (E, = 0) incident beam will yield measurements for the d;,
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Figure 4-4: DAST crystal sample

coefficient. However, any mixed polarized incident wave yields an output polarization with
contributions from dy,, d;2, and dz¢ that cannot easily be separated.

The DAST crystals used for the Maker Fringe measurements varied in size. The crystal
used for the measurement of the dj; coefficient was 190 um thick. The crystal used for the
d;2 measurement was 205 um thick. The index of refraction, N2w,z, 8t the second harmonic
wavelength, 953.5 nm., is 2.18 obtained from a Sellmeier fit to previously reported data.[2]
The index of refraction of DAST, n,, o, at the fundamental wavelength is 1.988 determined
experimentally from the Maker Fringe data. The measurements of the d;, coefficient were
carried out with y-polarized incident light. The index of refraction at the fundamental,
Nyw,y, is 1.9021. The theoretical coherence lengths calculated from 2.10 are L, = 2.488 um
and . = 1.716 um for d;;, and d3, respectively. Theoretical Maker Fringe curves based on
equation 2.13, for the two tensor components measured, are given in figures 4-5 and 4-6.

An example of the Maker fringe measurements made on DAST, for the dy; element,
is given in figure 4-7. The first step in calculating the nonlinear coefficient is to compute
the coherence length from the minima of the fringes. As with the lithium niobate data, a
second order, parabolic, curve fit to each minima yields the incidence angles; the angles are

given in 4.9.

-0, = -23.9°

+0,, = 23.7° (4.9)
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+0m41 = 35.8°
O, = 23.3°
Oy = 36.8°

To obtain a value for the coherence length, the two angles of incidence are substituted
into equation 2.22 with a crystal length of 190 um. The substitution yields a coherence
length of, Lc(0), of 2.4pum. This is in good agreement (+ b %) with the expected value
of 2.488 um derived from the indices of refraction. The coherence lengihs of the DAST
and lithium niobate samples may now be used, along with the ratio of the fringe envelopes,
to compute the d;; coefficient from equation 2.27. The ratio of the peak powers can he
measured at approximately 13. For the data, DAST and lithium niobate, given in figure
4-7, the dy; coefficient is calculated to be 600 pm/V.

An example of the Maker fringe measurements made on DAST, for the dy3 element, is

given in figure 4-8. A second order, parabolic, curve fit to the minima yields the incidence
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angles given in 4.10.

O = 1.96°
Oms1 = 21.19°
Oz = 29.243°
Omss = 36.0° (4.10)
Omis = 41.974°
Omes = 47.47°

To obtain a value for the coherence length, the angles of incidence are substituted into
equation 2.22. The substitution yields five values for the coherence length given in 4.11.
The average of the five calculated values gives an L.(0) of 1.7 um. This is in good agreement

(£ 3 %) with the expected value of 1.716 um derived from the indices of refraction.
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L, = 1.69pum

L = 1.71pm
L =1.72um
Leq = 1.65pm (4.11)
Les = 1.64pm

The coherence lengths of the DAST and lithium niobate sample may now be used, along
with the ratio of the fringe envelopes, to compute the dy; coefficient from equation 2.27.
The ratio of the peak powers was measured at approximately 22 against a lithium niobate
sample run jusi prior. For the data, DAST and lithium niobate, given in figure 4-7, the
dy3 coefficient is calculated to be 2156 pm/V. A number of measurements were made for
the d;; and d;; coefficients. The remgining sets of measurements are given in appendix C.
Table 4.7 gives the values for the coherence length and the various tensor components of the
nonlinear optical coefficient for each set of measurements in appendix C. Various sources
of experimental error in the optics setup and crystal growth process lead to an accuracy of

+ 20%

Table 4.7: DAST Maker Fringe resnlts

| Figure | L.(um) | di; coeff(pm/V) ]

Many times, obtaining a value for the d;; coefficient is not enough to determine the
usefulness of the material. A good measure of the overall value of the material for non-
linear optical device purposes is the figure of merit (FOM). The second harmonic power is
proportional to the square of the dominant element of the d tensor. However, the indices
of refraction may also be incorporated (see chapter 2) into the expression. Therefore, for

second harmonic generation, the FOM is given by equation 4.12.[25]

60



diss
FOM = 1L (4.12)
w' 2w

deyy i8 the effective d coefficient, and n,, and nj, are the indices of refraction at the fun-
damental and second harmonic, respectively. The effective d coefficient takes into account
the angular dependencies and phase-matchable characteristics of the nonlinear coefficient.
For DAST, the d;; coefficient is not phase-matchable, however the d,, coeflicient is. A
vague estimate for the figure of merit can be calculated based on a d; of 200 pm/V, yield-
ing a FOM of approximately 4000 (pm/V)32. This value for the FOM can he compared with
some other well-characterized compounds such as dimethylamino acetoamidonitrobenzene
(DAN) with a FOM of 420 (pm/V)? or 3-methy! 4-methoxy nitrostilbene (MMONS) with
a FOM of 850 (pm/V)2.[4]
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Chapter 5

Conclusions

5.1 Results

The mechanism of nqnlinear optics has long been modeled as a dipole process. The organic
family of materiais oﬂ'ers the potential for accurately engineering molecules for enhanced
dipolar response to incident or applied fields. One such series of materials was produced
based on the stilbene ard stilbazole chromophores using a variety of counterions and sub-
stituents. The second and third order nonlinear optical properties of these materials were
evaluated using powder tests and Maker Fringe experiments.

The powder tests demonstrated some interesting properties with regards to some of tke
materials. Over fifty different materials were tested; samples that had more than one phase
were prepared in each of the phases and tested. The second harmonic numbers ranged
from zero for certain centrosymmetric organics, to over 2500 times urea, for some of the
best materials. The third harmonic results ranged from negligibly small to over 200 times
DANS (this work focused on large second and third harmonic signals). DAST demonstrated
the highest second and third harmonic powder efficiencies albeit in slightly different forms.
The DAST sample that had been melted and recrystalized gave a second harmonic powder
efficiency of approximately 2600 times Urea. On the other hand, the original powder form of
DAST produced second harmonic efficiencies of just under 1000 times Urea, However, the
recrystalized DAST did not produce the highest third harmonic powder efficiencies. Instead,
the original powder sample produced the largest third harmonic powder efficiencies, at 200
times DANS; whereas the recrystalized DAST produced third harmonic efficiencies of only
b5 times DANS. One of the other interesting materinls was DASM. In its hydrated form,
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DASM produced second harmonic powder efficiencies of about 950 times Urea. On the
other hand, DASM was not as premising a third order material, producing ar efficiency 40
times DANS.

Other aspects of the various materials came to light during the powder tests. Typically,
the second harmonic tests were conducted at reasonable pulse energies. However, third
order processes required increased intensities. The higher pulse energies approached the
damage thresholds of many of the materials. In some cases, damage was noticeable due to
the formation of localized charred areas where decomposition had taken place.

The powder tests provided a good approximation to the second and third order optical
susceptibilities of the various materials. However, the specific quantification of the nonlinear
optical coefficients required a more rigorous experiment. The d and C coefficient tensors
can be measured using the Maker Fringe experiment. However, due to time constraints and
a slow crystal growth process, only two tensor elements of the d coefficient tensor of DAST
were measured.

The DAST crystals were grown via stow evaporation from methanol. The crystals were
approximately 200 to 500 pym thick. Single crystal x-ray orientation revealed that the
ab, or xy, plane was contained within the platelet.[2] The fortuitous placement of the
crystallographic axes facilitated the measurements of the di; and d,; coefficients through
the Maker Fringe measurements.

The Maker Fringe experiments were conducted using a discrete rotation of the crystal in
the incident beam- Resolutions of 0.1° per increment were possible. Measurements for the
dy; coefficient exhibited a coherence length, L., of 2.4+0.3 um; the L. calculation translated
to a dy; coefficient of 600+100 pm/V. Measurements for the dy» coefficient exhibited a
coherence length of 1.740.2 um which produced a d;, coefficient of 230450 pm/V. The d;,
coefficient was not phase-matchable; therefore the d;5 coefficient provided a vague estimate

of d.ss, from which the figure of merit was calculated to be on the order of 4000 (pm/V)2.

5.2 DAST Molecular System

The results showed that specific molecular characteristics can be used to enhance the non-
linear optical effect in certain crystals. A conjugated bond system supporting a freer elec-

tron motion can help produce increased second and third order optical susceptibilities.
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The stilbene and stilbazole family of chromophores offers a single-double alternating bond
structure that produced greatly increased optical nonlinearities. Furthermore, substitut-
ing proper groups and counterions into the system can result in a larger dipole moment
and consequently more observable effects. The use of a dimethyl substitution and the
tosylate counterion provided such a properly substituted system in DAST. Furthermore,
noncentrosymmetric crystallization translates the molecular nonlinearity to the bulk level.
In DAST, the hydrated form of the material crystallizes in space group C¢, point group
m. The aspects of the molecular characteristics and crystal packing arrangements were
combined in DAST to produce a substance with greatly enhanced second and third order
optical susceptibilities.

However, DAST was by no means a perfect molecular system. The nonlinear optical
measurements had to be conducted at a fundamental wavelength of 1.907 um, producing
a second harmonic at 953.5 nm. The infra-red wavelength was chosen because DAST has
an extremely large absorption band at 650 nm. Thus, any significantly smaller wavelength
would have generated irrelevant numbers due to absorption of the second harmonic signal.
Unfortunately, the large absorption in the visible spectrum causes more significant prob-
lems than those associated with taking measurements at infra-red wavelengths. Systems
that may utilize nonlinear optical devices will typically involve semiconductor lasers. The
wavelengths may be anywhere from 800 nm to 1.5 um. A DAST-based device would ahsorh
a substantial portion of any second harmonic radiation. Therefore, continued research on
molecular systems is needed to produce a material with not only a high d coefficient but

also a high degree of transparency.

5.3 Applications

Devices utilizing nonlinear optical effects are t.ypically constructed from inorganic materials
such as LiNbO3, KDP, or KTP. However, the coefficients of these substances are moder-
ate and restrict their use to high-power systems, utilizing either high—intensity lasers or
high—voltage power supplies, to get observable effects. Therefore, materials with increased
nonlinear optical coefficients may make low-power systems more amenable to nonlinear
optical devices.

However, even the molecular systems evaluated in this work provide only a one to two
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order of magnitude increase over current inorganic systems. Such an increase of 10 to 100
over existing systems is not enough to offset the 10 W to 10 kW requirements, and bring
nonlinear optics to low—power systems. Therefore, additional research is required. This
research should exterd to other methods of reducing the power requirements independent
of, but in addition to, enhanced molecular systems design. One promising technology that
may be used is waveguiding.

Waveguides have been used in many systems to significantly reduce power requirements,
by increasing power densities. In many cases, the increased densities hring power require-
ments down to the 100 mW to 100 W level.[25] The application, then, of organic molecular
system technology to waveguides can reduce these requirements further. A one to two
order of magnitude improvement would reduce the power requirements on nonlinear phe-
nomena down to the 1 to 100 mW level, finally allowing nonlinear materials to be used with

semiconductor lasers.

5.4 Future Measurements

One of the most interesting and possibly promising results of the work demonstrated here
was the generation of theoretical Maker Fringe curves based on the equations derived in
chapter 2. From these curves a coherence length and d;; coefficient could be extrapolated.
A theoretical curve could be fit to a set of experimental data by slightly changing one of four
variables: n,,, ny,, the crystal thickness (L), or the coherence length (L.). By altering the
four parameters of the material for a sample curve and for a reference curve, the coherence
lengths and peak powers could be extrapolated to give a d;; coefficient.

The process of fitting to experimental data has potential uses in other areas, one of which
is thin film nonlinear optics. In many cases, nonlinear optical materials have been placed as
thin films on glass or polymer substrates. The Maker Fringe technique was not a completely
accurate method for characterizing thin film materials because the thinness of the sample
resulted in a curve with no minima (i.e. a single peak or valley). Therefore, a coherence
length could not be calculated from the measured data. Instead, the value for L.(0) was
typically calculated from the indices of refraction, which were measured using a Brewster’s
angle measurement. However, using a theoretical curve fit to the data, the coherence length

can be computed from the measurements providing a more accurate value, which can then
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be used in the expressions for the d;; and C;; coefficients. Thin film substrates of highly
nonlinear materials could be fit to a theoretical expression, measured relative to a thin
reference sample, and characterized far more accurately than currently possible.

The potential exists for engineering molecular systems that may have good nonlinear
qualities. By using the benefits and advantages of organic systems, enhanced nonlinear
optical materials may become available. These materials could be used in bulk form or
as thin films when embedded in polymers. In any case, the need will arise to accurately
characterize the nonlinear coefficients of the media. This can now be accomplished using

the Maker Fringe technique.
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Appendix A

The Raman Effect

Raman scattering is the result of & frequency shift of an incoming wave due to an interac-
tion with an active molecule. Quantizing the molecule into various energy states allows a
more complete physical description of the process as shown in figure A-1, where rf and r2
represent virtual levels; no real transitions are taking place. The energy separation of any
two levels of the molecule can be related to a frequency as in A.1, for the energy between

states v and v+1.

Eu,u+l = v,v+1 (A]-)

In the Raman process the two levels involved in the transition typically represent vibra-
tional states of the molecule. To obtain radiation the molecule seems tc make a transition
of much greater energy than the separation of the vibrational states, to a virtual state fol-
lowed by an immediate decay to the final state. Ultimately, the transition is between two
adjacent vibrational levels. However, by using the virtual states, optical frequencies can be

radiated. In reality, there is no real absorption or emission. Instead, a small amount of

Stokes vl _-nd-sm- v
‘-.‘ B, !.f' "‘-.\ B,
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Figure A-1: Raman shift state diagram
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energy is removed from (or added to) the incident wave and transferred to {or from) the
molecule via the scattering process.
Two scattering events are present in a Raman shift, as indicated in equation A.2, where

w, is the frequency of the incident wave and w, is the amount by which it is shifted.

W, = W,  w, (A.2)

The first process is a downshift in frequency which implies that the molecule was in an
unexcited state and absorbed energy making the transition to an excited state. The energy
absorhbed was removed from the incident wave in the process, known as a Stokes process.
The second event involves the opposite; energy is transferred from the molecule to the wave.
This process occurs for molecules initially in an excited state transitioning to an unexcited
or ground state. This is considered an anti-Stokes process. Because the anti—~Stokes process
depends on an initial excited state population, the Boltzman distribution indicates that the
population is reduced by a factor of e~ ¥# relative to the unexcited state; and consequently
the intensity is reduced by the same amount relative to the Stokes process. Stokes intensity

dominates and thus is the process considered here.

A.1 The Scattering Cross—Section

To properly derive the cross section, a semi-classical treatment of the molecular system
will be used. Raman scattering lends itself well to the dipole approximation. That is,
the molecule in the presence of an applied field can be considered a driven electric dipole,
where the electron cloud oscillates around the larger, heavier nuclei. Application of the

dipole approximation results in the Hamiltonian as given in A.3.

H=H,-u-E (A.3)

In this expression H, is the Hamiltonian of a molecule in the ahsence of an applied
field; u-E represents the perturbation Hamiltonian due to the electric field and molecular
interaction; u is the electric dipole moment, and E is the incident electric field. Typically,
the interaction term is small compared to the unperturbed Hamiltonian of the molecule and

time-dependent perturbation theory can be applied. The wave function of the molecule can
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be calculated, and an expectation value for the electric dipole moment derived as given in
equation A.4, for a transition from molecular state n to state m, where j and k denote

Cartesian components.[20]

(ui(t)) = z {[a "(w)]*Ege —i(wotwmn)t [amn(w)]EkPl(Wo'l'Umn)f} (A.4)

The term a is the transition polarizability associated with this particular transition and

is given in equation A.5, where the summation over r covers all intermediate states.

o = 37 [ ), (1) (45

Wrn + W, Wrn — W,

The expression for the transitional polarizability can be simplified by assuming a static
condition. This assumption neglects any translational and rotational motion; the expression
can thus be rewritten to account solely for vibrational transitions as given in A.7; the
transition is simplified to one between two vibrational states of the molecule, where n

indicates quantum numbers for electronic states and v is used for vibrational states.

n,n "n,n 1
;k _ ZZ (0v| Mj|n"v")(n"v IMkIO”>+ (A.6)

Wty oy! + w,

(0v| Mi|n"o") (n"v"| M;|0v')

Wiyt gy — Wo

nll ot

Thus, equation A.7, represents the transition polarizability of a transition between a
molecular state characterized by v and one by v'. As before, the summation is over all
intermediate electronic and vibrational states. The expression may he simplified further
by making use of the Born-Oppenheimer approximation. Physically, this approximation
implies that the electron clouds follow, without lag, the nuclear vibrational movement of
the molecule. This allows the wave function of the molecule (electrons and nuclei) to be
written as in A.7, where z and X denote the normal electronic and nuclear coordinates,
respectively; x.,, is the wave function for the nuclei and ¢. is the wave function for the

electrons.[9]

Ym = Xeu.(-x)¢c(z’ X) (A°7)
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The expression in A.7 implies that the electronic and nuclear vibracional states can be
separated; in addition the closure property of the nuclear vibrational wave function may

also be used to simplify the transitional polarizability and arrive at the expression in A.9.

EXnu(X')X:w(X) = 6(X - X') (AB)

v

amn = (vleje(w, X)|v') (A.9)

where

Z (0] M;{n")(n"| Mi[0) | (0| Min"){n"|M;|0)

Wpng + wo Whptig — Wy

ajr(w, X) = (A.10)

ﬂ"

a(w, X) can be further expanded in a Taylor series with respect to the normal coordinate

of nuclear vibration to get A.11, where the X° is the equilibrium position of the nuclei; only
the linear terms in X have been kept (higher order terms relate to multi-photon processes

which will not be dealt with here).

a(w, X) = ufw, X°) + (g;) b'e (A.11)

The first term, a(w, X°) is independent of the normal coordinate, X, and thus does not
cause transitions between adjacent vibrational levels. This term is responsible for scattering
events such as Rayleigh scattering and fluorescence. Therefore, keeping only the termns that

are associated with transitions, the polarizability can be written as A.12.

(vla(wX)lv’) = ( 3;) (ol X 0" (A.12)

The expression of the off-diagonal matrix element of normal mode coordinate hetween
the ground state and the first excited state is given in A.13, where w, is the frequency
associated with the transition v — v’. Using A.13, the transition polarizability may be

rewritten as given in A.14.[26]

(vlglv') = (A.13)

2w,
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a¥y'(w) = (58%)1/;7} (A.14)

The rigid quantum mechanical derivation of the transition polarizability yields a use-
ful answer. However, this method provides little or no physical insight into the process.
Therefore, a more physically meaningful view may shed aaditional light on the topic.

For an atomic or molecular system the potential energy may be given as a function of

the normal coordinate, X, as shown in A.15.[32).

V(X)=aX?+b6X%+... (A.16)

This expression appears similar to the equation of a harmonic oscillator, and, in fact, the
harmonic oscillator corresponds to the simplest potential energy function for a molecular
system. The solutions for such a simple case correspond to a series of equally spaced
vibrational levels with energies, £, = hw,(v + }). The induced dipole moment for the

molecule is given in equation A.16.

B =¢cak (A.16)

As before, a, is the molecular polarizability. In a vibrating molecule the molecular
polarizability will be a function of the normal coordinate, X. Neglecting the tensor nature

of a, a Taylor series expansion yields the expression in A.17.

a(X) = ay + (%’(-)ox (A.17)

The total induced dipole may now be written in terms of the expanded polarizability,
as given in A.18.
Oa

MX) = €aoF + ¢, (0—)‘7) XE (A.18)

Therefore, the same result arises from some approximations about the hehavior and
energy of the system or from a rigid quantum mechanical approach. The next step is to
apply the dipole moment to a classically radiating dipole to obtain the scattered fields and
ultimately the scattering cross-section. The dipole moment can be used to calculate the

fields that result from the oscillations. The field produced by the dipole will be the scattered
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wave at the shifted frequency. Using the classical expression for a rzciating dipole (in the
far field, k- r 3» 1), the equation for the scattered electric fizld may he given as in A.19,

where k, is the wave vector for the scattered field (k, = 4, for w, = w, — w,), and 7, is the

wave impedance (1, = ,/&2).

Byl = We‘j"" sin @ (A.19)

Equation A.16 can then be substituted into the field expression to get A.20, where c is
the speed of light in vacuum.

—now2eoaE,

Byl = =22 Le=ker 5in @ (A.20)

An expression for the power flux density may now he derived by applying the complex

Poynting theorem to the fields. This expression is given in A.21.

|E|? _ nowjeia’E}
2n ~ 32xcer?

(S.) = -;—ﬂ{E x H*} = sind (A.21)

To arrive at the total scattered power, expression A.21 must be integrated over a sphere.

The total scattered power is given in A.22.

2x n 2, .4, 2
_ . _ TMo€ow,v'h (@_) 2
P, = /o rdf /o reinddg(s,) = T2 (2] (A.22)

The incident field is assumed to be a plane wave and thus the corresponding incident

power flux density may be given by A.23.

E}

(8i) = 21,

(A.23)

Finally, the scattering cross-section is defined, as before, as scattered power normalized
to power flux density. This expression is represented by equation A.24. Substituting the
expressions for scattered power and incident power flux density, a scattering cross-section
for the Raman effect may be derived; this expression is given in A.25, where S, is the

incident power flux density.

Q== (A.24)
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wiv'h [ Ba\?
Qs = GTC‘-U_,, (O_X)o (A.25)

Raman scattering cross—sections are on the order of 10-3! cm?. For example, the cross-
section of Hj is 1.03 x 10~3° ¢cm?; in CS; it is 6.8 X 10~3% cm?; and finally in methane, CHy,

it is 2.6 X 10~3% cm?. These measurements are at an incident wavelength of 488 nm.[32)

A.2 Spontaneous Scattered Intensity

From the previous section, equation A.22 gives an expression for the total scattered power
per molecule, at the shifted frequency. Thus, in order to get the total scattered power, the
number of molecules, N, must be taken into account. Typically, each transition hetween
different levels yields the same Raman shifted frequency (i.e. the vibrational levels are
evenly spaced). However, from equation A.22, the scattered power is dependent upon a
factor of v'; for adjacent levels this factor becomes (v + 1). Thus, to obtain an expression
for the total power radiated, the population of the respective levels must also he taken into
account. For a cylindrical chamber cf length d (m), and cross-sectional area A (m?), the
volume, V may be given as V = dA (m?). Given that the chamber is contains a single type
of molecule at a particle density of p (m~3), the total number of molecules is N = pV'. The
fraction of the total populaticn with vibrational quantum number v may be given by the

Boltzman distribution law as shown in A.26.

e_(-+#)'w.
=

The total scattered power may then be given by the expression in A.27, where all

fo= (A.26)

vibrational states are included.

noc2wiv'h 8_a) 3
P, = NZf.,(vH) 1oreio, (ax ¢,E,. (A.27)

The summation of the distribution function over all possible vibrational levels may bhe

carried out to yield the expression in A.28.
S flv+1)= 1 __ . (A.28)
v 1- e_bﬂ"
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The simplificstion of the Boltzman summation can then be substituted into the expres-

sion for the total scattered power to obtain A.29, the total observable scattered power.

(N meccwiv'h (oa ? g2
h= (1 - e"ﬁﬁ") 12xc?w, -OTY-)OE" (A.29)

However, this expression yields only the power scattered by spontaneous Raman scatter-

ing. To perform efficient frequency conversion to the Stokes or anti-Stokes line a stimulated

process is required, of which the spontaneous scattering will be a part.

A.3 Stimulated Scattering

The derivation of conversion efficiencies for the spontaneous Raman scattering process was
carried out using a semiclassical approach. Unfortunately, the stimulated gain derivation
requires a more rigid fully quantum mechanical method. For the theory of spontaneous Ra-
man scattering the interaction was between the normal coordinate of the molecular vibration
and the electromagnetic field. For stimulated scattering, the same quantities interact. The
Hamiltonian may be given as in equation A.30, where the vibrational energy, the incident

wave, and the interaction have been accounted for.

H=H,+ H, + Hine (A30)

The individual Hamiltonians are given in A.31, A.32, and A.33, where the s subscript
indicates the electric field and frequency associated with the scattered radiation, the L
subscript is associated with the incident field, and v indicates the frequency associated with
the vibrational state transition. R; represents the center of mass coordinate for the it

molecule and the summation is over all molecules. [20](9]

=Y 3 [p(Ry) + wa?(iy)] (A.31)
H, = %/ (e,E’ + ;1;132) dv (A.32)
Hou= ¥ (35) '(Ra) X [B(Ry) - Eo(Ry) (A33)

The individual Hamiltonian expressions are given in terms of the momentum, position,
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and field operators. The transformations assocaiated with the quantization of the radia-
tion field are given in A.34, A.36, and A.36 for momentum, position, and electric field,

respectively.

p(Rs) = NoH i ("‘"”)*(al ~ a)e R (A.34)
a(Ry) = N; 5:( ) (ax + af e (A.35)
E(&)—E (2MV) (afeint=ik Ry 4 geivnttikRy) (A.36)

The Hamiltonian may then be written in second quantized form as given in A.37, A.38,
A.39. To arrive at these expressions, the identity, (ﬁ;) > ek Ry Ox,0 has been used along
with a series of assumptions. First, the Hamiltonian has been restricted to include only the
first Stokes line cf the vibrational band since stimulated Raman scattering is a competitive
process. Second, the zero—point energy has been neglected and the incident field is assumed
to be single mode. Finally, Raman scattering is a process whereby an incident field photon
is destroyed, creating a Stokes field photon and a vibrational photon; the reverse is a viable
process as well in which an incident field photon is created, destroying a Stokes photon and

a vibrational photon, any other transitions are not of interest in this scattering process.

H, =Y tw,ala (A.37)
k,v
Hy = 3 hg ] yn (A.38)
ke, A

0* l%
= (32) 205 ()l -t h0

The transition rate for stimulated Raman scattering can be calculated from Fermi's

golden rule given in A.40.

W= % - %”Z 1CF| Hinel )P 6(wu — wy) (A.40)
H

For an initial state of ny,, n,,, and ny , photons in the vibrational, Stokes, and incident
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modes, respectively, the only two nonvanishing final states are for the two previously stated
conditions. Therefore, the transition rate is given in A.41, where N = -'{f has been used.
In addition, there are assumed to be many more photons in the incident fieid than in either

the Stokes field or vibrational mode, and ny,, nx,, < ni, has been used.

- N (e woh(ép - £,)° Arhwp 1
w=n (Oq) E ( 16w n? (1 + ng, + o) gy L 8wy —ws)  (A41)
The amplitude of the incident field may be related to the number of photons by the

expression in A.42.[9]

hw
|EL|? = (;ﬁ%) T,L (A.42)

Each transition either produces or destroys a Stokes photon. Therefore, the rate of
change of Stokes photons is the rate given by Fermi'’s golden rule, given in A.43, where
N, has been neglected relative to ny , as vibrational quanta decay much faster than Stokes

photons.

iy = N(”") m,z St (ep- 61+ miW)BLP2b(we - wg)  (A43)

If the Stokes photons are neglected and the summation is carried out over all Stokes
modes, the spontaneous scattering cross-section determined in the previous section can he
arrived at. However, for stimulated Raman scattering the sutnmation is unnecessary since
only Stokes photons of the same mode are amplified.[20] The rate of change of photons for

a stimulated process is given in expression A.44.
o Ba 2 h w, 2 2
=N (8«;) Tonzw, CL - €a) (14 ni )| B -5(wu - wy) (A.44)

The delta function can be rewritten in integral form, inclusive of the damping constant

of the coherent vibrational excitation, v, as given in A.45.

6w = wg) = S J.o), ey (A.45)

The substitution of A.45 results in the steady~-state spatial gain factor given in A.46.
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Ba)’ w, ¥

_ oa 2
Gu=N (Bq o 16cnw.,|EL| T[(ws — wyo)? + v

2] = guIL (A'46)

Finally, a steady-state gain coefficient for the Stokes intensity, given in A.47 in [Sfy.

can be derived using I, = cn|E[L|? as the incident laser intensity.

— fa\? w, v
Gos = N (-8-_9.)0 lscznzwv ”[(w' — w‘o)z + 72] (A.47)

The gain coefficient leads to an exponential growth in Stokes intensity. To get efficient
conversion, the incident intensity must be above a threshold. This limit is given in A.48.[22]
16

In the setup used for the Maker fringe tests, a 60 cm path-length cell filled with hydrogen
gas was used. The steady-state gain Jor hydrogen gas, with N =~ 1029 cm~3, is 4.89 x 10~3
cm/MW.[20] The incident beam was focused into the cell. The focal length of the lens was
40 cm with a beam radius at the lens of 0.5 cm and an incident wavelength of 1.064 ym,
resulting in a diffraction-limited spot size of 0.02 mm? at the focus (w, ~ :\,{ where f is
the focal length and R is the beam radius at the lens). The incident power was 43 MW (7
ns pulses at 300 mJ). The front window of the cell was 10 cm past the lens, and thus the
spot size at this point was 0.4 cm?. The cell was 60 cm in length, £ = 60 cm, resulting in
a threshold power flux of 6 MW /cm?2. The spot size at the window was 0.4 cm 2 with an
incident power of 43 MW resulting in a power flux of 100 MW /cm? at the cell window, over

1.5 times the threshold requirement for efficient conversion.
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Appendix B

Powder Test Samples

The powder test materials were prepared by a group of organic chemists at the General
Electric Corporate Research and Development Center.[3] The organic substances were de-
signed based on the theoretical specifications for enhanced nonlinear optical properties.
The powder samples are broken down into subgroups representative of chromophores with

different substituent groups and combinations of different counterions.

Table B.1: Organic reference compounds

| Ref. No. | Organic Compound |

Al Urea |
A2 MNA

A3 MNMA

A4 Trimons

A5 DANS

A6 4-OH NS

A7 POM
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Figure B-2: 3-N-Methyl Stilbazolium chromophore
R

X

Figure B-3: 1-O Stilbene chromophore

Figure B-5: DAST?
N

Figure B-6: 4-Methoxy Stilbazolium
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Table B.2: 1-N-Methyl Stilbazolium salts

Ref No. | R(phase) I X~ ]

[4-0=CeH,- ]
B2 4- (CH3)2N03H4 (1) CH:;SO:,_
B3 4'(CH3)2NCQH4'(2) CH;;SOa_
B4 4'(CH3)2NCQH4'(3) CHaSO;
B5 4-(CH3)2NCgH4-(4) CHaSOE
B6 4'(CH3)2NCGH4'(5) CHaSOa_
B7 4-(CH);NCeHy-(6) CH,50;
B8 4-(CH3)2NCGH4-(7) CHaSO;
B9 4'(CH3)2NCQH4'(1) p-CHgCa]‘hSO;
B10 4-(CH3)2NCGH4-(2) p-CH3CquSO§
Bi11 4-(CH3)2NCGH4-(3) p-CHaCeH.;SO;
B12 4-(CH3)2NCQH4-(1) CeHSSO:;
B13 4'(CH3)2NCQH4'(2) CeHsSO§
Bi4 4-(CH3)2NC¢H4-(3) CeHsSOs_
B15 4-(CH3)2NCBH4- CHaSO;
B16 4'(CH3)2NCQH4' CHaCeH.gCO;
B17 4-(CH3)2NCGH4- CeH4COz_
B18 4-CH30C3H4-(1) p-CH303H4SO§
B19 4-CH3OCGH4-(2) p-CH306H4SO§
B20 3,4-(0H)2C6H3 p-CH303H4SO§
B21 4-QHC3H4-(1) p-CH303H4$O§
B22 4-OHCeH4-(2) p-CHaCquSOE
B23 4-(CH3)2NCQH4-CH=CH-(1) p-CH305H4SO§
B24 4-(CH3)2NCQH4-CH=CH-(2) p-CH3CeH4505
B25 4-(CH3)3NCgH4- 1~
B26 4-(CH3)2NCQH4- PFG_
B27 4-0H06H4- I-
B28 4-OHCgH,- Br-
B29 4-OHCgH,- Cl-
B30 4'(CH3)2NCGH4' ClaCeHzSOa—
B31 4-FCgH,4- p-CH:,CsH4SO§
B32 4-ClCgH;- p-CH3CeH4SO§
B33 4-FrCgH,- p-CHaCoH4SOE
B34 | 4FCeH, CoHsSO; |

H,C\
xCHz
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Table B.3: 3-N-Methyl Stilbazoliuin salts

| Ref. No. | R(phase) % ]

C1 4-0]‘140-01{4- p-CHsCeH.gSO;
C2 4-(CH3)2NCGH4-(1) I-

C3 4-(CH3)2NCGH4-(2) I-

C4 4-(CH3)2NCGH4- CeHsSOE

C5 4-(CH3)2NC¢H4- p-CH3CeH4SO§
Cé 4-CH;0CeH,- CeH;sS0;

C7 4-CH3005H4-(1) I-

C8 4-CH3006H4-(2) I-

C9 4-CH30CgH,4- p-CHaCquSOE

able B.4: 1-0Q Stilbene salts
Ref. No. | R

D1 4-CH3NC5H4- I-
D2 4-CooHsNCsHy-

Table B.5: Modified Stilbazole salts
Ref. No. | R X-
E1 4-(CH3)2NCGH4- p-CHanH.gSO;
E2 4-OHCGH4- I-

CH,
%

N
"O NcH,
N— CH; H.,c—@—
CHs

N
N a

Figure B-8: DAST?

o

17
I
o

o

BOSN N—CHs
H,c”

I

Figure B-9: 4-DimethylAmino 1-N Pyridine

CH,
H,CO
N

Figure B-10: Modified 4-Methoxy Stilbene
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N—§==0
no—"

N
/\
H,C CHs

Figure B-11: 2 Pyridine complex

H,CO g —ON

Figure B-12: Substituted triple bond structure

Table B.6: General unclassified salts
F1 B-5
F2 B-6
F3 B-7
F4 B-8
Fb B-9
Fé B-10
F17 B-11
F8 B-12
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Appendix C

Maker Fringe Measurements

The Maker Fringe experiments were conducted relative to a lithium nicbate (LiNbOj3) ref-
erence crystal 1 mm thick. The indices of refraction, and coherence lengih for the da;
coefficient are given at the specified wavelengths. Experimental data for lithium niobate

and the coherence length measurements are given in figures C-1 and C-2.

L=10"3%m = 1mm
n. = 2.1281

na, = 2.1625

A

=—" _—13.8x10"%n=13.8um
(2w — 1) ’

L.

The only material tested using the Maker Fringe experiment was DimethylAmino Stil-
bazolium Tosylate (DAST); the various material characteristics are given at the fundamental
and second harmonic frequencies. A series of experimental measurements are sliown with
the calculations done to determine the coherence length, dy; or dy; coefficients, and the fig-
ure of merit (FOM). In the figures, the solid line represents the second harmonic intensity
of DAST, and the dotted line represents lithium niobate.

L; =1.9x10"% = 190um
Lz = 2.06 x 10~ = 206um
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SHG Intensity
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Figure C-1:
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Experimental Maker Fringe data for Lithium Niobate da3

50

14

1.2

0.8

0.6

04

0
-50

40

JN’
Ay

30 20 -10 0
Angle of incidence(degrees)

40

Figure C-2: Experimental Maker Fringe data for Lithium Niobate d33
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SHG Intensity

20

15

10

Table C.1: Lithium Niobate Maker Fringe results

Figure | L.(um)

[(C-1 13.9
C-2 13.9

-40 -30 -20 -10 0 10

Angle of incidence(degrees)

Figure C-3: Experimental M. ker Fringe data for DAST dy,

Lean =

Leaiz =

n,. = 1.988

n,,y = 1.9021

na, = 2,18

A = 2.488 < 107%m = 2.488um

——'\——— = 1.716 x 10~%m = 2.716;um
4(nz, — ny)

86



SHG Intensity

SHG Intencity

40 30 -20 -10 0 10
Angle of incidence(degrees)
Figure C-4: Experimental Maker Fringe data for DAST d,,

10

Angle of incidence(degrees)
Figure C-6: Experimental Maker Fringe data for DAST d;,
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Figure C-6: Experimental Maker Fringe data for DAST dy,

Angle of incidence(degrees)
Figure C-7: Experimental Maker Fringe data for DAST d,,
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Table C.2: DAST Maker Fringe results

[Figure [ L(um) [ d;; coefi(pm/V) ]
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