1801.10207v2 [cs.DB] 25 Mar 2020

arxXiv

FITing-Tree: A Data-aware Index Structure

Alex Galakatos!™

Rodrigo Fonseca

Michael Markovitch!*

1

Carsten Binnig?
Tim Kraska®

1Brown University {first_last{@brown.edu 2TU Darmstadt {first.last@cs.tu-darmstadt.de} 3MIT CSAIL {last@mit.edu}

ABSTRACT

Index structures are one of the most important tools that
DBAs leverage to improve the performance of analytics
and transactional workloads. However, building several in-
dexes over large datasets can often become prohibitive and
consume valuable system resources. In fact, a recent study
showed that indexes created as part of the TPC-C benchmark
can account for 55% of the total memory available in a mod-
ern DBMS. This overhead consumes valuable and expensive
main memory, and limits the amount of space available to
store new data or process existing data.

In this paper, we present FITING-TREE, a novel form of a
learned index which uses piece-wise linear functions with
a bounded error specified at construction time. This error
knob provides a tunable parameter that allows a DBA to FIT
an index to a dataset and workload by being able to balance
lookup performance and space consumption. To navigate
this tradeoff, we provide a cost model that helps determine
an appropriate error parameter given either (1) a lookup
latency requirement (e.g., 500ns) or (2) a storage budget (e.g.,
100MB). Using a variety of real-world datasets, we show that
our index is able to provide performance that is comparable
to full index structures while reducing the storage footprint
by orders of magnitude.

ACM Reference Format:

Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fon-
seca, Tim Kraska. 2019. FITing-Tree: A Data-aware Index Structure.
In 2019 International Conference on Management of Data (SIGMOD
’19), June 30-July 5, 2019, Amsterdam, Netherlands. ACM, New York,
NY, USA, 18 pages. https://doi.org/lO.l145/3299869.3319860

*Authors contributed equally.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SIGMOD 19, June 30-Fuly 5, 2019, Amsterdam, Netherlands

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5643-5/19/06...$15.00
https://doi.org/10.1145/3299869.3319860

1 INTRODUCTION

Tree-based index structures (e.g., B+ trees) are one of the
most important tools that DBAs leverage to improve the per-
formance of analytics and transactional workloads. However,
for main-memory databases, tree-based indexes can often
consume a significant amount of memory. In fact, a recent
study [48] shows that the indexes created for typical OLTP
workloads can consume up to 55% of the total memory avail-
able in a state-of-the-art in-memory DBMS. This overhead
not only limits the amount of space available to store new
data but also reduces space for intermediates that can be
helpful when processing existing data.

To reduce the storage overhead of B+ trees, various com-
pression schemes have been developed [7, 9, 23, 49]. The
main idea behind these techniques is to remove the redun-
dancy that exists among keys and/or to reduce the size of
each key inside a node of the index. For example, prefix and
suffix truncation can be used to store common parts of keys
only once per index node, reducing the total size of the tree.
Additionally, more expensive compression techniques like
Huffmann coding can be applied within each node but come
at a higher runtime cost since pages must be decompressed
to search for an item.

Although each of the previously mentioned compression
schemes reduce the size of an index node, the memory foot-
print of these indexes still grows linearly with the number
of distinct keys to be indexed, resulting in indexes that can
consume a significant amount of memory. This observation
is especially true for data such as timestamps or sensor read-
ings that are generated in a wide variety of applications (e.g.,
autonomous vehicles, IoT devices). Even worse, the number
of unique keys to be indexed for such data types typically
grow over time, resulting in indexes that are constantly grow-
ing. Consequently, a DBA has no way to restrict memory
consumption other than dropping an index completely.

To tackle this issue, we present FITING-TREE, a novel index
structure that compactly captures trends in data using piece-
wise linear functions. Unlike typical indexes which use fixed-
size pages on the leaf level that point to the data, FITING-TREE
uses piece-wise linear functions to quickly approximate the
position of an element. By leveraging the trends within the
data, FITING-TREE can reduce the memory consumption of

https://doi.org/10.1145/3299869.3319860
https://doi.org/10.1145/3299869.3319860

an index by orders of magnitude compared to a traditional
B+ tree. At the core of our index structure is a parameter
that specifies the amount of acceptable error (i.e., a constant
that is the maximum distance between the predicted and
actual position of any key). Unlike existing index structures,
our error parameter allows a DBA to FIT an index to a given
scenario and balance the lookup performance and space
consumption of an index. To navigate this tradeoff, we also
present a cost model that helps a DBA choose an appropriate
error term given either (1) a lookup latency requirement (e.g.,
500ns) or (2) a storage budget (e.g., 100MB).

In the basic version of FITING-TREE, we assume that the
table data to be indexed is sorted by the index key (i.e., clus-
tered index) but we also show how our techniques extend
to secondary (i.e., non-clustered) indexes. Using a variety of
real-world datasets, we show that our index structure pro-
vides performance that is comparable to full and fixed-page
indexes (even for a worst-case dataset) while reducing the
storage footprint by orders of magnitude.

Using linear functions to approximate the distribution
makes FITING-TREE a form of a learned index [30]. However,
in contrast to the initially proposed techniques, our approach
allow us to (1) bound for the worst-case lookup performance,
(2) efficiently support insert operations, and (3) enable paging
(i.e., the entire data does not have to reside in a contiguous
memory region). Furthermore, although the problem of ap-
proximating distributions using piece-wise functions is also
not new [10, 12, 13, 16, 18, 27, 33, 35, 41, 46], none of these
techniques have been applied to indexing and therefore do
not consider operations that indexes must support.

Another interesting observation is that our compression
scheme in FITING-TREE is orthogonal to node-level compres-
sion techniques such as the previously mentioned prefix/suf-
fix truncation. In other words, since FITING-TREE internally
uses a tree structure for inner nodes, we can still apply these
techniques to further reduce an index’s size.

In summary, we make the following contributions:

e We propose FITING-TREE, a novel index structure that
leverages properties about the underlying data distri-
bution to reduce the size of an index.

e We present and analyze an efficient segmentation al-
gorithm that incorporates a tunable error parameter
that allows DBAs to balance the lookup performance
and space footprint of our index.

e We propose a cost model that helps a DBA determine
an appropriate error threshold given either a latency
or storage requirement.

e Using several real-world datasets, we show that our
index provides similar (or in some cases even better)
performance compared to existing index structures
while consuming orders of magnitude less space.

(e}
=
D
00

?/ — Actual Dav_,
ce| — Approx
S5
3 4
o3 . Weekend
2 o ___
1 <& e Night
% 5000 10000 15000 20000
Timestamp

Figure 1: Key to position mapping for IoT data.

The remainder of the paper is organized as follows. In
Section 2, we first present an overview of our new index
structure called FITING-TREE. Afterwards, we discuss the
main index operations: bulk loading (Section 3), lookups
(Section 4) and inserts (Section 5). Section 6 then introduces
our cost model that allows a DBA to balance the lookup
performance and the space consumption of a FITING-TREE.
Finally, in Section 7 we discuss the results of our evaluation
on real and synthetic datasets, summarize related work in
Section 8, and finally conclude in Section 9.

2 OVERVIEW

At a high level, indexes (and B+ trees over sorted attributes
in particular) can be represented by a function that maps
a key (e.g., a timestamp) to a storage location. Using this
representation, FITING-TREE partitions the key space into
a series of disjoint linear segments that approximate the
true function, since it is (generally) not possible to fully
model the underlying data distribution. At the core of this
process is a tunable error threshold which represents the
maximum distance that the predicted location of any key
inside a segment is from its actual location. Instead of storing
all values in the key space, FITING-TREE stores only (1) the
starting key of each linear segment and (2) the slope of the
linear function in order to compute a key’s approximate
position using linear interpolation.

In the following, we first discuss how we can use functions
to map key values to storage locations. Then, we discuss how
we leverage this function representation to efficiently imple-
ment our index structure on top of a B+ tree for clustered
indexes. Finally, we show how our ideas can also be applied
to compress secondary indexes.

2.1 Function Representation

One key insight to our approach is that we can abstractly
model an index as a monotonically increasing function that
maps keys (i.e., values of the indexed attribute) to storage
locations (i.e., its page and the offset within that page). To
explain this intuition, assume that all keys to be indexed

are stored in a sorted array, allowing us to use an element’s
position in the array as its storage location.

As an example, consider the IoT dataset [1], which con-
tains events from various devices (e.g., door sensors, motion
sensors, power monitors) installed throughout a university
building. In this dataset, the data is sorted by the timestamp
of an event, allowing us to construct a function that maps
each timestamp (i.e., key) to its position in the dataset (i.e.,
position in a sorted array), as shown in Figure 1. Unsurpris-
ingly, since the installed IoT devices monitor human activity,
the timestamps of the recorded actions follow a pattern (e.g.,
there is little activity during the weekend and at night).

Since a function that represents an index can be arbitrar-
ily complex and data-dependent, the precise function that
maps keys to positions may not be possible to learn and
is expensive to build and update. Therefore, our goal is to
approximate the function that represents the mapping of a
key to a position.

To compactly capture trends that exist in the data while
being able to efficiently build a new index and handle updates,
we use a series of piece-wise linear functions to approximate
an arbitrary function. As shown in Figure 1, for example,
our segmentation algorithm (described further in Section 3)
partitions the timestamp values into several linear segments
that are able to accurately reflect the various trends that exist
in the data (e.g., less activity during the weekend). Since the
approximation captures trends in the data, it is agnostic to
key density (a trend with sparse keys can be captured as well
as a trend with dense keys).

Although more complex functions (e.g., higher order poly-
nomials) can be used to approximate the true function, piece-
wise linear approximation is significantly less expensive to
compute. This dramatically reduces (1) the initial index con-
struction cost, and (2) improves insert latency for new items
(see Section 5).

The resulting piece-wise linear approximation, however, is
not precise (i.e., a key’s predicted location is not necessarily
its true position). We therefore define the error associated
with our approximation as the maximum distance between
the actual and predicted location of any key, as shown below,
where pred_pos(k) and true_pos(k) return the predicated
and actual position of an element k respectively.

error = max(|pred_pos(k) — true_pos(k)|) YV k € keys (1)

This formulation allows us to define the core building
block of FITING-TREE, a segment. A segment is a contiguous
region of a sorted array for which any key is no more than
a specified error threshold from its interpolated position.
Depending on the data distribution and the error threshold,
the segmentation process will yield a different number of
segments that approximate the underlying data. Therefore,

separators
separators PR
.

Inner Nodes

separators

.
. .

Leaf Nodes key + | key + | key + [keys +

slope | siope | siope slopes

Table Pages

(Sorted) Segment 2

‘ Segment 1 ‘ ‘ Segment 3 ‘

Figure 2: A clustered FITING-TREE index.

importantly, the error threshold enables us to balance mem-
ory consumption and performance. After the segmentation
process, FITING-TREE stores the boundaries and slope of
each segment (instead of each individual key) in a B+ tree,
reducing the overall memory footprint of the index.

2.2 FITING-TREE Design

As previously mentioned, our segmentation process parti-
tions the key space of an attribute into disjoint linear seg-
ments such that the predicted position of any key inside a
segment is no more than a bounded distance away from the
key’s true position. FITING-TREE organizes these segments
in a tree to efficiently support insert and lookup operations.

In the following, we first discuss clustered indexes, where
records are already sorted by the key that is being indexed.
Afterwards, we show how our technique can be extended to
provide similar benefits for secondary indexes.

2.2.1 Clustered Indexes. In a traditional clustered B+ tree,
the table data is stored in fixed-size pages and the leaf level
of the index contains only the first key of each of these table
pages. Unlike a clustered B+ tree, in a FITING-TREE, the table
data is partitioned into variable-sized segments (pages) that
satisfy the given error threshold. Each segment is essentially
a fixed-size array, but successive segments can be allocated
independently (i.e., non contiguously).

Figure 2 shows the structure of a clustered FITING-TREE
index. As shown, the underlying data is partitioned into
a series of variable-sized segments that approximate the
distribution of keys to be indexed. Depending on the error
parameter and the data distribution, several consecutive keys
can thus be summarized into a single segment. Details of
the segmentation algorithm that divides the table data into
variable-sized segments are discussed in Section 3.

Unlike a traditional B+ tree, each leaf node in a FITING-
TREE stores the segment’s slope, starting key, and a pointer to
a segment. This allows us to use interpolation search in each
segment since the data within this segment is approximated
by a linear function given by the slope.

separators

Inner Nodes

separators separators

Leaf Nodes

.
ey + | key+ | key +
slope | slope | siope

keys +
slopes

Key Pages

(Sorted) ‘ Segment 1 ‘ Segment 2 ‘ Segment 3 ‘

ST

Table Pages
(Unsorted)

Figure 3: A non-clustered FITING-TREE index.

The inner nodes of a FITING-TREE are the same as a B+
tree (i.e., lookup and insert operations are identical to a nor-
mal B+ tree). However, once a lookup or an insert reaches
the leaf level, FITING-TREE needs to perform additional work.
For lookups, we need to use the slope and the distance to
the starting key to calculate the key’s approximate position
(offset in the segment). Since the resulting position is approx-
imate, FITING-TREE must then perform a local search (e.g.,
binary, linear) to find the item, discussed further in Section 4.

Insert operations also require additional work upon reach-
ing a leaf level page, since we must ensure that the error
threshold is always satisfied. Therefore, we present two dif-
ferent insertion strategies (described in detail in Section 5).
The first strategy performs in-place updates to the segment
(as a baseline) while the second strategy uses a more ad-
vanced buffer-based strategy to hold inserted data items.

Finally, instead of internally using a B+ tree to locate the
segment for a key, FITING-TREE could instead use any other
index structure. For example, if the workload is read-only,
other high performance index structures (e.g., FAST [28]) can
be used. In Section 7.4 we show how FITING-TREE performs
when using different internal data structures, including FAST.

2.2.2 Non-clustered Indexes. Secondary indexes can dramat-
ically improve the performance of queries involving selec-
tions over a non-primary key attribute. Without secondary
indexes, these queries must examine all tuples, which is of-
ten prohibitive. Unlike a clustered index, a non-primary key
attribute is not sorted and may contain duplicates.

The primary difference between a clustered and an non-
clustered FITING-TREE is that a non-clustered FITING-TREE
requires an additional “indirection layer” (called “Key Pages”
in Figure 3). This layer is essentially an array of pointers
that is the same size as the data but is sorted by the key
that is being indexed. For example, the first position in this
indirection layer will contain a pointer to the smallest value

loc
(o2, y2) (x3’.y3)

> error”

o
(x1,91)

key

Figure 4: A segment from (x1, y1) to (x3, y3) is not valid
if (x2,y,) is further than error from the interpolated
line.

of the key being indexed. Note that a secondary B+ tree that
uses fixed-size paging also requires this indirection layer.

The first step in creating a non-clustered FITING-TREE is to
build the indirection layer by sorting the data by the indexed
key (e.g., temperature, age) and materializing the array of
pointers to each data item in the sorted order. Next, like in
the clustered index case, the segmentation algorithm scans
the indirection layer and produces a valid set of segments
that are then inserted into the upper level tree.

All operations on a non-clustered FITING-TREE internally
operate on the indirection layer. For example, for a lookup,
the returned position of the data item is its position in the
indirection layer. Then, to access the value, FITING-TREE
follows the pointer in the indirection layer at the predicted
position.

Although the sorted level of key pages in a non-clustered
FITiNG-TREE introduces additional overhead compared to
a clustered FITING-TREE index, this overhead occurs in any
non-clustered (secondary) index. However, as we show in our
experiments, a non-clustered FITING-TREE is significantly
smaller than a non-clustered B+ tree with fixed-size pages
since it has fewer leaf and internal nodes.

3 SEGMENTATION

In the following, we describe how FITING-TREE partitions the
key space of an attribute into variable-sized segments that
satisfy the specified error. After this process, each segment is
inserted into a B+ tree to enable efficient insert and lookup
operations, described further in Section 4 and Section 5.

3.1 Design Choices

A common objective when fitting a function is to minimize
the least square error (minimizing the second error norm Ej).
Unfortunately, such an objective does not provide a guaran-
tee for the maximal error and therefore does not provide a
bound on the number of locations which must be scanned
after interpolating a key’s position. Therefore, our objective
is to satisfy a maximal error (E.), demonstrated in Figure 4.

Algorithm 1 SHRINKINGCONE Segmentation

1 slpigh <
2 szlow «—0
3 the first key is the segment origin
4 for every k € keys (in increasing order)
do if k is inside the cone:
then update slp;4n
update sljg4,
else key k is the origin of a new segment
Slpigh < o0
Sllo;v —0

[SEN-TE-CREN R NS |

—_

While several optimal (in the number of produced seg-
ments) piece-wise linear approximation algorithms exist,
these techniques are prohibitively expensive (e.g., a dynamic
programming algorithm [31] has a runtime of O(n®) using
O(n) memory). Second, most existing online piece-wise lin-
ear approximation algorithms [17, 27] have a high storage
complexity and/or do not guarantee a maximal error. Lastly,
even linear time algorithms may not be efficient enough
since multiplicative constants have a significant effect.

Therefore, to be able to efficiently (1) construct the index,
and (2) support inserts, we need a highly efficient one-pass
linear algorithm. This focus on efficiency led us to choose lin-
ear piece-wise functions, since higher order approximations
often incur additional costs as previously discussed.

In the following, we describe a proposed segmentation al-
gorithm, similar to FSW [33, 46], which is linear in runtime,
has low constant memory usage, and guarantees a maxi-
mal error in each segment. Importantly, though, we address
(1) how to extend these techniques to indexing, including
looking up and inserting data items, (2) prove that, in the
worst case, segments are bounded in size, and (3) analyze
the algorithm and compare it to an optimal algorithm.

3.2 Segment Definition

As previously described, a segment is a region of the key
space that can be represented by a linear function whereby
all keys are within a bounded distance from their linearly
interpolated position. More specifically, a segment is repre-
sented by the first point (first key) and by the last point (the
last key) in the segment. Using this definition, we can fita
linear function to the locations of keys in the segment (using
the start key, end key, and the number of positions).

Recall that every segment must satisfy the maximal error
(i.e., a key’s predicated position is at most error number
of elements away from its true position). This leads to an
important property (proof in Appendix A.1) of a maximal
segment (a segment is maximal when the addition of a key
will violate the specified error):

THEOREM 3.1. The minimal number of locations covered by
a maximal linear segment is error + 1.

o4

key

Figure 5: ShrinkingCone - Point 1 is the origin of the
cone. Point 2 is then added, resulting in the dashed
cone. Point 3 is added next, yielding in the dotted cone.
Point 4 is outside the dotted cone and therefore starts
a new segment.

This allows us to quantify how bad a "worst case" (i.e.,
dataset and error threshold that produce maximal number of
segments) can be. Since the minimum number of locations
covered by a maximal segment is bound by the error, the
total size of a FITING-TREE is also bounded. Therefore, in
the worst case (every maximal segment covers error + 1
locations), a FITING-TREE will not be larger than an index
that uses fixed-size pages of size error (e.g., B+ tree).

3.3 Segmentation Algorithm

As previously mentioned, we needed a fast and efficient algo-
rithm rather than an optimal one. We therefore chose to use
a greedy streaming algorithm SHRINKINGCONE (Algorithm 1)
which, given a starting point (key) of a segment, attempts to
maximize the length of a segment while satisfying a given
error threshold. SHRINKINGCONE is similar to FSW [33] but
considers only monotonically increasing functions and can
produce disjoint segments. The main idea behind SHRINK-
INGCONE is that a new key can be added to a segment if and
only if it does not violate the error constraint of any previous
key in the segment.

More specifically, we define a cone by the triple: origin
point (the key and its location), high slope (spig41), and low
slope (sljow)- The combination of the starting point and the
low slope gives the lower bound of the cone, and the com-
bination of the starting point and the high slope gives the
upper bound of the cone. Intuitively, the cone represents the
family of feasible linear functions for a segment starting at
the origin of the cone (the high and low slopes represent
the range of valid slopes). When a new key is added to a
segment, the high and low slopes are calculated using the
key and the key’s position plus error and minus error (re-
spectively). In the update step (lines 6-7 of Algorithm 1), the
lowest high slope and the highest low slope values are then
selected (between the newly calculated and previous slopes).
Therefore, the cone either narrows (the high slope decreases
and/or the low slope increases), or stays the same. If a new
key to be added to the segment is outside of the cone, there

Dataset error SHRINKINGCONE Optimal Ratio
Taxi drop lat 10 5358 4996 1.07
Taxi drop lat 100 351 271 1.29
Taxi drop lat 1000 51 48 1.06
Taxi drop lon 10 1198 1138 1.05
Taxi drop lon 100 371 325 1.14
Taxi drop lon 1000 40 37 1.08
Taxi pick time 10 6238 4359 1.43
Taxi pick time 100 165 137 1.2
OSM lon 10 7727 6027 1.28
OSM lon 100 101 63 1.6
Weblogs 10 16961 14179 1.2
Weblogs 100 909 642 1.42
IoT 10 8605 6945 1.24
ToT 100 723 572 1.26

Table 1: SHRINKINGCONE compared to optimal.

must exist at least one previous key in the segment for which
the error constraint will be violated. Therefore, a new key
that is not inside the cone cannot be included in the segment,
and becomes the origin point of the new segment.

Figure 5 illustrates how the cone is updated: point 1 is the
origin of the cone. Point 2 updates both the high and low
slopes. Point 3 is inside the cone, however it only updates
the upper bound of the cone (point 3 is less than error above
the lower bound). Point 4 is outside of the updated cone, and
therefore will be the first point of a new segment.

3.4 Algorithm Analysis

While the SHRINKINGCONE algorithm has a runtime of O(n)
and only uses a small constant amount memory (to keep
track of the cone), it is not optimal. Moreover, for a given
maximal error and an adversarial dataset the number of
segments that it produces can be arbitrarily worse than an
optimal algorithm, as we prove in Appendix A.2.

Although SHRINKINGCONE can be arbitrarily worse com-
pared to optimal segmentation for a given maximal error,
there is a limit for how bad it can be in practice since we
do have a guarantee that a maximal segment covers at least
error + 1 locations.

The maximum number of segments SHRINKINGCONE pro-
@, erl?rlﬂ), where |D| is the size
of the dataset. This guarantee stems from Theorem 3.1: no
input with less than 3 keys spanning at least error + 2 posi-
tions will cause SHRINKINGCONE to create a new segment.
Thus, compared to traditional B+ trees, in the worst case,
FITinG-TRrEE will produce no more segments (pages) than a
B+ tree that uses fixed-size pages (of size error).

To evaluate SHRINKINGCONE, we implemented the optimal
algorithm (runtime of O(n?) and memory consumption of
O(n?)) using 10° elements from real-world datasets: NYC Taxi
Dataset [2], OpenStreetMap [3], Weblogs [1], and IoT [1]. Ta-
ble 1 shows the number of segments generated by the optimal
algorithm and by SHRINKINGCONE. As shown, the number
of segments that our algorithm produces is comparable to
the number of segments in the optimal case.

duces is at most min (

4 INDEX LOOKUPS

One of the most important operations of an index is to lookup
a single key or a range of keys. However, since each entry in
the leaf level of FITING-TREE points to a segment, perform-
ing a lookup requires first locating the segment that a key
belongs to and then performing a local search inside the seg-
ment. In the following, we first describe how FITING-TREE
performs lookup operations for a single key and then show
how we can extend this technique to range predicates.

4.1 Point Queries

The process of searching a FITING-TREE for a single element
involves two steps: (1) searching the tree to find the segment
that the element belongs to, and (2) finding the element
within a segment. These steps are outlined in Algorithm 2.

4.1.1 Tree Search. Since, as previously described, each seg-
ment is stored in a B+ tree (with its first key as the key and
the segment’s slope and a pointer to the table page as its
value), we must first search the tree to find the segment that
a given key belongs to. To do this, we begin traversing the B+
tree from the root to the leaf, using standard tree traversal
algorithms. These steps, outlined in the SEARCHTREE func-
tion of Algorithm 2, terminate when reaching a leaf node
which points to the segment that contains the key.

Since the B+ tree is used to index segments rather than
individual points, the runtime for searching for the segment
that a key belongs in is O(logy(p)), where b is a constant
representing the fanout of the tree (i.e., number of separators
inside a node) and p is the number of segments created during
the segmentation process.

4.1.2 Segment Search. Once FITING-TREE finds the segment
for a key, it then must find the key’s position inside the
segment. Recall that segments are created such that an ele-
ment is no more than a constant distance (error) from the
element’s position determined through linear interpolation.
Other techniques for interpolation search inside a fixed-size
index page are discussed in [22].

To compute the approximate location of a key k within
a given segment s, we subtract the key from the first key
that appears in the segment s.start. Then, we multiply the
difference by the segment’s slope s.slope, as shown below in
the following equation.

pred_pos = (k — s.start) X s.slope (2)

After interpolating an element’s position, the true position

of an element is guaranteed to be within the error threshold.

Therefore, FITING-TREE locally searches the following region
using binary search (as shown in Algorithm 2).

true_pos € [pred_pos — error,pred_pos + error] (3)

Algorithm 2 Lookup Algorithm

Lookup(tree, key)

1 seg « SearchTree (tree.root, key)
2 wal « SearchSegment (seg, key)
3 return val

SEARCHTREE(node, key)

1 ie0

2 while key < node.keysli]

3 doie—i+1

4 if node.valueli].isLeaf ()

5 thenj « 0

6 while key < node.valueslj]
7 doje—j+1

8 return node.values|j]

9 return SearchTree(node.valuesli], key)

SEARCHSEGMENT(seg, key)
1 pos « (key — seg.start) X seg.slope
2 return BinarySearch(seg.data, pos — error, pos + error, key)

However, it is also important to note that any search algo-
rithm, including linear search, binary search, or exponential
search can also be used depending on the specific scenario
(e.g., hardware properties, error threshold).

Since segments satisfy the specified error condition, the
cost of searching for an element inside a segment is bounded.
More specifically, the runtime for locating an element inside
a segment is O(log,(error)) where error is constant.

4.2 Range Queries

Range queries, unlike point queries, have the additional re-
quirement that they examine every item in the specified
range. Therefore, for range queries, the selectivity of the
query (i.e., number of tuples that satisfy the predicate) has a
large influence on the total runtime of the query.

However, like point queries, range queries must also find a
single tuple: either the start or the end of the range. Therefore,
FITING-TREE uses the previously described point lookup
techniques to find the beginning of the specified range. Then,
since segments either store keys contiguously (clustered
index) or have an indirection layer with pointers that is
sorted by the key (non-clustered index), FITING-TREE can
simply scan from the starting location until it finds a key
that is outside of the specified range. For a clustered index,
scanning the relevant range performs only very efficient
sequential access, while for a non-clustered index, range
queries require random memory accesses (which is true for
any non-clustered index).

5 INDEX INSERTS

Along with locating an element, an index needs to be able
to handle insert operations. In some applications, maintain-
ing a strict ordering guarantee is necessary, in which case
FITiNG-TREE should ensure that new items are inserted in-
place. However, in situations where this is not the case, we’ve

developed a more efficient insert strategy that improves in-
sert throughput. In the following, we discuss each of these
strategies for inserting new items into a FITING-TREE. Then,
in Section 7.1.3, we show how these strategies compare for
various workloads and parameters.

5.1 In-place Insert Strategy

In a typical B+ tree that uses paging, pages are left partially
filled and new values are inserted into an empty slot using
an in-place strategy. When a given page is full, the node is
split into two nodes, and the changes are propagated up the
tree (i.e., the inner nodes in the tree are updated).

Although similar, insert operations in FITING-TREE require
additional consideration since any key in the segment must
be no more than specified error amount (error) away from its
interpolated position. Importantly, in-place inserts require
moving keys in the page to preserve the order of the keys.

Without any a priori knowledge about the error of a given
key, any attempt to move the key requires checking to see
if the error condition is satisfied. To make matters worse, a
single insert may require moving many keys (in the worst
case, all keys in the page) to maintain the sorted order. Thus,
we must have a priori knowledge about any given key to de-
termine if it can be moved in any direction while preserving
the error guarantee.

Similar to the fill factor of a page, we divide the specified
error in 2 parts: the segmentation error e (error used to seg-
ment the data), and an insert budget ¢ (number of locations a
key can be moved in any direction). To preserve the specified
error, we require that error = e + ¢. By keeping an insert
budget for each page, FITING-TREE can ensure that inserting
a new element will not violate the error for the page.

More specifically, given a segment s, the page has a total
size of |s| + 2¢ (|s| is the number of locations in the segment).
Data is placed in the middle of the new page, yielding ¢ empty
locations at the beginning and end of the page.

With this strategy, it is possible to move any key in a
direction which has free space without violating the error
condition. Therefore, to insert a new item using an in-place
insert strategy, FITING-TREE first locates the position in the
page where the new item belongs. Then, depending on which
end of the page (left or right) is closer, all elements are shifted
(either left or right) into the empty region of the page. Once
all of the empty spaces are filled, the segment needs to be re-
approximated (using the segmentation algorithm described
in Section 3). If the segmentation algorithm produces more
than one segment, we create n new segments (where n is the
number of segments produced after running Algorithm 1 on
the single segment that is now full). Finally, each new seg-
ment is inserted into the upper level tree, and any references
to the old segment are deleted.

Algorithm 3 Delta Insert Algorithm

INSERTKEY(tree, key)

1 seg « SearchTree (tree.root, key)

2 seg.buffer.insert(key)

3 if seg.buffer.isFull()

4 then

5 segs = SEGMENTATION(seg. data, seg.buffer)
6 for s € segs

7 do tree.insert(s)

8 tree.remove(seg)

9 return

5.2 Delta Insert Strategy

Since the segments in FITING-TREE are of variable size, the
cost of an insert operation using the previously described
in-place insertion strategy can be high, particularly for large
error thresholds or uniform data that produces large seg-
ments with many data items. Specifically, on average, %
keys may need to be moved for a single insert operation,
where |s| is the number of locations in the segment. There-
fore, a better approach for inserting new data items into a
FITiNG-TREE should amortize the cost of moving keys in the
segment.

To reduce the overhead of moving data items inside a page
when inserting a new item, each segment in a FITING-TREE
contains an additional fixed-size buffer instead of extra space
at each end. More specifically, as shown in Algorithm 3, new
keys are added to the buffer portion of the segment for which
the key belongs to (line 2). This buffer is kept sorted to enable
efficient search and merge operations.

Once the buffer reaches its predetermined size (buff),
it is combined with the data in the segment and then re-
segmented using the previously described segmentation al-
gorithm (Algorithm 1) to create a series of valid segments
that satisfy the error threshold (line 5). Note that depending
on the data, the number of segments after this process can be
one (i.e., the data inserted into the buffer does not violate the
error threshold) or several. Finally, each of the new segments
generated from the segmentation process are inserted into
the tree (line 6-7) and the old page is removed (line 8).

Storing additional data inside a segment impacts how to
locate a given item, as well as how the error is defined. Since
adding a buffer for each segment can violate the error guar-
antees that FITING-TREE provides, we transparently incor-
porate the buffer’s size into the error parameter for the seg-
mentation process. More formally, given a specified error
of error, we transparently set the error threshold for the
segmentation process to (error — buff). This ensures that a
lookup operation will satisfy the specified error even if the
element is located in the buffer.

The overall runtime for inserting a new element into a
FITING-TREE is the time required to locate the segment and
add the element to the segment’s buffer. With p pages stored

in a FITING-TREE, and a fanout of b (i.e., number of keys in
each internal separator node), inserting a new key into a
FITING-TREE has the following runtime:

insert runtime : O(logyp) + O(buff) (4)

Note that when the buffer is full and the segment needs to
be re-segmented, the runtime has an additional cost of O(d),
where d is the sum of a segment’s data size and buffer size.
Additionally, if the write-rate is very high, we could also
support merging algorithms that use a second buffer similar
to how column stores merge a write-optimized delta to the
main compressed column. However, this is an orthogonal
consideration that heavily depends on the read/write ratio
of a workload and is outside the scope of this paper.

6 COST MODEL

Since the specified error threshold affects both the perfor-
mance of lookups and inserts as well as the index’s size, the
natural question follows: how should a DBA pick the error
threshold for a given workload? To navigate this tradeoff, we
provide a cost model that helps a DBA pick a “good” error
threshold when creating a FITING-TREE. At a high level, there
are two main objectives that a DBA can optimize: perfor-
mance (i.e., lookup latency) and space consumption (8, 15].
Therefore, we present two ways to apply our cost model that
help a DBA choose an error threshold.

6.1 Latency Guarantee

For a given workload, it is valuable to be able to provide
latency guarantees to an application. For example, an appli-
cation may require that lookups take no more than a speci-
fied time threshold (e.g., 1000ns) due to SLAs or application-
specific requirements (e.g., for interactive applications). Since
FITING-TREE incorporates an error term that in turn affects
performance, we can model the index’s latency in order to
pick an error threshold that satisfies the specified latency
requirement.

As discussed, lookups require finding the relevant seg-
ment and then searching the segment (data and buffer) for
the element. Since the error threshold influences the number
of segments that are created (i.e., a smaller error threshold
yields more segments), we use a function that returns the
number of segments created for a given dataset and error
threshold. This function can either be learned for a specific
dataset (i.e., segment the data using different error thresh-
olds) or a general function can be used (e.g., make the sim-
plifying assumption that the number of segments decreases
linearly as the error increases). We use S, to represent the
number of resulting segments for given dataset using an
error threshold of e.

Therefore, the total estimated lookup latency for an error
threshold of e can be modeled by the following expression,

where b is the tree’s fanout, buff is a segment’s maximum
buffer size, and c is a constant representing the latency (in ns)
of a cache miss on the given hardware (e.g., 50ns). Moreover,
the cost function assumes binary search for the area that
needs to be searched within a segment bounded by e as well
as searching the complete buffer.

LATENCY(e) = ¢ [logb(Se) + logs(e) + logz(buﬂ)]
Tree Search ~ Segment Search Buffer Search

Setting ¢ to a constant value implies that all random mem-
ory accesses have a constant penalty but caching can often
change the penalty for a random access. In theory, instead
of being a constant, ¢ could be a function that returns the
penalty of a random access but we make the simplifying that
c is a constant.

Using this cost estimate, the index with the smallest stor-
age footprint that satisfies the given latency requirement
Lyeq (in nanoseconds) is given by the following expression,
where E represents a set of possible error values (e.g., E =
{10, 100, 1000}) and SIZE is a function that returns the esti-
mated size of an index (defined in the next section).

(SIZE(e)) (6)

e= arg min

{e€E | LATENCY(e) < Lyeq)

In addition to modeling the latency for lookup operations,

we can similarly model the latency for insert operations.

However, there are a few important differences. First, inserts

do not have to probe the segment. Also, instead of searching

a segment’s buffer, inserts require adding the item to the

buffer in sorted order. Finally, we must also consider the cost
associated with splitting a full segment.

6.2 Space Budget

Instead of specifying a lookup latency bound, a DBA can
also give FITING-TREE a storage budget to use. In this case,
the goal becomes to provide the highest performance (i.e.,
lowest latency for lookups and inserts) while not exceeding
the specified storage budget.

More formally, we can estimate the size of a read-only
clustered index (in bytes) for a given error threshold of e
using the following function, where again S, is the number
of segments that are created for an error threshold of e, and
b is the fanout of the tree.

SIZE(e) = (Se - logp(Se) - 16B) + (S. - 24B) (7)
D ——
Tree Segment

The first term is a pessimistic bound on the storage cost
of the tree (leaf + internal nodes using 8 byte keys/pointers),
while the second term represents the added metadata about
each segment (i.e., each segment has a starting key, slope,
and pointer to the underlying data, each 8 bytes).

Therefore, the smallest error threshold that satisfies a
given storage budget S,.4 (given in bytes) is given by the
following expression where again E represents a set of all
possible error values (e.g., E = {10, 100, 1000}).

e= arg min (LaTency(e)) (8)

{e€E | SIZE(e) < Sreq)

As we show in Section 7.7, our cost model can accurately
estimate the size of a FITING-TREE over real-world datasets,
providing DBAs with a valuable way to balance performance
(i.e., latency) with the storage footprint of a FITING-TREE.

7 EVALUATION

This section evaluates FITING-TREE and the presented tech-
niques. Overall, we see that FITING-TREE achieves compara-
ble performance to a full index as well as indexes that use
fixed-size paging while using orders of magnitude less space.

First, in Section 7.1, we compare the overall performance of
FITING-TREE, measuring its lookup and insert performance
for both clustered and non-clustered indexes using a variety
of real-world datasets. Next, we compare the two proposed
insert strategies in Section 7.2. Then, in Section 7.3, we mea-
sure the construction cost of FITING-TREE and in Section 7.4
we show how FITING-TREE can leverage other internal index
structures. Section 7.5 shows the scalability of our index for
different dataset sizes. Finally, Section 7.6 shows how FITING-
TREE performs for an adversarial synthetically generated
dataset (i.e., worst-case data distribution) and Section 7.7
evaluates our cost model.

Appendix B includes additional experiments that compare
FITING-TREE to Correlation Maps [29], show results for range
queries, measure the throughput for various buffer sizes, and
breakdown the lookup performance of FITING-TREE.

We conducted all experiments on a single server with an
Intel E5-2660 CPU (2.2GHz, 10 cores, 25MB L3 cache) and
256GB RAM and all index and table data was held in memory.

7.1 Exp. 1: Overall Performance

In the following, we evaluate the overall lookup and insert
performance of FITING-TREE. For these comparisons, we
benchmark FITING-TREE against both a full index (ie., a
dense index) as well as an index that uses fixed-size pages (i.e.,
a sparse index). A full index can be seen as best case baseline
for lookup performance and thus gives us an interesting
reference point.

For the two baselines (full and fixed-size paging), we use
a popular B+ tree implementation (STX-tree [4] v0.9) since
our FITING-TREE prototype also uses this tree to index the
variable sized segments. Importantly, as we show in Sec-
tion 7.4, any other tree implementation can also serve as the
organization layer.

p
-
o
o
o

1600

1600

3 — FIT 5 — FIT £ — FIT
<1400 — Fixed %1400 —— Fixed < 1400 —— Fixed
S % Full S —%— Full S —%— Full
= 1200 Binary = 1200 Binary = 1200 Binary
@ @ @

Q (-8 o

g 1000 -K grooo) == grooo '__

£ e \ £

@ 800 ® o o

£ 2 800 * g 800 x
F e £

600
10° 107 107 10° 10 10° 10® 10* 10°
Index Size (MB)

(a) Weblogs

600
10° 107 10" 10° 10" 10° 10° 10 10°
Index Size (MB)

(b) IoT

600
10° 102 10" 10° 10" 10° 10° 10 10°
Index Size (MB)

(c) Maps

Figure 6: Latency for Lookups (per thread)

-
=}

-
o

o
®
o
®

o
o
=
o

I
X
[0}
Q

o
IS
o
>

— FIT
— Fixed
— Full

— FIT
— Fixed
— Full

=)
N
=3
N

Insert Throughput (Million/s)
Insert Throughput (Million/s)

o
ol

0 0
10" 10? 10° 10* 10" 10%

Error

(a) Weblogs

Insert Throughput (Million/s)

0
10° 10* 10" 10? 10° 10*

Error Error

(b) IoT

(c) Maps

Figure 7: Throughput for Inserts (per thread)

=
=

— Delta
— In-Place (low)
— In-Place (high)

°
®

4
o

— Delta
— In-Place (low)
— In-Place (high)

— Delta
— In-Place (low)
— In-Place (high)

o
IS

Insert Throughput (Million/s)
o
N

0.4
0.2 \/\

Insert Throughput (Million/s)

4
=

10 10°
Error

(a) Weblogs

Insert Throughput (Million/s)

10° 10 10 10° 10° 10°

Error Error

(b) IoT

(c) Maps

Figure 8: Insertion Strategy Microbenchmark

7.1.1 Datasets. Since performance of our index depends on
the distribution of elements in a given dataset, we evaluate
FITING-TREE on real-world datasets with different distribu-
tions. Later, in Section 7.6, we show that our techniques
are still valuable using a synthetically generated worst-case
dataset. For our evaluation, we use three different real-world
datasets, each with very different underlying data distribu-
tions: (1) Weblogs [1], (2) IoT [1], and (3) Maps [3].

The Weblogs dataset contains = 715M log entries for every
web request to the CS department at a university over the
past 14 years. This dataset contains subtle trends, such as
the fact that more requests occur during certain times (e.g.,
school year vs. summer, day vs. night). On the other hand,
the IoT dataset contains ~ 5M readings from around 100
different IoT sensors (e.g., door, motion, power) installed
throughout an academic building at a university. Since these
sensors generally reflect human activity, this dataset has
interesting patterns, such as the fact there is more activity
during certain hours because classes are in session. For each
of these datasets, we create a clustered FITING-TREE using the
timestamp attribute (e.g., the time at which a resource was
requested). Finally, the Maps dataset contains the longitude

of ~ 2B features (e.g., museums, coffee shops) across the
world. Unsurprisingly, the longitude of locations is relatively
linear and does not contain many periodic trends. Unlike the
previous two datasets, we create a non-clustered FITING-TREE
over the longitude attribute of this dataset.

For our approach, the most important aspect of a dataset
that impacts FITING-TREE’s performance is the data’s pe-
riodicity. For now, think of the periodicity as the distance
between two “bumps” in a stepwise function that maps keys
to storage locations as shown in Figure 13a (blue line). If the
specified error of FITING-TREE is larger than the periodicity
(green line), the segmentation results in a single segment.
However, if the error is smaller than the periodicity (red
line), we need multiple segments to approximate the data
distribution.

Therefore, we define a non-linearity ratio to show the peri-
odicity of a dataset. To compute this ratio, we first calculate
the number of segments required to cover the dataset for a
given error threshold. We then normalize this result by the
number of segments required for a dataset of the same size
with periodicity equal to the error (which is the worst case,
or the most “non-linear” in that scale).

To show that all datasets contain a distinct periodicity pat-
tern, Figure 9 plots the non-linearity ratio of each of dataset.
The IoT dataset has a very significant bump, signifying that
there is very strong periodicity the scale of 10%, likely due to
patterns that follow human behavior (e.g., day/night hours).
Weblogs has multiple bumps which are likely correlated to
different periodic patterns (e.g., daily, weekly, and yearly
patterns). The Maps dataset, unlike the others, is linear at
small scales (but has stronger periodicity at larger scales).

7.1.2 Lookups. The first series of benchmarks show how
FITING-TREE compares to (1) a full index (i.e., dense), (2) an
index that uses fixed-size paging (i.e., sparse), and (3) binary
search over the entire dataset. We include binary search since
it represents the most extreme case where the error is equal
to the data size (i.e., our segmentation creates one segment).
For the Weblog and IoT dataset, we created a clustered index
using the timestamp attribute which is the primary key of
these datasets. We created a non-clustered (i.e., secondary)
index over the longitude attribute of the Maps dataset, which
is not unique.

The results (Figure 6) show the lookup latency for various
sizes of the index for the Weblogs (scaled to 1.5B records), IoT
(scaled to 1.5B records), and Maps (not scaled, 2B records)
datasets. More specifically, since the size of both FITING-
TREE and the fixed-size paging baseline can be varied (i.e.,
FITING-TREE’s error term and the page size influence the
number of leaf-level entries), we show the performance of
each of these approaches for various index sizes. Note that
the size of a full index cannot be varied and is therefore a
single point in the plot. Additionally, since binary search
does not have any additional storage requirement, its size is
zero but is visualized as a dotted line.

In general, the results show that FITING-TREE always per-
forms better than an index that uses fixed-size paging. Most
importantly, however, FITING-TREE offers significant space
savings compared to both fixed-size paging and a full index.
For example, in the Maps dataset, FITING-TREE is able to
match the performance of a full index using only 609MB of
memory, while a full index consumes over 30GB of space.
Moreover, compared to a tree that uses fixed-size paging, a
FITiNG-TREE which consumes only 1MB of memory is able
to match the performance of a fixed-size index which con-
sumes over 10GB of memory, offering a space savings of four
orders of magnitude.

As expected, for very small index sizes (i.e., very large
pages or a high error threshold), both FITING-TREE and fixed-
size paging mimic the performance of binary search since
there are only a few pages that are searched using binary
search. On the other hand, as the index grows, the perfor-
mance of both fixed-size paging as well as FITING-TREE con-
verge to that of a full index due to the fact that pages contain

°
N

— loT 8.0
— Weblogs 7.0
N — Maps 6.0

o
N
=3

o
[
&
(s)
w
o

| — Fixed
=
20 — FIT
1.0 — Full

Non-linearity ratio
o
2 A
o
m

°
o
G

0.0
10 LT T 06 10' 10? 10° 10* 10° 10° 107 10°
Error Page Size (Error)

0.00r

Figure 9: Non-linearity Figure 10: Build Time

very few elements. Note that the spike in the graph for the
fixed-size index is due to the fact that the index begins to
fall out of the CPU’s L2 cache.

Finally, as expected, the data distribution impacts the per-
formance of FITING-TREE. More specifically, we can see that
FITiNG-TREE is able to more quickly match the performance
of a full tree with the Maps dataset, compared to the Weblogs
and IoT datasets. This is due to the fact that the Maps dataset
is relatively linear, when compared to the Weblogs and IoT
datasets (shown in Figure 9).

7.1.3 Inserts. Next, we compare the insert performance of
FITinG-TREE to both a full index, as well as an index that
uses fixed-size paging as previously described. To insert new
items, FITING-TREE uses the previously described delta insert
technique since it provides the best overall performance,
which we show in next section where we perform an in-depth
comparison of the delta and the in-place insert strategies.
More specifically, to ensure a fair comparison and that
FITING-TREE is not unfairly write-optimized, we set the size
of the delta buffer to half of the specified error (i.e, for an er-
ror threshold of 100, the underlying data is segmented using
an error of 50 and each segment’s buffer has a maximum size
of 50 elements). Similarly, for the index with fixed-size pages,
the page size is given by the half of the error threshold we
used for FITING-TREE and the same amount (i.e., half of the
error used in FITING-TREE) is used as the buffer size. As usual,
once the buffer is full, the page is split into two pages. The
results, shown in Figure 7, compare the throughput of each
index after building the index over the first half of the data
and inserting the second half for various error thresholds
using shuffled versions of the previously described datasets.
As shown, FITING-TREE is able to achieve insert performance
that is, in general, comparable to an index that uses fixed-
size paging. Unsurprisingly, a full B+ tree is able to handle a
higher write load than either a FITING-TREE or an index that
uses fixed-size paging since both need to periodically split
pages that become full. Additionally, FITING-TREE needs to
execute the segmentation algorithm, explaining the perfor-
mance gap between FITING-TREE and fixed-size paging.
Interestingly, FITING-TREE is faster than fixed-size paging
in some cases since the error determines the number of seg-
ments in the tree. For a large error, there typically are fewer

1300

N
S

— Lookup

1200 = STX-tree|
1000

10" 10° 100 100 10° 500,
Index Size (MB)

[T

1100

Binary
FIT
Full
Fixed

2 4 8 16 32
Scale Factor

©
=3
S)

|
!

Latency (ns)

Time (ns) per Lookup

o
S

,_.
S
)

Figure 11: Other Indexes Figure 12: Scalability

segments generated, which reduces the number of times that
FITING-TREE needs to merge the buffer with the segment’s
data and execute the segmentation algorithm.

7.2 Exp. 2: In-place vs. Delta Inserts

In the following, we compare the two insert strategies de-
scribed in Section 5 and show how they perform for various
datasets, fill factors, and error thresholds.

Figure 8 shows the insert throughput for both the delta and
in-place insert strategies for each of the previously described
datasets. As mentioned, for in-place inserts, the amount of
free space reserved at the beginning and end of page (¢)
can be tuned based on the read/write characteristics of the
workload. Therefore, we now show results for both a low
(i-e., € is 25% of the error) and high (i.e., € is 75% of the error)
fill factor. For the delta insert results, we use the same setup
as the previously described insert experiment (i.e., we set the
size of the delta buffer to half of the specified error).

As shown, the delta insert strategy generally offers the
highest insert throughput for error thresholds higher than
100. This is due to the fact that the in-place insert strategy
must move many data items when inserting a new item
since segments created with a higher error threshold contain
more keys. However, for low error thresholds, the in-place
insert strategy outperforms the delta strategy, since there
are significantly fewer data items that need to be shifted.

The fill factor impacts (1) how many data items are in a
given segment and must be copied when inserting a new
element, and (2) how often a segment fills up and needs to
be re-segmented. As shown, in general, the in-place strategy
with a low fill factor offers the highest insert performance.

7.3 Exp 3: Index Construction

In the following, we quantify the cost to construct a FITING-
TREE. More specifically, we measure the amount of time
required to bulk load a FITING-TREE and compare it to the
time required to construct a B+ tree that uses fixed-size pages
as well as a full index. The results, shown in Figure 10, plot
the runtime for each approach for various page sizes (Fixed
B+ tree) or error thresholds (FITING-TREE) using the Weblogs
dataset.

Since a full index must insert every element into the tree, it
takes a constant amount of time. However, the time required
to bulk load a B+ tree that uses fixed-size pages decreases as
the page size increases since only the page boundaries (e.g.,
every 100th element) must be accessed from the underly-
ing data. As previously mentioned, building a FITING-TREE
requires first segmenting the data, and then inserting each
segment into the underlying tree structure. Unsurprisingly,
since the segmentation algorithm must examine every ele-
ment in the data, a FITING-TREE incurs a constant amount
of extra overhead (= 4.2 seconds in the shown experiment)
compared to a B+ tree that uses fixed-size pages.

Interestingly, however, this constant amount extra over-
head can be avoided in some cases. For example, when ini-
tially loading the data into the system, it is possible to execute
the segmentation algorithm in a streaming fashion. In this
case, it is possible that building a FITING-TREE is actually
less expensive than building a B+ tree with fixed-size pages
since the resulting segmentation algorithm leverages trends
in the data to produce fewer lead-level entries.

7.4 Exp 4: Other Indexes

As mentioned, FITING-TREE internally uses STX-tree [4] to
organize the variable sized pages generated through our
segmentation process (Section 3). However, depending on
the workload characteristics (e.g., read/write ratio), other
internal data structures could also be used to index segments
to provide additional performance improvements.

Therefore, to show that our techniques are generalizable,
we compare using an STX-tree to (1) FAST [28], a highly
optimized index structure for read-only workloads and (2)
a simple lookup table that simply stores the variable sized
pages in sorted order. Figure 11 shows the results for vari-
ous index sizes (i.e., error thresholds) over a subset of the
Weblogs dataset (since FAST requires a power of two ele-
ments). As shown, a lookup table provides superior space
savings (since there are no internal separator nodes) but with
a higher lookup latency. On the other hand, a FITING-TREE
that internally uses the highly optimized FAST index can
provide faster lookups but often consumes more space. There-
fore, a FITING-TREE is able to leverage alternative indexes
that may be more performant depending on the workload
characteristics (e.g., read-only).

7.5 Exp. 5: Data Size Scalability

To evaluate how FITING-TREE performs for various dataset
sizes, we measure the lookup latency for the Weblogs dataset
for various scale factors where both the error threshold and
fixed page size are set to 100, which is optimal for this dataset.

1000 10°

— 10*
800 Actual

— Error 100
600

10°
~— Error 1000

102 — Approx
10 — Fixed

0
10 — Full
-1

-_ 10-2

Position

400

ndex Size (MB)
=
[SY

200

0

10°
0 200 400 600 800 1000 10" 10% 10° 10* 10° 10° 107 10° 10°
Timestamp Error

(a) Worst Case Data (b) Worst Case Index Size
Figure 13: Worst Case Analysis

Since the performance of our index depends on the under-
lying data distribution, we scale the dataset while maintain-
ing the underlying trends. We omit the result for all other
datasets here (IoT and Maps) since they follow similar trends.

Figure 12 shows that the indexes (i.e., FITING-TREE, a
full index, fixed-size paging) scale better than binary search
due to the better theoretical asymptotic runtime (logy(n) vs.
log,(n)) and cache performance. Additionally, FITING-TREE’s
performance over various dataset sizes closely follows that of
a full index which offers the best performance, demonstrating
that our techniques offer valuable space savings without
sacrificing performance. Most importantly, neither a full
index nor an index that uses fixed-size paging could scale to
a scale factor of 32 since the size of the index exceeded the
amount of available memory. This again shows that FITING-
TREE is able to offer valuable space savings.

7.6 Exp 6: Worst Case Data

Since the data distribution influences the performance of
FITiNG-TREE, we synthetically generated data to illustrate
how our index performs with data that represents a worst-
case. We define the worst case as as a dataset which max-
imizes the number of segments given a specific error, de-
scribed further in Section 3.2. To do this, we generate data
using a step function with a fixed step size of 100, as shown
in Figure 13a. Since the step size is fixed, an error threshold
less than the step size yield a single segment per step. How-
ever, given an error threshold larger than the step size, our
segmentation algorithm will be able to use a single segment
to represent the entire dataset.

Figure 13b shows the performance for various sizes of
each index built over this worst case dataset. As shown, for
error thresholds of less than 100, the size of a FITING-TREE
is the same as a fixed-size index but still smaller than a full
index. This is due to the fact that for the error thresholds less
than the step size, FITING-TREE creates segments of size 100
(step size), resulting in a large number of nodes in the tree.
On the other hand, for an error threshold that is larger than
100, FITING-TREE is able to represent the step dataset with
only a single segment, dramatically reducing the index’s size.
As shown, importantly, a FITING-TREE will not contain more

1200 103
1150
0 — Actual —
21100 102 Actual
01050} — Model ~) — Model
£ 1000 =10
2 950 8100
2 900 n
8 850 10t
- 800

750 102

10° 10' 10> 10° 10* 10° 10t 102 10° 10* 10°
Error Error

(a) Latency (b) Size

Figure 14: Cost Model Accuracy

leaf-level entries than an index that uses fixed-size paging,
as discussed in Section 3.4.

7.7 Exp. 7: Accuracy of Cost Model

Since, as previously described, the error threshold influences
both the latency as well as space consumption of our in-
dex, the cost model presented in Section 6 aims to guide a
DBA when determining what error threshold to use for a
FITiNG-TREE. More specifically, given a latency requirement
(e.g., 1000ns) or a space budget (e.g., 2GB), our cost model
automatically determines an appropriate error threshold that
satisfies the given constraint.

Figure 14a shows the estimated and actual lookup latency
for various error thresholds on the Weblogs dataset using
a value of 50ns for c (the cost of a random memory access)
determined through a memory benchmarking tool on the
given hardware. As shown, our latency model predicts an
accurate upper bound for the actual latency of a lookup
operation. Our model slightly overestimates the latency due
to the fact that it does not incorporate CPU caching effects.
Since we overestimate the cost, we ensure that a specified
latency threshold will always be observed.

To evaluate our size cost model, we show the predicted
and actual size of a FITING-TREE for various error thresholds
in Figure 14b. As shown, our model is able to accurately
predict the size of an index for a given error threshold while
ensuring that our estimates are pessimistic (i.e., the estimated
cost is higher than the true cost).

8 RELATED WORK

The presented techniques in this paper overlap with work in
different areas including (1) index compression,
(2) partial/adaptive indexes, and (3) function approximation.

Index Compression: Since B+ trees can often consume sig-
nificant space, several index compression techniques have
been proposed. These approaches reduce the size of keys
in internal nodes by applying techniques such as prefix/suf-
fix truncation, dictionary compression, and key normaliza-
tion [21, 23, 36]. Importantly, these techniques can also be
applied within FITING-TREE to further reduce the size of the
underlying tree structure.

Similar to B+ tree compression, several methods have
been proposed in order to more compactly represent bitmap
indexes [6, 11, 26, 39, 42, 45]. Many of these techniques are
specific to bitmap indexes, which are primarily only useful
for attributes with few distinct values and not the general
workloads that FITING-TREE targets.

Correlation Maps [29] try to leverage correlations between
an unclustered attribute and a clustered attribute when an
existing primary key index exists. Our approach, on the other
hand, does not assume an existing index already exists and
uses variable sized paging (instead of fixed-sized buckets)
that better model the underlying data.

FAST [28] is another more recent tree structure that or-
ganizes tree elements in a more compact and efficient repre-
sentation in order to exploit modern hardware features (e.g.,
SIMD, cache line size) for read-heavy workloads. Similarly,
an Adaptive Radix Tree (ART) [32] leverages CPU caches
for in-memory indexing. Another idea discussed in [48]
are hybrid indexes which separate the index into hot and
cold regions where cold data is stored in a compressed for-
mat. Lastly, Log-structured Merge-trees [37] are designed for
mostly write intensive workloads and extensions including
Monkey [15] balance performance and memory consump-
tion. Each of these techniques can be seen as orthogonal and
thus also could be used by FITING-TREE to more efficiently
store the underlying tree structure as well as optimize for
read-heavy workloads or hot/cold data.

Other indexing techniques have been proposed that store
information about a region of the dataset, instead of the
indexing individual keys. For example, leaf nodes in a BF-
Tree [7] are bloom filters. Unlike FITING-TREE, BF-Tree does
not exploit properties about the data’s distribution when seg-
menting a dataset. Another example are learned indexes [30],
which aim to learn the underlying data distribution to index
data items. Unlike learned indexes, FITING-TREE has strict
error guarantees, supports insert operations, and provides a
cost model to ensure predictable performance and size.

Sparse indexes like Hippo [47], Block Range Indexes [44],
and Small Materialized Aggregates [34] all store informa-
tion about value ranges similar to the idea of segments in
FITiNG-TREE. However, these techniques do not consider the
underlying data distribution or bound lookup/insert latency.

Finally, several approximation techniques have been pro-
posed in order to improve the performance of similarity
search [19, 24, 40] (for string or multimedia data), unlike
FITING-TREE which uses approximation for compressing
indexes optimized for traditional point and range queries.

Partial and Adaptive Indexes: Partial indexes [43] aim to
reduce the storage footprint of an index since they index only
a subset of the data that is of interest to the user. For example,
Tail Indexes [14, 20] store only rare data items in order to re-
duce the storage footprint of the overall index. FITING-TREE,

on the other hand, supports queries over all attribute values
but could be extended to index only “important” data ranges
as well. Furthermore, database cracking [25] is a technique
that physically reorders values in a column in order to more
efficiently support selection queries without needing to store
secondary indexes. Since database cracking reorganizes val-
ues based on past queries, it does not efficiently support
ad-hoc queries, like FITING-TREE can.

Function Approximation: The main idea of a FITING-TREE is
to approximate the data distribution using piece-wise linear
functions and approximating curves using piece-wise func-
tions is not new [10, 16, 18, 33]. The error metrics E; (integral
square error) and E,, (maximal error) for these approxima-
tions have been discussed as well as different segmentation
algorithms [17, 35, 38]. Unlike prior work, we consider only
monotonic increasing functions, Ew, and potentially disjoint
linear segments. Moreover, none of these techniques have
been applied to indexing and therefore do not consider look-
ing up or inserting data items.

More recent work [12, 13, 27, 41, 46] specific to time se-
ries data also leverages piece-wise linear approximations to
store patterns for similarity search. While these approaches
also trade-off the number of segments with the accuracy of
the approximate representation, they do not aim to provide
the lookup and space consumption guarantees that FITING-
TREE does, and do not have the analysis related to these
guarantees.

Finally, other work [5] leverages piece-wise linear func-
tions to compress inverted lists by storing functions and
the distances of elements from the extrapolated functions.
However, these approximations use linear regression (which
minimizes E,), and there are no bounds on the error.

9 CONCLUSION

In this paper, we introduced FITING-TREE, a new index struc-
ture that incorporates a tunable error parameter to allow a
DBA to balance lookup performance and space consumption
of an index. To navigate this tradeoff, we presented a cost
model that determines an appropriate error parameter given
either (1) a lookup latency requirement (e.g., 500ns) or (2)
a storage budget (e.g., 100MB). We evaluated FITING-TREE
using several real-world datasets and showed that our index
can achieve comparable performance to a full index structure
while reducing the storage footprint by orders of magnitude.

10 ACKNOWLEDGEMENTS

This research is funded in part by the NSF CAREER Awards
1IS-1453171 and CNS-1452712, NSF Award IIS-1514491, Air
Force YIP AWARD FA9550-15-1-0144, and the Data Systems
and Al Lab (DSAIL) at MIT, as well as gifts from Intel, Mi-
crosoft, and Google.

REFERENCES

(1]
(2]
(3]

(19]

[20]
[21]
[22]
(23]

[24

[l

2019. A Benchmark for Machine-generated Data Management. https:
//github.com/BrownBigData/MgBench.

2019. NYC Taxi & Limousine Commission Trip Record Data. http:
/Iwww.nyc.gov/html/tlc/html/about/trip_record_data.shtml.

2019. OpenStreetMap database. https://aws.amazon.com/
public-datasets/osm.

2019. STX B+ Tree. https://panthema.net/2007/stx-btree/.

Naiyong Ao et al. 2011. Efficient Parallel Lists Intersection and Index
Compression Algorithms Using Graphics Processing Units. VLDB
(2011), 470-481.

Manos Athanassoulis et al. 2016. UpBit: Scalable In-Memory Updatable
Bitmap Indexing. In SIGMOD. 1319-1332.

Manos Athanassoulis and Anastasia Ailamaki. 2014. BF-tree: Approxi-
mate Tree Indexing. In VLDB. 1881-1892.

Manos Athanassoulis and Stratos Idreos. 2016. Design Tradeoffs of
Data Access Methods. In SIGMOD. 2195-2200.

Rudolf Bayer and Karl Unterauer. 1977. Prefix B-trees. ACM Trans.
Database Syst. (1977), 11-26.

Dietrich Braess. 1971. Chebyshev Approximation by Spline Functions
with Free Knots. Numerische Mathematik (1971), 357-366.
Chee-Yong Chan and Yannis E. Ioannidis. 1998. Bitmap Index Design
and Evaluation. In SIGMOD. 355-366.

Lu Chen et al. 2017. Efficient Metric Indexing for Similarity Search
and Similarity Joins. In KDE. 556-571.

Tak chung Fu. 2011. A Review on Time Series Data Mining. Engineering
Applications of Artificial Intelligence (2011), 164 — 181.

Andrew Crotty et al. 2016. The Case for Interactive Data Exploration
Accelerators (IDEAs). In HILDA. 11:1-11:6.

Niv Dayan, Manos Athanassoulis, and Stratos Idreos. 2017. Monkey:
Optimal Navigable Key-Value Store. In SIGMOD. 79-94.

Frank Eichinger et al. 2015. A Time-series Compression Technique and
Its Application to the Smart Grid. The VLDB Journal (2015), 193-218.
Hazem Elmeleegy et al. 2009. Online Piece-wise Linear Approximation
of Numerical Streams with Precision Guarantees. VLDB (2009), 145-
156.

R.E Esch and W.L Eastman. 1969. Computational Methods for Best
Spline Function Approximation. Journal of Approximation Theory
(1969), 85 - 96.

Andrea Esuli. 2012. Use of Permutation Prefixes for Efficient and
Scalable Approximate Similarity Search. Inf. Process. Manage. (2012),
889-902.

Alex Galakatos et al. 2017. Revisiting Reuse for Approximate Query
Processing. In VLDB. 1142-1153.

Jonathan Goldstein et al. 1998. Compressing Relations and Indexes. In
ICDE. 370-379.

Goetz Graefe. 2006. B-tree Indexes, Interpolation Search, and Skew. In
DaMon.

Goetz Graefe and Per-Ake Larson. 2001. B-Tree Indexes and CPU
Caches. In ICDE. 349-358.

Michael E. Houle and Jun Sakuma. 2005. Fast Approximate Similarity
Search in Extremely High-Dimensional Data Sets. In ICDE. 619-630.
Stratos Idreos et al. 2007. Database Cracking. In CIDR. 68-78.
Theodore Johnson. 1999. Performance Measurements of Compressed
Bitmap Indices. In VLDB. 278-289.

Eamonn Keogh et al. 2001. An Online Algorithm for Segmenting Time
Series. In ICDM. IEEE, 289-296.

Changkyu Kim et al. 2010. FAST: Fast Architecture Sensitive Tree
Search on Modern CPUs and GPUs. In SIGMOD. 339-350.

Hideaki Kimura et al. 2009. Correlation Maps: A Compressed Access
Method for Exploiting Soft Functional Dependencies. VLDB, 1222-
1233.

[30]
[31]
[32]

[33]

[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]

[42]

[43]
[44]
[45]
[46]

[47]

(48]

[49]

A

Tim Kraska et al. 2018. The Case for Learned Index Structures. In
SIGMOD. 489-504.

Domine M. W. Leenaerts and Wim M. Van Bokhoven. 1998. Piecewise
Linear Modeling and Analysis.

Viktor Leis et al. 2013. The Adaptive Radix Tree: ARTful Indexing for
Main-memory Databases. In ICDE. 38-49.

Xiaoyan Liu, Zhenjiang Lin, and Huaiging Wang. 2008. Novel Online
Methods for Time Series Segmentation. IEEE Trans. on Knowl. and
Data Eng. (2008), 1616-1626.

Guido Moerkotte. 1998. Small Materialized Aggregates: A Light Weight
Index Structure for Data Warehousing. In VLDB. 476-487.

Thomas Neumann and Michel Sebastian. 2008. Smooth Interpolating
Histograms with Error Guarantees. In BNCOD.

Thomas Neumann and Gerhard Weikum. 2008. RDF-3X: A RISC-style
Engine for RDF. In VLDB. 647-659.

Patrick O’'Neil et al. 1996. The Log-structured Merge-tree (LSM-tree).
Acta Inf, (1996), 351-385.

T. Pavlidis and S. L. Horowitz. 1974. Segmentation of Plane Curves.
IEEE Trans. Comput. (1974), 860-870.

Ali Pinar et al. 2005. Compressing Bitmap Indices by Data Reorganiza-
tion. In ICDE. 310-321.

K. V. Ravi Kanth et al. 1998. Dimensionality Reduction for Similarity
Searching in Dynamic Databases. In SIGMOD. 166-176.

Hagit Shatkay and Stanley B Zdonik. 1996. Approximate Queries and
Representations for Large Data Sequences. In ICDE. IEEE, 536-545.
Michal Stabno and Robert Wrembel. 2009. RLH: Bitmap Compression
Technique Based on Run-length and Huffman Encoding. Inf. Syst.
(2009), 400-414.

Michael Stonebraker. 1989. The Case for Partial Indexes. SIGMOD
Record (1989), 4-11.

Michael Stonebraker and Lawrence A. Rowe. 1986. The Design of
POSTGRES. In SIGMOD. 340-355.

Kesheng Wu et al. 2006. Optimizing Bitmap Indices with Efficient
Compression. ACM Trans. Database Syst. (2006), 1-38.

Zhenghua Xu et al. 2012. An Adaptive Algorithm for Online Time
Series Segmentation with Error Bound Guarantee. In EDBT.

Jia Yu and Mohamed Sarwat. 2016. Two Birds, One Stone: A Fast, Yet
Lightweight, Indexing Scheme for Modern Database Systems. In VLDB.
385-396.

Huanchen Zhang et al. 2016. Reducing the Storage Overhead of Main-
Memory OLTP Databases with Hybrid Indexes. In SIGMOD. 1567—
1581.

Marcin Zukowski et al. 2006. Super-Scalar RAM-CPU Cache Compres-
sion. In ICDE. 59-.

SEGMENTATION ANALYSIS

In the following we provide additional information about
our segmentation algorithm, SHRINKINGCONE, described in
Section 3. First, we prove the minimum size of a segment
produced by our algorithm. Then, although efficient in prac-
tice, we show that our algorithm can be arbitrarily worse
than an optimal algorithm when considering the number of
segments it produces.

A.1 SHRINKINGCONE Segment Size

We prove the claim from Theorem 3.1 regarding the size of
a maximal linear segment.

https://github.com/BrownBigData/MgBench
https://github.com/BrownBigData/MgBench
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
https://aws.amazon.com/public-datasets/osm
https://aws.amazon.com/public-datasets/osm
https://panthema.net/2007/stx-btree/

Proor. Consider 3 arbitrary points (x1, y1), (x2, y2), (x3, y3),
where x; < x; < x3 and y; < y2 < y3. By definition, the lin-
ear function starts at the first point in a segment, and ends at
the last point in the segment. The linear segment is not valid
if the distance on the y axis (loc) is larger than the specified
error. Therefore, given the 3 points, a linear segment starting
at (x1,y1) and ending at (x3, y3) is not feasible if:

Y3 — U1
X3 — X1
By rearranging the inequality we get:

Yy, —err > (32 —x1) + U1 9)

Ys — U1

err <y -y, (%2 — x1) (10)
37 A1
X2 — X
=(y3—y1)-(l—xz_xi)—(yryz) (11)
X9 — X
s(ys—yl)-(l—xj_xj)—l (12)

In (11) y3 was added and subtracted, and in (12) we use the
fact that y; and y; are integers (thus y; — y, > 1). This pro-
vides a lower bound for the distance between the first point
in a segment and the first point in the following segment:

err +1 X3 — X1
yg—y1>wz(err+l)- >err+1 (13)

= X3~ %2
=y;—y >err+1 (14)

Since (x3,ys3) is the first point outside of the segment, the
number of locations in the segmentis ys—1-y; > err+1. O

A.2 SHRINKINGCONE Competitive
Analysis

In the following, we prove that SHRINKINGCONE can be ar-

bitrarily worse than the optimal solution when considering

the number of segments produced (i.e., SHRINKINGCONE is

not competitive).

Proor. Given the error threshold E = 100, consider the
following input to SHRINKINGCONE:

(1) 3keys (x1,y1), (x2,Y2), (x3,y3) wherey; = 1,y, = 2,y3 =
3and x3—xy = x5 —x] = % (this is step 1 in Figure 15).

(2) The key x4 = x3 + % repeated E + 1 times (using E + 1
consecutive locations), and the key x5 = x4+ % without
repetitions (using 1 location).
After that repeat for i € [1, N] the following pattern:
the key xa(j+2) = Xp(i42)-1 + E repeated E + 1 times, and
a single appearance of the key xy(42)+1 = Xz(i4+2) + %
(this is step 2 in Figure 15).

(3) The key xy(n+142) = Xo(N+142)-1 + % (step 3 in Fig-
ure 15).

loc
..//‘
../,3
3 4
=
/,‘;" Step 3
Step 1 Step 2 key

Figure 15: Competitive analysis sketch: the dots are
the input, the dashed line is the optimal segmentation
(the first dot is a segment), and the solid lines are the
segments created by SHRINKINGCONE.

The algorithm will then create the following segments (an
illustration is shown in Figure 15):

o [x1, x4] (with slope EJ%): adding the key x5 will result
E

3+E+1
E+2

E
requirement for x4, y; + 3;?;1 (xg—x1)—yg =1+
b3

SEHL (B + 1) - 4 =100.98 > E.

E+4

e Each of the next segments will contain exactly two
keys (where the first key appears once, and the second
key appears E + 1 times), since otherwise the error
for the second key will be % -E—1=100.98 > E.
Just like before, the E + 1 repgtitions of a single key
will cause a violation of the error (due to the spacing
between subsequent keys).

in the slope which will not satisfy the error

Therefore, the algorithm will create N + 2 segments given
this input.

On the other hand, the optimal algorithm will need only
2 segments: the first segment is the first key, and the second
segment covers the rest of the input since the line starting
at the second key and ending at the last key is never further
away than E from any key, due to the construction of the
3+(N+1)-(E+2)
E+(N+1)-(E+%)’
and the first key in the segment is about % away on the x
axis from the first repeated key. Since the repeated keys are
spaced evenly (distance on the x axis of E + %), the linear
function will not violate the error threshold for any key.

Since N can be arbitrarily large, the algorithm is not com-
petitive. i

input. The slope of the second segment will be

B FURTHER EVALUATION

In this section, we present additional experimental results
that provide a more in-depth study of FITING-TREE and other
approaches. More specifically, we compare FITING-TREE to
Correlation Maps [29], show how FITING-TREE performs for

-
o
w
=
o
o
=]
o|

n n
£ A Fixed £ 900 = FIT
> >
g = FIT Y 800 . « CM
[[
12l 0 M o B 700[e ® * o 40w
:_ P cAcceca °a A : 600
° © 500 »
S . S

10 400

102 107 10° 10 107 10" 10° 10* 10°

Index Size (MB) Index Size (MB)

(a) Linear Distribution (b) Weblogs

Figure 16: Correlation Maps

queries that involve range predicates, show how the buffer
size impacts insert throughput, and finally breakdown the
lookup latency.

B.1 Correlation Maps

In the following, we compare FITING-TREE to Correlation
Maps (CMs) which are designed to exploit correlations that
exist between attributes. To ensure a fair comparison and to
adapt the described techniques to build a clustered primary
index, we assume that each tuple has an implicit position
(e.g., ROWID). In addition to the design in the original paper
[29] (e.g., bucketing both along the clustered and unclustered
dimension), we implemented additional optimizations not
described in the paper since our use case has the additional
knowledge that the unclustered attribute (i.e., timestamp) is
sorted with respect to the clustered attribute (i.e., ROWID).
For example, instead of storing several buckets for a given
unclustered range (e.g., {100-200} — [b0,b1,b2,b3]) our imple-
mentation stores only the first and last bucket (e.g., {100-200}
— [b0,b3]). Additionally, when looking up a key, our imple-
mentation uses binary search within the entire region instead
of searching each bucket individually. We found that these
two optimizations improved lookup performance/reduced
the size of a CM.

First, to show that CMs are no more efficient for primary
indexes than an index that uses fixed-size pages, we con-
sider the simple case of indexing all integer values from 1 to
100M. Although simple, this is not unusual since users often
index monotonically increasing identifiers (e.g., customer
ID). Figure 16a shows the lookup latency for various index
sizes (x-axis) for CMs, FITING-TREE, and fixed-size paging.
As previously described, we vary the size of FITING-TREE
by selecting various error thresholds and use different page
sizes/bucket sizes for CMs and B+ trees that use fixed-size
paging. As shown, CMs perform similar to B+ trees with
fixed-size pages, since they use fixed-size buckets to parti-
tion the attribute domain. FITING-TREE, on the other hand,
can use a single segment to represent this data and can locate
to the exact position of any element using almost no space.

8
EIO
;107 — Sum
° Count
310
[}
_I105
s
~ 4
< 10
-]
- 3

10° 10?2 10" 10° 10!
Selectivity (percent)

Figure 17: Range Queries

Next, we also used CMs also to build a primary key in-
dex on the Weblogs data set and compare it to our FITING-
TREE. Figure 16b shows index size (x-axis) vs. the lookup
latency (y-axis) for both CMs and FITING-TREE using 400M
timestamps from the Weblogs dataset. Since FITING-TREE
creates variable-sized segments that better model the under-
lying data distribution (instead of the fixed-size bucketing
approach that CMs use), FITING-TREE is able to provide faster
lookup performance using a smaller memory footprint.

B.2 Range Queries

In addition to point queries, FITING-TREE also supports range
queries whereby an arbitrary number of tuples must be exam-
ined to compute the result. Figure 17 shows the performance
of a FITING-TREE for range queries for both a sum and count
aggregate for various selectivities using the Weblogs dataset.

Interestingly, to compute the result for a count query, a
FITING-TREE can subtract the start position from the end
position of the range (i.e., a count aggregate over a range
is essentially two point lookups), resulting in a constant
lookup latency. On the other hand, computing the sum of an
attribute over a range requires examining every tuple in the
range, resulting in significantly more work for larger ranges.

B.3 Varying Fill Factor

As previously mentioned, the buffer size of a segment deter-
mines the amount of space that a segment reserves to hold
new data items. Once the segment’s insert buffer reaches
this threshold, the data from the segment and the segment’s
buffer are merged, and FITING-TREE executes the previously
described segmentation algorithm to generate new segments
that satisfy the specified error threshold.

Therefore, in Figure 18, we vary the buffer size and mea-
sure the total throughput using the Weblogs dataset with
an error threshold of e = 20, 000. As shown, the size of the
buffer can dramatically impact the write throughput of a
FITiNG-TREE. More specifically, larger buffers result in fewer
splitting operations, improving performance. However, a
buffer that is too large will result in longer lookup latencies
(modeled in the cost model in Section 6).

Iy
o

o
©

o
o

I
IS

o
N

o
o
o

N

Insert Throughput (Million/s)

10? 10° 10*
Buffer Size

Figure 18: Insert Throughput / Varying Buffer Size

Therefore, the fill factor of an FITING-TREE can be effec-
tively used by a DBA to tune a FITING-TREE to be more read
or write optimized, depending on the workload.

B.4 Lookup Breakdown

As described in Section 4, a lookup involves two steps (i.e., lo-
cating the segment where a key belongs and then searching
the segment’s data in order to find the item within the seg-
ment). Therefore, we examine the amount of time spent in
each of these two steps for FITING-TREE as well as an index
that uses fixed-size paging for various error thresholds.

The results in Figure 19 show that in both cases the major-
ity of time is spent searching the tree to find the page where
the data item belongs for smaller error thresholds (and page
sizes). Since FITING-TREE is able to leverage properties of
the underlying data distribution in order to create variable
sized segments, the resulting tree is significantly smaller.
Therefore, FITING-TREE spends less time searching the tree
to find the corresponding segment for a given key.

100%
90
80

~
o
R ¥R

60
50
40
30
20
10

0%

R R R

100%
90
80
70
60
50
40
30
20
10

0%

R RRRR

1071 1072 1073 1074 10°5 1076 1077 1078 10"9
HTree M Page

(a) FITING-TREE

10M 10~2 1073 10M4 10°5 1076 10°7 1078 1079

H Tree M Page

(b) Fixed-size Index

Figure 19: Lookup Breakdown

	Abstract
	1 Introduction
	2 Overview
	2.1 Function Representation
	2.2 FITing-Tree Design

	3 Segmentation
	3.1 Design Choices
	3.2 Segment Definition
	3.3 Segmentation Algorithm
	3.4 Algorithm Analysis

	4 Index Lookups
	4.1 Point Queries
	4.2 Range Queries

	5 Index Inserts
	5.1 In-place Insert Strategy
	5.2 Delta Insert Strategy

	6 Cost Model
	6.1 Latency Guarantee
	6.2 Space Budget

	7 Evaluation
	7.1 Exp. 1: Overall Performance
	7.2 Exp. 2: In-place vs. Delta Inserts
	7.3 Exp 3: Index Construction
	7.4 Exp 4: Other Indexes
	7.5 Exp. 5: Data Size Scalability
	7.6 Exp 6: Worst Case Data
	7.7 Exp. 7: Accuracy of Cost Model

	8 Related Work
	9 Conclusion
	10 Acknowledgements
	References
	A Segmentation Analysis
	A.1 ShrinkingCone Segment Size
	A.2 ShrinkingCone Competitive Analysis

	B Further Evaluation
	B.1 Correlation Maps
	B.2 Range Queries
	B.3 Varying Fill Factor
	B.4 Lookup Breakdown

