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Compilation-based Prefetching for Memory Latency Tolerance
by
Charles W. Selvidge

Abstract

Performance impacts of memory latency can be mitigated with hierarchical memory systems which
exploit locality and with concurrent memory systems which exploit parallelism. As the relative
performance of processors improves with respect to memory components it will be advantageous to
simultaneously exploit locality and parallelism in order to achieve memory latency tolerant com-
putation, computation in which the runtime performance is relatively insensitive to high memory

latencies.

Program locality is typically considered at a macroscopic level corresponding to aggregate program
behavior. We investigate locality behavior at a finer granularity, considering the behavior of individ-
ual memory reference instructions. By grouping together the dynamic memory references produced
by each static memory reference instruction in a program, a large amount of structure is exposed in
locality behavior. Miss rates of dynamic memory references arising from the same static instruction
are highly correlated; thus it is meaningful o ascribe an individual miss rate to each static memory
reference in a program. These individual miss rates are highly polarized, often displaying a bimodal
distribution consisting of a set of references with very low miss rates and a set with very high miss
rates. As a result of this polarized, bimodal distribution, one finds that essentially all program misses
occur as a result of executing an instruction from the set of static memory reference instructions
exhibiting high miss rates. Low miss rate static instructions account for a large fraction of total
memory references, however. This behavior is summarized in the Static Locality Correlation
Hypothesis and the Badref Hypothesis. Empirical evidence validates these hypotheses.

Prefetching provides a mechanism for achieving concurrent activity in processors, caches and main
memory systems. While this concurrency can produce latency tolerance, it requires program paral-
lelism. Operations cannot be performed concurrently if they are ordered by dataflow dependencies.
The insights above regarding program locality behavior can be exploited to leverage limited program
parallelism. By restricting the focus of latency tolerance specifically to the subset of high miss rate
static memory reference instructions, parallelism is targetted at the source of misses. Furthermore,
low miss rate memory references eliminated from consideration become an additional source of par-
allelism for high miss rate references. The non-semantic nature of transactions between memory and
cache serves to further increase parallelism for memory latency tolerance. An empirical measure-
ment technique demonstrates that ample parallelism is displayed in programs to allow tolerance to
memory latencies of hundreds of instructions.

These results are put in practice in a prototype compiler which generates memory latency tolerant
code. Two distinct scheduling algorithms are developed and implemented in order to schedule cache
miss processing activity to occur concurrently with computation and cache hits. One technique
applies to structured accesses within loops, predicting future addresses in order to software pipeline
cache miss latency with loop computation. The second technique merges prefetches into sequential
code. Simulations of code produced by the prototype compiler demonstrate speedups of 10 to 30%
over unmodified code for a 20 cycle memory latency and speedups of factors of 2 to 6 over unmodified
code for a memory system with 160 cycle latency and bandwidth sufficient to allow 8 concurrent
miss transactions.

Thesis Supervisor: Stephen A. Ward
Title: Professor of Electrical Engineering and Computer Sciexnce
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Chapter 1

Introduction

Technological trends motivate a desire for memory latency tolerance mechanisms in computer sys-
temn architectures. Memory latency tolerance in an architecture describes the ability to compute
efficiently given an everincreasing ratio, over the lifetime of the architecture, between the latency
required to access data from slow components of the memory and the time to perform elementary
computations within the processor. Efficient computation in the face of high memory latency can
be achieved by exploiting locality and parallelism inherent in a system’s workload. Hierarchical,
cache-based memory systems which dynamically exploit program locality have been the principle
architectural tool for dealing with memory latency. Cache misses result in a residual memory latency
component in cached systems. This thesis investigates the application of explicit, compilation-based
management of processor/memory system concurrency, thereby exploiting parallelism to achieve
tolerance to cache-miss latency.

1.1. Preview of Technical Contributions and Results

Cache-miss latency is a potential performance limitation in computer systems. Our contributions
with respect to the problem of cache miss latency tolerance can be divided into four main categories.

e We identify, characterize and measure an important new aspect of the locality be-
havior of programs termed static locality correlation.

o We characterize and measure program parallelism relevant in the context of memory
latency tolerance.

¢ We devise and implement scheduling algorithms which can be used by a compiler to
produce latency tolerant code. These algorithms exploit our behavioral observations
concerning locality and parallelism.

o We measure the performance of mechanically-generated, latency-tolerant code. This
serves to demonstrate both the feasibility and effectiveness of compilation-based
latency tolerance.

1.1.1 Static Locality Behavior

Architectural advances in computing, in contrast to technological advances, often arise from im-
proved understanding of the behavior of programs. The study and identification of regularities in
runtime program behavior allows better application of available technology. Analysis and character-
ization of program behavior relevant to memory latency and its tolerance leads to several insights
which can be exploited in latency tolerant compilation.

The principle aspect of program behavior impacting memory performance in cached systems is
locality. We make several related observations about the locality behavior of programs which are
extremely important in the context of latency tolerance.
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Distinct memory references at runtime which are produced by the same static instruction exhibit
correlated locality behavior. Since caches adaptively modify their contents to reflect recent memory
references, the hit/miss behavior of a particular memory reference at runtime is determined by the
relationship of the addresses it uses to the addresses used by neighboring references. The juxtapo-
sition of memory references does not occur by chance but instead occurs as a consequence of the
structure of programs. Every time a particular memory reference instruction is executed the neigh-
boring dynamic memory references are produced by the same neighboring static instructions. Thus
the set of dynamic memory references produced by a particular static memory reference instruction
all occur in a similar context, created by its neighboring instructions. As a consequence, these
dynamic references are likely to exhibit the same hit/miss behavior systematically. Their locality
behavior is correlated.

For many programs, the particular context in which references occur is independent or only weakly
dependent on input data. References produced by the same instruction, even across multiple program
runs, exhibit similar behavior. In contrast, even in the same program run, references arising from
different static memory reference instructions have different contexts, each arising from its own local
program structure. As a result, there is no reason to expect the behavior of dynamic references
arising from different static instructions to be strongly correlated.

This behavior is elucidated through the Static Locality Correlation Hypothesis. This hy-
pothesis states that program structure is a primary determinant of locality behavior. The hit/miss
behavior of each individual static references can be characterized across multiple program runs while
the behavior of different static references, even within a single program run, can vary widely.

The principle consequence of static locality correlation is to justify the distinct characterization
of the hit/miss behavior of each static memory reference in a program with an individual miss
rate. In the absence of static locality correlation the behavior of all static memory references would
be essentially equivalent. This is simply not the way programs behave. Hit/miss behavior varies
significantly between different static references and can be individually ascribed to each reference.
Individual characterization of locality behavior of references is extremely useful in the context of
generation of latency tolerant code.

Building on the static locality hypothesis, additional aspects of program locality are observed. Pro-
gram structure frequently guarantees that some static memory reference instructions cannot produce
misses by construction. Given that some fraction of static references produce no misses, it is an in-
evitable consequence for programs with a non-zero average miss rate that some other static references
must have individual miss rates which exceed the program average. We observe two aspects regard-
ing the distribution of miss rates of individual static memory references. First, static reference miss
rate behavior is highly polarized, exhibiting some references with very low miss rates and some with
relatively high miss rates. Second, far more dynamic references are produced by low miss rate ref-
erences than high miss rate references, in most cases. The Badref Hypothesis encapsulates these
observations regarding polarization of miss rates and distribution of references by instruction miss
rate.

The Badref Hypothesis observes that static memory references can be partitioned into a low miss
rate set, goodrefs, and a high miss rate set, badrefs. Goodrefs, static references with negligibly small
miss rates, often account for a significant fraction of all dynamic memory references, between 60
and 90% cr even more. Badrefs typically account for a much smaller fraction of dynamic references.
Notice that 100% miss rate static references can account for a fraction of dynamic references no
greater than the average program miss rate. Thus most dynamic references occur in conjunction
with the execution of goodrefs.

The number of misses produced by a particular static reference is the product of the number of
references and the miss rate exhibited by the reference. Even a large set of dynamic references
produce zero or very few misses if they are produced by a static reference with a very low miss rate.
A relatively small set of dynamic references which miss very frequently compared to the program
average may well account for the preponderance of program misses. In fact, in many programs,
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this is precisely the behavior exhibited. Badrefs, a subset of static references with high miss rates,
produce a small set of dynamic references while accounting for most of the misses experienced by
programs. Notice that this behavior reflects the three distinct aspects described. Not only do static
references exhibit distinct miss rates but these miss rates are polarized far from the program average.
Furthermore, the dynamic size of the low miss rate set dominates that of the high miss rate set, but
not by enough that misses produced by the low miss rate set represent a signficant fraction of total
misses.

These insights into memory behavior can be exploited in latency-tolerant compilation. Static local-
ity correlation suggests individualized behavior modelling of each memory reference in a program,
rather than the uniforin treatment accorded all memory references in most compilers. Based on
the polarization of miss rates described by the Badref Hypothesis, we develop a compiler model
for memory system behavior, the Badref Model. This model partitions memory references into
two sets, goodrefs and badrefs. Goodrefs are modelled as cache hits while badrefs are modelled
as cache misses. The predominance of goodrefs in many programs serves to focus the problem of
miss latency tolerance onto a small set of memory references, greatly simplifying the development
of compiler techniques for scheduling this latency. Exploitation of these phenomena erables the
practical application of software-scheduled concurrency as a memory latency tolerance technique.

With regard to understanding and exploiting locality behavior of programs, this thesis makes sev-
eral distinct contributions. We develop and elucidate the concept of static locality correlation and
the further refinement regarding the polarization of this behavior in the static locality and badref
hypotheses. These insights are supported through qualitative and quantitative empirical evidence.
Qualitative evidence takes the form of examples of frequently occurring program structures which
lead both to goodrefs and badrefs. Quantitative evidence takes the form of benchmark simulation
studies for a set of programs across a variety of cache configurations and focused studies addressing
the impacts on badref behavicr of changing cache design parameters including cache size, block size
and the level of cache conflict misses. Finally, we demonstrate the technique by which this behavior
can be exploited for latency tolerant code generation in the form of the badref model.

1.1.2 Parallelism Behavior

Concurrency between the servicing of miss transactions and other computation and/or concurrency
between the servicing of multiple misses is a means for achieving latency tolerance. Concurrent
processing of distinct operations in programs requires parallelism or independence between the op-
erations. Investigation of program behavior turns then from locality to parallelism. Do programs
exhibit sufficient, accessible parallelism that software latency tolerance is a practical technique?

Measurements of instruction-level parallelism in the literature are typically relatively low, between
two and five. These numbers should not be interpreted to mean that memory latencies beyond
five cannot be tolerated through concurrency. Average instruction-level parallelism is simply not a
suitable metric for evaluating parallelism for memory latency tolerance.

To allow complete concurrency between a processor and memory during the servicing of a 20 cycle
long miss transaction, 20 instructions must be identified which are independent of the miss transac-
tion. These instructions cannot produce data needed to initiate the miss transaction and similarly
cannot use data fetched from memory by the miss transaction. It is by no means necessary for these
instructions to be independent of one another, however. In fact, a linear sequence of 20 mutually
dependent instructions is quite suitable for overlap with a 20 cycle miss transaction as long as each
instruction in the sequence is independent of the miss. Such a construction involving a single miss
operation and 20 dependent instructions, each independent of the miss, might be characterized as
exhibiting an average parallelism of 1.05.

The observation above regarding parallelism can be coupled with the behavior described by the
badref hypothesis, namely the fact that miss latency occurs primarily in conjunction with a small
set of identifiable, memory reference instructions. This conjunction of ideas is essential. The key
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to finding adequate parallelism to tolerate very high memory latencies lies in the specific ability
to pinpoint this latency to a small, fixed and identifiable set of static memory references. Having
isolated the sourccs of misses, limited program parallelism can be devoted exclusively to masking
the associated latency, rather than squandered in untargetted efforts to tolerate potential latency for
all memory references. Moreover, goodrefs, those memory reference instructions which produce no
misses, become an additional source of parallelism for badrefs rather than a consumer of parallelism.

Thus the problem of laiency tolerance can be viewed as finding parallelism between a small set
of very slow but identifiable operations and a large set of fast operations. The relevant question
to ask about parallelism in this context is how many fast operations are independent of each slow
operation. Rather than looking at average program paralielism one should focus specifically on
the issue of whether a group of instructions consisting of goodrefs and ncn-memory operations can
be matched with each dynamic instance of a static badref, the source of memory latency. These
instructions must be independent of the candidate badref instance but need not be independent of
one another since they can be executed sequentially.

The irsight above makes the problem of parallelism identification for latency tolerance somewhat
more ‘ractable. The operation of servicing a miss transaction has additional properties which can
be exploited to further reduce constraints limiting parallelism. Caches operate transparently with
respect to processors so the servicing of miss transactions has no semantic impact on programs. This
property makes the speculative initiation of miss transactions an attractive option for eliminating
both constraints associated with program control and potential but unlikely data dependencies
for miss addresses. Furthermore, the disambiguation function performed by caches decouples the
transfer of data from memory to cache from the act of modifying this data. As a consequence, one
need not consider potential dependencies for transferred data in the form of undisambiguated store
operations. Finally, storage reuse dependencies, i.e. antidependencies and output dependencies, can
be eliminated when desired through storage replication. The only dependencies which remain after
application of these techniques are real dataflow dependencies for addresses used to initiate miss
transactions and dataflow dependencies resulting from the actual use of transferred data.

We measure parallelism for a set of benchmark programs using a measurement technique targetted
specifically at identifying parallelism relevant for latency tolerance. Anticipating the application of
constraint reduction techniques, program parallelism is measured in a context which relaxes away
many constraints and pseudo-dependencies. Dependencies are only recognized for actual runtime
dataflow dependencies for addresses used to initiate miss transactions and from transferred data to
uses of the data. The measurement technique tabulates non-dependent instructions with respect to
each dynamic badref instance in a program run.

The first place to look for parallelism, since it yields parallelism most easily exploited in the frame-
work of static code scheduling, is in the neighborhood of instructions adjacent to badrefs in a
sequential program schedule. In this context we find substantial amounts of parallelism, often com-
parable in size to the neighborhood or window over which we look. In a 256 instruction window
adjacent to a badref it is not uncommon to find that 90% of the instructions in the window are
independent of the badref.

In the context of discussing parallelism we contrast statically scheduled latency tolerance, i.e. la-
tency tolerant code, with single-threaded hardware dynamic schedulers. We observe that hardware
schedulers probably cannot exploit key aspects of program behavior and properties unique to cache
transactions which make latency tolerance tractable. In particular, it is difficult for a hardware
scheduler to distinguish badrefs from goodrefs, at which point the battle may already be lost. Even
given such a differentiation, it would be difficult for a hardware scheduler to look far into the future
to find badrefs and to resolve necessary intermediate dependencies by executing those key instruc-
tions which lead to computation of badref addresses. As a consequence, hardware schedulers are
restricted primarily to exploiting parallelism between badrefs and instructions closely following them
in sequential program schedules. In benchmark measurements we find that this is the least effective
place to look for parallelism.
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1.1.3 Compiler Latency Tolerance Algorithms

Guided by insights regarding program locality and parallelism behavior, and emboldened by measure-
ments indicating large quantities of parallelism, we proceed to develop code scheduling algorithms
to access this parallelism to achieve concurrency for memory latency tolerance. These algorithms
achieve their effectiveness by modelling memory behavior using the badref model. Focusing on
badrefs leads to a viewpoint for the problem of generating latency tolerant code as one of explicitly
scheduling miss activity within the memory system. This viewpoint proves to be effective.

In pursuing the problem of developing miss scheduling algorithms it is helpful to turn once again
to the structure and behavior of programs. Upon close examination, it turns out that in many
programs badrefs occur primarily in conjunction with accessing large, aggregate, data structures
within loops. Loops traversing arrays typify these accesses although other patterns exist as well. In
loops traversing aggregate data structures, some set of the static memory references in each iteration
perform the first access to components in the newest data structure element. These references often
systematically result in misses, producing badrefs. References which perform subsequent accesses
to components never miss and are goodrefs. Ac.csses to these Regularly Accessed, Aggregate Data
structures will be referred to as RAADs. RAAD prefetching is a technique developed specifically
to target this key class of badrefs. RAAD prefetching applies software pipelining via prefetching
to overlap overlap computation from one loop iteration with miss transactions scheduled for one or
more fature iterations.

While RAAD prefetching addresses an important class of badrefs for many benchmarks, it is not
a panacea. By specifically targetting references inside of explicitly recognizable loops it fails to
be effective when badrefs arise in other contexts or when procedure boundaries obscure explicit
looping constructs from their contained badrefs. A second scheduling technique termed sequential
miss scheduling addresses & more general class of badrefs. From a long sequence of code a shorter
sequence of miss transactions is constructed, one per badref in the original sequence. These two
sequences are then merged together, subject to limited rescheduling of the original code sequence in
order to satisfy address dependencies for the miss schedule. A technique akin to trace scheduling is
used to construct long code sequences for miss scheduling.

A prototype compiler implementation performing RAAD prefetching and sequential miss scheduling
and a suitable simulation environment provide a mechanism for measuring the runtime performance
of latency tolerant code. Code for this system is generated completely mechanically, thus the system
provides a proof-of-concept for compilation-based tolerance to memory latency for data accesses.

1.1.4 Performance Evaluation

Despite the relatively primitive status of the prototype compiler, performance improvements are
exhibited by benchmark programs. The specific speedup values depend upon the memory configura-
tions assumed. For a small, fully-associative cache combined with a memory system with a latency
of 20 cycles, speedups between 10 and 30% are exhibited by programs from the SPEC benchmark
suite. For the same cache, coupled with a memory system with a latency of 160 cycles, but equiv-
alent bandwidth, latency tolerant code outperforms unmodified code by factors between 2 and 6,
i.e. modified code is sometimes 600% faster than unmodified code. Modified code for the 160 cycle
memory system typically achieves performance within 25% of that of modified code for the 20 cycle
memory system.

Performance is mixed for direct-mapped caches. While some benchmarks exhibit performance im-
provement comparable to the fully associative case for the same memory parameters, some bench-
marks are actually degraded by latency tolerance optimization. We believe that this degradation
reflects limitations in the current prototype compiler rather than fundamental problems associated
with direct-mapped caches.

On balance, the results for the fully-associative cache test demonstrate the effectiveness of compila-
tion based latency tolerance. Tests based on 20 cycle memory latencies exhibit modest improvements
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in conjunction with current memory latencies. 1=<is using 160 cycle memory suggest that our tech-
niges can provide significant toierance to much higher levels of relative memory latency which will
accompany very fast processors in the future.

1.2. Thesis Roadmap

Subsequent chapters address the topics alluded to above in significantly more detail. This section
provides a description of the forthcoming chapters in order to allow the intrigued reader to skip
directly to chapters targetting his or her interest.

Chapter 2 provides introductory, background and motivational material. The problem of memory
latency is motivated as an inevitable peformance limitation for computing given current technologi-
cal trends. Caching and interleaved memory systems are described, as well as difficulties in coupling
these two techniques arising from limitations in current processor/memory system interfaces. Alter-
native menory latency tolerance techniques are surveyed, as is other related literature. This chapter
is non-essential to subsequent chapters.

Chapter 3 discusses the static locality correlation and badref hypotheses. The hypotheses are devel-
oped and supported qualitatively, based on an intuitive, empirical analysis of program structure. The
significance of these phenomena with respect to latency tolerant compilation is explained. Finally,
quantitative, empirical evidence in the form of benchmark simulation data is provided to indicate
the degree to which programs exhibit static locality and badref behavior for a single input data set
across a variety of cache configurations. Evidence is also provided supporting the hypothesis that
static locality behavior is consistent across multiple input data sets.

Chapter 4 analyzes parallelism requirements for memory latency tolerance. It explains why average
parallelism and similar operation-blind metrics are not appropriate for characterizing parallelism
for latency tolerance. A suitable measurement technique which relaxes away avoidable constraints
and specifically measures parallelism with respect to badrefs in their neighborhood in a sequential
program is developed. This measurement technique is used to characterize parallelism in benchmark
programs. Empirical evidence shows that substantial parallelism exists.

Chapter 5 describes modelling techniques, algorithms and heuristics relevant to the problem of
design and implementation of compilers to produce latency-tolerant code. The chapter describes
two scheduling algorithms termed RAAD prefetching and sequential miss scheduling. It details
heuristic tests to determine an appropriate scheduling technique in situations when both can be
applied.

Chapter 6 provides empirical results gathered using a prototype compiler implementation based on
the algorithms and techniques from Chapter 5. Two forms of results are provided. The compiler
generates statistics describing the forms of badrefs encountered and the frequency of use and expected
performance costs and benefits of the two code scheduling techniques. Code generated by the
prototype compiler is executed in conjunction with a timing simulator to assess the latency tolerance
of the code using a variety of cache configurations, processor/memory interface models and memory
latency and bandwidth characteristics. In each case, the compiler is supplied with an accurate
parameterization of the target memory system. Data on the speedups alluded to above is found in
this chapter.

Chapter 7 draws conclusions based on this work.
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Chapter 2

Motivation and Background

2.1. The Memory Latency Problem

Computer architecture and system design is a field which is partially driven by economics, and
justifiably so. A frequently stated goal of system designers is to provide a system which maxi-
mizes performance subject to cost constraints or minimizes cost subject to performance constraints.
Despite a general lack of agreement about precisely how to measure either cost or performance, eco-
nomics often motivates the use of high-bandwidth, high-latency components in various subsystems
within computers. High bandwidth is important since bandwidth imposes a hard upper bound on
the performance of machines. High bandwidth can be achieved by repeatedly using a single low-
latency component or concurrently using multiple, high-latency components. The latter solution
may be more economical when it is applicable.

High bandwidth represents potential, but not necessarily actual performance, when it is achieved
at high latency. Insofar as a computation is forced to wait for a data item from a high-latency
component and this results in idle bandwidth, high bandwidth has not resulted in high performance.
Significant effort in the computer research community is being applied to various incarnations of
the problem of efficient use of high-bandwidth, high-latency computational resources and software
latency tolerance can be classified as part of this effort.

The latency problem specifically addressed is that of memory latency for data accesses, latency asso-
ciated with movement of data within the memory hierarchy of machines. We focus on uniprocessors
with a memory hierarchy consisting of a single cache and an underlying main memory although
latencies in memory systems with more caching levels or in multiprocessor systems should to some
extent yield to a similar approach.

Latency for memory accesses associated with data are specifically addressed, as opposed to instruc-
tion accesses. Instructions show noticably higher spatial locality than data and sometimes higher
temporal locality as well. If one measures spatial locality as the change in cache hit rate as a function
of cache block size, data in [49] illustrates the heightened spatial locality associated with instructions.
Enhanced spatial locality behavior for instructions makes them more amenable to various hardware
prefetching mechanisms. Data latency tolerance is a harder problem.

With regard to data memory latency, one might ask a variety of questions.

1. Is there a memory latency problem? Under what situations does memory latency
limit computational performance? To what extent does memory latency limit the
achievable memory bandwidth of current and future machines?

2. Can high memory latencies be masked by overlap with other concurrent activity in
systems which process miss transactions sequentially?
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3. Can high latencies be masked by overlap with concurrent activity in systems which
can concurrently process multiple miss transactions?

The first questions above will be answered within this chapter. The remainder of the thesis addresses
the latter two questions. In order to assess the first question above, one van examine the relative
changes in performance of processors and memory over time.
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Figure 2-1: Component Performance vs. Time

Figure 2-1 shows the performance as a function of time of a sample of processor and memory
components. The chart includes data for processors and CMOS DRAM and SRAM components. In
order to get a uniform timebase, data is collected for each type of component from ISSCC proceedings
[22]. Processor performance is measured as the bandwidth at which the processor can compute
integer add instructions. Memory performance is measured as the inverse of the access time, address
access time for SRAMs and row access time for DRAMs. The maximum density component reported
each year is used since these components have the lowest per bit cost in production. Because of its
source, data is based on research components rather than commercial availability. Bias produced by
differing times for components to move from research into the commercial marketplace may skew
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the results slightly in comparison to a graph based on performance and availability of commercial
products but trends in the relative performance of components should not reflect this bias. The graph
shows a significant relative increase in processor performance in comparison to memory components
over the period examined. Based on this trend, is is evident that either now or in the future, there
will be a memory latency problem.

Figure 2-2 presents the same data in another way. In this graph all performance has been normalized
to a time unit of processor cycles, the inverse of the integer add bandwidth of the fastest processor
in a given year. Where the other graph showed inverse latencies, this graph shows relative latencies.
DRAM and SRAM performance numbers indicate the relative latency of these components as mea-
sured in processor cycles. In this data it is even more evident that memory components, particularly
DRAMs, are losing ground relative to processor performance. Since the scale is logarithmic, an
exponential increase in relative latencies is indicated. The numbers in this graph do not reflect any
time associated with bus access or address translation time. This further increases relative latency.
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Figure 2-2: Normalized Latencies vs. Time
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2.1.1 Processors

Recent advances in processor technology have led to a large drop in computational latencies and
a corresponding increase in bandwidth. Measured in terms of potential instructions or elementary
computations per unit time, computational bandwidths have increased dramatically. Furthermore,
architectural changes toward concurrent instruction issue have led to increases in computational
bandwidth beyond that associated with decreased clock period. The result of these trends is that
computational bandwidth costs, measured as dollars per Mips, have dropped.

The RISC trend in processor architecture [17] [42] which has occurred over the last ten to fifteen years
can be attributed with producing significant computational latency and bandwidth improvements
by the simple technique of allowing higher clock speeds. RISCs are characterized by load/store
instruction sets, isolating interactions with external memory to a small set of instructions which
initiate either read or write transactions. Computations are performed on data buffered in fast
registers. The repertoire of elementary computational operations directly provided by these pro-
cessors is limited to those which are both heavily used and simply implemented. This economy
of functionality has produced simpler, less cluttered processors, allowing for clock speed improve-
ments. Pipeline concurrency has been heavily employed, exploiting parallelism between instruction
fetching, decoding and computation, inherent in the interpretation process performed by processors.
This type of processor architecture has leveraged advances in semiconductor technology, resulting in
the hundred-fold increase in bandwidth noted in Figure 2-1 from 1-2 Mips 10 years ago to hundreds
of Mips today and potentially thousands of Mips in the near future.

A morespecialized trend which has produced additional bandwidth increases above and beyond those
which accrue from simple clock rate increases is the advent of superscalar machines. A byproduct of
the RISC architectural trend has been the use of specialized dedicated hardware resources for various
types of functionality; thus a RISC processor might have a data unit which provides for external
data transactions, an integer computation unit, floating point computation units, etc. Superscalar
machines provide a means for exploiting the potential concurrency between these independent, often
pipelined, functional units, either explicitly through instructions sets which specify multiple actions
with a single instruction or implicitly through the simultaneous issue of multiple instructions. The
DEC alpha [9], at the far right corner of Figure 2-1, is a superscalar processor.

2.1.2 Memory

Adequate memory systems must be provided if the low-cost computational bandwidth discussed
above is to be used. Computer system architects, particularly those designing high clock speed
systems, have properly turned to hierarchical memory systems to provide the memory bandwidth
and latency characteristics required. Hierarchical memory systems incorporate two or more hetero-
geneous levels of storage with differing speeds, sizes and relative costs. At one end of the hierarchy is
a modest amount of relatively expensive, low-latency, high-bandwidth storage, often managed as a
cache. Further levels increase in size, but have increasing latencies and lower per bit costs. Hierarchi-
cal memory systems exploit locality in computations to leverage the limited quantities of low-latency,
high-cost storage. Caches provide a hardware mechanism for dynamically exploiting locality. In-
terleaved memory describes a mechanism for providing memory systems with high bandwidths in
comparison to their latencies. These systems exploit potential concurrercy which often exists in
memories constructed from many individual components, forming a high-bandwidth pipeline from
multiple, high-latency components. Merging these two techniques potentially represents an attrac-
tive option for building memory systems with low, average latency and high bandwidth for processing
miss transactions.

2.1.3 Demand-Fetched Caching

Caches store a dynamic collection of recently used data, using hardware to maintain a dynamic
mapping between cache locations and aliased locations at lower levels of the storage hierarchy.
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Caches typically use a demand fetching policy in acquiring their collection of data. Under this
policy, if a non-resident datum is needed during a computation, the value is fetched frem high
latency storage and added to the collection, replacing some other value.

Demand fetching results in a multimodal distribution of service times for memory transactions.
Transactions for which the desired storage location is dynamically aliased by the cache (i.e. hits)
are satisfied quickly, exhibiting the storage latency of the cache. Transactions which miss the cache
exhibit the storage latency of underlying storage levels. Average memory response times depend on
the sum of the product of the service times associated with satisfying requests at each level of the
hierarchy and the relative frequency at which those levels service requests. Two-level systems are
characterized by a hit rate, measuring the fraction of requests satisfied by a cache, and by hit and
miss times corresponding to the times to service transactions by the cache and by the underlying
storage.

Inherent in typical, demand-fetched cache memory systems is a necessity to pay the latency penalty
associated with cache misses. As the relative latency of low-level storage in comparison to compu-
tational speed increases, time spent waiting for misses to be processed accounts for a larger fraction
of program time. Demand-fetched caches rely on high hit rates to amortize miss costs. There is a
class of applications, characterized by very large data sets, for which even rather large caches do
not exhibit high hit rates. Furthermore, as the relative penalties of misses increase, ever higher
hit rates are required to amortize these penalties. Higher hit rates require larger, more expensive
caches or further levels of cache hierarchy. Latency tolerance techniques exploiting concurrency offer
a potential escape from this cycle. A goal of our research is to measure the extent to which high
latency memory transactions, corresponding to cache misses in a cache system, can be tolerated
through the software-based exploitation of computational parallelism.

2.1.4 Interleaved Memory Pipelines

Interleaving is a mechanism for using a set of high-latency storage components to construct a
pipelined, high-bandwidth memory system. The components are organized into a set of banks. A
high-bandwidth interface capable of supporting multiple pending transactions is provided between
the processor and memory system. Transactions are initiated without waiting for the completion of
prior transactions if they can be serviced by a bank not required by any pending transaction. In an
interleaved system, a unit change in address results in a change of bank; thus for a typical N-way
interleaved system, all addresses held by a bank are equal modulo N. This arrangement exploits
spatial locality, the propensity for values adjacent in address space to be used together, although it
is also somewhat effective under random transactions. Struciured, transaction patterns with strides
which are a divisor or factor of N result in overuse of banks and do not fully utilize the potential
bandwidth of the interleaved memory system.

Large storage systems, consisting of many identical components, can be structured in an interleaved
fashion. This has some impact on the medium connecting the storage and processor since transac-
tions from multiple banks must be multiplexed over this channel, but it allows the use of unused
bandwidth existent in many current systems. Further opportunities for pipelining exist within stor-
age devices and even within the wires used for connecting components. [54] discusses a design for
pipelined DRAMs to provide high-bandwidth, high-latency special purpose storage in supercomput-
ers. [45] describes a new DRAM interface technology utilizing narrow datapaths at very high clock
frequencies to achieve high bandwidth at relatively high latency.

An additional important source of increased bandwidth is the simultaneous use of multiple layers
in hierarchical memory systems. Increases in latencies associated with data transfer and storage,
while decreasing in absolute terms, seem unavoidable in relative terms compared with computational
latency. Relative bandwidths, in contrast, can potentially retain more parity. Combining caching
with some form of high-latency, high-bandwidth underlying memory is an attractive option for
implementing ec.:nomical, high-performance memory systems. Unfortunately, a variety of limitations
in typical cache-based systems primarily associated with the processor/memory interface, coupled
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with models for code generation which are not cognizant of memory latency, conspire to make this
difficult.

2.1.5 Memory Interface Issues

Memory interfaces couple processors to memory systems, supporting a series of transactions consist-
ing of requests and replies. These interfaces provide needed synchronization and flow control mecha-
nisms. Required synchronization functionality includes both a mechanism for matching replies with
their requests and a mechanism for propagating data availability and transaction completion infor-
mation to the processor. Flow control ensures that the processor does not produce more requests
than the memory system can service. Synchronization, matching and flow control mechanisms can
be provided either implicitly or explicitly. Many implicit mechanisms cause bandwidth to be directly
limited by latency by preventing concurrent transaction processing.

If request and reply matching is achieved implicitly then reply order is highly constrained. Reply
ordering can only be dependent on information implicitly available to both sides of the interface,
which is limited essentially to the history of prior and pending transactions. The simplest implicit
ordering mechanism imposes a limit of a single pending transaction. Reply delivery orders such
as FIFO or LIFC are feasible for multiple transaction interfaces. Explicit matching, accomplished
by tagging transactions, allows for flexible delivery order at a cost of some additional hardware
complexity.

Communication of completion information can similarly be achieved either implicitly or explicitly.
Implicit synchronization often takes the form of a hardware enforced upper bound on memory
latency in processor virtual time. Transactions are guaranteed to be completed after a given number
of processor cycles. Any transactions which would violate this guarantee produce stalls, stopping
processor virtual time. A common upper bound used is one, wherce transactions not completing
in a single cycle produce stalls. Implicit data synchronization also achieves flow control since the
number of memory transactions which can be produced before a stall occurs is limited.

Implicit mechanisms for reply matching and data synchronization are largely incompatible with
software techniques for achieving concurrency between computation and slow memory transactions.
Synchronization achieved by stalling to bound apparent latency at one provides no possibility for
software latency tolerance. An interface which allows only a single transaction, avoiding the need
for request/reply matching, does not provide any possibility for overlap of several slow transactions
or simultaneous fast and slow transactions.

More sophisticated implicit mechanisms can be devised which might be appropriate for a pipelined
memory system exhibiting uniform latency behavior. These mechanisms are incompatible with
systems consisting of a cache overlaying a pipelined main memory system. If a stall enforced time
bound provides synchronization, a dilemma arises in choosing this stall due to the bimodal response
time of the memory. If a small bound value is used then high latency transactions unavoidably
produce stalls. If a large bound value is used this eliminates the benefit of the cache since data values
cannot be safely used until the bound has passed. Choice of a suitable ordering to allow implicit
request reply matching is similarly confounding given bimodal response times. If two adjacent
requests exhibit the same latency or a slow transaction follows a fast transaction then a FIFO
ordering is desirable since the first request completes before the second. If a fast transaction follows
a slow transaction, a LIFO ordering allows the latter to bypass the first, but LIFO is not suitable
for the other three scenarios.

Interfaces providing explicit synchronization, matching and flow control provide the most flexible
basis upon which to build software latency tolerance mechanisms. Explicit synchronization can
be achieved through register scoreboarding, while explicit matching can be achieved by appending
small tags to transactions and replies, allowing replies to cross the processor memory interface in any
order. While scoreboarding is not uncommon in current RISC processors, tagged, multi-transaction,
memory interfaces are essentially non-existent, at least in commercial processors.
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2.1.6 Memory Latency

A variety of limitations in most current processors prevent more than one memory transaction from
occuring at once. This directly couples achievable memory bandwidth to average memory latency.
Even based on current technology, memory latency produced stalls can account for a noticable
fraction of program runtimes. As relative memory latencies, defined as the ratio of memory latency
to the inverse of processing bandwidth, increase with time, the problem will only become worse.
In the absence of revolutionary technological changes resulting in large, inexpensive, fast storage
components, the memory latency problem will exist.

2.2. Hardware Latency Tolerance Mechanisms

A variety of hardware mechanisms exist to exploit either locality or parallelism to tolerate residual
latency associated with cache misses. Most of these techniques have been implemented in research
or commercial machines. Multilevel caching attempts to extract and exploit further locality in the
transaction stream resulting from primary cache misses. Hardware prefetch techniques use spec-
ulative concurrency, exploiting parallelism to overlap movement of data blocks with computation.
Dynamic rescheduling techniques depart from sequential program order, either reordering instruc-
tions within a single thread of program control or between multiple threads, to find instructions
which can be executed concurrently with slow memory transactions.

2.2.1 Multilevel Caches

As the relative latency of processors (and thus first-level caches), to main memories increases, adding
additional levels of caching between the first-level cache and the main memory seems like a natural
solution. If one cache is good, two caches must be better. (Use of multiple, hierarchical caches
is different from the use of separate data and instruction caches. Separate data and instruction
caching is implicitly assumed everywhere in the thesis). Additional levels of caching are quite likely
to improve performance but this improvement must be justifiable when compared with its cost.
Caching obeys a well known law of diminishing returns. An increase in cache size does not necessarily
result in an equivalent relative increase in performance. This behavior applies to multilevel caches
just as it applies to changes in capacity of a single cache.

Consider a two-level cache system composed of two direct-mapped caches with equal block sizes.
Such a system conveniently obeys an inclusion property guaranteeing that any block in the smaller,
first-level cache is also contained in the larger, second-level cache. Assume that the first-level cache
exhibits a miss rate of m; and in the absence of the first-level cache, the second-level cache exhibits
a miss rate of my for the same workload. Since no value can be present in the first-level cache which
is not present in the second-level cache, the second-level cache experiences an equivalent number of
misses independent of the existence of the first-level cache. In a system containing both caches, the
input stream to the second-level cache consists of misses from the first-level cache. The miss rate
exhibited by the second-level cache when the first-level cache is included is thus ma/my. If m; is
a small number, 0.1 or 0.01 for instance, the miss rate of the second-level cache is magnified by a
factor of 10 or 100, respectively.

The phenomenon discussed above can be viewed in terms of locality. The locality in a stream of
addresses produced as misses from a cache is much lower than the locality in the address stream
initially applied to the cache. As a consequence of this behavior, second-level caches must be
significantly larger than primary caches to have a large impact on residual latency associated with
primary cache misses. Large, secondary caches potentially represent a large system cost.
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2.2.2 Cache Prefetching

Cache prefetching uses speculative concurrency to attempt to mask latency. Prefetch engines attempt
to predict future memory needs using heuristic analysis of current memory transactions. Based on
these predictions, the prefetch engine uses apparently idle bandwidth to move potentially useful data
into the cache.

The simplest and most common form of prefetching is the use of large cache blocks. Transactions
between high latency storage levels and the cache involve blocks of adjacent data larger than the
transaction size between cache and processor. This strategy exploits spatial locality in programs, the
phenomenon that adjacent data are frequently used together. When multiple words within a block
are used, miss latency is avoided on accesses after the first, increasing the hit rate and amortization
of the initial latency penalty. Utilization of blocked caches also allows for the amortization of cache
management hardware in the form of tag storage and comparators over blocks of data, decreasing
the cache cost. While this scheme only moves data as a direct consequence of a processor request, it
can be viewed as prefetching. Concurrency is exploited to move data into the cache which has not
been explicitly demanded.

More sophisticated hardware prefetching approaches asynchronously initiate transactions to fetch
cache blocks which are not the target of a pending cache miss. These schemes are usually limited to
the prefetching of blocks adjacent to either the block of the current processor cache transaction or
the block most recently fetched due to a demand miss. Pure hardware-based prefetching is limited
by the ability to determine implementable prefetch heuristics which contribute much over demand
fetching performance. Smith describes hardware prefetching as well as other aspects of cache design
in [47] and [48]. [12] investigates vector cache hardware prefetching in multiprocessors.

In an effort to produce a more intelligent, hardware, cache-prefetch mechanism, [4] proposes a
techpique which uses a separate, programmable prefetch processor which executes prefetch code
generated by a compiler in conjunction with code for the main processor. This represents a mixed
hardware, software technique. Like our techniques, a software mechanism controls the prefetching
strategy, which allows the incorporation of knowledge available to the corapiler. In our model, no
separate, asynchronous prefetch engine exists. Instead, latency tolerance is achieved directly through
processor executed code.

In [30}, Lee describes a hardware prefetching technique which fetches data into buffers rather than
into a cache. This prefetching technique uses addresses computed from prefetched instructions in a
CISC style processor. It is more closely related to dynamic scheduling within RISC processors than
cache prefetching. Dynamic scheduling is discussed in the next section.

Porterfield evalutes the effectiveness of hardware data cache prefetching for several supercomputer
applications in terms of its effects on program hit rate in [43]. His data indicate mixed performance of
hardware prefetching. For programs with data references predominated by unit stride array accesses
hardware prefetching is very successtul. These programs exhibit strong spatial locality, the property
exploited by hardware prefetching. In the absence of needed spatial locality, hardware prefetching
is less able to hide latencies.

The performance impacts of several complicated cache fetch strategies are investigated in [44). Al-
though this study does not specifically investigate prefetching techniques, the results are likely to
apply to hardware-based prefetching as well. The performance metric used in this study is simulated
processor time, in contrast to the hit rate measurements used in many prefetch studies. Complicated
fetch techniques, including prefetching, may not produce performance benefits, in terms of execu-
tion time, commensurate with their increases in hit rate. Prefetching can tie up memory resources
penalizing unrelated misses. Furthermore, prefetches which successfully avoid misses may not have
finished moving data before the data is needed, resulting in stalls even for ostensible hits. Data in
[44] indicates a clustering behavior of cache misses leading to the problems described above.
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2.2.3 Dynamic Scheduling

Hardware prefetching operates on the memory side, speculatively producing memory traffic to
achieve concurrency between the memory system and processor. In contrast, dynamic schedul-
ing techniques operate on the processor side to find independent instructions which can be executed
to achieve the same goal of processor/memory system concurrency. Dynamic instruction schedul-
ing can be applied within a single control thread or across control threads. It can be applied to
individual instructions or at a coarser level of granularity.

Hardware scheduling mechanisms which seek to extract parallelism within a single thread will be
termed windowed, dynamic schedulers. These schedulers have a finite instruction buffer, providing
a window into the future. Non-dependent insiructions identified within the instruction buffer can
be issued. While this technique may be suitable for tolerating short latencies of several instructions,
it is highly inadequate for the task of tolerating very long latencies, on the order of a hundred
instructions, for a variety of reasons. First, buffers used by the technique must grow proportionally
with latency to be tolerated. The buffer providing the instruction window must be large enough that
it doesn’t fill up with dependent instructions. In addition to the instruction buffer, buffer storage is
required for results from all out of order instructions since input operands to dependent instructions
which are delayed cannot be overwritten. Given huge instruction and result buffers, it becomes
impractical to determine whether new instructions are independent and if so where their operands
can be accessed. The problem is rendered more intractable due to the many levels of branches that
may need to be crossed speculatively in order to execute instructions out of order across a very large
span.

Latency tolerance can be achieved by delaying instructions which require unavailable results and
issuing non-dependent instructions. This approach moves the use of high latency results later in
time. Alternatively, latency tolerance can be achieved by moving the latency producing instructions
ahead of non-dependent instructions in order to start the slow operations earlier in time. Opti-
mal schedules will exploit both of these techniques. Windowed, dynamic scheduling cannot easily
move slow memory instructions ahead in time since it has no basis upon which to differentiate slow
memory instructions from fast memory instructions. In contrast, software-scheduled, memory la-
tency tolerance can effect the early initiation of high-latency operations, representing a fundamental
advantage over window-based, hardware techniques.

Alternative hardware techniques for achieving memory /processor concurrency exploit parallelism
across multiple threads of control. High-latency memory transactions from one control thread are
overlapped with processing and additional high-latency transactions from other threads. Context
switches between threads can occur at instruction-level granularity or at a higher level such as being
triggered by cache misses. The HEP, desribed in [50], and various dataflow machines such as [41]
support instruction level interleaving of contexts within pipelined processors. Machines such as [7]
perform context interleaving at a coarser granularity. These machines are all multiprocessors and
use their context switching mechanism to tolerate long latencies associated with network traversals
as well as unbounded latencies associated with synchronization operations.

Support for multiple contexts is a costly proposition. Fast storage resources such as register files and
caches must either be shared or replicated. In either case, the resources available for a single thread
are decreased relative to single context machines in which all resources are devoted to a single thread.
Fine-grain, context switching can provide tolerance to latencies with a spectrum of characteristics.
[39] proposes that this mechanism should be used to hide latencies ranging from fixed latencies of
several instructions associated with pipelined functional units to very large, potentially unbounded
latencies associated with synchronization. It is our premise that software scheduling can adequately
deal with predictable latencies and that memory latencies are largely predictable. The main benefit
associated with multithreading then is tolerance to highly variable or unbounded latencies. Results
of ongoing research projects will indicate whether multithreading mechanisms justify their costs for
multiprocessor architectures.
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We present evidence that for uniprocessors with hierarchical memory systems, despite the fact that
memory response times may be multimodal in general, the references produced by any particular
static instruction exhibit relatively predictable timing behavior. As a consequence, memory latency
tolerance can be achieved without the need for dynamic scheduling techniques, either within a single
thread or across multiple threads.

2.3. Software Memory Latency Tolerance

Software memory latency tolerance describes techniques in which latency tolerance is scheduled into
code rather than achieved through some runtime hardware manipulation. Latency tolerant code
initiates slow transactions well in advance of the need for the associated data. Processor/memory
concurrency for latency tolerance is explicitly managed by scheduling code between the initiation and
termination of high latency transactions. Concurrency between several, high-latency transactions
can similarly be achieved by appropriate code scheduling.

Software latency tolerance requires a combination of hardware and software support. The basic
hardware functionality required is a mechanism for initiating high-latency transactions without
immediately incurring processor stalls. This functionality can be provided in a number of different
ways including fetching data into a cache, into dedicated buffers or into registers. It can similarly
be made accessible to software through several different mechanisms including non-blocking load
operations or explicit prefetch instructions.

Thornier issues in software memory latency tolerance occur on the software side. Some entity, either
compilers or users, must take responsibility for utilizing whatever hardware mechanism is provided
to ensure that slow transactions are properly scheduled for latency tolerance. Several problems are
involved in producing latency-tolerant code. First, a model of memory which recognizes the existence
of slow memory transactions is needed. This model must not assume that every single reference which
occurs is slow. Second, based on a model of memory behavior a scheduling technique is needed which
can produce code with the desired characteristics. For very high latencies, this scheduling task can
be difficult. We primarily address the software issues described above.

2.3.1 Latency Tolerance Strategy

As a fundamental premise, it is assumed that a compiler must be the entity described above which is
responsible for producing latency-tolerant code. In order for hardware support for latency tolerance
to be justified the mechanism must benefit a reasonably large set of programs. Latency tolerance
techniques can only be applied in a wide-scale fashion if they can be applied transparently, or at
least relatively effortlessly, through compilation.

The first step in developing a strategy for compiler support for latency tolerance is to develop a model
of memory behavior suitable for the compiler. The simplest model which assumes every reference
results in a cache hit is inadequate since it does not model the latency to be tolerated. Another
simple model assumes every reference is a miss. This results in an intractable scheduling problem
when latencies are very high. One can turn to the phenomenon of static locality correlation to help
find a solution to this modelling problem. For programs exhibiting static locality correlation, static
memory reference instructions exhibit either very high or very low individual miss rates relative to
the average. Under this type of behavior, an appropriate model assumes some set of static references
always hit while another set always misses. This model is termed the badref model.

A compiler based on the model above must perform two, high-level tasks in order to produce latency
tolerant code. The first task must determine which memory references are to be modelled as misses
and which references are to be modelled as hits. This modelling decision can be based either on static
analysis or dynamically measured information. The second task is to apply scheduling algorithms
to produce latency tolerant code based on modelled latencies.
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The scheduling problem can be addressed on two fronts. One finds empirically that many references
which can profitably be modelled as misses appear in loops. A loop-based scheduling technique
similar to software pipelining [31] is applied in order to overlap the latency of memory transactions
for one loop iteration with computation from a different loop iteration. This can be achieved when
addresses for references for a particular loop iteration can be predicted one or more loop iterations in
advance. To provide latency tolerance for references not occuring within loops, a second scheduling
technique tuned to references in long sequential code regions is also employed.

2.3.2 Experimental Approach

The primary experimental technique used in our research is benchmark simulation. The benchmark
suite used consists of the SPEC benchmarks. Three forms of simulation experiments are performed.
Two of these simulations are used to empirically characterize relevant locality and parallelism proper-
ties of programs in the benchmark suite. The final simulation measures the performance of code and
is used to evaluate the latency tolerance of code produced by a prototype compiler implementation.

The first simulation provides empirical evidence for the existence of static locality correlation. Static
locality correlation can be assessed by measuring the individual hit rates of memory reference in-
structions within programs. Individual hit rates are measured under a variety of memory system
configurations both to demonstrate that static locality correlation exists and to measure the impac.s
on this correlation of changes in cache design parameters and input data sets.

An additional aspect of program behavior which is germaine to software latency tolerance is par-
allelism. Latency tolerance is achieved through concurrent operation of memory systems and pro-
cessors. Parallelism must exist in code in order to utilize hardware concurrency. Most techniques
for measuring program parallelism do not adequately characterize constraints inherent in exploiting
parallelism for latency tolerance. Average parallelism across an entire program is not an appropri-
ate metric. The requirement for latency tolerance is parallelism specifically occuring between high
latency transactions and other forms of instructions. When using latency tolerance techniques the
concurrency at any given moment is low, perhaps a single memory transaction and a single proces-
sor operation. Successful latency tolerance requires a consistent low level of parallelism which can
be maintained for the duration of a long transaction. A new simulation technique and parallelism
metric are used to characterize parallelism for latency tolerance.

A final simulation technique is used to evaluate latency tolerance within code produced by a pro-
totype compiler. This simulation includes a detailed model of cache and memory system timing.
Performance of latency tolerant code cannot be adequately described by a cache hit rate. A simula-
tion environment capable of accounting for various latency and bandwidth induced stalls is essential
to have a realistic estimate of the performance of latency tolerance mechanisms.

The simulation forms described above share a common infrastructure. A C compiler capable of
producing normal and latency tolerant code is the first component in che simulation process. An
assembly code post-processor is used to instrument code with extra instructions to gather relevant
data. In the case of cache simulations to measure static locality correlation this data includes a trace
of memory addresses, for instance. In all cases this data is buffered and processed as it is gathered.
Generating and consuming simulation data within a single program run allows large programs with
billions of instructions to be simulated. (It is not feasible to generate and store an address trace
with several billion memory addresses.) The final component of simulation infrastructure consists
of a set of simulation routines for processing the various buffered data traces produced by each form
of simulation.
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2.4. Previous Work

Study of software, memory latency tolerance touches on a rather wide spectrum of topics, from cache
performance to code scheduling. This section briefly overviews previous work in some of these fields
in a progression that corresponds to its order of presentation in the rest of the thesis.

2.4.1 Cache Behavioral Simulation and Modelling

Cache evaluation based on simulation of behavior for address traces is an important and frequently
used technique. [47] and [46] use this technique in a general context. [49], [19], [20], [44] evaluate
aspects of cache design such as block size or associativity using trace driven simulation. [1] describes
a technique for generating address traces for both user and system references and uses these traces
for a comprehensive cache performance study. Study has even been devoted to fast techniques to
simulate multiple caches simultaneously for the same addres trace, [19], [58].

Trace driven cache simulation is applied in our work to measure an aspect of cache behavior which has
been largely ignored. Traces are extended within our simulation technique to include both addresses
and unique identifiers for the specific memory reference instructions producing those addresses.
This allows the investigation of the existence of static locality correlation by measuring hit rates of
individual instructions. Porterfield investigated the same phenomenon in [43], work closely related
to ours.

In addition to cache simulation, research has been conducted to develop analytical or approximate
models for characterizing cache behavior. [2] describes an analytical model for cache behavior based
on a probabilistic model for the input address stream and cache behavior. [56] and [57] describe an
alternative modelling technique based on fractal behavior.

We also propose a model for cache behavior in the badref model. Prior models primarily focus on
estimating hit/miss performance of caches in aggregate. The badref model, rather than modelling
aggregate cache behavior, provides a framework and justification for individually modelling distinct
memory reference instructions in programs.

2.4.2 Parallelism Measurement Techniques

Researchers have characterized parallelism in programs. In [29], Kumar uses an icline simulation
technique to measure parallelism in Fortran programs when storage related dependencies, antidepen-
dencies and output dependencies, are relaxed. Kumar measures and presents results as parallelism
profiles, graphs of inherent parallelism versus time. In [28] and [8], parallelism is characterized in
terms of the maximum sequential path through programs and average parallelism over the duration
of programs. Parallelism profiles and average parallelism metrics do not characterize the parallelism
behavior of interest in software latency tolerance. Unstructured parallelism between completely
unrelated regions of code cannot realistically be exploited without multithreaded techniques.

Parallelism of interest is more akin to instruction-level parallelism which has been measured by many
researchers. [23] measures local parallelism available for multiple instruction issue. The results of
this experiment would drastically underestimate relevant parallelism if extrapolated to apply to
software, memory latency tolerance, however, because parallelism is only measured between inde-
pendent instructions which are adjacent in a sequential schedule. Additionally, non-dataflow register
constraints are included in the measurement, further limiting parallelism. [51] measures instruction
level parallelism exploitable by window-based dynamic rescheduling mechanisms. This measurement
technique identifies more parallelism because it relaxes away some unnecessary dependencies. It still
underestimates parallelism relevant to memory latency tolerance because it uses a small window of
instructions and only considers delaying instructions, ignoring parallelism available by moving in-
structions ahead in time. [59] measures instruction level parallelism using large windows and using
techniques to relax away many dependencies. Again, this data is misleading if applied to memory
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latency tolerance. Average parallelism is not really an appropriate parallelism metric for latency
tolerance.

We use a technique for estimating parallelism that shares some similarities with both macroscopic and
instruction level estimates. The technique relaxes away storage and microscopic ordering constraints
while maintaining macroscopic ordering constraints. This is achieved by measuring instructions
which are independent of badref memory references within large windows in both directions around
the instructions.

2.4.3 Compilation Techniques for Enhancing Locality

A number of researchers have investigated the use of compiler transformations to improve the cache
or virtual memory performance of programs. The simplest such transformations involve reordering
of code in order to enhance spatial locality. [16] describes a static technique, based on the structure
of program call graphs, intended to improve virtual memory performance by managing the layout
and potential duplication of code for procedures. [32] and [35] describe similar techniques which also
incorporate basic-block, profiling information to guide the placement of code for basic blocks so as
to achieve long sequential runs, thus exhibiting enhanced spatial locality. These latter techniques
allow direct-mapped instruction caches to perform very competitively with fully-associative caches.

A much more challenging problem is addressed in [13]. This research aims to improve data cache
performance through code transformation. The authors propose a static technique for analyzing
cache behavior. Based on the fact that data dependence implies repeated use of the same address,
they propose a technique for determining the locality for behavior of memory references using a tech-
nique related to static dataflow analysis. Based on this behavioral model, they propose algorithms
for managing the contents of explicitly controllable caches or local memories.

A similar dataflow analysis technique is used to model memory behavior in demand-fetched, hier-
archical memory systems in [43]. Based on statically predicted memory behavior, the profitability
of program transformations such as loop fusion, loop splitting and blocking techniques can be as-
sessed. Algorithms for evaluating the application of these transformations to nested loops in Fortran
programs are presented.

One might characterize the latter two techniques as latency avoidance as opposed to latency tol-
erance. The analysis techniques and resulting transformations improve machine performance by
decreasing the net flow of data between memory and cache. Latency tolerance, in contrast, masks
latency associated with this flow of data witout decreasing the aggregate size of the flow. When ap-
plicable, latency avoidance is superior to latency tolerance. The two techniques are complimentary,
however. Code can be first transformed to maximize its hit rate and minimize the information flow
between memory and cache. Afterwards, latency tolerance techniques can be applied to lessen the
impact of the residual flow.

2.4.4 Compilation Techniques for Memory Latency Tolerance

A number of researchers have investigated the problem of compilation support for software memory
latency tolerance. This exploration has taken a number of different paths, based on differing models
for underlying hardware mechanisms for data movement.

The first path investigates the use of software-controlled, hardware, block-prefetch engines capable
of asynchronously moving large blocks of data. [21] and [14] address this problem in the context of
multiprocessor systems. The hardware, latency-tolerance mechanism, a prefetch engine, is software
activated and moves a block of data into or out of a locally connected memory on a multiprocessor.
The goal of prefetching is to transfer arrays used in inner loops using the prefetch engine some
time prior to execution of the loop. The local memory into which data is moved has neither a
disambiguation mechanism with respect to locally produced writes nor a coherence mechanism with
respect to memory references produced by other processors. As a consequence, the techniques must
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be conservative. The focus of the work is analysis techniques for identifying when an array reference
within a loop can safely be prefetched and an evaluation of the expected performance impact of the
technique.

As mentioned earlier, [4] explores the design of a programmable cache prefetch engine and compila-
tion of code aimed at this engine. The engine executes a program generated automatically during
compilation of an associated program for the main processor. The prefetch program specifies cache
blocks which may be used by the main program. Additional prefetch code helps the prefetch engine
track the state of the main processor based on its interaction with the memory system.

In the hardware model targetted in our work, data movement is directly initiated through specific
instructions produced by a processor. Porterfield, in [43] and [5] describes a compiler algorithm
targetting such a hardware model. Porterfield’s basic algorithm is augmented by Klaiber in [25].

Porterfield’s algorithm focuses specifically on Fortran array references within loops. He performs a
syntax based transformation, adding prefetch instructions for array references within do loops which
have a linear subscript computation involving the most recent loop induction variable. An optimized
version of the algorithm uses a static estimate of memory behavior to eliminate prefetches associated
with memory references unlikely to generate misses. Within the regime of Fortran programs, Porter-
field’s algorithm targets a likely source of low-hanging fruit. Array references generally account for
a large fraction of misses. Klaiber’s extensions to this algorithm modify prefetching strategy based
on a parameterized model of memory behavior.

Porterfield’s work touches on many of the important issues addressed in our research. He observes
and describes behavior in benchmark programs which in our parlance would be described as static
locality correlation. He employs a coinpiler model which partitions array references into a set
categorized as misses and a set categorized as hits. The primary use of this cache model is in
algorithms for assessing the locality impact of loop transformation in highly structured Fortran
programs. Porterfield also discusses the use of his memory behavior modelling to decrease software
overhead in the prefetching algorithm described above.

We address memory latency tolerance and data prefetching in a somewhat more general context
than Porterfield. Algorithms applicable to a much wider variety of data references are presented
and the problem of latency tolerance is presented as one of explicit, miss scheduling. Static locality
correlation is presented as a fundamental form of program behavior and characterized for a variety
of benchmarks and memory system configurations.

2.4.5 Inline Profiling and Profile-based Compiler Optimization

Efficient profiling can be achieved through the modification of code via a compiler or assembly
postprocessor to include extra code specifically added to gather some form of desired statistics
inline with program execution. [26] describes a compiler-based approach to gather multiprocessor
address traces. The pixie system from MIPS [36] modifies object code to perform inline, basic-
block profiling. [53] describes a similar basic-block, profiling technique based on an assembly post-
processor. We rely heavily on inline profiling and simulation techniques, both for gathering data
for profile-driven compiler optimization, as well as gathering basic, empirical data used to evaluate
locality and parallelism behavior and compiler performance.

Profile-based compiler optimization techniques have been explored by several researchers. Two tech-
niques mentioned previously, those in [32] and [35], for improving direct-mapped instruction cache
performance, modify the layout of code within memory based on basic-block, profiling statistics.
In [33], McFarling investigates the application of profiling statistics to branch prediction. He com-
pares the performance of branch prediction based on profiling with hardware, branch-prediction
techniques.

The compiler discussed herein utilizes basic-block, profile information. This information is secondary
to dynamically gathered, memory performance information. Memory performance information,
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consisting of individual hit and writeback rates for ea~h memory reference instruction, is gathered
using inline simulation techniques.

2.4.6 Code Scheduling for Hardware Concurrency

Once a method of modelling memory latency is devised, generation of memory latency tolerant code
is reduced to a schedul'zg problem similar to that for machines with multiple, pipelined functional
units. Compilaticn techniques for such machines have been investigated by other researchers.

When viewed in the correct light, the loop-based prefetching techniques implemented in our com-
piler bear a strong similarity to software pipelining techniques discussed by Lam in [31]. Software
pipelining is a technique for exploiting interloop parallelism to mask high-latency, computational
operations. High-latency operations, primarily floating point operations in Lam’s work, can result
in a critical path for a single loop iteration which substantially exceeds limits on loop performance
due to instruction issue, (i.e. the number of instructions in the loop divided by the instruction-issue
concurrency of the machine is less than the critical path latency). Software pipelining spreads this
latency across two or more successive loop iterations by mixing instructions from different virtual
iterations within a single loop.

Ellis, in [6], describes a compiler for VLIW machines based on trace scheduling. Trace scheduling
identifies sets of basic blocks which are likely to be executed in sequence. These sequences, or traces,
are scheduled using scheduling techniques for linear code, treating the entire trace as an extended
basic block. After scheduling, cleanup code must be added at basic-block boundaries leading onto
or off of a trace. The technique of trace scheduling is also discussed in [10] and [11].

The hardware model targetted in our compiler is rather different than that of Lam or Ellis. VLIW
machines have many, pipelined, functional units, each potentially exhibiting multicycle latency. The
latency of these functional units is not large, typically a handful of cycles. The target model for our
compiler has only two functional units, a non-miss unit and a miss unit. The latency of the non-miss
unit is only one and culy a single instructions, targetting one of the units, can be initiated in a cycle.
The latency of the miss unit, rather than being 4 or 5, as might be characteristic of a functional unit
on a VLIW machine, is a very large number, as high as 160 in some of our experiments. Scheduling
for one, very high-latency, functional unit differs from scheduling for a multiplicity of lower latency
units. An additional point of contrast between our work and the work of Ellis or Lam is the domain
of computation targetted. The VLIW techniques target highly structured, scientific code. Our
technique, while most successful on structured code, targets a more ger.cral class of computations.

2.4.7 Speculative Computation

One might observe that the trace scheduling techrique above is simply a controlled form of specula-
tive computation. Speculative computation has been investigated by other researchers at a variety
of granularities. [52] describes an architecture for efficient, fine-grained, speculative computation
for instructions with side-effects and notes moderate increases in instruction-level parallelism using
speculative, instrution execution.

Prefetching in any form can be viewed as speculative computation. It is difficult to be certain
that a memory reference will result in a miss. Given this uncertainty, prefetching is a speculative
expenditure of computation in order to avoid an expected cost in terms of memory latency. Prefetch
instructions are a natural target for more dramatic speculative execution since they are free of visible
side-effects, (or can be made so through appropriate treatment of various faults). In order to tolerate
very high latencies it is necessary to cross block boundaries, resulting in speculative computation.
Given high latencies, the payoffs for successful prefetching can justify aggressive speculation.
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2.4.8 Analysis of Software Prefetching Behavior

Performance of user-introduced, non-binding, software-prefeich operations is analyzed in [38] and
[25]. [38) examines several multiprocessing benchmarks while [25] looks at uniprocessor benchmarks.
These studies tend to support our observations regarding software prefetching in several ways. In
both studies, the addition of a relatively small number of prefetch operations to programs improves
performance. This supports the conjecture of static locality correlation and also indicates that
sufficient parallelism exists in the programs analyzed to allow prefetching to be a succesful technique.

2.5. Hardware Support for Software Latency Tolerance

Software latency tolerance requires hardware support. This section will briefly overview the necessary
hardware functionality and discuss the software implications of various hardware implementation
choices. It will also describe and motivate the particular hardware models targetted by our prototype
compiler implementation.

The essential hardware functionality for software latency tolerance is a non-blocking mechanism
by which a processor can initiate high-latency memory transactions and continue to process other
instructions. This mechanism is used in code to trigger memory transactions for addresses which
would otherwise result in cache misses. Non-dependent instructions can then be scheduled during
the transaction, achieving processor/memory system concurrency.

A primitive form of this functionality exists in several current commercial RISC processors such as
the Motorola 88100, [37], and Intel 1960, [34]. These processors use register scoreboarding techniques
to implement hardware, pipeline interlocks for variable-latency, functional units. In such systems,
issued load instructions do not produce stalls until the target register is used as an operand in
a subsequent instruction. Independent instructions continue to issue. In these systems, a resource
conflict at the memory system prevents any further memory transactions from being initiated during
a pending transaction, irrespective of whether these are high or low-latency transactions. As a con-
sequence, concurrency between high-latency memory operations and other computation is restricted
to computation involving only data maintained in registers. While this functionality is better than
nothing at all, it is highly restricted in its ability to achieve tolerance to high, memory latencies
through software techniques.

2.5.1 Memory System Support for Software Latency Tolerance

Successful software latency tolerance requires memory system support in order to relax the resource
constraint at the memory system mentioned above. Memory systems must have a mechanism by
which they can continue processing cache hits concurrently with a pending miss. Caches which can
process hits in the face of an outstanding miss have been termed lockup-free caches by Kroft in
[27]). The primary, additional hardware to produce lockup-free caches is a set of storage buffers, one
per outstanding reference, which have an associative, address register to identify hits on data from
pending transactions znd which have buffering space for arriving data. Kroft moves data from these
buffers into the cache proper upon its receipt.

An alternative strategy suggested by Klaiber in [25] uses a larger number of buffers and does not
move buffered data into the cache unless this data is modified. These buffers are filled through
explicit prefetch instructions which differ from memory loads. This latter strategy avoids the cost of
cache bandwidth cycles required to move buffered data into the cache when the data is not written.
It also lessens the potential for interference between cached data and prefetched data since prefetched
data has its own buffering space independent of the cache.

Based primarily on intuition, one might suspect that data in buffers will often be modified, ne-
cessitating movement into the cache and eliminating some advantages of the separate buffering
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technique. As a consequence, our model assumes a lockup-free cache implementation, as opposed to
an implementation with separate dedicated prefetch buffers. From a software viewpoint, however,
both implementations are very similar. They both provide an enabling feature for memory latency
tolerance, the ability to process cache hits during miss transactions.

2.5.2 Instruction Set Access to Latency Tolerance Mechanisms

Instruction set access to underlying hardware latency tolerance mechanisms can be provided on a
typical RISC architecture in one of two ways. Non-blocking load instructions have the semantics
that a data value from memory is moved into a processor register. In order to be non-blocking
the load must not stall the processor in the face of a cache miss until after the transaction can be
processed. A synchronization mechanism must be provided to insure that non-blocking loads have
completed before their associated data is used at some later time. Explicit prefetch instructions, in
contrast, initiate memory transactions as a semantically transparent operation. A prefetch instruc-
tion typically provides the same addressing capabilities as a load or store instruction. It produces a
memory address and causes a cache access. If the access is a miss then a main memory transaction
is initiated for the appropriate cache block. No value is returned to the processor in the event of
either a cache hit or miss. Misses in a lockup-free cache can be triggered by either non-blocking
loads or explicit prefetch instructions. A memory system which differentiates between normal and
prefetch requests needs an explicit prefetch instruction as its software interface.

Gupta draws a distinction between binding and non-binding prefetching mechanisms in [15]. Data
accessed with a binding operation is not subject to coherence and disambiguation mechanisms with
respect either to the accessing processor or to other processors if the system is a multiprocessor.
Thus, in the uniprocessor context considered, data accessed by a binding prefetch is not modified by
write operations to the same address which occur between initiation of the operation and use of its
data. Non-blocking loads are logically implemented as binding operations whereas explicit prefetch
instructions which move data into a cache are noi-binding.

Modifying code for software latency iolerance using non-blocking loads, a binding operation, po-
tentially results in lower software overhead than similar code using non-binding, explicit prefetch
instructions. A single non-blocking load instruction initiates a memory transaction and moves the
resulting value into a register. In order to achieve the same effect with explicit prefetch, a prefetch
instruction must be used to initiate the memory transaction followed by a load (either blocking or
non-blocking), to move a value from cache to a processor register. Additionally, if a complicated
address computation is required then with explicit prefetch this computation must either be per-
formed twice or the result must be maintained in a register. Since a non-blocking load ties up its
target register for the duration of a memory transaction the cost of keeping an address in a register
under non-binding prefetch is equivalent to the cost of tying up the target under binding prefetch.

While decreased software overhead is an advantage of binding prefetch, this advantage comes at a
cost in terms of flexibility of use. Disambiguation describes the compiler process of determining if
two memory references may use the same address. A binding prefetch cannot be reordered with
respect to a write operation with which it cannot be successfully disambiguated. Non-blocking
loads can be used to implement non-binding prefetch operations in addition to binding prefetch
operations, however. Non-binding prefetch can be implemented with non-blocking load by ignoring
the result value delivered by the load. A non-blockingload used in this fashion avoids write reordering
constraints but loses the overhead advantage associated with binding prefetches. Non-blocking load
thus provides a flexible mechanism which can be used as either a binding or non-binding operation.

Several additional issues arise since non-blocking loads require explicit register targets. It is not
possible for two memory transactions which arise from the same instruction in two different loop
iterations to be outstanding simultaneously, under binding prefetch, since they would target the
same register. This necessitates loop unrolling to tolerate memory latencies in excess of the latency
of a single loop iteration. Similarly, the maximum number of outstanding, non-blocking loads at
any time is limited by the total number of distinct processor registers.
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Explicit prefetch instructions are somewhat different from non-blocking loads. The do not have
semantic significance. They can added to or removed from a program without changing its results,
with the possible exception of producing spurious memory faults. As a consequence of this absence
of semantics, explicit prefetch instructions have several potential advantages. First, with appropriate
hardware modifications, they can be made fault-safe and thus truly absent of semantic significance.
Address faults generated by explicit prefetch instructions can be ignored by the processor by sup-
pressing the generation of a memory transaction, thus converting the prefetch to a no-op. If faults
are suppressed, explicit prefetches can be used freely in speculative contexts without the worry of
introducing spurious faults. Even though non-blocking loads can be used as non-binding prefetch
operations, they cannot easily be made fault-safe. A processor has no way to tell whether a load is
being used in a semantically meaningful way or not. While techniques such as those described in
[52] can make all instructions safe for speculative use, this occurs at a more substantial hardware
cost than that associated with ignoring faults for explicit prefetches.

An additional consideration arises favoring explicit prefetch as a mechanism for tolerating very high
latencies (say a hundred cycles), particularly on processors supporting precise interrupt models. One
technique for supporting precise interrupts in the face of high operation latencies is to buffer side-
effects produced by instructions in shadow buffers. Side-effects from an instruction which modify
either the register file or memory can be safely retired after previously issued instructions can no
longer produce faults. When a fault occurs, the contents of the buffer can be discarded after the
fault point, effectively rolling back time to the occurance of the fault. Given such a scenario,
the latency which can be tolerated by an instruction which can produce faults is limited by the
shadow-buffer size. Non-blocking loads can produce faults whereas explicit prefetch instructions
can be implemented to be fault-safe. Buffering issues such as these may arise for other reasons on
processors without precise interrupt models. One can argue that it would not be a good engineering
tradeoff to dramatically increase the size of shadow buffers simply to allow non-blocking loads to
tolerate latencies of hundreds of cycles when the same latency tolerance functionality can be achieved
using explicit prefetches.

The apparent efficiency advantage of non-blocking load may be artificial in many situations. As
effective latencies of memory and computational units increase, many programs may be limited
not by instruction issuing bandwidth, but rather by latencies or bandwidths of relatively slower
components. In this scenario, excess instruction issuing bandwidth exists for extra instructions
required for explicit prefeiching. Nonetheless, it would be desirable to lessen this efficiency difference
if possible.

In order to lessen the potential efficiency difference a slight variant of the explicit prefetch described
above might be implemented. Memory instructions typically provide for some primitive form of
arithmetic computation for addresses. Typical computation might be the sum of a register and a
constant, the sum of two registers or perhaps the sum of a register and a scaled register. One might
consider implementing a prefetch which had the additional functionality of storing the computed
address into the register file. (The HP precision architecture already offers such a feature for regular
load operations [18].) In this case a prefetch instruction would be similar to an integer add in-
struction which had the additional transparent side effect of producing a memory transaction if the
resultant sum represented a valid address. Induction variable optimization inside of loops frequently
produces pointer variables which must be updated in each loop iteration. Straightforward code
transformations could be applied so that prefetch instructions could be used for induction variable
updates in addition to their latency tolerance function. By allowing prefetch instructions to replace
another necessary instruction, the efficiency gap between explicit prefetch and non-blocking load
is closed. This is accomplished while maintaining the advantages of explicit prefetching described
earlier. Under this new form, prefetches have a semantically meaningful component, the add, which
cannot produce faults, and a second non-visible operation for which faults can be squashed.

2.5.3 Processor Memory Interface Issues
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Processor memory interface issues impact software latency tolerance. Some interface issues primarily
influence the choice of instruction support while others influence the code generation and schedul-
“1g process. Interface issues include synchronization, buffering and flow control characteristics of
memory transactions.

It was mentioned previously that a lack of explicit mechanisms for synchronizing loaded data to
the instruction stream and matching transaction replies with their requests led to constraints on
latency tolerance. Non-blocking load instructions cannot be used effectively for software latency
tolerance without explicit mechanisms for synchronization and reply matching. Explicit synchro-
nization is needed since with a non-blocking load, hardware stalls do not guarantee data availability.
Explicit reply matching allows subsequent references producing hits to return ahead of misses. Ex-
plicit prefetch circumvents these problems without the need for explicit mechanisms since prefetch
instructions do not return data to the processor from the memory system. These synchronization
mechanisms primarily influence the choice between prefetch or non-blocking load. Beyond the choice
of a form of instruction access to hardware latency tolerance mechanisms, these issues do not strongly
influence software.

In contrast, buffering and flow control characteristics of the operation providing latency tolerant
memory access do potentially impact code generation strategy. In the absence of flow control, mem-
ory operations could be issued by a processor at a rate exceeding the bandwidth of the underlying
memory system. Flow control provides a mechanism for stalling the processor in order to keep the
memory request rate within the limits of memory bandwidth. Buffering of memory requests allows
the instantaneous rate of memory request production to exceed the allowable bandwidth for a short
period of time without incurring flow control stalls. Semantically meaningful, memory references,
including loads and stores, whether blocking or non-blocking, must be flow controlled. (Blocking
operations need no additional flow control since this is achieved by blocking.) Prefetch operations,
since they have no semantic significance, do not necessarily require flow control. If their generation
rate exceeds the bandwidth of the memory they can be flow controlled or simply ignored.

Prefetch buffering impacts code generation since it is undesirable to generate a series of prefetch in-
structions exceeding the buffer capacity of the memory. This has unattractive consequences whether
or not the prefetch operations are flow controlled. If the operations are flow controlled, exceeding
buffer capacity results in a processor stall. If the operations are not flow controlled, exceeding the
buffer capacity results in prefetch operations dropped by the memory system. Thus code schedulers
should be cognizant of buffer limits.

Based on the statement above, one would naturally assume that our prototype compiler implementa-
tion models the prefetch buffer size. In fact, buffering behavior is ignored in the prototype. Compiler
implementation is simplified by abstracting away this behavior. In the absence of flow control, buffer
overflow causes a prefetch to be dropped, eventually resulting in a stall equal to the memory latency
lessened by the probability that the prefetch accesses a value already in cache. With flow control,
a buffer overflow results in a stall until a buffer becomes available. This requires a variable amount
of time bounded by the memory latency. Given a memory system which can process several misses
concurrently, the resulting stall is likely to be substantially less than the memory latency. Flow
control does run the risk of producing stalls for prefetches for values already containred in the cache,
however. Which of these consequences is more severe depends both on the memory miss-processing
concurrency and the likelihood that prefetches target addresses which are cache hits.

2.5.4 High-Bandwidth Memory Systems

A high-bandwidth, memory system refers to a memory system with a latency-bandwidth product
exceeding unity. This can be accomplished with pipelining or some form of interleaving. Code which
is not explicitly scheduled for latency tolerance potentially has some intrinsic capability to utilize a
high-bandwidth memory system. This primarily arises through overlap of multiple write transactions
or read transactions and write transactions. Cache misses requiring writebacks produce two memory
transactions. In a memory system interleaved by a power of two these transactions are both likely to
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require the same bank. With a pipelined system or an interleave which is prime with respect to the
mapping used for cache-set selection, both transactions may be initiated simultaneously. Even if the
mappings are not prime, if writebacks can be buffered there is potential for overlapping writebacks
with later cache fills. There is little intrinsic ability in typical code to exploit more than two-way
memory system concurrency. Latency tolerant scheduling, based either on explicit prefetch or non-
blocking load, provides a mechanism for taking advantage of high-bandwidth memory systems of
higher concurrencies if this added bandwidth is modelled within the scheduling algorithm.

2.5.5 Target Hardware Model

Our research includes the implementation of a prototype latency tolerant compiler. The hardware
latency tolerance model targetted by this compiler is chosen primarily on the basis of its percieved
ease as a compilation target. As a compiler implementer, as opposed to a hardware designer, this
seemns like a natural basis upon which to make decisions. Having taken on the burden of latency
tolerance in the first place, doesn’t a compiler implementer deserve whatever help can be provided
by hardware? There is an ongoing debate over software versus hardware functionality to which this
question can be added. We find ourselv: s in the camp which would answer no, advocating a strategy
of making hardware cheap and letting cc - nilr writers earn their salaries. Fortunately, in this case,
many of the tradeoffs that appear desira’ . ..om a software perspective are not inconsistent with
the choices which might be made by a hardware implementor.

Tolerance to very high latencies requires aggressive code motions and probably speculative compu-
tation. Explicit prefetch is more suited to speculative use than non-blocking load. Explicit prefetch
is probably also easier to implement on the hardware side since it avoids difficulties associated with
supporting multiple outstanding transactions across the processor memory interface.

The implementation of explicit prefetch as a special form of integer add, as suggested above, imposes
costs on both the hardware and compiler. While this technique has some potential benefit in terms
of software overhead, it is not included in the model.

The target model assumes a flow contro! mechanism for prefetches. This is a tradeoff where software
and hardware viewpoints might diverge. One can speculate that dropping prefetches overflowing
buffering capacity might be easier than providing flow control. Since loads and stores aiready require
flow control, added flow control for prefetches can probably leverage the available mechanisms to
some extent. The advantage of flow control for the compiler is that it allows prefetch buffer limits
to be abstracted away.

Memory latency and bandwidth characteristics are not specifically included as components of the
target hardware model. Instead, it is assumed that these numbers are provided to the compiler in a
parameterized form at compilation time. This allows code to be specifically optimized for particular
memory system behavior while the compiler addresses a family of memory systems exhibiting a
broad range of performance characteristics.
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Chapter 3

Static Locality Correlation and the Badref
Model

Computer memory systems zre often hierarchical. A two-level hierarchical system typically consists
of a cache and underlying main memory. The timing behavior of such a memory system is nonuni-
form, depending on which component satisfies a request. Requests satisfied by the cache, termed
hits, are relatively fast while those satisfied by the main memory, termed misses, are somewhat
slower. For programs executed on machines with hierarchical memory systems the dynamic memory
system behavior is typically characterized by a hit rate or equivalently a miss rate. Hit and miss
rates, denoted by h and m, are statistics identifying the fraction of memory requests satisfied by the
cache and main memory components of the memory system respectively.

Processors produce memory requests for both instructions and data values. The following analysis
focuses specifically on data requests. In high-performance RISC architectures instruction and data
requests are frequently satisfied by distinct caches. When this is the case, one can mostly ignore
instruction requests in an analysis of the performance of data requests. Henceforth, all discussion
of memory performance refers specifically to data requests.

A static program is a set of instructions. For load/store architectures, the topic of this analysis,
data memory requests can only be produced by load and store instructions. Each such instruction
produces a single request to the memory system. The dynamic memory behavior associated with
the execution of a program is an average of the dynamic behavior of the individual load and store
instructions comprising the static program weighted by the relative frequency with which these
instructions are executed. Suppose that execution of some program for a particular input data set
exhibits a 90% hit rate for data requests, thus 9 out 10 requests are satisfied by the cache. This
average behavior can arise from two markedly different forms of behavior when examined at a finer
granularity.

One possible scenario is that each memory request, irrespective of the particular instruction which
produces it, acts essentially as a statistically independent trial with a probability A of being satisfied
by the cache. Under these conditions, each memory reference instruction in the static program
would exhibit an individual hit rate close to the average over the entire program. Based on the
laws of probability, one might expect an approximately Gaussian distribution of individual hit rates,
centered on the average hit rate with 2 width dependent on the number of individual instructions
considered and the number of times each instruction executes. Given no evidence to the contrary,
one might assume that this scenario reasonably modelled program behavior.

As an alternative scenario, assume that hit rates exhibited by individual memory reference instruc-
tions are either 1 or 0. Thus upon execution of a particular load or store instruction the corresponding
request is always satisfied by the same memory system component, cache or main memory. If appro-
priately sized sets of the static memory references exhibit these two forms of behavior a 90% average
hit rate can be achieved. These sets must be sized such that the set which always hits accounts for
90% of the dynamically occuring references while the set which always misses accounts for 10% of
the references.
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These two scenarios are distinguished by the absence or presence of a correlation between particular
static memory reference instructions and dynamically occuring locality behavior. The scenarios are
idealizations of two extremes of possible memory behavior. The extent to which behavior of real
programs is characterized by one or the other of these scenarios is a question of both theoretical
interest and practical significance. This chapter presents arguments and empirical evidence that
to a significant degree, static locality correlation is a fundamental property of programs. Static
locality correlation is the phenomenon that cache misses for programs when executed on machines
with hierarchical memory systems are predominantly associated with a subset of memory reference
instructions, or equivalently that memory reference instructions exhibit a predisposition towards
either high or low hit rates relative to the average. The chapter also outlines how this behavior can
be exploited to dramatically increase the effectiveness of software latency tolerance techniques.

3.1. Memory Statistics of Individual Instruction

Exploration of static locality correlation requires analysis of the locality behavior of the set of
dynamic references arising from a single static memory reference instruction. In the following dis-
cussion, the term static reference will be used to refer to a memory reference instruction in a program
and the term dynamic reference will be used to refer to a memory reference instruction executed while
running a program. Each static reference has an individual miss rate for some program execution
corresponding to the fraction of the dynamic references it produces which result in misses.

Define two functions R(m) and M (m) which are statistical properties associated with the execution of
a program. R(m) is a density function of dynamic references produced by a program, parameterized
by the miss rates of the static references from which they are produced. Thus R(0.01) corresponds
to the fraction of references produced by static references with miss rates of 0.01. Since R(m) for a
program run only exhibits density at the finite set of m values corresponding to the miss rates of each
static reference in the program it is a discrete density function. The m values with non-zero density
are non-uniformly spaced and vary across program executions. For convenience, R(m) is treated
as a continuous density function which implies that non-zero density samples are impulses. This
impulse issue is ignored. Similar to R(m), M(m) is a density function of dynamic misses incurred
by a program, parameterized by the miss rates of static references producing the memory requests
resulting in the misses. As with R(m), when modelled as a continuous density function M(m) also
really consists of impulses.

The miss behavior characterized by M (m) can be derived from R(m). The number of misses
produced by a static reference is simply the total number of dynamic references produced by the
static reference multiplied by the references miss rate. Thus multiplying R(m) by m and rescaling
by the integral of m R(m) produces M (m).

mR(m)

M(m)= fo mR(m)dm

B-1)

Cumulative representations of these statistics, R.(m) and M.(m), can be produced by integrating
each function with respect to m.

Re(m) = /0 " R(m"ydm! (3-2)

M.(m) = /Om M(m')dm' (3-3)

These latter representations of the same information can lend additional insight into techniques for
exploiting static locality correlation.
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The two scenarios of memory behavior described at the beginning of this chapter exhibit very
different patterns of R(m) and M(m). In the first situation a tight distribution of R(m) centered
at the average program miss rate of 0.10 is assumed. Figure 3-1 illustrates R(m), M(m) and the
corresponding R.(m) and M.(m) for a distribution with all mass at a single miss rate. The second
scenario describes behavior in which 90% of the weight of R(m) occurs at miss rate 0 while 10%
occurrs at miss rate 1.0. Figure 3-2 shows R(m), M(m) R.(m) and M.(m) for this situation.
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Figure 3-1: R(m), M(m), R.(m) and M.(m) for Single Hit Rate
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Figure 3-2: R(m), M(m), Rc(m) and M,(m) for Two Distinct Hit Rates

The statistics R(m) and M(m) or their cumulative forms indicate where dynamic references and
dynamic misses are produced with respect to with respect to the miss rates of static references. In
the initial uncorrelated case dynamic references and misses are produced in approximately equal
proportion by any given static reference. In the latter cases, some references, those which always
miss, account for a disproportionate fraction of the misses of the program in comparison to their
share of the references. While accounting for only 10% of program references, static references with
miss rates of 1 produce all the misses.



39
3.2. Exploitation of Static Locality Correlation

Static locality correlation can iinprove the eflectiveness of software latency tolerance techuiques.
Oftentimes, different static references produce dynamic references with strikingly different behavior
with respect to their cache performance. If this behavior can be anticipated, it can be exploited
by treating static references differently based on the expected cache performance of their dynamic
references.

Consider again the behavior illustrated in Figure 3-2, repeated below in Figure 3-3. Partition the
static references of this program into two sets based on some miss rate threshold. Static references in
these two sets will be referred to as goodrefs and badrefs, goodrefs corresponding to those references
with the low miss rates. Each set accounts for some fraction of the total dynamic refcrences and
total dynamic misses. At the miss threshold, the height of R.(m) and M.(m) correspond to the
fraction of references and misses respectively produced by goodrefs. Similarly, the distance above
these curves up to 1 corresponds to the fraction of references and misses associated with badrefs. For
any initial distribution of R(m) similar to that assumed the badref set accounts for a relatively small
fraction of dynamic references but a large fraction of dynamic misses. To produce this behavior,
R(m) must be bimodal with a predominance of its mass concentrated at low values of m.

Partitioln Point

1 | ‘
Badref
' References
A |
Re(m) |
|
Reference |
and |
Miss
Distributions Goodref | | | Badref
| References | Misses
I
|
Goodref |
Misses I
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Figure 3-3: R.(m) and M () for Badrel Behavior

Software latency tolerance can exploit this behavior by applying differential treatment to badrefs and
goodrefs. Goodrefs are not likely to produce misses and do not benefit from any treatment aimed at
latency tolerance. Badrefs, in contrast, are much more likely to produce misses and should be the
targets of applicable latency tolerance optimizations. Two primnary hardware techniques can be used
to support software memory latency tolcrance, either explicit prefetch instructions or non-blocking
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loads. In each case, careful scheduling can ensure that transferred values are not used prior to their
arrival. Application of either technique in an informed way, exploiting static locality correlation by
partitioning static references, produces a superior result.

Using explicit prefetches for latency tolerance, static locality based partitioning allows software
overheads to be significantly decreased. In adding a prefetch for some static reference a software
overhead of O is incurred, where O is the number of instructions added. With explicit prefetches, O
can be no less than 1, the prefetch instruction itself. It may be more if additional computation must
be duplicated to produce a prefetch address. If prefetching is applied blindly to all static references
then a breakeven point at which one might consider prefetching occurs when the following relation
is true.

O<mxL 3-4)

In the formula, O is the dynamic average of overhead for individual static references. Dynamic
overhead refers to a weighted average based on dynamic execution frequency. L is the latency of
main memory, the latency to service cache misses, and m is the dynamic average of static reference
miss rates, which is equal to the program miss rate. Optimistically assuming O is 1, if m is 10%
as analyzed above, prefetching is a wash when memory latency is 10 cycles. At 20 cycles overhead
potentially eliminates half of any gains associated with prefetching. For programs with 99% hit rates
and thus 1% miss rates, prefetching does not even reach a breakeven point until memory latencies
exceed 100.

For a program exhibiting static locality correlation, using an informed application of prefetching,
much unnecessary overhead can be eliminated. Prefetches for static references which never or almost
never miss, goodrefs as described above, are useless and should be eliminated. In a partitioned
approach no overhead is incurred for the goodref set. Overhead is only incurred for the badref set.
Derating overhead by the dynamic fraction of badrefs, b, produces the relationship below.

Oxb<mxL (3-5)

For the R.(m) distribution from Figure 3-3 the dynamic fraction of badrefs, b, is exactly equal to
m, the program average miss rate, and the relation can be reduced to the following.

o< L (3-16)

This latter relationship is only true for a perfectly bimodal distribution in which references either
always miss or always hit. In this case the dynamic average miss rate for badrefs is 1. An alternative
way to arrive at this formula is to use Equation 3-4 with an m value corresponding to the dynamic
average miss rate for badrefs. In any event, opportunities for beneficial prefetching occur at much
lower memory latencies when references are partitioned since overheads are reduced.

The formulas above underestimate the costs of prefetching and optimistically estimate the benefit.
If prefetching is universally applied to a program it produces a noticable increase in size. This results
in more misses for instruction references. The estimates above optimistically assume that the benefit
of a prefetch is equal to the memory latency when a miss occurs. On a machine with non-blocking
loads and an interface intrinsically providing some level of latency tolerance, the benefit is decreased.
These effects only serve to increase the importance of limiting the application of prefetching to those
references for which it will be productive because of static locality correlation.

Under a software latency tolerance strategy based on non-blocking loads, static locality correlation
is also very important although the benefits are less easily quantified. Latency tolerant scheduling
attempts to separate the use of loaded values from the static references loading those values by a
distance at least equal to the memory latency. For latencies of any significant size, trying to perform
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this scheduling for all static references is simply an impossible task. Latency tolerant scheduling
uses inherent program parallelism to overlap slow operations. For large latencies there simply is
not enough parallelism in most programs to perform this scheduling. A scheduler unaware of static
locality correlation is unable to focus available parallelism on those references where it is profitable.
It might choose to spread available parallelism evenly across references to gain some benefit no
matter where misses appear. Alternatively it might focus parallelism on a subset of references and
choose unproductive references. Reference partitioning allows parallelism to be applied specifically
to those references for which it will produce the maximum benefit, i.e. badrefs which produce most

misses.

In addition to rendering an essentially impossible problem soluble, or perhaps less impossible, in-
formed application of scheduling has other semi-quantifiable benefits. In addition to consuming
parallelism, scheduling for high latencies increases the lifetimes of registers involved. The result-
ing register pressure increases the need for spill code, producing more static memory references.
By confining latency tolerance optimization to a small subset of memory references these costs are
minirized.

Static locality correlation, assuming it exists, can be a great boon to software latency tolerance. Its
existence and exploitation is, in fact, what renders these techniques feasible and effective.

3.3. Program Structure

Static locality correlation isn’t magic even if its application has almost magical results. It occurs as a
logical consequence of program structure. Identifiable program patterns can be associated with static
references that cannot miss by construction. These references form the core of goodrefs. Similarly,
various program constructions can be identified which are frequently associated with badrefs.

Much of the program structure which leads to high temporal locality of programs results directly
in zero miss rate goodrefs. The most important source of goodrefs is short term variable reuse.
Consider execution of code produced by translating a program statement like X=X-1. If variable X
is allocated in memory the statement produces a sequence containing two memory references, a load
followed shortly thereafter by a store. Ignoring highly unlikely events such as interrupts between
the two references, the second reference, the store, cannot miss. If X is also used in a preceding or
following statement another reference to X is a goodref.

Given caches with block sizes larger than the units of memory accessed by memory references,
some forms of spatial locality also lead to goodrefs. Consider a cache block aligned aggregate data
structure with several components, Assume static references accessing these components occur in
a fixed order over a short span of time, not an uncommon pattern. The first reference to some
component in a cache block moves the block into the cache. Subsequent static references to other
components in the same block never miss and are goodrefs.

Caches typically can hold a relatively large number of values simultaneously and as a consequence
address reuse over longer time frames can result in systematic hits. Access patterns such as those
described above can produce goodrefs even when relatively widely spaced, as long as the pattern
occurs systematically with the same order and the spacing is not so wide that the jointly used
value is flushed from the cache between the two references. Over wider time frames, goodrefs may
be produced by different variables which share a common address. Consider two small procedures
called from another in short succession and called nowhere else. Some set of stack accesses in the
latter procedure are likely to be rendered goodrefs by corresponding stack accesses in the former.
Thus goodrefs arise not only from fundamental algorithmic structure but also from storage allocation
conventions which favor the short term reuse of storage in a systematic way.

Badrefs are somewhat harder to motivate from a fundamental analysis of program structure. Badrefs
are in some sense a residual, the static references left over after eliminating structural goodrefs. Any
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static reference can lie in the cache shadow of some other static reference which uses the same
address. If a static reference follows shortly after another static reference which uses the same
address it is a goodref irrespective of its structure. As a consequence, there are no specific program
structures which can be pointed to as always producing badrefs when they occur. Despite this, there
are structural forms in programs commonly associated with badrefs.

The most common program structure associated with badrefs is the occurance of aggregate data
structures such as arrays within loops. Assume the elements of an array are not contained within
the cache. Consider a loop which traverses the elements of the array. A single static reference often
produces the first dynamic reference to each element of the array. In successive array iterations it
accesses new array values, systematically producing misses. Other static references accessing the
array values are rendered goodrefs by this single badref.

Generalizations of the array and loop behavior described above similarly lead to badrefs. Large
aggregate data structures interconnected with pointers exhibit the same form of behavior when
traversed within loops. As another example, consider a self-recursive procedure which frequently
performs deep linear sequences of recursive calls. The stack, in this situation acts as a generalization
of a large array, while the recursive pattern acts as a generalized loop. Static references which
produce the first access to a particular stack location within the procedure may be badrefs.

While not corresponding directly with the notion of goodrefs and badrefs it is possible for misses
incurred by a particular static reference to be correlated with a region of code which does not include
the corresponding memory reference. Turning again to loops, it is not uncommon that a set of misses
occur systematically on the first iteration of a loop and then do not recur on subsequent iterations.
This can happen when a static reference to a single variable or location occurs within the loop and
the corresponding location is not used anywhere directly preceding the loop. Misses of this form are
statically correlated to the code directly preceding the loop since execution of this code implies the
eventual occurrence of the misses. One can view this situation as the aliasing of a virtual badref
and a virtual goodref onto a single static reference. Applying loop peeling to the first iteration
of the loop separates these virtual references into two distinct static references, one of which is a
badref and one of which is a goodref. Static correlations of this form can be exploited in addition
to goodref/badref correlations when they can be identified.

Although an example was presented above in which cache blocks larger than referenced data pro-
duced goodrefs, more often than not cache blocks serve to decrease apparent static locality corre-
lation. Blocking in caches tends to alias virtual sets of goodrefs and badrefs onto the same static
reference for array accesses in loops. Cache blocking may, for instance, cause every other dynamic
reference produced by a static array reference to hit if the reference has a stride equal to one half
the cache block size. For data structure references which are unaligned with respect to cache blocks,
blocking tends to smear a set of logically related misses across a set of memory references. Other
cache implementation issues, such as limited associativity tend to decrease observed static locality
correlation as well. A question then arises whether sufficient static locality correlation inherently
associated with program structure exists after obfuscation by non-ideal caches. This question will
be addressed with empirical data in an upcoming section.

3.4. An Engineer’s Description of Static Locality Correlation and
the Badref Model

High school dances are sometimes classified as formals and semiformals. This section will attempt
to produce a semiformal definition of static locality correlation, an engineer’s definition rather than
a theoretician’s, worthy of a suit and tie if not a tuxedo. Semiformally speaking, static locality
correlation states that the program behavior known as locality is correlated with particular static
memory references and that each individual reference may exhibit its own distinct locality behavior.
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In order to define static locality correlation, one is first forced to venture onto thin ice and define
locality. [60] qualitatively describes locality as follows:

Locality of Reference

Reference to location X at time ¢ implies that the probability of access to location
X 4+ AX at time ¢ + At increases as AX and At apprc: ch 0.

This definition is characteristic of the semiformality often ass'.ciated with descriptica. of locality.
Locality is a somewhat squishy concept.

Engineers prefer things which can be quantified and measured. Since most people agree that locality
is the phenomenon which makes caches work well we will quantify locality in terms of cache behavior.
The locality exhibited by a stream of addresses will operationally be defined as the hit rate exhibited
by an ideal test cache for the stream. Thus a test cache acts as a locality meter. The test cache
used to quantify locality is fully associative and uses an optimal replacement policy subject only to
the constraint that data for each reference in the stream must be resident in the cache when the
transaction is satisfied. Because of their optimal replacement policy, locality test caches cannot be
implemented online but they can be simulated. Since cache hit rates depend on both total cache
size and cache block size, locality will be parameterized in terms of the cache and block size of the
test cache. L(C, B) represents the locality of an address stream measured using an ideal test cache
with total size C bits and blocksize of B bits and is equal to the hit rate of the stream in a test
cache of the appropriate size.

Using this definition of locality, the notions of temporal and spatial locality correspond to partial
derivatives of I with respect to C and B. The incremental temporal locality of a stream measured
at point L(C, B) is 8—1‘53%52 and the incremental spatial locality is 2%%;@. The logarithms arise
due to the fact that C and B typically grow as powers of two.

Under this operational definition, the locality of a subset of references within a stream can be defined
similarly as the hit rate of references in the subset, when measured in the context of the stream as
a whole. The locality of a static memory reference instruction can be defined as the locality of the
set consisting of the dynamic references produced by the static reference.

Based on the operational definition of locality above, the following static locality correlation Lypoth-
esis acts as a definition for static locality correlation:

The Static Locality Correlation Hypothesis

Locality behavior of individual static memory reference instruciions is primarily
influenced by the static structure of programs rather than the dynamic behavior of
programs. As a consequence, within a single program, individual static references
can and will exhibit highly varying locality behavior. Furthermore, the locality be-
havior of any particular static reference is not strongly influenced by perturbational
changes in input data.

Based on this foundation, we now build the badref hypothesis. The badref hypothesis incorporates
two additional observations. Static miss rates are polarized with respect to the average. Also, low
miss rate references often produce more dynamic references than high miss rate references. Not only
is locality behavior statically correlated, it is bimodally partitionable. Many static references exhibit
very high locality, i.e. low miss rates, while others exhibit low locality and high miss rates relative
to the average miss rate of a program. If static references are partitioned into two sets, one set will
account for most misses while the other accounts for most memory references.

The Badref Hypothesis

Most misses incurred by programs are produced by a small subset of all static
references, termed badrefs, which have miss rates well in excess of the average
miss rate exhibited by the program as a whole. These references account for a
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disproportionately high fraction of misses; the fraction of dynamic misses generated
by badrefs is much larger than the corresponding fraction of dynamic references.
Further, because of static locality correlation, the identity of the badrefs within a
program is not a strong function of the input data set.

3.5. Validation of the Static Locality and Badref Hypotheses

This section presents empirical evidence to validate the static locality and badref hypotheses. Two
different forms of experiments address two different aspects of program behavior captured by the
hypotheses. First, data is presented illustrating the variability of miss rates of static memory refer-
ence instructions in programs. Static locality correlation predicts that miss rates of static references
should be varied rather than focused near the average program miss rate. The badref hypothesis
further predicts that this variation should be bimodally partitionable, with a large component at
very low miss rates and a smaller component at much higher miss rates relative to the program
average.

Static reference miss rate variability is examined for our complete benchmark set for several baseline
test cache configurations. Rather than directly measuring locality by the definition above involving
optimal caches, we measure the behavior of several realizable cache configurations. One configuration
is fully associative with LRU behavior and should serve as a good approximation to the optimal test
caches in the locality definition. Empirical data is also provided to illustrate the impact on static
locality correlation of non-idealities in cache behavior associated with decreased associativity and
effects of operating in different regions of L(C, B) locality space.

The second aspect of behavior studied is variability of static reference locality associated with per-
turbations in input data. Most benchmarks in the initial study only have a single input data set so
several UNIX text processing benchmarks have been added in order to gather input variation data.

3.5.1 Miss Rate Variability of Individual Static References

The first experiments to validate the static locality and badref hypothesis measure the variability of
miss rates of individual static references. Static reference miss rates are measured for three baseline
cache configurations. These configurations are denoted FA, DM and DMYV and are described in
more detail below.

FA is a fully associative cache with an LRU replacement policy. The size of
the cache is 1024 4-byte words and the block size is 2 words.

DM is a direct-mapped cache. The size of the cache is 16 Kwords and the
block size is 4 words.

DMYV is a direct-mapped cache with a victim cache. The main cache is identical
to that of DM. The victim cache is fully associative and holds 8 blocks.
References are considered to be hits if they hit in either the main cache or
the victim cache. Victim caching is a technique aimed at reduciang conflict
misses in direct-mapped caches. Jouppi describes victim caching in [24].

The benchmarks studied in this experiment are gathered from the SPEC benchmarks [55]. Data is
presented for 7 of the 10 benchmarks in the SPEC suite plus one additional program derived from
a SPEC benchmark. The simulation environment used to gather data does not support multiple
processes. SPEC benchmark eqntott makes calls to the Unix fork command. Benchmark data for
eqntott is based on a modified version of the actual SPEC eqntott benchmark which excludes work
which occurs in forked processes in the original version.
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Data for three sample benchmarks illustrating a range of static locality behavior is illustrated in
the following figures. For each benchmark, graphs are provided indicating R(m), M(m), R(m) and
M,(m) vs m for each of the three baseline caches. Corresponding data for the remainder of the

benchmarks is provided in Appendix A.
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Figure 3-5: R(m), M(m), R.(m) and M.(m) for Espresso FA, DM and DMV

The simulation data in the figures above and in Appendix 1 supports the hypotheses of static
locality correlation and badref behavior. For the FA model, representing a relatively small cache,
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Figure 3-6: R(m), M(m), R.(m) and M.(m) for Tomcatv FA, DM and DMV

two of the benchmarks illustrated above and in all about half of the benchmarks examined exhibit
extremely pronounced badref behavior. For these benchmarks a large fraction of misses occur for
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static references with 100% miss rates while the majority of references occur for static references with
essentially 0% miss rates. For the other FA experiments badref behavior is slightly less pronounced
but is still quite noticable. Based on R.(m) and M.(m), it is clear that references can be partitioned
into two sets, one of which accounts for most references while the other accounts for most misses.

Simulations using the DM and DMYV models also support the static locality correlation hypothesis.
Due to the large fraction of references at or near 0% miss rate in several of these experiments, it
is not obvious from R(m) data that static miss rates are varied. Other references account for too
small a fraction of total dynamic references to be noticable in the graph. If one instead turns to
M (m) data, two observations can be made. First, it is apparent that static references exhibit a
spectrum of miss rates, even in benchmarks with relatively high average hit rates. (It is necessary
to have some static reference with a miss rate corresponding to that exhibited by any component
of M(m).) Furthermore, due to scaling by m in M(m), it is precisely these infrequently occuring
static references with miss rates above average which account for a large fraction of misses. This is
the essence of the behavior described by the badref model.

Data based on DM and DMYV cache models support the badref hypothesis. In some of the bench-
marks the DM and DMV models still exhibit average miss rates between 5 and 10%. These
benchmarks exhibit fairly pronounced badref behavior just 2s data in the FA tests. In other bench-
marks, including espresso and fpppp, average hit rates have fallen to below 1%. These data illustrate
the low miss rate manifestations of static locality correlation and badref behavior. Data from these
tests exhibits a large spike of goodrefs, references with miss rates at or near zero which do not
contribute at all to program misses. For these low miss rate tests, misses are no longer primarily
associated with references with very high miss rates in absolute terms. It is still true, however, that
most misses are associated with references with hit rates 10 to 100 times higher than the average
program miss rate. Looking specifically at espresso, about 80% of misses occur for static references
with miss rates between 5 and 20% while the average miss rate is about 0.5%. References producing
misses account for a negligible fraction of total dynamic references. Once again, static references can
be partitioned into one set producing most dynamic references and a disjoint set producing most
dynamic misses.

Having claimed that the data above supports the badref hypothesis, we propose the following specific
operational test for determining when badref behavior exists. Examine a plot of R.(m) and M,(m)
and consider drawing a vertical line across the plot partitioning it into two regions. Badref behavior
exists when it is possible to draw a vertical, bisecting line which crosses R.(m) at a high value and
crosses M.(m) at a low value. The degree to which badref behavior can be productively exploited
depends on the position of this bisecting line. References with miss rates larger than the bisection
value are considered badrefs. If the partitioning occurs for a large miss rate value then all badrefs
exhibit high miss rates and optimizations applied to badrefs ta:get only high miss rate references. If
appropriate partitioning can only be achieved using a low miss rate value then selective optimizations
applied to badrefs target lower miss rate values.

In addition to static locality behavior associated with high and low average miss rates, comparison
of FA, DM and DMY illustrates the interaction of static locality correlation and changes in cache
block size and associativity. The DM and DMV models have a block size which is twice that
of the FA model. In the tomcatv benchmark above, as well as several others in Appendix 1,
the increased block size exploits spatial locality to transform references with 100% miss rates into
references with 50% miss rates. While this has changed the specific miss rates of some references,
it has not diminished static locality correlation. In a sense, the fact that cache blocks interact in a
predictabie way with the miss rates of specific static references further drives home the point that
static program structure plays a determining role in cache performance, the main premise of static
locality correlation.

DM and DMYV data for tomcatv illustrates one potential consequence of associativity changes
on badref behavior. In the DM data, conflict misses have produced some 100% miss rate static
references which would otherwise exhibit a 50% miss rate as indicated in DMV. The 50% miss
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rate arises due to the blocksize which is twice the size of a double precision floating point value,
the predominant form of data used in tomcatv. In this particular experiment conflict misses have
occurred in a structurally predictable way, increasing the polarization of miss rates, resulting in
behavior closer to the badref ideal. This behavior is somewhat counterintuitive. In general, one
might expect that conflict misses would represent a relatively uncorrelated component of misses and
thus act to increase the miss rates of goodrefs more significantly than those of badrefs, lessening the
degree of badref behavior.

3.5.2 Cache Design Perturbations

The static locality and badref hypotheses are not intended to imply that cache behavior is completey
independent of the particular design parameters of a cache. Instead they claim that given a fixed
program and a fixed cache, the hit/miss behavior of individual static reference can be characterized
in a meaningful way which will be valid for repeated runs of the program.

While changes in behavior of individual references are expected to accompany changes in cache
design, one might anticipate that in some regions of L(C, B) locality space or in the presence of
cache non-idealities such as limited associativity the static locality and badref hypotheses might
start to break down. Some forms of misses are likely to be more highly structurally correlated than
others. In a regime of behavior in which uncorrelated misses outweigh correlated misses, the static
locality and badref hypotheses will no longer accurately characterize program behavior.

As an example, consider a very large cache in which the predominance of misses occur in conjunction
with multiprogramming context switches. If context switches occur asynchronously with respect to
program behavior then the basic premise upon which the static locality hypothesis is founded may
no longer be true. While the example above is not specifically addressed in this section, data is
presented examining the impacts on static locality correlation of changes in total cache size, cache
block size and cache associativity. In each case the FA model above is used as a baseline model and
the specific parameter of interest is varied over a range of values.

3.5.2.1 Impact of Cache Size

Cache misses are sometimes classified as compulsory, capacity and conflict misses [19]. As the size of
a cache is varied, the relative fraction of these different forms of misses shifts. One can view a study
of static locality correlation as a function of cache size as an investigation of the relative degree of
correlation of different forms of misses. In this study, fully associative caches are used, eliminating
conflict misses. As cache size is increased, the relative fraction of compulsory misses increases and
the fraction of capacity misses decreases.

The figures below indicate the results of simulations for caches based on the FA model parameters,
fully associative caches with a block size of 2 words. The cache size is varied from 256 to 32K words
or 1 Kbyte to 128 Kbytes. The study is restricted to 4 of the benchmarks, doduc, espresso, fpppp
and tomcatv. These benchmarks are chosen because they exhibit noticeable variation in behavior
in the initial study between the FA and DM models.
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Figure 3-7: Doduc R.(m) and M,(m) variation with cache size
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Figure 3-8: Espresso R.(m) and M.(m) variation with cache size

This data does not conclusively indicate an increased propensity for static locality correlation in
either compulsory ur capacity related misses. In the case of doduc for the largest caches most misses
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Figure 3-9: Fppp R.(m) and M (m) variation with cache size

are compulsory misses. The benchmark is operating in a regime of very low average miss rate,
0.002%, yet static locality correlation and badref behavior is exhibited even to the point of showing
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Figure 3-10: Tomcatv R.(m) and M.(m) variation with cache size

100% miss rate static references. An initialization section of the program which is not repeatedly
executed is the source of the 100% miss rate static references . In contrast, for large cache sizes
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espresso and fpppp do not have an appreciable number of high miss rate references. Using the
operational badref test described, it is still possible to partition the references of these benchmarks
but the partitioning must occur at a low miss rate value. The locality behavior of programs in high
locality areas of L(C, B) space depends on the way in which the static references exhibiting the
remaining misses are used by the program.

One might make the observation that static locality correlation behavior in high locality regimes is
somewhat less interesting than behavior in lower locality regimes from a latency tolerance standpoint.
If locality is very high, indicating a very high cache hit rate, then the time associated with residual
misses is not likely to be a substantial component of program execution time. Where locality is
not as high, cache misses represent a more noticable performance component. In situations where
caches are small enough to exhibit lower hit rates, static locality correlation and badref behavior is
pronounced in the data.

3.5.2.2 Impact of Block Size

Block size variations can interact with static locality correlation in a number of ways. The most
noticable effect occurs for small stride array references within loops. Increases in blocksize exploit
the spatial locality inherent in these references. When these references are badrefs, increased block
size decreases the miss rate of the references, decreasing the overall polarization of miss rate values.

Block size can have a variety of effects in the context of multiword aggregate structures other than
arrays. If structures are aligned with cache blocks then increased block size can produce goodref
and badref accesses to structure components, increasing hit rates but potentially resulting in strong
badref behavior with 100% miss rate badrefs and 0% miss rate goodrefs. Unaligned data structures
in the context of blocks are likely to result in a smearing of inidividual hit/miss behavior of static
references to structure components.

Finally, increases in block size at constant cache size decreases the total number of independent
data values which can be stored in a cache, potentially leading to decreases in hit rate if this effect
dominates hit rate increases associated with increased exploitation of spatial locality. In general,
when hit rates decreases, static locality correlation and badref behavior tend to increase.

Block size impacts on static locality and badref behavior are studied using a set of caches produced
by manipulating the block size of the baseline FA model. At constant total cache size, the block size
is varied from 2 words to 64 words. Single word block size is not investigated because then double
precision memory references could produce multiple cache misses, complicating simulation behavior.
Data for experiments using benchmarks doduc, espresso, fpppp and tomcatv are presented in the
figures below.
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Figure 3-11: Doduc R.(m) and M.(m) variation with block size
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Figure 3-12: Espresso R.(m) and M,(m) variation with block size

Two effects are exhibited in the doduc data. In moving from block size 8 to 16 and then to 32,
noticable shifts in miss rate of references occurs. 100% miss rate references are converted to 50%
miss rate references and then to 25% miss rate references. This has the effect of moving the required
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Figure 3-13: Fppp R.(m) and M,(m) variation with block size

partition point to the left, decreasing the polarization of miss rates and the effective utility of badref
behavior. While it is not directly evident from the graphical data, a second effect is that after an
initial drop in overall miss rate of almost a factor of two when moving from 8 to 16 byte blocks the
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Figure 3-14: Tomcatv R.(m) and M.(m) variation with block size

miss rate rises with further increases in block size. These increases in miss rate tend to increase the
polarization of miss rates, enhancing the utility of badref behavior.
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In the case of fpppp, block size variations do not dramatically impact badref behavior, serving
primarily to enhance it rather than detract from it despite a gradual decline in overall miss rate
with increasing block size. Performance improves for the lower miss rate references rather than
higher miss rate references as block size is increased.

The average hit rate for espresso is improved for each increase in block size and in each case this is
accompanied by a decrease in miss rate polarity and badref behavior. This behavior is characteristic
of what one might intuitively expect to occur in general, even though it is only exhibited by one of
the three benchmarks examined.

The benchmark most noticably effected by block size variations is tomcatv. Each increase in block
size, up to 64 word blocks, leads to a decrease by a factor of two in the miss rates of essentially all
badrefs and in the average program miss rate. The next chapter on compiler heuristics discusses
loop unrolling techniques which can be applied when large cache block sizes lead to low to moderate
miss rate badrefs in loops. These techniques can lead to polarized miss rate behavior even when
overall miss rates are low.

3.5.2.3 Effects of Associativity and Conflict Misses

While changes in cache size shift the balance of compulsory and capacity misses, variations in asso-
ciativity impact conflict misses. One might expect that conflict misses would represent a relatively
uncorrelated form of miss and that as a consequence miss rates would become more polarized with
increases in associativity, leading to more pronounced badref behavior.

Victim caching is a technique which can be applied to lessen the impact of conflict misses on direct
mapped caches. A victim cache is a small fully-associative cache which is loaded with blocks which
are replaced in the main direct-mapped cache. Rather than studying set-associative caches of varying
degrees of associativity, the performance of conflict misses can be examined by using victim caches
with varying sizes.

This study uses a family of caches with the cache and block size parameters based on the FA model,
namely a 1024 word capacity and a blocksize of 2 words. The study inciudes direct-mapped caches
with no victim cache, with victim caches of 2, 4, 8, 16, and 32 blocks and finally a fuily associative
cache.
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Figure 3-16: Espresso R.(m) and M.(m) variation with associativity

Varying the relative fraction of misses caused by conflicts has some impact on badref behavior but
not a dramatic impact. In the data for doduc, in moving from the direct-mapped to fully associative
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Figure 3-17: Fppp R.(m) and M.(m) variation with associativity

caches the miss rate changes by a factor of two from 14.6 to 7%. Despite the fact that half the
misses in the direct-mapped data for doduc arise from conflicts, the benchmark exhibits zero miss
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rate goodrefs accounting for 60% of memory references and 100% miss rate badrefs accounting for
about 60% of misses.
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Other benchmarks result in a smaller relative change in miss rate between direct-mapped and fully-
associative caches. Changes in badref behavior for these benchmarks are similarly undramatic. In
general, associativity does not have the same level of impact on badref behavior as block size or
cache size.

3.5.3 Perturbations From Data Set Variation

The experiments above address one aspect of static locality correlation and badref behavior, namely
the fact that in a single program run using some specific memory system, individual instruction miss
rates are varied and typically polarized. This section addresses a second aspect of static locality
correlation, specifically that the behavior of individual references, as described above, is not strongly
influenced by perturbational changes in input data.

One must be somewhat careful in claiming that memory system behavior is independent of program
input. In fact, this is by no means the claim that is intended in the static locality correlation
hypothesis. As illustrated in data above, substantial changes in cache size can lead to dramatic
changes in memory system performance. Similar effects can be achieved by leaving cache size fixed
and radically modifying input data. Clearly, memory system behavior is likely to be different if
programs use 100 Kbyte vs 100 Mbyte input data sets. The assumption of the static locality
correlation hypothesis is that memory system behavior exhibits regimes of operation, demarcated
by various critical data set sizes. Input changes which do not cross such a threshold will be termed
perturbational input changes. The static locality hypothesis characterizes behavior of individual
memory references as being relatively insensitive to perturbational input changes.

This aspect of the static locality correlation hypothesis can be tested by comparing the behavior
of specific individual memory reference instructions under a variety of input data sets. The figures
below show scatter plots of individual reference miss rates. Each point corresponds to a single
static reference. The x-coordinate of each point in a plot corresponds to the miss rate of some
static reference for a single data set. The y-coordinate represents the average miss rate of ihe static
reference across all input data sets. Thus a point at (0.25,0.30) corresponds to a static reference
with a miss rate of 25% for one data set and a miss rate of 30% averaged across all data sets. The
points displayed for each input set correspond to the most frequently executed static references for
that input. Point size is scaled by the frequency of the corresponding reference in the sample data.

While individual static reference miss rates do change as a function of inputs the data presented
in Figure 3-19 show that for the benchmark tested, changes in miss rates are not substantial. In
particular, in the data above it is very unusual for a reference to exhibit either a very high or very
low miss rate in average data and a miss rate polarized in the opposite direction for some particular
input data set. Consider the result of partitioning references into goodref and badref sets based on
a threshold value in the average data. This technique will properly classify most references.

3.6. Summary

This chapter has introduced the static locality correlation and badref hypotheses. The static locality
correlation hypothesis states that the hit/miss behavior of dynamic memory references occuring dur-
ing program execution is strongly correlated with the particular static memory reference instructions
from which the references arise. As a consequence it is meaningful to consider the memory behavior
of particular static references. Furthermore, the hypothesis states that this behavior is insensitive
to perturbational changes in input data.

The badref hypothesis extends static locality correlation. Not only is it meaningful to consider
the hit/miss performance of static references but this behavior is frequently polarized with some
references exhibiting essentially zero miss rates while others exhibit much higher miss rates, often
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Figure 3-19: Miss Rate Variation with Input Data Perturbations in Espresso

approaching one. As a consequence of polarized static miss rates, a large fraction of dynamic memory
references arise from references which never miss while a large fraction of dynamic misses arise from
references which miss much more frequently than the average. This observation regarding the miss
behavior of programs provides a cornerstone for software latency tolerance techniques.

Empirical evidence is presented to validate these hypotheses. This evidence takes the form of mea-
sured miss rates for static references for a set of benchmark programs. Statistics R(m), M(m),
R.(m) and M.(m) are computed from simulated data. This data indicates that the behavior de-
scribed in the static locality correlation and badref hypotheses is exhibited to a substantial degree
by many programs, particularly in the context of relatively small caches. Parameterized cache sim-
ulation studies are included to assess the impacts on static locality correlation and badref behavior
of changes in cache size, block size and associativity. Sensitivity of static reference behavior to input
variation is also tested.
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Chapter 4

Parallelism For Memory Latency Tolerance

Memory latency tolerance can be achieved by processing one or more high latency memory requests
concurrently with low latency requests and non-memory computation. Overlap through concurrency
can only occur when sufficient program parallelism exists. Measurement of program parallelism and
evaluation of any obstacles to its effective exploitation can help lead to a characterization of the
domain under which software memory latency tolerance techniques can be expected to be effective.

4.1. A Model of Paralielism and Latency Tolerance

Like locality in the previous chapter, parallelism and concurrency are slippery and sometimes ill-
defined or overloaded terms. In the following discussion, use of the word parallelism will be restricted
to refer to an intrinsic property associated with the dynamic execution of a program. To clarify fur-
ther, the word execution will be used to describe an abstract model of dataflow constraints associated
with the dynamic execution of a program equivalent to a dynamic dataflow graph. Executions con-
sist of a set of primitive computational operations and a set of dataflow precedence relations between
these operations. Parallelism is interpreted within the context of this model and refers to the intrinsic
property of executions that some of the primitive operations may be unordered with respect to one
another within the partial ordering induced by datafiow precedence relations. A machine consists
of a set of resources capable of performing various primitive operations. When an execution occurs
on a machine some scheduling of the primitive operations comprising the execution consistent with
the dataflow partial ordering and also consistent with any constraints imposed by the availability
of computational resources within the machine is induced on the primitives of the execution. Con-
currency will refer to the simultaneous advancement of more than one primitive operation within a
schedule of an execution on a machine.

For the purpose of analyzing parallelism for latency tolerance, consider a machine with two resources.
One resource processes all primitive execution components with a latency of 1 cycle, the basic time
unit, and a throughput equal to 1 inverse cycle. High-latency memory references, ie. cache misses,
require additional processing by the second resource which must occur directly after processing of
these operations by the first resource and which exhibits a latency of L — 1 additional cycles and a
bandwidth or throughput of BW operations per inverse cycle. (The machine could equivalently be
modelled using BW * L miss processing components each able to process a single operation at a time.)
If an execution consists of I instructions of which M are cache misses, machine resources impose a
lower bound on performance, measured in cycles, of the maximum of I or M/BW. All primitive
operations can be processed by the first resource in no fewer than I cycles. The M miss operations
can be processed by the second resource in no fewer than M/BW cycles. A complete scheduling of
the execution requires both forms of processing to be completed and thus has a minimum execution
time identified by Equation 4-1.

Tmin = maz(I, M/BW) 4-1)
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In order to achieve either of these limits all required processing of the smaller component must be
performed concurrently with processing of the larger component. Additionally, if bandwidth in the
miss processing resource limits performance, all miss processing must be performed with maximum
concurrency with respect to other miss processing based on bandwidth of the miss processing resource
in order to meet the lower bound on performance. In the absence of all concurrency, a lower bound
on performance can be computed by allocating L cycles for the M misses and one cycle for the
remaining I-M instructions for a total value as indicated below.

Tin =M+ L+ (I —M)x1 (4-2)

Latency tolerance techniques attempt to produce performance equal to that expressed in Equation 4-
1. Concurrency in an execution schedule requires corresponding parallelism within the execution.
In order to achieve the performance bound of Equation 4-1, two forms of parallelism are required.
Parallelism must exist between miss and non-miss primitive operations in order to overlap miss
processing with non-miss instructions. Additionally, if the product of L and BW exceeds unity and
M * L is larger than I, parallelism must exist between miss operations in order to exploit the miss
processing bandwidth of the system.

4.1.1 Constraints on Parallelism

Parallelism cannot be uniformly exploited to achieve concurrency. Constraints on the particular
forms of parallelism which can be effectively exploited arise for a variety of reasons. One form of
constraint arises due to resource limitations in the machine. The second form of constraint arises as
a result of the fact that, although not modelled above, static programs are used to produce dynamic
execution schedules. Static programs act as templates for the schedules for executions and thus
impose ordering constraints in addition to those associated with either the dataflow of the execution
or the resource limitations of the machine.

Due to resource constraints, all parallelism is not created equal with respect to its ability to support
the concurrency needed for latency tolerance. Two executions with the same amount of required
computation and comparable parallelism by some metric may exhibit different achievable perfor-
mance if machine resource constraints permit exploitation of the parallelism in one case but prevent
it in the other.

Consider a machine model in which BW = 1/L and the number of instructions and misses are
related by I = M x L instructions. The first assumption implies that concurrency is not permitted
between the processing of multiple misses while the latter implies that miss processing and instruction
processing performance bounds are equal. The lower bound on execution based either on instructions
or misses is M * L.

Consider an execution characterized by a partial order in which the set of M miss operations must
occur in sequential order and the set of (L —1)* M non-miss references must also occur in sequential
order. Dataflow contraints exist from miss operation ¢ — 1 to non-miss operation ¢ * (L — 1) and from
non-miss operation (i — 1) #* (L — 1) to miss operation i. Thus operations are partitioned into groups
containing 1 miss and L — 1 non-misses. Each miss can be overlapped with the non-misses in its
group and no others. The constraints described are illustrated in Figure 4-1. Circles enclosing an
M represent miss operations while circles enclosing a + represent all non-miss operations including
memory references producing hits.

In an alternative execution, suppose that all non-miss operations can be executed in parallel with
each other and in parallel with a single miss operation. Miss operations are sequential. These
constraints are illustrated in Figure 4-2.
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Group i Group i+1

Figure 4-1: Dataflow Constraints for Example 1

Figure 4-2: Dataflow Constraints for Example 2

Based on some quantifications of parallelism one might conclude that these two examples exhibit
comparable parallelism or perhaps even that example 2 has more paralielism. Example 2 has an
instantaneous parallelism of I — M at some point while instantaneous parallelism in example 1 never
exceeds 2. In each case, the critical path based on dataflow contstraints is equal and so is average
parallelism computed as total work divided by critical path length. This average parallelism score is
f_’{ll, a number very close to 1 for large L. On the machine described above, however, example 1 can
be scheduled perfectly for maximum concurrency while example 2 permits essentially no concurrency.
These examples demonstrate two things. First, average parallelism measured in terms of instruction
issue is not a particularly relevant metric for latency tolerance. Second, machine imposed constraints
must be quantified in any realistic parallelism metric for latency tolerance.

Suppose instead that parallelism is measured as the average number of non-miss operations in
parallel with each miss. Again, under this metric, both example 1 and example 2 exhibit equal
parallelism scores despite the fact that only example 1 has appropriate parallelism to exploit machine
concurrency. One might modify the parallelism metric so that there is a threshold for any single
miss of L — 1. Under this metric example 1 has a score of L — 1 while example 2 has a score of
(L=1) (Consider a third example, illustrated in Figure 4-3 in which the same L — 1 non-misses exhibit
parallelism with M — 1 misses while the remaining non-misses exhibit parallelism with the remaining
miss. Under the metric above which distinguishes examples 1 and 2 this new example exhibits a
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score equivalent to example 1 but periits essentially no concurrency on the modelled machine.

Figure 4-3: Dataflow Constraints for Example 3

Parallelism which can be exploited for latency tolerance requires a form of bipartite independence
in which each miss operation exhibits parallelism with some distinct set of non-misses which are
not credited as being parallel with other misses. The examples above are intended to illustrate
that graph based parallelism metrics which stop short of assessing schedulability based on machine
imposed resource constraints do not accurately characterize the parallelism required for latency
tolerance.

In addition to machine imposed constraints on the specific form of parallelism required to enable the
concurrency required for latency tolerance, constraints on exploitation of parallelism are introduced
because executions arise from static program code. Program code acts as a template both for
dynamic dataflow dependencies, the abstract concept modelled by executions, and for schedules for
these executions on machines. Changes to static code modify the set of schedules which can occur
for executions arising from the code. Some schedules which might be legitimate based on data
dependencies in an execution and which would be desirable from the standpoint of concurrency may
not be consistent with any transformed code. The set of schedules which can occur is limited by the
set of code transformations which can be applied.

Consider, in particular, code transformations which do not perforin code motion across basic block
boundaries. In this case, despite substantial parallelism when considering only dataflow produced
constraints, concurrency which can effectively be used for latency tolerance may be limited by
the amount of parallelism within basic blocks. Similarly, code transformations which are highly
constrained with respect to reordering memory references may also result in limited parallelism
available for concurrency despite an abundance of actual parallelism. Constraints introduced by
basic block boundaries and ambiguous memory references arise in many compilation techniques.

4.1.2 Dependence Constraints, Cache Misses and Speculation

Cache-fill transactions occupy a rather unique position among the set of operations occuring dur-
ing program execution in that they are not semantically significant. Cache operations are program
transparent. While these operations have performance implications, they have no correctness impli-
cations.



71

References resulting in cache misses typically have no short term memory carried dataflow constraints
to prior references. That is, memory loads and stores which produce misses do not have real dataflow
constraints, dependencies in the abstract execution model described above, with respect to preceding
memory references. If a memory carried dataflow constraint existed for a reference, the reference
would not produce a miss as it would be rendered a hit by the source of the dependency. Constraints
may well exist with subsequent references, but these references will be hits.

Cache-fill transactions, since they are transparent, do not produce ordering constraints. Misses,
when they occur, imply an absence of dataflow constraints with preceding references. Given this
lack of constraints and thus apparent parallelism, what limits the concurrency achievable for miss
transactions?

Two potential limitations exist. One limitation arises through constraints on legitimate static code
transformations. A pair of memory instructions which includes at least one store operation cannot
be safely reordered unless unequivocal proof exists that the two references use different addresses.
The term reference disambiguation refers to this proof process. The presence of a few, scattered,
ambiguous store operations within a piogram potentially serves to tightly limit the schedules at-
tainable from safely transformed versions of the code. The second limitation arises from dataflow
dependencies for address computations. In order to produce a memory reference and induce a miss
an appropriate address is required. Miss processing cannot be carried out concurrently with opera-
tions computing the address for the cperation invoking the miss. These two limitations can each be
circumvented to some degree due to the special nature of cache transactions.

The first limitation arises when memory references producing misses cannot be reordered with respect
to other memory references. The problem can be avoided by decoupling the miss from the memory
reference. Decoupling is achieved by performing a non-binding prefetch, either with an explicit
prefetch instruction or with a non-blocking load reference whose result is disregarded. In either
case, the miss producing instruction is not semantically significant and thus can be added, moved
or eliminated without any constraints involving other references.

The second limitation really is more fundamental. Addresses are needed to induce cache misses by
any software mechanisms. Address computation can result in dataflow constraints between adjacent
miss operations or between non-miss and miss operations. True, runtime data dependencies for
addresses cannot be avoided. Static programs may contain potential address dependencies which
rarely if ever result in actual dynamic dataflow constraints in executions. These artificial constraints
can be avoided using speculative execution. Since cache miss behavior does not affect program
correctness, code whose sole purpose is to provoke cache misses can ignore potential but unlikely
dependencies.

4.2. Experimental Technique

Adequate exploitable parallelism is essential for the concurrency which can lead to latency tolerance.
The discussion above argued that a direct measurement of parallelism, particularly one that can be
reduced to a simple metric, is an elusive and perhaps unrealistic goal. This section describes a
measurement technique which attempts to model and rationalize the various constraints to which
parallelism, when it exists, is subjected in order to be usefully exploited for latency tolerance.

Parallelism is measured using a constrained traversal of a dynamic dataflow graph corresponding
to a scheduled program execution. Individual instructions are represented as nodes in this dataflow
graph and actual dataflow dependencies corresponding tc the runtime production and use of data
values are represented as edges. Within this graph both register carried and memory carried values
explicitly produce dependence edges. The node representing an instruction has an explicit incoming
edge from each instruction producing a value used as a register operand. Memory load instructions
also have an edge from the memory store operation which produced the value loaded. Dependencies
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arising from storage reuse, i.e. antidependencies and output dependencies, are not represented as
they can be avoided through storage replication.

In addition to explicit dataflow dependence edges, graph nodes have an ordering corresponding to
their position in a legal sequential schedule of the execution. This ordering scheme can be used to
identify nodes occuring in the same general vicinity within the sequential schedule whether or not
these nodes share common dependencies. Traversal of the graph based on this sequential ordering is
used to model constraints limiting parallelism which arise from the fact that the graph corresponds
to a static program. Control flow nodes are explicitly represented within the graph and are linked
by a seqential chain of graph edges. These nodes and edges can be used to identify basic block
boundaries within the graph. Dependence arcs are added to ensure that memory stores occur in
their sequential basic block.

Potential parallelism for latency tolerance is estimated by performing a windowed graph traversal
in the vicinity of each dynamic memory reference node associated with a badref memory reference.
Windowed parallelism is measured by marking all nodes with a transitive dependence relationship
with a selected badref within a window of instructions based on the sequential order. Nondepen-
dent, parallel instructions can be identified by counting unmarked instructions within the window.
Parallelism is measured in a range of window sizes around each badref and parameterized by its
window size.

A graph traversal is performed in both directions for each load badref. The traversal directions
correspond to parallelism exploitable through two different rescheduling techniques. One traversal
begins at the badref and moves back in time, marking nodes upon which the address associated with
the badref depends transitively. This traversal direction estimates parallelism which can potentially
be exploited by triggering the miss associated with a badref instruction earlier in time relative to
the sequential schedule. A second traversal in a direction corresponding to positive flow of time
marks nodes which transitively depend on the result of a badref load. Parallelism in this direction
is exploited by delaying the use of results of badref loads relative to the schedule. Graph traversal
for stores is only performed to evaluate moving these instructions earlier in time.

In addition to assessing windowed parallelism, other instances of badref memory references within
each window are counted and classified as either dependent or non-dependent with respect to the
target badref. This data can be used to evaluate the potential for concurrency between the processing
of multiple cache miss operations.

The information described above is gathered using an assembly postprocessor based simulation tech-
nique. Assembly code is transformed so that at the end of each basic block a section of graph struc-
ture corresponding to instructions within the basic block is added to a large graph data structure.
Arcs for register carried dependencies within the block can be generated directly. Arcs correspond-
ing to cross block register carried dependencies are produced using a table which records the node
identifier corresponding to the last instruction to write to each register. Memory reference addresses
and their graph node identifiers are added to a trace buffer. When the buffer becomes full a sim-
ulation routine is called which patches the graph to include memory carried dependencies for the
references in the buffer and then performs graph traversal and parallelism measurement for selccted
badref occurrences from the buffer. Storage for the trace buffer and graph structure corresponding
to sufficiently old instructions is reclaimed after a simulation call.

Data collection is performed based on a statistical sampling of memory reference nodes which are
marked as badrefs. Badrefs are identified within programs using an initial program execution and
cache simulation to determine static reference miss rates. References are partitioned based on a miss
rate threshold. No cache simulation is performed in the parallelism simulation. Data is collected not
specifically for misses but rather fcr occurances of references deemed likely to produce misses. The set
of references produced by badrefs forms a fairly conservative estimate of the misses within a program.
It errs much more frequently in the direction of identifying dynamic hits as misses, as opposed to
identifying misses as hits. Since latency tolerance optimization is applied to static references and not
specifically to those dynamic references which miss it seems appropriate to investigate parallelism
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in the neighborhood of occurances of badref references irrespective of whether they produce misses
on the specific dynamic references measured.

Statistical sampling rather than exhaustive analysis for all badref occurances is applied for two
reasons. The first reason is one of practicality. Graph traversal for windows of the size measured
is a process consuming many thousands of instructions. Parallelism simulation is a much more
time consuming process than the other forms of simulation used to gather data. It is impractical
to perform a lengthy simulation operation for a non-negligible fraction of the memory references
in a large program. The simulation takes too long. Given the practical neccssity of sampling
versus exhaustive measurement, one then attempts to rationalize this as a good thing. By sampling
sufficiently far apart, one insures that parallelism is not overcounted with respect to machine resource
constraints. There is no added benefit to parallelism between a single specific instruction and more
than the number misses of which can be simultaneously processed. Sampling sufficiently widely
spaced badrefs insures that any given instruction is only credited to a single badref.

4.3. Results of Parallelism Measurements

The simulation procedure described above performs three distinct measurements for each sampled
badref. The resulting statistics will be referred to as windowed parallelism, basic block parallelism
and windowed badrefs. Windowed parallelism is a measurement of instructions which are indepen-
dent with respect to the badref, parameterized by the distance with which the badref and inde-
pendent instruction are separated within a sequential schedule of the program. Windowed badrefs
are a similar tally of other badrefs, parameterized by their distance from a target badref. Basic
block parallelism measures the number of independent instructions within the same basic block as
a badref.

4.3.1 Parallelism

Total windowed parallelism and basic block parallelism for each benchmark is indicated in Figures
4-4 to 4-6. Total windowed parallelism measures independent instructions both before and after
sampled badref instructions. Each graph shows six bold lines and one dotted line. The bold lines
represent windowed parallelism measurements and the dotted line represents basic block parallelism.
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The graphs in the figures labelled Windowed Parallelism can be interpreted as follows. The x-axis
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Figure 4-6: Windowed and Basic Block Parallelism for tomcatv

represents a particular level of parallelism. The value plotted at a particular x value corresponds to
the fraction of sampled badrefs exhibitirg a parallelism score at least as high as the current x value.
For windowed parallelism values, plotted as boldface lines, the window size is always the closest
power of two to the point at which the line intersects the x-axis. The window sizes plotted are 16,
32, 64, 128, 256 and 512. In each case the window is centered at the badref instruction extending
half its distance forward in time with respect to a sequential schedule and half its distance backward
in time. As a specific example, consider the curve farthest to the right in tomcatv, the last graph.
This curve corresponds to a windowsize of 512. Since the curve is above 0.95 at an x value of 300,
this implies that more than 95% of sampled badrefs exhibit in excess of 300 independent instructions
in a 512 instruction window extending 256 instructions forward and 256 instructions backward in
time. At 450, the curve has dropped to a value closer to 0.5, thus 50% of sampled badrefs exhibit
in excess of 450 independent instructions within a window of 512 instructions.

The graphs in the figures labelled Average Parallelism per Instruction show the incremental paral-
lelism per instruction associated with a particular window size. The score at 2 shows the average
parallelism in a window of size 2. The score at 4 shows the average parallelism of the two instructions
added in changing from window size 2 to 4. The score at 8 shows the average parallelism of the 4
new instructions added to reach a window size of 8.

This data does not leave much room for interpretation. It is clear that there is a vast amount
of real parallelism available for the form of processor/memory system concurrency which leads to
latency tolerance. One should bear in mind specifically what form of parallelism is measured and the
parauieters under which this measurement is performed. The data does not show that on average
hundreds of instructions can be simultaneously executed. It shows instead that on average any
particular badref instruction is unordered with respect to hundreds of its neighbors. It is thus
possible to overlap data movement associated with a badref with a sequence of hundreds of other
instructions which may or may not be ordered relative to one another. The ordering of this sequence
is not relevant with respect to the parallelism sought. In measuring parallelism, neither register nor
memory based storage reuse dependencies are considered. Parallelism is tallied without regard to
basic block boundaries. In the reverse direction, dependencies are only considered for the addresses of
badrefs, not the data. This is legitimate since prefetching can decouple misses from their associated
data. In computing transitive dependencies for the addresses, both register and memory carried
dependencies are considered. In the forward direction, dependencies are considered only when the
memory value accessed by a load is used in a subsequent instruction. Under this model stores have
no forward dependencies. As a consequence, they are not measured in this experiment and data
applies only to loads.
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Parallelism has been measured under a very liberal set of constraints and as a consequence aggressive
code transformations may be required to exploit this parallelism. It is undeniable, however, that
suitable parallelism exists, requiring only coding techniques to access this parallelism.

In addition to the fact that substantial parallelism exists for processor/memory system concurrency,
two more general conclusions can be drawn from this data. The dotted line in the windowed paral-
lelism graphs indicates basic block parallelism. This figure is measured the same way as windowed
parallelism but instead of limiting the scope of parallelism measurement to a fixed window of neigh-
boring instructions the window is determined by the boundaries of the basic block containing a
sampled badref. In truth, these measurements are also windowed at the maximum window size
of 512 instructions if basic block boundaries are not encountered in this window. In many of the
benchmarks, restricting ones focus to basic blocks leads to a completely different conclusion with
regard to narallelism. It is clear that in such cases, tolerance to latencies on the order of a hun-
dred instructions can only be achieved using code scheduling techniques which are not restricted to
operations within a single basic block.

Somewhat surprisingly, several of the benchmarks exhibit fairly substantial parallelism within basic
blocks. For these benchmarks, the basic block parallelism is probably underestimated since no
parallelism is counted outside the maximum sized 512 instruction window. One might speculate
that the prevalence of benchmarks with very large basic blocks is somewhat coincidental. Based on
the other benchmarks, one can justifiably claim that a general strategy for software latency tolerance
must not rely solely on basic block parallelism.

The final cobservation one can draw from this data is evidenced in the average parallelism graphs.
In general, as the distance between two instructions in a sequential schedule for a program increases
it becomes more likely that the two instructions are independent. This observation will be revisited
in the coming section.

4.3.2 Forward versus Reverse Parallelism

With respect to a particular badref instruction, non-dependent instructions can be identified both
before and after the instruction within a sequential schedule. Parallelism with respect to following
instructions will be termed forward perallelism as one must look forward in time starting at the
badref in the sequential schedule to identify this parallelism. Parallelism with preceding instructions
will be termed reverse parallelism as one identifies this parallelism by looking backward in time.
This distinction between forward and reverse parallelism is useful because to some extent, different
techniques must be applied to exploit the two forms of parallelism. Forward parallelism is exploited
by delaying the use of data accessed by load instructions with respect to other instructions within
the sequential schedule. Reverse parallelism is exploited by prefetching, invoking misses associated
with badrefs earlier in time than would occur in an unaltered sequential schedule. The primary
reason for distinguishing forward and reverse parallelism is that software scheduling techniques can
exploit both forward and reverse parallelism while single-threaded hardware dynamic schedulers are
primarily restricted to forward parallelism.

Dynamic hardware schedulers consider a windowed buffer of instructions for possible issue. The
schedulers keep track of pending dependencies for instructions within the window buffer, thus deter-
mining when an instruction can legitimately be issued. Based on availability of hardware resources,
schedulable instructions are issued from the buffer. Hardware schedulers have little opportunity to
exploit reverse parallelism. An instruction cannot be issued until it reaches the window buffer and
all pending dependencies are resolved. Among pending issuable instructions a hardware scheduler is
likely to give priority to older instructions in order to free up window buffer space. As a consequence
of these factors it is unlikely that initiation of a miss transaction for a badref will ever be reordered
substantially from its corresponding position in a sequential schedule.

Exploitation of reverse parallelism fundamentally requires a mechanism for moving miss initiation
for badrefs ahead in time with respect to other instructions including goodref memory references.
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Furthermore, instructions used to generate badref addresses need to be moved earlier in time as
well gince a transaction cannot be initiated without its address. Hardware schedulers have no mech-
anism for prioritizing their scheduling. A short sequence of instructions may compute an address
and use this address in a badref memory reference instruction. How can a hardware scheduler
conclude that this sequence should be given top scheduling priority over all instructions in the win-
dow? One might speculate about instruction sets with two forms of memory reference instructions,
one of which received hardware scheduling priority and similarly transferred this priority to all its
dependent instructions. This does nct seem even remotely practical and furthermore requires soft-
ware intervention just like software latency tolerance mechanisms. Dynamic hardware scheduling
techniques are fundamentally incapable of exploiting reverse parallelism.

Restricting one’s focus to forward paralielism is bad for two reasons. First, parallelism exists in
both directions. If it exists evenly, then half is being ignored. As data will show, it is frequently the
case that reverse parallelism exceeds forward parallelism, thus more than half the potential paral-
lelism for latency tolerance is ignored by techniques limited to forward parallelism. Of potentially
more importance, exploitation of reverse parallelism is in some sense easier than exploitation of
forward parallelism. Exploitation of forward parallelism requires the reordering of semantically sig-
nificant events as it entails the reordering of instructions using loaded valued with other instructions.
Exploitation of reverse parallelism involves the reordering of an event which is not semantically s.g-
nificant, namely a memory/cache transaction, with respect to semantically significant instructions.
Our compiler implementation in fact restricts its focus solely to reverse parallelism because it is
easier to exploit. In general, software latency tolerance has the flexibility to exploit both forward
and reverse parallelism, which would be required for optimal performance. Single-threaded hardware
schedulers do not have this flexibility.

The figures beiow illustrate forward and reverse parallelism measurements for the benchmarks. Bold
lines indicate reverse parallelism while dotted lines indicate forward parallelism. In each case both
windowed paralellism and basic block parallelism are indicated. Windowed parallelism measures
non-dependent instructions in forward or reverse windows of sizes 8, 16, 32, 64, 128 and 256, half
the sizes of the corresponding combined parallelism measurements in the initial figures. Basic block
parallelism measures non-dependent instructions either in the relevant direction until a block bound-
ary is encountered. As before, incremental per instruction parallelism is also indicated as a function
of block size for both forward and reverse directions. In the data below, reverse data reflects both
badref load and store instructions since each require address computation. Forward data, like the
combined data in the previous figures, reflects only loads.
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Data on forward and reverse parallelism shows several trends. In general, reverse parallelism exceeds
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Figure 4-9: Reverse and Forward Parallelism for tomcatv

forward parallelism. This implies that in general the computation required to compute an address
is simpler than the computation performed on values once they are loaded from memory. This is
not particularly surprising and one might hope that this were the case.

A somewhat more interesting result pertaining to the contrast between software and hardware
scheduling techniques for latency tolerance is indicated in the incremental average parallelism data.
In the combined parallelism data instructions were more likely to be independent the farther apart
they occurred within a sequential schedule. The data in this section indicates that the most likely
instruction to be dependent upon a badref load instruction is the very next instruction and other
instructions in the very near future. While this is not surprising, it is not good news for dynamic
schedulers since this is precisely where they look first for parallelism.

This situation is somewhat reminscent of an anecdote about a man searching for a quarter. He
looks for the quarter in the street where the light is good rather than the alley where he has lost
the quarter. Hardware dynamic schedulers are forced to look where the light is good even if that is
not the most likely place to find the quarter.

4.3.3 Badref Measurements

In the model developed at the beginning of this section two potential limitations to latency tolerance
were discussed. The first was a lack of parallelism between high-latency miss operations and non-miss
operations. The second involved interactions between high-latency miss operations. In a system in
which several misses can be processed concurrently by the memory system, parallelism is required
between high-latency transactions in order to exploit this concurrency. Regardless of the concurrency
of the memory, tight clustering of badrefs, in contrast to a relatively uniform distribution, may result
in transient imbalances between miss and non-miss processing requirements. This section presents
data measuring the distribution and parallelism of badrefs.

As in the prior experiments, measurements are performed in varying sized windows around sampled
badrefs. In this experiment other badrefs are tabulated and identified as being either dependent or
independent of the target sample badref. The data presented measures badrefs in reverse windows
like the reverse parallelism experiments. As in these experiments, dependence implies a transitive
flow dependency for some value used in the address computation of the sample badref. The graphs
below can be interpreted in the same way as the parallelism graphs. The x-axis corresponds to
some tally of badrefs. The graphed value at a particular point on the x-axis indicates the fraction of
samples with a tally of badrefs in their window greater than or equal to the current x-axis point. In
the graph for benchmark doduc in Figure 4-10 the rightmost curve goes through the point (32,0.4).
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This implies that for the window size corresponding to the curve, 256 in this case, about 40% of
samples had more than 32 other badrefs in their window. Each bold line has a corresponding dotted
line. The dotted line measures independent badrefs. Thus the space between the bold and dotted
lines is an indication of dependent badrefs. Lines in the graph correspond to window sizes of 16, 32,
64, 128 and 256 instructions.
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Two forms of behavior associated with badref instructions can limit latency tolerance techniques,
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namely address dependence between badrefs and substantial clustering. The data above indicates
fairly clearly that address dependence between badrefs is not very prevalent in the benchmarks
studied. 'To a large extent, almost all badrefs in even relatively large windows are non-dependent
with respect to the addresses of sampled badrefs. Two programs illustrate somewhat higher levels
of the form of badref dependence measured, namely eqntott and espresso. These programs each use
linked-list style data structures.

While clustering behavior of badrefs is not directly measured by the data it can be inferred by
comparing the relative shapes of adjacent curves. Curves measure badrefs in windows which increase
in size by powers of two. Given uniformly distributed badrefs one would expect the separation
between adjacent curves to increase roughly by a factor of two between each curve. Given clustered
badrefs the spacing between adjacent curves should not uniformly increase by factors of two. Given
the spacing of curves, it would appear that badrefs are relatively uniformly distributed.

Notice that uniform distribution of badrefs does not necessarily imply uniform distribution of misses.
Categorization of a particular reference as a badref is performed statically. In the experiments above,
any reference with a miss rate in excess of 5% was classified as a badref. Actual misses associated
with lower miss rate badrefs may still be clustered even if references arising from badref instructions
are uniformly distributed. The absolute spacing of misses cannot be less than the spacing of badrefs
since risses are a subset of dynamic badref references. The relative spacing of misses can be more
non-uniform than that of badrefs, however.

4.4. Summary

Latency tolerance is achieved through concurrency. Application of concurrency fundamentally re-
quires parallelism. This chapter has developed a model to characterize the forms of parallelism
specifically relevant to latency tolerance and an experimental method for evaluating this parallelism
in benchmarks.

Latency tolerance principally relies on concurrency between miss processing transactions and non-
miss computation. To model constraints on software latency tolerance parallelism is measured in a
region around miss-producing memory reference instructions based on a valid sequential scheduling
of code. Dependencies modelled include real, runtime dataflow dependencies for the addresses of
badref memory references as well as the results produced by badref loads. These are the forms
of dependencies which constrain the use of speculative, non-binding prefetching. Benchmark data
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indicates that in this context large amounts of parallelism exist. This parallelism does not generally
exist if the search is confined to basic blocks.

Forward and reverse parallelism are defined and measured. We observe that window-based, dynamic
instruction scheduling hardware primarily exploits forward parallelism in a small window ahead of
badref memory references. Benchmark data indicates that on average, this particular region has
less relevant parallelism than anywhere else one might choose to look. This suggests that software
techniques should prove superior to single-threaded hardware techniques for latency tolerance.

Finally, this section presents data to evaluate potential latency tolerance limitations arising from
interactions between adjacent high-latency operations. This data indicates that address dependen-
cies which potentially constrain simultaneous miss processing are relatively rare. Additionally it
indicates that badref instructions occur at relatively uniform rates within benchmarks and do not
exhibit highly clustered behavior.
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Chapter 5

Compiler Algorithms, Modeis and Heuristics

Code optimization is achieved by transforming one piece of code into another semantically equivalent
piece of code with better expected performance. Optimizing compilers use algorithms, models and
heuristics in order to improve code Analysis algorithms deduce the behavior of code to identify
potential transformations and verify their semantic legitimacy. Models characterize the performance
of code on an idealized target machine in order to assess the benefit of potential transformations.
Heuristics are used to narrow the search space of possible transformations identified by analysis to
those estimated to be most fruitful based on the target machine model and an understanding of the
specific optimization problem by the compiler writer

A prototype Compiler For LAtency Tolerance, referred to by the acronym c-flat, is implemented. As
with other varieties of code optimization, the memory latency tolerance transformations implemented
in c-flat require analysis algorithms, machine models and pruning heuristics. The hardware latency
tolerance mechanism exploited in our transformations is a prefetch instruction which is assumed to
be safe for speculative use. Because adding this type of prefetch instruction to a program typically
has few semantic effects, latency tolerance optimization in c-flat tends to emphasize modelling and
heuristics, with a lesser amount of analysis. This chapter describes the algorithms, models and
heuristics implemented, as well as a few other ideas and observations which were not implemented.

5.1. Memory Reference Behavioral Modelling

Optimizing compilers need machine models to estimate the performance impacts of potential code
transformations. Better models facilitate the production of better code. C-flat has a sophisticated
model of memory reference behavior in order to address the problem of memory latency.

The simplest machine model which a compiler can use assumes that instructions are issued se-
quentially and have a uniform execution time. The model assumes that no subsequent instructions
are issued until prior instructions complete and thus only a single instruction is active at a time.
This simple model provides a reasonable characterization of some RISC processors. Under these
assumptions, performance is completely characterized by instruction count and a single instruction
represents an unambiguous amount of time. This time is often referred to as a cycle. Where it might
be ambiguous, the term cycle will be used to represent an amount of time equal to the inverse of
the maximum bandwidth with which instructions can be issued by a processor.

When instructions have variable execution times, particularly when there is an opportunity for
several instructions to be active simultaneously, a more sophisticated model can be employed benefi-
cially. Several commercial RISC processors have floating point arithmetic units which are pipelined.
Latencies of floating point operations are several cycles and subsequent instructions can be issued
during intervening cycles if they do not require results of the floating point operations as their input
operands. In order to allow issue of one instruction per cycle on such a machine (or allow correct
operation if the machine does not have hardware interlocks), code must be scheduled so that results
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of high latency floating point instructions are not used before they are available. Code scheduling
for these machines requires a model which characterizes the latency of instructions relative to the in-
struction issue bandwidth or cycle time of the machine. Models used for these machines characterize
the performance of code based on instruction type. While latencies vary for different instructions,
each particular instruction, such as integer add or floating point multiply, has a fixed associated
latency measured in cycles.

Memory reference instructions do not exhibit behavior that can be readily characterized using a
fixed latency. Hierarchical memory systems exhibit variable, stochastic latencies, depending on the
level within the hierarchy which satisfies a particular reference. This presents a modelling dilemma.
References are predominantly satisfied by the cache at the top level of the memory hierarchy, often
overwhelmingly s.. The natural way to model memory references is to assumne a uniform latency
equal to the lat.-::y of this cache. Such a model is used in virtnally all current RISC compilers. In
this model, latency associated with references not satisfied by the cache is not modelled. In order
to produce code which is tolerant to cache miss latency, this latency must be modelled.

As an alternative, all memory references can be modelled using the latency of some deeper level
of the memory hierarchy. While this technique explicitly models miss latency, it ignores the fact
that most references are satisfied quickly by the cache. Code scheduled using such a model unduly
penalizes cache hits. In fact, if results from memory loads are not used optimistically by assuming
memory reference latency is the cache latency then the cache has not served its primary function
of decreasing effective memory latency. For the same reason that modelling all references using the
cache miss latency is inappropriate, modelling them with any other constant latency, such as the
average memory latency based on hit rate and hit and miss times, is also inappropriate. Cache hits
are the predominant case so if memory references are to be modelled with a single latency parameter
the hit latency should be used.

Static locality correlation and the badref model provide a solution to this conundrum. As evidenced
in Chapter 3, misses are highly correlated to specific memory reference instructions in code. Miss
rates of different static references often exhibit a bimodal distribution with some static references
producing virtually no misses and others producing far more than average. The badref model is a
behavioral model for compilers in which references are partitioned into two sets, goodrefs and badrefs.
Goodrefs can and should be modelled using cache hit latency. Badrefs, in contrast, can potentially be
better modelled by assuming a latency corresponding to the miss latency. Identification of badrefs
coupled with differential treatment of goodrefs and badrefs provides a suitable memory behavior
model for memory latency tolerant compilation.

The model utilized in c-flat is slightly more complicated than the basic badref model. Rather
than immediately and irrevocably partitioning references into goodrefs and badrefs, references are
characterized with a miss rate estimate. This estimate is used initially to cull away most goodrefs.
The threshold for this initial partitioning is set at the inverse of the miss latency. For references
expected to miss less frequently than this threshold even a single cycle of overhead is unjustified.
If the miss latency is high, the initial badref set contains some references with relatively low miss
rates. References within this set are subsequently evaluated as candidates for latency tolerance
optimization by coraparing the estimated performance costs and benefits of optimization based on
the miss rate estimate and memory hit and miss times.

5.1.1 Badref |deniiitication Techniques

Two contrasting techniques exist for estimating miss rates of individual memory references and
partitioning references into badref and goodref sets. The first technique utilizes static dataflow
analysis similar to dependence analysis to identify candidate badrefs. The alternative approach
relies on dynamic simulation of code to measure the miss performance of memory references. This
information can then be exploited in a secondary compilation phase.

As discussed in Chapter 3, static locality correlation arises due to program structure. When several
adjacent memory references access the same location, only the first can possibly produce a cache
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miss. Dependence analysis identifies memory references which access the same memory location
and as a result, can be used to estimate memory hit/miss behavior. Classical dependence analysis
does not indicate a dependence between pairs of read accesses which refer to the same location. For
purposes of cache behavior analysis this interaction should be identified as a “dependence” since
cache hit/miss behavior is not sensitive to whethcr references are reads or writes. The number of
distinct memory references interposed between any identified pair of references to the same location
can be estimated. Based on this estimate and a model of cache behavior, the latter reference in each
dependence pair may be classified as a goodref, i.e. a reference which cannot miss by construction.
[43] describes an analysis technique which performs goodref/badref partitioning for array references
in FORTRAN do loops.

In c-flat, the alternative approach is adopted for badref identification. An initial compilation stage
produces an executable program. Miss rates of individual instructions are measured in test exe-
cutions of this program for one or more input data sets. A subsequent recompilation produces a
latency tolerant version of the original program based on gathered miss information.

The choice between an analytic versus an experimental method for determining the memory behavior
of programs entails both practical and philosophical considerations. Experimental methods based
on mulitphase compilation interspersed with program execution should perform as well or better
than analytic methods. Data gathered using such a technique corresponds to some real execution
of the program. While experimental data might be inferior to analytically estimated data if the
experimental data corresponds to some form of unlikely behavior and the analytic technique correctly
deduces that such behavior is unlikely, the latter seems unlikely even when the former occurs.
Analytic compiler methods are noturiously ineffective at assessing the relative likelihood of possible
events. When goodref/badref behavior depends on dynamic program behavior which is difficult
to model statically, such as the frequency of branches or the specific duration of loops, dynamic
measurement will likely produce better estimates of typical program behavior.

Based on implementation ease, either method might be deemed mcre practical depending on the
level of preexisting compiler infrastructure. In the absence of sophisticated dataflow infrastructure
the experimental approach is relatively easy to implement and as a consequence has been adopted.
In the context of simulation-based research an experimental approach dovetails nicely with other
simulation required for the research. Given suitable infrastructure in the form of a preexisting
compiler with very good dataflow analysis one might view the alternative as a less rocky path.

Finally, the decision involves a philosophical issue. Is it fair, justifiable, ethical for compilers to
utilize experimentally gathered information about programs or should compilaticn always entail a
single pass? We take the engineering view on this issue that anything goes. Empirical observation
suggests that many real programs are optimized through an iterative process involving compila-
tion, test execution of the program, and finally human intervention at the source level to improve
program performance. This form of optimization process based on dynamically measured data is
completely mechanized within our implementation with the exception of the choice of input data for
experimental program runs.

5.1.1.1 Analysis: The Path Not Taken

While an analytic technique for memory behavior modelling is not implemented in c-flat, research
suggests that in some contexts successful analysis is possible. Porterfield, in [43], and Gannon, in
[13], each describe analytic memory behavior modelling techniques.

Developing an accurate characterization of memory behavior is generally very hard, if not impossible.
It is likely to be most successful in the context of well structured programs manipulating large arrays
in loops. This is the context in which the methods of [43] and [13] are appropriate.

Even in a more general context, one may have some success at attacking the problem of estimating
memory behavior if the problem is viewed in the right light. The most fruitful approach is probably
one which looks for goodrefs rather than badrefs. Thus all references should be considered bad and
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potentially discovered to be good rather than considered good and discovered to be bad. In analogy
to the search for a quarter in the previous chapter, rather than concluding that a quarter is in the
dark alley, conclude that it is not in the brightly lit street. Such an approach underestimates cache
performance, bounding the set of badrefs from above. It allows latency tolerance to be applied to
a set of references likely to contain almost all badrefs while avoiding overhead on those goodrefs
which can be easily identified. Based on empirical observation I suspect that such a technique might
identify a reasonably large fraction of goodrefs, at least half and perhaps more, in many programs.

This strategy is consistent with that of Porterfield. He perform an initial partitioning between scalar
and array references, considering all scalar references to be goodrefs and all array references to be
badrefs. He then identifies goodref array references when possible. The heuristic technique of calling
all scalar references goodrefs is probably not suitable in a more general context.

We make no further effort to evaluate analytical badref identification techniques. The problem is
very hard. Program dynamics such as branch frequencies and loop limits are often very difficult to
estimate statically except in very restrictive circumstances. For direct-mapped caches and caches
of limited associativity memory behavior is impacted by the placement of different data structures.
Alignment of data structures relative to cache boundaries can similarly impact memory behavior.
It seems unlikely that an analytical technique can be used to produce a tight estimate of program
badrefs in a general context. If somone solves this problem they deserve much credit. Irrespective
of the means by which memory system behavior is estimated, however, our other algorithms and
results are still applicable.

5.1.1.2 Miss Rate Measurement in C-flat

Measuring miss rates of individual memory references via simulation is primarily a bookkeeping
problem. Compilers manipulate programs using a representation which typically differs from the
final executable form. A mapping must be established between memory references in the executable
code and the constructs within the intermediate representation from which these references have
arisen. This mapping must be maintained so that a second compilation can properaly reassociate
statistics measured during simulation with the appropriate intermediate structures.

In the intermediate representation in c-flat (inherited from GCC upon which c-flat is retrofitted)
most memory references are explicitly represented. References to values which must be stored in
memory including arrays, structures and anything accessed through a pointer, have a representa-
tion indicating a memory resident value. Values which can potentially be stored in registers have
a different representation. At a fixed point during both initial and secondary compilations, the
intermediate program representation is labelled with unique memory reference identifiers. To ensure
that labelling is consistent between the two compilation phases, identifiers are added before any
optimization which acts differently in the two phases is performed.

Latency tolerance optimization is performed fairly late in the compilation process in c-flat. It occurs
after the standard compiler optimizations performed by GCC, just prior to register assignment.
Positioning latency tolerance optimization late in compilation simplifies bookkeeping and has other
benefits. Since labelling can be deferred until after other optimization passes have occurred these
optimizations do not need to update identifiers in any way. Several more significant reasons exist for
positioning this optimization late. First, putting transformations which result in differences between
first and second compilations late in the compilation process tends to minimize the perturbation of
the initial code. If differences are produced early on, these differences are magnified by subsequent
transformations. Experimental statistics used to characterize memory behavior are based on the
initial code and remain most accurate when the code is minimally perturbed. Additionally, latency
tolerance optimization is primarily a scheduling process. Insertion of prefetch instructions can be
viewed as software scheduling of misses which occur during program execution. This scheduling
process can model program behavior most accurately, and thus generate the best code, after other
optimizing transformations have occurred.
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Register allocation, which occurs after prefetch optimization, creates memory references when regis-
ters are spilled. Since these references are not explictily present in the intermediate representation at
the time of latency tolerance optimization they are not labelled and are not eligible for optimization.
Register spill references could potentially be optimized by moving latency tolerance optimization af-
ter register allocation. This is impractical because latency tolerance optimization changes the register
requirements of programs, thus changing the spill behavior. Fortunately, references generated by
spilling registers are typically goodrefs.

Multiple file compilation adds further bookkeeping chores. In order to support multiple file compila-
tion a separate identifier numbering space is used in executable files from that used in compilation.
Mapping information is maintained for each source file, associating intermediate compiler identifiers
with new identifiers in the final executable code.

5.1.2 Memory System Modelling

While the badref model and dynamically gathered miss statistics can be used to estimate the hit/miss
behavior of memory references, in order to schedule misses a performance model of the underlying
memory system which services miss transactions is also required.

Memory systems are modelled by c-flat as asynchronous pipelines. The performance of these
pipelines is characterized by two parameters indicating their latency and maximum bandwidth.
The parameter mlat specifies the latency to service a request which moves one cache block of data
from the memory into the cache. This latency is measured in processor cycles. Memory bandwidth
is characterized in terms of an intersubmission delay, referred to as mbwlat, which is also measured
in cycles. C-flat assumes that requests to service misses can be submitted to the memory system
no more frequently than once every mbwlat cycles. The model assumes that this time interval
must occur between any adjacent submissions, rather than just being satisfied in aggregate. The
intersubmission delay is assumed to apply at the cache/memory system interface, as opposed to the
processor/cache interface.

An additional parameter, mconc, which is used in some heuristics can be derived from these pa-
rameters. Mconc is the product of memory system latency and maximum bandwidth which can
be computed as mlat divided by mbwlat. This parameter characterizes the maximum number of
requests which the memory can be processing concurrently. Thus if mlat and mbwlat are equal
then mconc is unity and the modelled memory system is assumed to be able to process only a single
transaction at a time. If mlat is twice mbwlat then mconc is two and the memory system is modelled
as being able to operate on two separate requests simultaneously. As described above, for memory
systems with mconc greater than unity, request processing is modelled as taking place in a pipelined
fashion.

As an example, assume mlat is 20 and mbwlat is 5. If 4 transactions are submitted in short
succession, the first will complete 20 cycles after its submission. The second will be initiated 5
cycles later and thus complete 25 cycles after initiation of the first. The third and fourth requests
will complete after 30 and 35 cycles respectively.

An alternative model for a memory system with a concurrency of 4 might assume the existence of
four asynchronous memory banks, each with latency 20. Under this model, if all memory banks were
idle requests could be submitted to each, and the 4 requests would each finish 20 cycles after their
initiation. Implementation of memory systems with large values of mconc are likely to be banked,
thus the latter model might more accurately characterize their behavior. The pipeline model is
simpler, however, and should adequately characterize behavior.

Buffers for unsubmitted prefetch requests are implicitly assumed to exist but not explicitly modelled.
The compiler assumes that prefetch requests are flow controlled. Thus if buffers are full and a prefetch
request results in a miss the processor is stalled until a buffer is available. Alternative behavior would
be to drop prefeich requests. If a memory system dropped prefetch requests it would be important
to explicitly model buffers in order to avoid this situation.
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One final aspect of memory system modelling regards the processor memory interface behavior in
the presence of write requests resulting in misses. Write misses may be buffered externally to the
processor in which case these misses only produce stalls when buffers fill up. Alternatively, write
misses may stall the processor while the request is processed if no buffering exists. In the former
situation it is seldom advantageous to perform prefetching for writes since writes don’t result in
stalls. The only possible advantage of prefetching writes in this case is to smooth memory bandwidth
utilization. In the case of writes which stall it is just as beneficial to perform prefetches for write
misses as it is for read misses. This aspect of memory system behavior is specified by enabling or
disabling prefetching for badref writes.

5.2. Latency Tolerance Optimization

In order for a particular memory reference instruction to contribute substantially to the total misses
of a program it must have a high individual miss rate and must be executed many times. Upon
successive executions of the same memory reference instruction, systematic misses can occur for one
of several possible reasons.

o The address which is used by the reference changes between successive
executions.

o The address does not change but sufficiently many misses intervene be-
tween successive executions that most or all of the contents of the cache
is purged, including the old value.

e The address used by the reference is involved in a pattern of conflict misses
with one or several other memory references.

Repeated execution of a particular instruction primarily results from some form of looping control
structure. This looping may occur explicitly within a single procedure. It may alternatively result
from explicit looping within a different procedure or some generalization of looping such as recursion.

C-flat uses two distinct heuristic optimization techniques to address badref memory references with
different characteristics. The first heuristic technique targets badrefs with changing addresses occur-
ring in explicitly recognizable loops. These badrefs will be referred to as RAADs, Regular Accesses
to Aggregate Data Structures. RAADs account for a large fraction of badrefs occurring in many
programs. Special purpese heuristics for RAADs can exploit the fact that these references occur
in loops. The general strategy of RAAD heuristics is to perform prefetches in a current iteration
based on a prediction of addresses to be used by badrefs in some future iteration. Given long loops,
sufficient memory bandwidth and good address prediction, prefetches can be performed far enough
ahead of references to tolerate arbitrarily high memory latencies.

RAAD prefetching is restricted to those badrefs which are RAADs and occur in a loop which can
be explicitly identified. A second general purpose heuristic technique can be utilized for almost
any badref. This technique simply inserts prefetches and reschedules a sequence of code in order
to provoke misses for badrefs well in advance of the actual occurance of the badref instructions.
In order to tolerate latencies which are substantially longer than typical basic block sizes, this
scheduling phase operates on sequences of basic blocks in a technique similar to trace scheduling.

Conflict misses which are sufficiently tightly spaced are not addressed by either technique. If conflict
misses occur on a time interval comparable to the memory latency then both techniques may even
exacerbate this problem. Either might insert a prefetch for a reference which could displace a useful
value and then be displaced itself before being used. Conflict misses with spacing comparable to the
memory latency are presumably quite rare and can be made even more rare by employing victim
caching.



5.3. Loop-based Prefetching Heuristics

A significant fraction of misses incurred by programs occur within explicitly recognizable loops.
Memory instructions in loops systematically produce misses when the address to which they refer
changes from iteration to iteration. Empirically, we observe that these references with loop varying
addresses are primarily associated with RAADs, Regularly Accessed Aggregate Data Structures.
Regular aggregate data structures consist of sets of elements with the same storage layout. These sets
may be grouped in sequential storage as arrays or alternatively may be grouped through explicitly
contained pointer structure. Loops are used to traverse regular data structures, accessing one element
and then moving on to another element. This results in the changing addresses.

RAAD traversal in loops leads to goodrefs and badrefs. Consider a loop which moves through
an array of data structures, each consisting of several components. In each loop iteration, a small
number of memory reference instructions can be identified which access one of the components of the
newest array element for the first time. In the absence of conditional behavior this set will contain
one memory reference instruction per component. If the aggregate data structure is not contained
in the cache at the time the loop starts executing then each time one of the instructions which first
references a component executes it produces a miss. This occurs on every iteration. Other memory
reference instructions which reaccess a component from the current iteration or a previous iteration
always hit.

RAAD addresses change from iteration to iteration. Any loop has some basic set of recurrences
from which all loop variant values are derived. The variables in these recurrences will be called
induction variables or IVs. The term induction variable is sometimes used to refer specifically to
variables involved in linear recurrences. It will be used more generally here to refer to any variable
involved in a recurrence, i.e. any loop variant variable whose new value in the next loop iteration is
a function of its current value, whether or not this function is linear. Loop variant RAAD addresses
are computed from the induction variables of the loop.

Since the elements of RAADs have a fixed structure, the process by which addresses are generated
to traverse them is usually fairly simple. By examining the recurrences which generate the induction
variables used in RAAD addresses it is usually possible to predict the addresses for future iterations.
Predicted addresses can be used to perform prefetches and thus initiate memory transactions for the
data needed in these future iterations well ahead of its eventual use.

Loop-based prefetching techniques for RAADs are simplest when loops do not contain conditionals,
inner loops or procedure calls. In upcoming sections these techniques will first be examined in the
simple context of unconditional inner loops and then revisited to address issues associated with
conditionals and contained loops or procedure cails.

5.3.1 RAAD Identification Algorithm

RAAD:s are optimized in c-flat through a procedure involving classification followed by application
of a prefetching schema based on the specific form of RAAD involved. While RAADs can arise from
a variety of syntactic constructs, in a low-level representation address code for related RAADs has
a common structure. RAADs are identified and classified in c-flat by constructing an instruction-
level dataflow graph for a loop which includes edges for loop-carried dependencies. In such a graph,
induction variable recurrences form a Strongly Connected Component or SCC. Badref RAADs are
classified based on the structure of the SCCs used to compute their addresses and the way in which
the induction variables based on these SCCs are used. Two distinct forms of induction variables
are recognized by c-flat corresponding to linear recurrences and memory indirection recurrences.
Figure 5-1 illustrates examples of the SCC graph structurc and corresponding recurrence equations
for these induction variables. Three distinct varieties of RAADs with addresses built from these IVs
are recognized by c-flat. These RAADs correspond to the following data structure access patterns:

o Loop-constant stride array accesses
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e Accesses using a loop-constant stride indirection array

o Linked-list dereferencing

Sample dataflow graph structure and C language syntactic constructs producing these RAADs are
illustrated in Figure 5-2.

v IV

IV =1V +/- Const IV = Mem (IV +/- Const)

Figure 5-1: Characteristic IVs and SCCs in C-flat

C-flat uses the following algorithin to identify and classify badref RAAD memory references.

for each loop in inner to outer order
if loop contains badrefs
build an instruction level dataflow graph with loopback edges
compute SCCs for graph
classify induction variables based on their associated SCCs
for each memory reference in the loop
if reference is a badref
for each component of the refereince’s aldress
recursively trace through dataflow graph terminating at SCCs
add IVs for these SCCs to an IV set for reference
examine the set of IVs from which address is constructed
based on IVs and their uses classify badref

In the intermediate structure manipulated by c-flat memory references have an explicit representa-
tion. Each such reference is mapped to a specific load or store instruction in generated code from
which it receives a memory beliavior estimate in the formn of a miss rate. Badrefs are identified by
thresholding references based on their miss rates.

Each loop in a program is examined for badrefs. In the case of nested loops, inner loops are examined
first. In order to classify badrefs the computation producing their addresses must be isolated and



Array RAAD Indirection Aray RAAD  Linked-List RAAD
X[i]; i++; XY j++; X->a; X = X->next;
x-p++; :M-p++;

Figure 5-2: RAADs in O flat.

examined. A loop dataflow graph is constructed which contains edges for variables live at loopback.
SCCs within this graph are computed. These SCCs form a basis set for the address recurrences of
potential badrefs.

For each badref in a loop a traversal of the loop dataflow graph starting at the badref identifies
all SCCs which contribute to the badref address. By considering the sct of SCCs producing a
badref address and the way these values are conibined, badrefs can cither be identified as one of the
recognized RAAD structures or identified as an unrecognized construct. Once badrefs are classified,
RAAD specific prefetching schemas can be applied. This occurs after all RAADs have been classified
because some prefetching schemas optimize multiple badrefs.

5.3.2 Array RAADs

Array RAADs have access patterns which are generalizations of array accesses with a loop constant
stride. Array RAADs include as a subset both loop-constant stride array references and pointer
dereferences with a fixed pointer update. More generally, an array RAAD is a memory reference
instruction whose address is a linear combination of loop constants and lincar induction variables.
IVs and constants can be multiplied or shifted by a loop constant value and combined using addition
or subtraction. For such a reference the difference between addresses used on successive iterations,
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the stride of the reference, is just the sum of the increments of each induction variable scaled
appropriately if the induction variable is scaled in the address computation. An address appropriate
for an arbitrary iteration in the future can be computed from an address for the current iteration.
To compute the address for a corresponding reference I iterations in the future the current address
can be incremented by I times the stride of the reference.

Latency tolerance optimization for array RAADs uses a very simple prefetching schema. Consider
the following code fragment which is assumed to come from a loop in which rp is not otherwise

modified.

1d [rpl, rt (Load 1)

add rp,4,rp

Latency tolerance optimization for array RAADs is accomplished using the following four steps.

. Based on the loop dataflow graph, compute the stride by finding the increment associated with each
Iv.

. Choose a prefetch iteration count. The prefetch iteration count is the number of iterations separating
RAAD prefetches from their corresponding memory references. This value will be denoted PIC. It
is the same for every RAAD in a loop and is a small constant. Selection of PIC is discussed in more
detail in section 5.3.5.

. Add code to compute the product of the stride and prefetch iteration count. If the stride is a
constant, (as opposed to just a loop-constant), then this product will be a constant value and may
not explicitly need to be computed.

. Add code to perform a prefetch reference using an address computed as the sum of the current
iteration’s address and the value computed in step 3. Since the current iteration’s address is used
in the prefetech address computation, it is most convenient and often results in lowest overhead to
add prefetch code immediately after the associated badref.

If Load 1 is a badref the steps outlined above are applied. The stride of the reference is identified
as 4. A prefetch iteration count is determined. Since both the stride and PIC values are constant
in this case, no code is required to compute their product. Finally, prefetch code is added using
an appropriate address. In code examples, a prefetch instruction will be denoted by the operation
pref.

id [rpl, rt (Load 1)
pret [rp+PIC#4] (Pref 1)

add rp,4,rp

The example above illustrates application of the array RAAD prefetching schema in its simplest
form.

The code below illustrates an example in which the reference stride is a loop constant value but not
a constant and PIC is chosen as two. Values in registers ra and rs reprezeiit a loop-constant array
base and stride.
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1d [ra+ril], rt (Load 1)

add ri,rs,ri

Application of the prefetching schema results in the following code in which rr1 and rn2 represent
new temporary registers.

14 [ra+ril, rt (Load 1)
add ra,ri,rnl
81l ri,2,rn2
pref [rni+rn2] (Pref 1)

add ri,rs,ri

Notice that the software overhead associated with prefetching varies in the two examples. In the
first example, only a single instruction of overhead is introduced whereas three instructions are
introduced in the second example. Given both an estimate of software overhead and an estimate of
miss rate a cost-benefit analysis can be performed to determine if adding a prefetch instructions for
a particular reference is likely to improve or detract from code performance.

Assume application of a prefetch schema adds O instructions of overhead. Added cycles for these
instructions are incurred on every occurance of the badref independently of whether or not it hits or
misses. Assuming the badref is executed E times, the total software overhead incurred is just O *x E

cycles.

A savings of L cycles is realized whenever a miss occurs. If the badref instruction produces M misses
then the total savings ignoring overhead is L* M. Prefetch optimization improves performance when
the net savings, the difference in savings and cost is greater than 0. This occurs when the relation
in Equation 5-1 is true.

LxM-0+E>0 b5-1)

M/FE is the miss rate of the reference which will be denoted by m. The maximum savings which
can be realized for a miss is mlat. On machines in which misses produce immediate stalls this will
be the actual savings. If misses do not produce immediate stalls this is an upper bound on savings.
Rearranging Equation 5-1, a prefetch is likely to improve performance given an overhead of O and
a miss rate of m when the relation in Equation 5-2 is true.

m > O x1/mlat (5-2)

Since latency tolerance optimization based on prefetching always has an overhead of at least one cy-
cie, RAAD references with m less than 1/mlat cannot be profitably optimized using these techniques.
This accounts for the initial goodref/badref partitioning threshold at m = 1/mlat.
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5.3.3 Indirection Array RAADs

An indirection array RAAD is a reference whose address is a linear combination of constants, linear
IVs and one or more values from memory references which are array RAADs. This class includes as a
subset accesses produced by the C syntactic constructs X[I[i]], where i has a constant increment,
and **p++. The characteristic SCCs associated with indirection array RAADs are the same as those
for array RAADS but for at least one such SCC there is a memory load on the path from the SCC
to the indirection array RAAD whereas simple array RAADs have no indirection.

Prefetch optimization for indirection array RAADs has several additional twists not encountered
with simple array RAADs, complicating their prefetch schemas. Components of the indirection array
RAAD which are themselves array RAADs require the generation of memory reference instructions.
These instructions access elements of an array RAAD which will be used in future iterations and
thus may themselves be badref memory references.

Consider an example corresponding to the following C source fragment.

int a, *¥p;
while (1)
a = **p++;

If a and p are allocated to registers, the body of the loop might produce the code fragment below.
Variable a is in ra, variable p is in rp and rt is a new variable which corresponds to values of *p.

ld [rpl, rt {Load 1)

add rp,4,rp
1d [rt], ra (Load 2)

Load 2 in the fragment above is the indirection array RAAD reference. In order to perform an
appropriate prefetch for this reference an address based on the value of rt for a future iteration is
required. This value can be attained by loading a new temporary register using an address generated
by the procedure described for array RAADs. An important distinction between the code which
loads this temporary and the code generated for an array RAAD prefetch is that in the indirection
array case a real memory load is generated as opposed to a prefetch. In the modified fragment Load
1’ has been added to access the next iteration’s value of rt and Pref 2 is a prefetch for Load 2.
This example assumes the prefetch iteration count, PIC), is 1.

1d [rpl, rt (Load 1)
1d [rp+4], rt' (Load 1’)
add rp,4, rp

1d [rt], ra (Load 2)
pref [rt’] (Pref 2)

It is quite possible that in the initial code Load 1 might have been a badref in addition to Load 2.
Applying the RAAD prefetch schema to Load 1 produces the following code.
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1d [rpl, rt (Load 1)
pref [rp+4] (Pref 1)
1d [rp+4], rt’ (Load 1')

add rp,4, rp
1d [rt], ra (Load 2)

pref [rt’] (Pref 2)

Unfortunately, this code is not tolerant to latency from misses associated with dereferencing rp.
Load 1’/ dereferences values of rp before Load 1. As a consequence, if Load 1 is initially a badref
it is transformed into a goodref through the addition of Load 1’. Load 1’ is now a badref, however.
The array RAAD schema can be applied to newly generated array RAAD Load 1 rather than Load
1. Notice that since the address used by Load 1’ i3 rp+4, the address for a generated prefetch is

rp+8.

id [xpl, rt (Load 1)
1d [rp+4], rt’' (Load 1)
pref [rp+8] (Pref 1)
add rp,4, rp

1d [xt], ra (Load 2)
pref [rt'] (Pref 2)

A somewhat more subtle problem may arise if another reference in the loop uses the same address
as a component of an indirection array RAAD. Consider the modified fragment below.

int a, *b, **p

while (1) {
b = *p;
a = **¥pi+;
}

Code generated for the assignment to variable a will be similar to the earlier examples. Code
generated for the assignment to b has been added.

14 [rpl, rb (Load 0)
1d [xp]l, rt (Load 1)
add rp,4,rp

1d [rt], ra (Load 2)

Load 1 cannot be a badref since it uses the same address as Load 0. If the indirection array
prefetching schema described above is applied, despite the fact that Load 1 is not a badref, the
newly generated Load 1’ may still be a badref. This can occur if Load 0 is a badref. Just as the
addition of Load 1’ converted Load 1 from a badref to a goodref in the initial example, it can convert
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Load O from a badref to a goodref in this example. In both cases, the result is that Load 1’ itself is
a badref.

In c-flat these complications are handled by processing all array RAADs with equivalent addresses
simultaneously. At most one reference from a set which use identical addresses can be a badref. If
one of the references is a badref code is added at this location. A load for the next iteration’s value,
similar to Load 1’ in the example above, is added. Following this a prefetch like Pref 1’is added. If
no reference in the set is a badref then no prefetch is added. This technique is still vulnerable in the
case illustrated in the example below in which some badref instruction in the loop explicitly accesses
the next iteration’s value of an indirection array, however this appears to happen infrequently. No
instance of this situation was detected in any of our benchmarks.

. X[IC]]

.:'J[i+1]

The technique of unifying the treatment of array RAADs with equivalent addresses described above
has an additional advantage. It is possible that an array RAAD is used as an address component
in more than one indirection array RAAD badref, as occurs in the fragment below if X and Y are
badrefs. Processing array RAADs with equivalent addresses as a single entity leads naturally to the
creation of only a single new variable with the value J[i+1]. With extra care, any common scaling
of the new variable, as would be required if X and Y were arrays of equal sized elements, can also be
shared.

for (i=0; i<10; i++) {
LXDI0AN].

YOI )

One might ask why, if only a single prefetch access to J[i+1] is required, should there be two accesses
to J[i]. This punctuates an issue regarding dependence analysis required for code optimizations like
common subexpression elimination in contrast to analysis for prefetch generation. One can easily
imagine that a reference is interposed between X and Y in the code which cannot be disambiguated
with respect to J[i], such as the reference to *p in the augmented code fragment below.

for (i=0; i<10; i++) {
X[J0il1d:
*p = i;

YOI[il1; 3

Common subexpression optimization cannot be applied by a compiler unless it can prove that *p
and J[i] always refer to different locations since improper application of this transformation could
produce incorrect program behavior. Prefetch optimization does not semantically alter programs.
Even if J[i+1] cannot be proven to be independent of *p, if it is likely that it is generally different
from *p then there is no harm in using only a single version of J[i+1]. When prefetching is based
on incorrect analysis, the result is that a program incurs some additional or unexpected misses.
Prefetch optimization can legitimately be based on approximate or optimistic analysis, as long as
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this analysis is mostly correct. In conirast, transformations with the potential to semantically alter
programs must be based on exact or conservative analysis.

As with array RAAD prefetching, a cost-benefit analysis can be performed for indirection array
RAAD prefetching based on miss rate and overhead. The overhead consists of two components,
one associated with building a prefetch address and performing the prefetch operation and a sec-
ond associated with loading future values for required array RAADs. The latter component can
potentially be amortized across prefetches for several indirection array RAADs. The heuristic test
actually implemented in c-flat is not clever about this amortization. It charges the overhead of
loading future array RAAD values to the first indirection array RAAD requiring those values. If
prefetch code is generated, no other indirection array RAAD is charged. If overhead is deemed too
expensive and prefetch generation is suppressed, subsequent indirection array RAADs are charged
with the overhead. Using this technique it is possible to suppress a set of indirection array RAAD
prefetches when no single prefetch justifies building shared code but due to amortization, in aggre-
gate, prefetching for each is justifiable. Once overhead from both components has been estimated,
the benefit of a particular indirection array RAAD prefctch can be computed using the relation in
Equation 5-2.

5.3.4 Linked-List RAADs

Linked-list RA ADs are references performing traversal of generalized linked lists. Generalized linked-
lists are regular data structures composed of elements with fixed storage formats which contain
pointers or array indices identifying other similarly structured elements. The IVs and corresponding
dataflow graph SCCs which give rise to linked-list RAADs differ from those associated with array or
indirection array RAADs. Linked-list IVs have a memory reference node within their SCC whereas
the IV SCCs associated with array RAADs consist solely of addition and subtraction nodes.

Prefetch optimization for linked-list RAADs can follow an optimization schema similar to that used
for indirection array RAADs. The memory reference in the induction variable recurrence leads to
some added implementation complexity.

Consider the following code fragment.

while (p) {
t = p—>a;

P = p—>next; }

If a and next have structure offsets of 0 and 4 respectively and p and t are allocated to rp and rt
the following fragment of code is a possible translation of the loop body.

id [rpl, rt (Load 1)

14 [rp+4], rp (Load 2)

As is required for indirection array RAADs, in order to produce prefetch addresses for linked-list
RAADSs a2 new variable must be introduced and a memory reference added to give the new variable
a value. The new variable needed corresponds to the next iteration’s value of rp. In the code below
rp’ contains the new variable and Load 2’ assigns values to this variable. Pref 1 uses rp’in order
to prefetch a value for badref Load 1.
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1d [rp], rt (Load 1)
pref [rp’] (Pref 1)

1d [rp+4],rp {(Load 2)
1d [rp+4],rp’ (Load 2')

As with indirection arrays, the newly introduced load, Load 2/, is likely to be a new badref. This is
true irrespective of whether Load 2 is originally a badref. In order to avoid latency associated with
misses for this new badref an additional prefetch can be generated. The final version of the code is
illustrated below. This version includes loopback code in addition to the partial loop body.

LOOP:
1d [rp], rt (Load 1)
pref [rp] (Pref 1)

1d [rp+4],rp (Load 2)
1d [rp+4],rp’ (Load 2')
pref [rp/+4] (Pref 2')
tst rp

jne LOOP

In the code above, the first non-prefetch reference to a new structure element, Load 2’, accesses the
link pointer. This is immediately dereferenced by Pref 2’ in order to initiate a memory transaction
for the cache block containing the next needed link pointer. As badref components of the element
are accessed prefetches are issued for the corresponding component of the next element with an
address constructed by replacing rp with rp’.

Notice in the code above that the newly introduced variable rp’ is used as a prefetch address before
it receives an initial value. This results in prefetches through spurious addresses. Since prefetch
instructions are assumed to be safe for speculative use, suppressing any associated faults, this does
not result in program errors. Performance can be improved, however, by initializing rp’. In prologue
code prior to beginning the loop rp’ can be initialized with a value by appropriately dereferencing the
initial value of rp. Initializing rp’ converts the first occurance of Pref 1 from a wasted instruction
to an effective prefetch. This in turn avoids latency associated with a subsequent miss by Load
1. Under the indirection array RAAD prefetching schema this same form of behavior can occur,
in which a newly created variable is used in a prefetch computation before receiving its first value
within the loop. In each case c-flat initializes these variables in a loop prologue.

It was stated above that memory references in the induction variable recurrences of linked-list
RAADs lead to additional complexity. Upon close examination or execution of the code above a
problem manifests itself. This code dereferences a null pointer, potentially leading to memory faults.
What has happened?

At the end of each iteration when rp is updated a new value of rp’ is loaded by dereferencing rp.
On the final iteration when rp is updated it becomes a null pointer. The corresponding update of
rp’ dereferences the null rp producing an invalid memory reference.

Use of a fault-safe prefetch instruction generally allows speculative prefetching to be performed
without the need for significant verification of the validity of resulting code. This fault-free safety net
does not apply to memory references using normal load and store instructions. The term required
reference will be used to refer to semantically significant memory references, i.e. loads and stores.
If address generation code used for prefetching necessitates the addition of required references, as
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opposed to prefetch references, then compiler analysis is required to ensure that added references do
not result in faults.

The problem with the above code can be addressed using one of two different software techniques
or alternatively solved with additional hardware support. The software techniques modify the code
to avoid dereferencing the null pointer. The hardware technique provides a legal way to dereference
such a pointer.

The problem can be addressed in hardware by adding another new instruction in addition to the
prefetch instruction. The new instruction is a speculative load instruction which will be given the
code syntax Idsp. Speculative load acts like an ordinary load with the following caveat. Under
normal circumstances, speculative load accesses and returns valid data. At any time, including any
fault conditions and any other time deemed convenient, speculative load is free to return an arbitrary
value. Speculative load is not permitted to produce any faults, however. Since it does not produce
semantically meaningful data speculative load is not useful under normal circumstances. The time
when it can be beneficially employed is when a memory value is required speculatively for a prefetch
computation.

In the likely absence of a speculative load instruction the problem with the linked-list prefetching
schema must be addressed in software. Two techniques can be employed to ensure that spurious
faults are not introduced by prefetch address generation. Each avoidsloading rp’ once rp has become
null.

The first technique, implemented in c-flat, avoids the spurious load by interchanging the order of
prefetch address generation code and the loop test. Once the new rp value has been tested a
new iteration is guaranteed to occur and it is safe to dereference rp. Moving the prefetch code to
a position logically following the loopback tests requires moving it into the next iteration at the
beginning of the loop. In this revised schema the new variable rp’ is no longer used before it is set
so prologue initialization is also no longer performed. The resulting code is illustrated below.

LOCP:
14 [rp+4],rp’ (Load 2')
pref [rp’'+4] (Pret 2')

14 [rpl, vt (Load 1)
pref [rp’] (Pref 1)

1d [rp+4],rp (Load 2)
tst rp
jne LOOP

Intuitively, the code above is valid. It has avoided potential faults associated with Load 2’ by exiting
the loop before these faults arise. One can more formally argue the validity of this technique as
follows.

1. A memory reference added to a program cannot introduce faults associated with
invalid addresses if it is dominated or post-dominated by another reference or set
of references which use the same address.

By the definition of dominance/post-dominance, execution of the added reference
implies prior/eventual execution of another reference using the same address. The
added reference can only fault if the (post)dominating reference faults, thus no new
faults are produced.
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2. If all loop-exit conditions are dominated by memory references using some particular
address, instructions in the first basic block of the loop are post-dominated by these
references.

In a program which terminates, executing the first block of some loop must even-
tually be followed by a loop exit. Thus the set of loop exits post-dominate the first
block in a loop. If A is post-dominated by B which is dominated by C, then C
either dominates or post-dominates A.

Thus a load such as Load 2’ can safely be added at the top of a loop if each loop exit occurs in
conjunction with a memory reference using the same address. If some paths can exit the loop without
dereferencing the required pointer, prefetch code cannot be inserted until after the branches leading
to these exits. C-flat uses a slightly less restrictive test, ensuring that each exit is dominated by a
memory referenice which accesses a component of the structure pointed to by rp but not necessarily
the same component used in the newly added load.

The technique of moving the prefetch code to the beginning of loops can almost always be validly
applied. In a situation in which the addresses associated with Load 2 and Load 2’ were somewhat
more complicated, lower software overhead might result if Load 2’ could be placed adjacent to Load
2. Loop peeling, described in [40] as a technique for dealing with vagaries in initial loop iterations,
can be used to eliminate the spurious faults in the original code by peeling off the final iteration.
Loop peeling is applicable when the loop termination condition involves rp and when rp cannot
be changed by any instruction in the loop except the update. (It is also applicable for do loops
with loop constant upper limits, in which case a different procedure from that outlined below is
appropriate.) Loop peeling is accomplished by modifying the loop termination condition to use rp’
rather than rp. Since rp’ is a copy of rp advanced by one iteration the peeled loop terminates one
iteration sooner than it should. A copy of the loop body muet be placed after the loop to perform
the final iteration. Within this copy, prefetching code can be omitted, avoiding the invalid load.
This transformation has the potential to change program semantics so dependence analysis to ensure
that rp is not changed by unexpected instructions within the loop must be conservative.

While not discussed in the context of indirection array RAADs, a potential problem with faults
exists in this context as well. Array elements are accessed with required references beyond the
bounds imposed by loops. (Addresses beyond the end of arrays are even accessed in array RAAD
prefetching but only with prefetch instructions.) Techniques like those described above could be
applied to solve this problem for indirection array RAADs. Alternatively, faults associated with the
validity of addresses can be avoided by padding data segments with the maximum distance by which
indirection array prefetching might overstep the top of an array with a load reference. c-flat assumes
data segments are suitably padded and ignores this issue for indirection array RAAD prefetching.

Padding of data segments is perhaps a dubious mechanism for dealing with this problem although
it is the simplest. First, if an array with non-constant stride is overstepped it may be difficult
to quantify by what amount its corresponding data segment needs to be padded. Additionally,
even though padding eliminates faults associated with referencing illegal addresses, in the context
of virtual memory it may produce extraneous page faults, causing unncessary disk traffic. Despite
these issues, since c-flat is a research compiler, the simplest strategy has been adopted.

5.3.5 Prefetch Iteration Count Selection

Prefetches must precede their associated badrefs by an adequate distance in order to avoid memory
latency induced stalls. If a memory latency parameter, mlat in c-flat, is provided to a compiler in
units of cycles, (inverse instruction issue bandwidth units), adequate separation can be attained inde-
pendent of superscalar or superpipelined behavior by scheduling mlat instructions between prefetches
and badrefs. In the loop-based techniques in c-flat prefetch references primarily occur adjacent toQ
their associated badrefs. The effective separation in instructions is an integral multiple of the number
of instructions in a loop. This multiple is the prefetch iteration count.
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Assume a loop has I instructions. In order to completely mask latency, the prefetch iteration count
should be at least [ 7 7. It is not advantageous to set the count any higher than this value. If data
arrives in the cache 1 cycle or 1000 cycles prior to when it is needed it can be accessed without delay
in either case. There are several performance factors which favor “just in time” scheduling. The loop
prefetching techniques described above implement a software pipeline to overlap miss latency and
computation. This pipeline has fill and drain costs proportional to the depth of the pipeline. In order
to minimize these costs the depth should be kept to a minimum. Additionally, when prefetching
into a cache, the cache is being used for «wo distinct purposes. it serves its normal caching function
and additionally provides buffering space for prefetched values between the time at which they are
prefetched and eventually used. If the number of buffered values is very small in comparison to
the size of the cache then the buffering function results in minimal interference with the caching
function. In contrast, if sufficiently many prefetches are performed far in advance of their eventual
use that the number of buffered prefetches is not negligible in comparison to cache size, then the
buffering function is likely to negatively impact normal cache performance. Prefetching should be
performed far enough ahead of use to mask latency but, if possible, no further. This suggests setting
PIC, the prefetch iteration count, at exactly the value prescribed above.

mlat

PIC=[ =

1 (5-3)

Irrespective of the number of iterations computed using the formula above, memory latency and
bandwidth considerations sometimes suggest further limiting the prefetch iteration count. If mem-
ory performance considerations predictably limit the latency of loops to a value higher than that
estimated based on instruction count this revised latency estimate should be used in computing the
prefetch iteration count.

An event triggering the initiation of a slow memory transaction followed by an event which potentially
stalls if the transaction has not completed will be referred to as a miss-use pair. If both components
of a miss-use pair occur in the same loop iteration the latency of the loop for a single iteration will
exceed mlat and thus the prefetch count should be set to 1. Miss-use pairs can occur within & single
loop iteration for a variety of reasons, several of which are listed below.

Unrecognized Badrefs

Not all badrefs within loops can be recognized as RAADs and prefetched. One
example of such a badref arises sometimes in computations performing floating
point histogramming. In such a computation a floating point value is normalized
and converted to an integer which is used to choose an element of a histogram array.
Any address computation involving floating point arithmetic is unrecognized within
c-flat. Unrecognized prefetches also result if addresses are derived from non-linear
arithmetic recurrences or memory-based recurrences not matching the linked-list
RAAD pattern recognized.

Linked-list RAADs

The existence of linked-list RAADs act as a miss-use pair if the memory reference
in the SCC is a badref. Each iteration dereferences a pointer. The result of this
memory access is required before the instruction can be repeated in the next iter-
ation. Viewed another way, linked-list RAADs produce a sequence of dependent
badrefs in which the dependence arises through an address computation. This form
of dependence cannot be skirted using speculative computation without guessing
future addresses by some means. Since there is one such reference per iteration and
these references cannot execute in parallel, the time for a loop iteration is bounded
below by the memory latency.

Inner Loops
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Computation associated with execution of 2 set of loop iterations almost always
produces miss-use pairs. As a consequence, outer loops almost always have miss-
use pairs within each iteration associated with their inner loops.

Procedure Calls
Similar to inner loops, almost all procedure calls have miss-use pairs.
Many Intermediate Miss Raile References

While the badref model downplays memory references with low but non-negligible
miss rates such references sometimes occur. A loop containing a large number of
references with miss rates too low to warrant prefetching may be likely to encounter
miss-use pairs within many iterations. c-flat computes the sum of the miss rates
of references which are not prefetched. If the sum exceeds one, this is considered
to be equivalent to an unrecognized badref. This is an overly pessimistic strategy
when misses occur in correlated clusters. Correlation may be likely, particularly in
conjunction with initial loop iterations. Nonetheless, this is the heuristic used in
c-flat.

Unrecognized badrefs or linked-list RAADs can occur in loops of any size. The latter three sources
of miss-use pairs do not typically occur in loops with small expected instruction counts. By virtue
of containing either inner loops, procedure calls or a large number of memory references, loops must
be reasonably large, resulting in a natural tendency for the associated PIC value to be one. Given
very large memory latencies it is possible that these issues might result in decreasing a PIC value
which is not one.

In addition to memory latency based performance limits, memory bandwidth constraints can also
limit loop iteration latencies. If the number of misses expected on each loop iteration exceeds the
maximum memory system concurrency, denoted mcone in c-flat, then bandwidth related stalls will
occur. More generally, the memory bandwidth becomes saturated when the product of the prefetch
iteration count and the number of misses expected on an iteration, computed by summing the
expected miss rates of all memory references, exceeds the maximum concurrency of the memory
system. An additional component of the bandwidth requirements of a loop arises from writebacks
of dirty cache blocks. Given an estimate of the writeback rate associated with miss references, this
can be included in bandwidth estimates as well to yield the formula below.

PIC =] E m; * (1 4+ whayg)/mconc | 5-4

references

The final prefetch iteration count should be chosen as the minimum valued determined based on the
criteria above.

Klaiber performs an analysis similar to that above in [25]. He assumes an interface without flow
control for prefetches and thus develops an additional constraint to ensure that buffers for uninitiated
prefetch references are not overflowed. His analysis appears to ignore the situations described above
in which c-flat sets PIC to one due to miss-use pairs within an iteration.

5.3.6 Cache-block Based Optimizations

When cache misses are serviced a fixed-sized block of data which is typically larger than the data
size of a single memory reference is transferred to the cache. If a set of memory references occur
with a spatially dense address pattern, transfer of data in large blocks exploits this spatial locality
to improve performance by lowering the miss rate in comparison to that incurred if data for each
individual reference were transferred separately. Use of large cache blocks can be viewed as a form of
hardware prefetching. This hardware prefetching has the effect of lowering the miss rates of badref
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memory references, thus decreasing the relative benefits of software prefetching. Under some cir-
cumstances prefetching associated with cache blocks can be systematically exploited to decrease the
overhead of software prefetching. Two distincl optimization techniques can be applied correspond-
ing to situations in which the dynamic references which benefit from cache block transactions arise
from a set of distinct memory reference instructions or from the reexecution of the same memory
reference instruction.

An example of the first form of optimization arises in linked-list RAAD prefetching. On successive
loop iterations, new multicomponent data structures are accessed. Components of a particular
structure comprise a dense sct of memory locations. In order to prefetch all components it is
only necessary to perforin prefetches for the set of cache blocks coutaining the components, as
opposed to prefetches for each individual component. Consider a data structure consisting of 5
4-byte components. Assume a cache block size of 8 bytes. As illu=trated in Figure 5-3 this structure
has two possible alignments with respect to cache block boundaries and in each case spans 3 cache
blocks. It is quite possible that different memory references miss depending on the two possible
alignments of the structure, producing 5 badref memory references with average miss rates of about
0.6. All misses associated with a single data structure can always be eliminated by adding only 3
prefetches, however, one for each cache block in which the structure is contained.

1
]

-

|
|

|
|

Figure 5-3: Block Alignments of 5 word Data Structure

The algorithm below produces a minimum set of prefetch addresses to cover a dense interval of
addresses characterized by a lower bound address, LB, an upper bound address UB and given a
cache block size of b. It uses a scrics of addresses starting at LB and spaced by b, terminating when
a component of the series exceeds UB. If the series does not include UB then an additional prefetch
for UB is added. This algorithm makes no assumptions about the alignment of LB with respect to
cache block boundaries. If LB is known to be cache block aligned then the final prefetch to UB in
the algorithm below can be climinated if the loop terminates with address not equal to UB.

address = LB

while (address < UB)
prefetch address
address = address + b

prefetch UB

Optimization of prefetches for dense address regions is employed by c-flat in linked-list RAAD
prefetching. Whenever the number of distinct badref instructions associated with a data structure
exceeds the number of prefetches required to cover the address interval associated with those refer-
ences prefetches are generated based on the algorithm above. Array and indirection array RAADs
could also benefit. from this technique when array clements are aggregate data structures rather than
scalar values but c-flat does not currently attempt to apply this optimization to these cases.
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The second form of cache block optimization can be applied when references satisfied by a single
cache block arise from successive executions of a single badref instruction in a loop. In order to avoid
overhead, it would be desirable to omit prefetch instructions from some loop iterations. This can be
accomplished if the loop is unrolled. If the stride of a reference is less than half the cache block size,
overhead can be avoided by unrolling. Compute an integer i as the cache block size divided by the
reference stride, rounded down. After i-way unrolling is applied to the loop only a single prefetch is
required per iteration to cover all misses.

One must be careful in choosing the address for the remaining prefetch, however. Consider the
example below. The stride is 4, the cache block size is 8 and the original prefetch iteration count is
2. The first code fragment shows an array reference, assumed to be a badref. Code resulting from
application of the normal array RAAD schema is adjacent to the original.

1d [rpl, rt (Load 1) 1d [rpl,rt (Load 1)
add rp,4,rp pref [rp+8],rt (Pref 1)
ce add rp,4,rp

Since the block size is at least half the stride the loop unrolling technique can be applied, resulting
in the following code.

1d [rpl, rt (Load 1a) 14 [rpl,rt (Load 1a)
add rp,4,rp pref [rp+8],rt (Pref 1a)
add rp,4,rp

1@ [rpl, rt (Load 1b) 14 {rpl,rt (Load 1b)

add rp,4,rp {(Pref 1b omitted)
. add rp,4,rp

Under ideal circumstances, specifically when the address used by Load 1 is aligned to a cache block
boundary in the initial loop iteration, the code works as desired. In this case in the unrolled code
the reference Load 1a is a badref and Load 1b is a goodref. Pref 1a accesses addresses needed by
successive occurances of badref Load 1a.

Under improper alignment the code does not achieve the desired performance result. If the address
used by Load 1 in the initial loop iteration is not cache block aligned then in the unrolled code Load
ib rather than Load 1ais the resulting badref. Pref 1a still serves to initiate cache misses but data
from these blocks is now needed by Load 1b rather than Load 1a. As a consequence, the original
degree of latency tolerance desired is not achieved.

This problem can be avoided by situating prefetch instructions adjacent to the first corresponding
memory reference in the unrolled loop but increasing the PIC value used for the prefetch. If the
FPIC value is increased by ¢ — 1, one less than the unrolling factor, then the originally desired level of
latency tolerance is maintained in spite of potential cache block misalignment. This can be viewed
equivalently as using a prefetch address corresponding to the final unrolled prefetch, Pref 1bin the
example above, but situating the prefetch at the site of the first unrolled prefetch, Pref 1a above.

While the technique above can be applied regardless of whether the stride of the badref is a factor
of the cache block size, a more complicated technique can be applied to further eliminate overhead
if the stride is not a factor of the block size and can be used whenever the stride is smaller than the
block size.
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Identify the maximum common factor of the stride and block size. Denote this by f. Compute a
value i by dividing the block size by f. Thus for instance, with a stride of 6 and a block size of 8, ¢
would be 4 since 6 and 8 have a common factor of 2. Unroll the loop i ways. The number of distinct
cache blocks accessed during an iteration of the unrolled loop can be computed as the stride divided
by f. This is the number of prefetches which shouid be inserted into an iteration of the unrolled

loop.

Notice that in unrolling a loop a single memory reference instruction generating a dense set of
addresses is transformed into an ensemble of distinct instructions generating these addresses. Treat-
ment of groups of references in unrolled loops is similar to the treatment of groups of references asso-
ciated with structures described previously. One relevant difference is that if unrolling as described
above is applied, references maintain a fixed relationship with respect to cache block boundaries. As
a consequence, the final upper bound prefetch used in the structure algorithm can be omitted. As
with the first loop unrolling technique the prefetch iteration count must be conservatively adjusted
to account for initial misalignment with respect to cache block boundaries.

Neither of these unrolling optimizations is implemented in c-flat.

5.3.7 Prologue Prefetching

RAAD prefetching provides latency tolerance for misses occuring during the steady state execution
of loops. Additional transient misses are incurred during the first iteration or iterations. Two main
sources of transient misses exist. Instructions which access values with loop constant addresses may
produce a miss in the first loop iteration (or the first iteration in which the instruction is executed
if the loop has conditional behavior). After the initial miss, subsequent references resuit in hits.
The second form of transient misses occur because prefetch instructions for RAADs use addresses
for future iterations with addresses advanced by the prefetch iteration count. Occurances of badrefs
in the first iteration have no corresponding prefetch. In fact no prefetches occur for any badref
instances in the first PIC iterations. For both of these classes of misses latencies can be overlapped
by adding loop prologue code with extra prefetches.

References with loop constant addresses can be identified relatively easily using dataflow analysis.
Within the framework of c-flat these references have an address computation which does not have
any SCCs. Based on measured reference miss rates and average loop iteratica counts it is possible to
determine fairly accurately whether a loop constant address experiences initial iteration misses. If
the miss rate is approximately equal to the inverse of the average traversal count of the corresponding
loop a miss occuring on each initial iteration is the likely cause of this behavior.

Prologue prefetching for references with loop-constant addresses can be beneficiaily applied even if
the reference has a relatively low miss rate. The cost of prefetching is not incurred on each execution
of the reference. It is incurred only once each time the loop is executed which is equivalent to
the expected frequency of the corresponding miss. Software overhead instructions associated with
prefetching have been localized to a region of code statically correlated with the occurance of misses.
In this case the correlation is with a region of code not actually including the memory reference
producing the miss.

Loop-based prefetching for RAADs can be viewed as constructing a software pipeline for memory
miss transactions. Software pipelining is a technique which exploits parallelism between successive
loop iterations to produce code which is tolerant to high latencies of individual instructions. Op-
erations logically associated with a single loop iteration are spread across several iterations. This
decouples the bandwidth of initiating loop iterations from the latency of the loop. Normally, when
applying software pipelining to a loop, prologue and epilogue code are required to fill and drain the
software pipeline. Prologue and epilogue refer to added code produced by peeling loop iterations
from the beginning and end of the loop. In the software pipeline created by RAAD prefetching
the only code which has migrated across loop boundaries is prefetch code. Since this code is not
semantically signficant and is safe for speculative execution neither prologue nor epilogue code are
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strictly necessary. Transient misses associated with filling the software pipeline result when prologue
code is omitted. Generating appropriate prologue code avoids these misses. Prologue code consists
of one or more prefetch instructions for each RAAD badref. The number required is equal to the
prefetch iteration count. For array RAADs with small strides these addresses form a dense address
region which may be amenable to the optimization technique described earlier. Epilogue code would
consist of one or more loop iterations with no prefetch instructions.

C-flat can generate prologue code for both constant address references and software-pipelined RAAD
references. An additional form of prologue code is sometimes added for indirection-array RAADs
and linked-list RAADs. In the prefetch schemas associated with each of these reference types new
variables are introduced into loops. Sometimes the use of these variables within a loop precedes the
spot at which they are set. When this happens initialization code for these variables is also included
in the prologue. C-flat does not produce epilogue code. The consequence of this is that the final
iterations of the loop perform prefetch operations for potentially unused cache blocks.

5.4. RAAD Prefetching in Conditional Loops

Loops with conditionals may exhibit more complex memory reference behavior than simple loops
and as a consequence can often benefit from more sophisticated heuristic techniques. Conditional
behavior complicates RAAD prefetching strategy when either badref RAADs or the induction vari-
ables used to compute their addresses are treated asymmetrically on different paths through the
loop. This section describes modifications to the basic loop prefetching schemas introduced above
which are applicable under a variety of circumstances which may arise ir loops with conditionals.

Consider the following loop.

for (i=0; i<N; i++) {
if (x[i] > xmid)
y[il = x[i];
¥

Assuming that x and y are not initially cache resident, the reference to x in the conditional predicate
and the reference to y are both badref array RAADs. Direct application of the array RAAD schema
described above to each badref produces the following code.

for (i=0; i<N; i++) {
t = x[il;
prefetch(x[i+PIC]);
if (¢ < xmid) {
y[il = x[i];
prefetch(y[i+PIC]); }
¥

The syntax prefetch(variable reference) is intended to indicate code producing a prefetch
reference using the address of the argument suppied. PIC is the prefetch iteration count chosen for
the loop.

Suppose that the conditional is true half of the time and that the chosen value of PIC is 1. The
prefetch for x[i+PIC] behaves as desired because the badref reference to x[i] appears symmetri-
cally on all paths through the loop. Two extremes for the behavior of the prefetch for y[i+PIC]
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can be identified. It is possible that the iterations in which the predicate is true occur as a dense
set, for instance the first N/2 iterations. If this is true then each reference to y[i] has a correspond-
ing prefetch. Furthermore, the software overhead of prefetching is only incurred on the first N/2
iterations. Alternatively, it is possible that the predicate is true in alternating iterations, only the
even numbered iterations for instance. In this case every single reference to y[il] may still result
in a miss despite the addition of prefetches. Prefetches only occur in even iterations using prefetch
addresses targetting references in the odd iterations. Prefetches are never performed targetting the
y values which are actually referenced since these prefetches would need to occur in odd iterations
and are suppressed due to the conditional behavior. Choosing PIC to be 2 rather than 1 has optimal
performance in the case where the predicate is true on alternating iterations. No PIC value solves the
problem in general, however. For each value, the pattern consisting of alternating sequences of PIC
true values followed by PIC false values incurs the cost of prefetching while deriving no performance
benefit from the added instructions.

Consider another example.

while (i<N) {
z[i] = x[il+y[il;
if (z[i] > zmid)

i+=1;
else
i += 2;

References in the first line of the loop body are badref array RAADs and they occur symmetrically
on all paths through the loop. In this case the stride of these references is not a loop constant. Their
induction variable i and its corresponding SCC involve conditional behavior.

The result of applying the array RAAD prefetching schema is indicated below.

while (i<N) {

t1 = x[i];
prefetch(x[i+offset]);
t2 = yl[il;

prefetch(y[itoffset]);
z[i] = t1 + t2;
prefetch(z[i+offset]);
it (z[i]l > zmid)

i+=1;
else
i+= 2;
}

In this situation, the problem associated with applying prefetching is how to choose a value for the
prefetch offsets. Consider an alternating pattern of updates. The indices of array values referenced
are a sequence with every third value missing, such as 0,1, 3,4, 6,7, .... Consider the result of
prefetching using an offset chosen assuming a constant stride of 1 with a prefetch iteration count
of 1. Prefetches are generated for references 1 greater than the numbers in the sequence above, i.e.
1,2, 4,5, 7,8, .... Half of the prefetches generated occur for unused index values while half of the
used indices go unprefetched. The successful prefetches occur when the stride has been correctly
predicted. Consider the alternative of assuming a stride of 2. One might hope for better performance
in this case since given a string of references with stride 1 using a prefetch stride of 2 is equivalent



112

to using a prefetch iteration count of 2. Analysis of the sequence of addresses produced again shows
that half of the prefetches target unused addresses while half of the addresses go unprefetched. One
might instead try an adaptive strategy, in which the offset used corresponds to the most recent
stride. This strategy turns out to have even worse performance, targetting unused addresses with
all prefetches. For the particular pattern analyzed an adaptive strategy which chooses as an offset
the alternative to the current update turas out to be optimal. This strategy works because it always
predicts the next update correctly. In general, without some knowledge of the pattern in which
updates will occur an optimal pattern of prefetches cannot be determined.

The two examples above illustrate potential problems associated with direct application of simple
prefetch schemas to loops with conditionally executed badrefs or conditionally updated induction
variables. Situations involving more conditional paths can result in even more complicated behavior
arising from a mixture of the two cases or the repeated occurance of one or the other. The next
section describes a unifying observation which can help to unravel conditional behavior and produce
heuristic prefetch schemas with reasonable efficiency and likelihood of success. Prefetch schemas for
a variety of conditional patterns are presented, along with heuristic evaluation criteria to determine
whether prefetch code, if added, would help or hurt performance.

5.4.1 Conditional Strategy

Misses for RAAD badrefs within loops occur as a result of the intersection of two distinct events.
One of these events is the badref memory reference itself. The second is the modification of one or
more induction variables used to calculate the badref address. Without the first, no reference occurs
and thus no miss. Without the second an old address is reused. Strategies for RAAD prefetching
in conditional loops can exploit this observation by focusing on misses and the situations in which
both events necessary to produce misses can occur in conjunction.

A second relevant observation to conditional strategy is that prefetching overhead can be minimized
by adding prefetch code in the place where it is most highly correlated to the specific misses for
which it is targetted. It was observed in section 5.3.7 that constant address references within loops
which only miss on the first loop iteration could be prefetched with acceptable overhead, even if
the references have low miss rates, by situating prefetch code in a loop prologue. This prologue
is correlated on a one-to-one basis with execution of the first iteration of the loop and thus the
occurance of the misses. For badref RAADs in loops without conditionals all lcop iterations contain
both badref instructions and the induction variable updates which change their addresses. Every
loop iteration is correlated to the intersection of events necessary to produce a miss so prefetch code
can be added anywhere within the loop. In the non-conditional schemas it is added adjacent to the
badrefs since this often results in the minimum amount of overhead. In conditional loops it is often
possible to identify regions of code containing either a badref memory reference or more commonly
an induction variable update which are more highly correlated to the future misses of a particular
badref than other regions of code. When possible, prefetch code should be added in these regions.
When choosing between two regions which are equally correlated, prefetches should be added to the
code which is executed more frequently since this results in more successful prefetches.

5.4.2 Badref and IV Update on a Common Conditional Path

The simplest conditional construct to handle occurs when a badref and all of its associated induction
variable updates occur on a single common path or set of paths through a loop. The example below
illustrates this case.
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while (1) {
if (pred)
a = *p++;
else

,

Assume that dereferencing p produces a badref and that pred represents some loop-varying predicate.
The two events required for a RAAD miss, a memory reference and an induction variable update,
occur in the same path. Notice that these events do not occur in the same loop iteration. The
induction variable is modified in an iteration when pred is true and the memory reference incurring
the associated miss occurs in the next iteration in which pred is true again. Despite the fact that
these events do not occur in the same iteration, since they occur in the same region 6f code this region
is correlated to the potential misses produced by each IV update. As a consequence, application of
the prefetch schema for unconditional behavior produces appropriate code, illustrated below.

while (1) {
it (pred) {
a = *p;
prefetch(*(p+PIC));
ptt;
}

else

Prefetch code has been added in a location which is perfectly correlated with potential future misses.
As in the unconditional case, overhead is incurred for each execution of the badref instruction while
benefit accrues for each miss. The test determining whether such a prefetch is beneficial is equivalent
to that for the unconditional case. If O is the number of overhead instructions which must be added
to produce a prefetch, mlat is the memory latency parameter and m is the miss rate of the badref,
the prefetch improves performance when the following relation is true.

Ox*1/mlat < m (5-5)

5.4.3 Conditionally Executed Badref with Uncenditional IV Update

This case corresponds to the situation illustrated in the first example in the section. A badref is
situated on a conditional path but induction variables used in its address computation are updated
every iteration of the loop. Another example of this case is repeated below.

whils (1) {
if (pred)
a = *p;

pH;

}
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Assume that the dereference of p is a badref. Induction variable updates incrementing p occur on
every iteration. The intersection of an update and reference occurs whenever the predicate is true.
The miss associated with this intersection is the one for the current execution of the badref. RAAD
prefetching is concerned with misses for future iterations, not current iterations. Without knowledge
of the behavior of successive predicate values one might choose to model successive predicate values
as being independent of each other. Assuming independence of predicate values across iterations all
regions of code are equally correlated to future misses.

Assume that the probability of the predicate being true on any iteration is Ppreq and that successive
predicate values are indeed independent. If a prefetch is added for some future iteration it will be
beneficial when the predicate is true in the target iteration, occurring with probability Ppreq, and
the badref instance in that iteration produces a miss, occuring with probability m. The expected
benefit of such a prefetch is

E[Benefit] = mlat % Ppreq * m (5-16)

For a prefetch requiring O cycles of software overhead, benefit outweighs cost when the following
relationship holds.

Ox+1/mlat *1/Pyreqg<m (B5-1)

Prefetch instructions can be added in one of three code regions. They can be added to one of the
arms of the conditional or to the code outside the conditional. A prefetch is only added when it is
expected to be beneficial based on the formula above. The aggregate benefit of a prefetch for all
iterations depends on the product of the average benefit per execution and the totai number of times
the prefetch is executed. If overheads are equal under the three possible placements the prefetch
should be placed where it is executed most frequently, i.e. in an uncondtionally executed region of
the code. C-flat achieves this placement by adding the prefetch after the induction variable update.
If overhead varies with different prefetch placement choices, an aggregate cost benefit analysis can
be used to determine where to place prefetches.

while (1) {
if (pred)
a = *p;

pH+;

prefetch(*(p+PIC-1));
}

Code with an unconditionally executed prefetch appears above. Since the prefetch occurs after
update of the corresponding induction variable the desired prefetch iteration count is modified to
account for this.

As indicated by Equation 5-7, under various forms of conditional behavior, the benefit of prefetching
may be dependent on the frequency of execution of various code blocks. C-flat uses basic block
execution profiles, gathered simultaneously with memory reference behavioral profiles, to estimate
the probabilities in heuristic tests such as this.
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5.4.4 Conditionally Updated IV: Single Update

A conditionally updated IV with a single update refers to an induction variable which is updated
identically on one or more loop paths and not updated on others. The code below illustrates a
badref with an address computed from a single update conditional IV.

while (1) {
a = *p;

if (pred)
p++;

Induction variable updates occur less frequently than memory references. Each IV update results
in a potential miss. Memory references in iterations not preceded by an update cannot produce
misses. Thus future misses are more highly correlated with induction variable updates than with
the memory references themselves. As a consequence it is advantageous to add prefetch code within
the conditional in which the induction variable is updated.

while (1) {
a = ¥p;
if (pred) {
pH+;
prefetch(*(p+PIC-1));
}
}

In the code above, each miss associated with dereferencing p has a corresponding prefetch. The
aggregate benefit of the transformation is the product of the memory latency and total number of
misses incurred by the badref. The cost of prefetching is only incurred on iterations in which an
update occurs. Assume this represents a fraction of iterations Ppr.q. Prefetching is benefical when
the benefit exceeds the cost or

M +mlat > E %O * Pprea (5-8)

where M is the aggregate number of misses associated with the badref and E is the aggregate
number of loop iterations. Since M divided by E is the miss rate of the badref the relation above is
equivalent to the following relation.

O*1/mlat * Pprea<m (5-9)

Notice that this relation, corresponding to unconditional badref execution and conditional induction
variable update, allows beneficial prefetching for references with lower miss rates than its uncondi-
tional equivalent. In contrast, when a badref reference occurs conditionally and its induction variable
update occurs unconditionally a higher miss rate is required than the unconditional case.
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5.4.5 Conditionally Updated IV: Multiple Updates

Conditionally updated induction variables with multiple updates are IVs with rnore than one distinct
non-trivial update, i.e. more than one update in which the next IV value differs from the current
value. The second example analyzed at the beginning of this section contains a conditional IV with
multiple updates, as does the example shown below.

while (1) {
a = *p;
if (pred)
ptt;
else
p+:2;
}

In code with multiple IV updates a prefetch address calculated using some assumed stride may not
correspond to an address which is ever used in a memory reference. This can occur when the actual
update differs from the assumed update. The expected benefit of prefetches can be discounted to
reflect the possibility that an incorrect assumption has been used.

Assume in the above code that the predicate is true with probability Ppreq. If a prefetch with an
iteration count of 1 is added using an offset computed based on the assumption that the predicate is
true this prefetch has a probability of at least Pycq of targetting an address which is used. Similarly,
if a prefetch is generated based on the assumption that pred is false, this prefetch has a probability
of at least 1 — Ppreq of targetting an address which is used. The benefit of adding each of these
potential prefetches can be calculated independently and either one, none or both can be added to
the code.

Unconditionally executed prefetches for unconditionally executed memory references with condi-
tional IV behavior can be evaluated using the following heuristic test.

O % 1/mlat < m* Pypq (5-10)

Here P,pq refers to the probability that the update assumed in the prefetch offset will be used in
any given loop iteration.

For a suitable value of Pprcq, it might be determined that prefetches based on both offsets could
profitably be added to the code in the example above. This would produce the resulting code.

while (1) {
a = *p;
prefetch(*(p+1));
prefetch(*(p+2));
if (pred)
pt++;
else
P +=2;
}

The analysis described above is not exact. Cache blocks larger than the unit of data accessed
by memory references may allow prefetches to be beneficial even if they do not directly target an
accessed memory location. A prefetch is beneficial whenever it targets a non-resident cache block



117

which contains an accessed memory location. As a consequence of this phenomenon, if strides based
on all possible updates are less than or equal to the cache block size, use of a single uniform stride
equal to the maximum stride is a suitable strategy. If strides based on some IV updates exceed the
cache block size while strides based on other updaies are smaller, ignoring the effect of cache block
size leads to a conservative estimate of the benefit of any individual prefetch. Additionally, given
multiple updates, if a smaller update stride is a factor of a larger update stride, prefetches based on
the larger update may eliminate misses for addresses arising from a sequence of the smaller updates.
In this case the individual benefit of the larger update is underestimated. In the formula above the
aggregate benefit of avoiding latency for all misses is apportioned among the individual prefetch
options. If prefetches for all updates are added the aggregate benefit is accurately characterized
even though the benefit of any single prefetch is underestimated.

The simplified model also misrepresents prefetching cost when strides exceed the cache block size
and loops are bandwidth limited. In such cases, adding multiple prefetches increases the bandwidth
requirements of loops, impacting performance.

In c-flat these perturbations are ignored. In the rare case of IVs with multiple updates prefetches
for each offset are individually evaluated. Based on the test above they are either added to the code
or ignored.

Equation 5-10 above applies when the prefetch iteration count is 1. If a prefetch iteration count
greater than 1 is desired, assumptions must be made regarding the likelihood of a sequence of
updates. Rather than deal with the complexity associated with prefetch iteration counts exceeding
one, when multiple update IVs exist c-flat limits any such loop to have a prefetch iteration count of
1.

As a final note, the formulas above can be modified slightly when loop paths exist on which a multiply
updated IV is not changed. Adding prefetches at update sites avoids overhead on non-update paths.
This scales the cost of prefetching down by the probability that an iteration updates the IV, which
is the sum of the probabilities of all update paths.

Ox1/miatx( Y Pupai) <m* Pypa (5—11)

allupdates

In the formula above, Pypq is the probability of occurance of some particular update being considered
as a prefetch offset. 3 Pyupq i represents the sum of the probabilities of each distinct, non-trivial
update.

5.5. Loop Dependence Analysis

Addition of prefetch code based on a fault-safe prefetch instruction is not a semantically significant
program transformation. It does not have the potential to change the results of programs, only the
performance. Any compiler optimization worth its salt requires some form of dependence analysis
and latency tolerance optimization using explicit prefetch instructions is no exception. The goal of
dependence analysis for prefetch generation is to produce a good estimate of the values of addresses
for badref memory references. Because prefetch transformations are semantically safe, this estimate
does not need to be exact or even conservative. In fact, an approximate analysis algorithm which
ignores unlikely behavior is better than a conservative algorithm which models all possible behavior.
Unlikely behavior does not significantly impact average performance.

Prefetch dependence analysis must characterize the likely values of badref addresses. Dependencies
should be modelled in the address estimate when they are likely or certain to exist. They should
be ignored when they are possible but unlikely. In c-flat this value-based characterization takes the
form of an instruction level dataflow graph. The graph primarily reflects scalar flow dependencies.
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It does not include information about non-value dependencies such as antidependencies or output
dependencies. Additionally, loop carried flow dependencies for non-scalars are not modelled. Based
on an empirical analysis of code one observes that scalar dependencies largely account for the address
values of most memory references. In the case of indirection array RAADs it is possible that
ignoring loop-carried non-scalar dependencies might sometimes lead to inaccurate characterization
of addresses. This would occur when a loop carried flow dependence with a non-zero dependence
distance for the target loop existed for an array reference used in an indirection array address.
This dependence distance would also need to be less than or equal to the prefetch iteration count
for the loop. Under these circumstances, an indirection array element used in a prefetch address
computation could change between the prefetch and eventual reference. Were this to happen, an
unneeded block would be moved into the cache and a miss would go unprefetched. This combination
of circumstances seems relatively unlikely. (Terms used in this paragraph are defined in references
on non-scalar dependence analysis such as [61].)

In GCC and thus c-flat, programs are represented in a sequential format in which scalar dependencies
are carried through explicit temporary names. For prefetch generation, this format is transformed
into a dataflow graph in which dependencies are indicated with graph edges. The transformation
is accomplished by perferming a sequential scan through the code maintaining a table of the most
recent graph node to have changed a named value. Any use of a named value produces a graph edge
from the node in the appropriate table location to the node using the value. Any internal loops are
modelled within this graph as single nodes which modify all scalar values written in the internal
loop in an unpredictable way. A two-pass process is used in order to capture loop-carried scalar
dependencies leading to address SCCs. Traversal procedures which identify the addresses of badrefs
start at the badref and walk backwards through the dataflow graph identifying nodes participating
in the address computation. As a consequence, the actual graph generated corresponds to the
transpose of the dataflow graph, permitting easy traversal in this backward direction. Such a graph
is generated for each loop in a program.

When a loop contains conditionals which rejoin the loop more than one alternative path exists
through the loop. These alternate paths are modelled in a technique somewhat akin to trace schedul-
ing. Based con basic block profiling statistics a principle trace through the loop is identified. Graph
structure is built for this trace. At each control fork which rejoins the loop the tables used in graph
generation are saved. The saved tables are used to generate graph structure for the divergent traces.
When these traces rejoin the principle path no further structure is generated and in contrast to trace
based analysis for semantically significant transformations, dependencies are not recorded across the
rejoins.

Since dependencies are not explicitly represented across rejoins induction variable updates which are
not on the principle trace are not reflected in the resulting dataflow graph. In a subsequent pass, the
graph is modified to reflect this information when deemed useful. Strongly connected components
are identified on the principle trace and on other traces. These SCCs are used to construct a table
of induction variables. When SCCs on different traces update the same induction variable, either
resulting in equivalent or different updates, this information is maintained in the table. Finally, the
graph is modified when the principle trace has a reference to an induction variable which does not
have an SCC on the principle trace but does have an SCC on some side trace.

Heuristic prefetching techniques described above are applied based on the resulting trace-based
dataflow graph and induction variable tables. Address estimates based on this information are
not exact. Approximations result from inexact modelling of ron-scalar memory references and
ignoring dependencies at join points between side traces and the principle trace. Despite these
approximations, the analysis provides an adequate basis for loop-based prefetch optimization.

5.6. Sequential Miss Scheduling
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Loop-based RAAD prefetching is the frontline technique in c-flat used for latency tolerance trans-
formation. For a variety of reasons, loop-based prefetching may be inapplicable to the badrefs in
some region of code. When loop-based prefetching cannot be beneficially applied, an alternative
prefetching approach which attempts to schedule prefetch instructions for misses in sequences of
code is adopted. This technique will be referred to as sequential miss scheduling or simply miss
scheduling.

The most common reason that loop-based RAAD prefetching cannot be applied to a region of
code is that no loop can be identified. While most badrefs which can be profitably optimized with
prefetching are revisited through some form of looping behavior, not all control constructs which
lead to looping behavior are easily identifiable. Code revisitation may arise through procedure calls
inside of loops in different procedures, through various forms of self or mutually recursive procedure
call patterns or through the use of goto-typc control constructs in various Byzantine patterns. c-flat
does no interprocedural analysis for loop identification. If the process by which code is revisited is
not reflected within the procedure containing the code then loop heuristics cannot be applied. Loops
arising from complicated patterns of gotos may not be recognized, and again, loop heuristics cannot
be applied.

Sequential miss scheduling provides a fallback prefetching technique. In sequential miss scheduling
prefetch instructions are added to a sequence of code for each contained badref. If miss-invoking
prefetches can be scheduled in the code to precede their corresponding badrefs by a distance ex-
ceeding the memory latency then latency tolerance is achieved. RAAD prefetching can be viewed
as a variant of sequential miss scheduling specialized to be able to move the misses for occurances of
badrefs across loop iteration boundaries. When loops are not identified instead of performing miss
scheduling across loop iterations it is performed on linear sequences of code.

The simplest scheduling techniques do not move instructions across basic block boundaries. If
sequential miss scheduling were required to schedule prefetch code in the same block as a corre-
sponding badref instruction maximum latency tolerance would be limited by basic block sizes. As
seen in Chapter 4, it is frequently the case that insufficient parallelism exists in basic blocks for
tolerance to substantial miss latencies. Cross block scheduling of prefetch code is essential for tol-
erance to high memory latencies. Cross block miss scheduling is accomplished in c-flat using a
variant of trace scheduling. In trace scheduling, non-repeating sequences of basic blocks which are
frequently executed as a unit are identifed. Trace scheduling takes its name from these sequences
which are referred to as traces. Prefetch instructions are added into a trace for each badref encoun-
tered. Prefetches can be added anywhere on the trace, subject to a few constraints, in order to
separate misses adequately from their badrefs. Latency tolerance can be achieved when traces can
be constructed which are long in comparison to the memory latency.

Trace scheduling compilers such as that described in [6] utilize sophisticated trace selection heuristics.
Since trace-based miss scheduling is not the primary latency tolerance technique in c-flat a simple
trace selection method is chosen. A set of basic blocks is identified for miss scheduling. Such
a set might include an entire procedure containing no explicit loops or non-loop regions cf code
surrounding outer loops. Blocks from the set are ranked based on basic block profiling statistics.
Traces are generated by choosing a starting point and adding one block at a time to the trace
by choosing the highest ranked successor to the last block which is in the set of candidate blocks.
Blocks are removed from the set as they are added to a trace. Traces are started for blocks with
no predecessors in the initial set or blocks which are not added to the traces containing their
predecessors. If loops exist the blocks in these loops are not included in traces with non-loop
blocks. Resulting traces can be viewed as large basic blocks, long sets of instructions likely to occur
in sequence. Traces are processed with the dataflow graph generation algorithm used in RAAD
prefetching. Trace dataflow graphs are used to determine how address values are computed.

In conjunction with trace generation, dominator information as defined in [3], is computed for the
basic blocks submitted for miss scheduling.
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5.6.1 Sequential Miss Scheduling Algorithm

Miss scheduling for sequential code can be modelled as a process of merging two streams of in-
structions. One stream contains the original instructions. The second stream contains a prefetch
instruction for each badref in the original sequence in the order of appearance of the badrefs. If one
assumes that prefetches occur sufficiently soon in the final schedule with respect to their correspond-
ing badref instructions then each instruction in the original sequence can be modelled as consuming
a single cycle. Each prefetch instruction in the prefetch stream can be modelled as producing a miss.
Misses can be processed by the memory system with some fixed bandwidth. In c-flat this bandwidth
is parameterized with an intermiss submission latency, mbwlat. Each miss produced by the prefetch
stream consumes mbwlat cycles. If these two streams were independent an optimal schedule could
be produced by merging the streams in there original order using the following algorithm. Form
the output stream by adding one prefetch from the prefetch stream to produce a miss followed by
mbwlat — 1 instructions from the original stream to delay until the next miss can be processed by

the memory.

If the assumptions in the model above were always true the scheduling technique described would
be optimal. Several deviations from these assumptions which occur in practice are listed below.

1. The prefetch stream and original instruction stream are not independent. They
interact through the addresses required for prefetches and the need for prefetches
to precede their badrefs.

2. The original instruction stream is a trace, as opposed to a single sequence of code.
Thus the execution frequencies of instructions may vary within the original instruc-
tion stream.

3. All prefetches do not produce misses.

4. Bandwidth of real memory systems may not be accurately described by intersub-
mission latencies.

The scheduling technique used in c-flat is based roughly on the merging algorithm described above.
It takes a stream of prefetches, one for each badref in a trace, and merges them into the origi-
nal instruction stream of the trace with a spacing chosen based on memory bandwidth. It obeys
constraints imposed by the interaction of prefetch and instruction streams while permitiing only a
limited reordering in each stream. It is by no means optimal in general. In practice, due to the fact
that address computations tend to be fairly simple, interactions between the streams are limited.
As a consequence, the algorithm seems to perform reasonably well.

5.6.1.1 Address Interactions

Departures from the basic merge strategy occur due to interactions between the prefetch and in-
struction streams. The first source of interaction arises because prefetches need addresses which are
computed based on values formed by the instruction stream. C-flat uses a demand-driven schedul-
ing approach which moves computation required for address generation to the location chosen for a
prefetch. Instructions can be moved across block boundaries using two different techniques which
will be referred to as scheduling and copying. When instructions are moved across a basic block
boundary using scheduling the instructions are eliminated from their original basic block and added
without modification to the new basic block. When they are moved by copying, new temporary
storage is allocated for all temporary values produced. Copies of the original instructions which
have been modified to use the new temporary locations are added to the target block. The code in
the original basic block is left unchanged. In order to schedule a prefetch instruciion, all compu-
tation required for its address must be moved to the target site. Address computation is identified
by a traversal of the trace dataflow graph, starting at the badref. This traversal identifies needed
instructions which are moved either by scheduling or copying.
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Moving code by scheduling is a semantically significant operation. Copying, since it avoids mod-
ification of original program state, is not semantically significant. While copying can be applied
whenever it is deemed beneficial, scheduling can only be applied based on conservative dependence
analysis. Within a basic block the dataflow graph generated by c-flat for miss scheduling reflects
all necessary dependencies. Dependencies across blocks are not suitably modelled. Additional con-
straints are imposed by the miss scheduler in order to ensure that scheduling is applied only when
it is semantically legitimate to do so. Non-scalar or non-local data values are distinguished from
scalar local variables, arguments and compiler generated temporary values within GCC. In the con-
straints below the term memory reference refers to values which are non-scalar or not procedure
local. The following constraints are applied in order to ensure that scheduling does not change
program sermantics.

1. Memory store operations are never moved, either by scheduling or copying.

2. Memory loads are not moved across memory stores by scheduling. C-flat has no
mechanism to disambiguate these operations to verify their legitimacy.

3. Memory loads are only moved across memory stores by copying when a dependence
is deemed unlikely. Heuristics based on address computations determine when a
dependence is likely or unlikely.

4. Instructions are only scheduled into blocks which dominate their original block.

5. Instructions are only scheduled if all instructions upon which they transitively de-
pend are scheduled, as opposed to copied.

6. Instructions are only scheduled if they are the only instruction which produces a
particular named value.

7. Instructions are only scheduled if the value they produce is not live at the beginning
of their basic block.

The first three rules constrain the motion of undisambiguated values. The latter four insure that
flow dependencies, antidependercies and output dependencies are satisfied for code motions involv-
ing disambiguated values. Given the unsophisticated dependence analysis employed in generating
dataflow graphs, these added constraints guarantee that code motion using scheduling rather than
copying is valid.

Since memory loads are not moved across some memory stores and memory stores are never moved
it may be impossible to generate the address needed for some prefetch at its target location. The
prefetch, then, cannot be scheduled at this target. When this occurs the prefetch is added to a queue
and reconsidered at a later time when it may be eligible for scheduling. The queue is associated
with the memory store preventing scheduling. After the store is scheduled elements of the queue are
reconsidered.

Much as in RAAD prefetching, the benefit and cost of a particular prefetch can be assessed. The
cost can be assessed at 1 cycle for the prefetch instruction and additional cycles for any instructions
which must be copied, as opposed to being scheduled. It is possible that prefetch and address code
may be moved into a block executed more frequently than the block containing the corresponding
badref. In this case, the cost can be scaled appropriately based on the relative execution frequencies
of the blocks. Consider moving prefetch code consisting of S scheduled address instructions, C
copied address instructions and 1 prefetch instruction into a block executed with frequency fiarg
from a block with frequency fsr.. Assume the badref in the source block has a miss rate of m. If
fearg 1s at least as large as f,,., the prefetch is beneficial when the relation below is true.

(frarg * (1 + C) + (frarg — fore) ¥ S) ¥ 1/mlat <m (5 —12)
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If a prefetch fails the heuristic test above it is queued for reconsideration at a point in the trace
corresponding to a different basic block. In a different block the prefetching cost may be lessened

since C, S and fiqry may all change.

5.6.1.2 Miss Latency Interactions

The second form of interaction between the prefetch and instruction streams will be termed a
miss latency interaction. Prefetches are coupled to their corresponding badrefs by a constraint
on the minimum separation which should occur between the two instructions. Badrefs are ideally
scheduled at least miat cycles after prefetches. The merge scheduling procedure described above
exploits reverse parallelism as defined in Chapter 4 to produce this separation. If insufficient latency
tolerance is achieved, indicated by separation of less than mlat between a prefetch and badref,
instruction stream reordering can be used to delay the badref. This reordering exploits forward
parallelism.

In c-flat the original instruction stream is not reordered. When a badref occurs too soon after a
prefetch a series of additional prefetches are scheduled to fill available memory bandwidth and then
the badref is scheduled, incurring any remaining latency penalty. Since instruction rescheduling to
exploit forward parallelism is not performed the code generated by c-flat does not achieve maximal
latency tolerance. The scheduling algorithm does achieve good memory bandwidth utilization,
however, since it fills any potential bandwidth usage gaps which might occur in conjunction with
latency stalls.

5.7. Choice of RAAD Prefetching or Miss Scheduling for Loops

Under several circumstances, even if an explicit loop can be identified, application of miss scheduling
rather than RAAD prefetching may result in better performance. These circumstances involve loops
with a large number of badrefs.

In section 5.3.5 it was observed that under the prefetching model assumed in c-flat the cache performs
two functions, caching and buffering. For loops in which a single iteration produces a large number
of misses these functions may interfere with one another. When this occurs, RAAD prefetching is
likely to be ineffective at best and detrimental at worst.

Consider a loop which contains an inner loop nest which produces more misses than the total cache
size. Applying RAAD prefetching to badrefs in the outer loop will be ineffective since the prefetched
values will be replaced as a result of misses in the inner loops before they can be beneficially used.

“In this case, prefetching has added software overhead but produced no latency tolerance benefits.
Potentially even more harmful, it has increased the net memory bandwidth requirements of the pro-
gram by moving unused information into the cache. In the situation described the negative impact
of outer loop prefetching is likely to be small since the inner loops that replace prefetched data
probably account for the bulk of computation time. Nonetheless, there is no reason to apply “opti-
mizations” to programs that detract from their behavior if this can be avoided. RAAD prefetching
can be disabled with a heuristic test to avoid this behavior.

The loop described above can potentially benefit from miss scheduling. Given a sequential trace of
basic blocks starting at the end of the inner loop nest, proceeding across the loopback to the top of
the outer loop and terminating at the beginning of the inner loop nest, any miss scheduling on this
trace would be unaffected by the inner loop. In practice c-flat produces two separate traces, split at
loopback, although the single trace alternative would likely be more effective since miss scheduling
has the greatest opportunity for latency tolerance in long traces.

Just as inner loops can potentially result in replacement of buffered prefetch values if they occur
between prefetch and corresponding badref, so can procedure calls. Judging the cache performance
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of procedure calls requires some amount of interprocedural analysis. If the only interprocedural
information desired is an estimate of the average number of misses associated with a call, this
can be produced with minimal effort in a system which gathers memory performance statistics at
instruction level granularity. C-flat uses a preprocessor to coalesce gathered memory statistics into
an average miss tally for each procedure.

The number of misses associated with a loop including any misses resulting from inner loops and
procedure calls can be compared against a threshold based on cache size and associativity. When this
threshold is exceeded, miss scheduling should be applied to the loop rather than RAAD prefetching.
For caches with large associtivity, buffered prefetch data is primarily susceptible to capacity related
misses. Thus the threshold should be set at some large fraction of the cache size. For direct-mapped
caches collision misses will interfere with buffered prefetches so the threshold should be set at a
smaller fraction of the cache size.

The situations above could be characterized as caching interfering with buffering. Cache misses for
references not directly in the outer loop flush buffered data. For a loop with a large number of
badrefs buffering can interfere with caching. Under RAAD prefetching the cache buffers a block
of data for each prefetch added to a loop. If this buffer space represents a substantial fraction of
the cache space then the buffered data may replace useful data in the cache. Unfortunately, it is
much more difficult to detect this situation with a heuristic test. Buffering interferes with caching
when reused data which could be maintained within the cache across multiple loop iterations is
replaced to make room for prefetched data. The amount of this interference depends on the amount
of successfully cached data associated with a loop. This cannot be accurately estimated from the
dynamic miss statistics used in c-flat although it could be estimated using static analysis techniques.

In c-flat a single heuristic test is employed for loops with large numbers of badrefs and/or internal
misses. For high associativity caches the RAAD prefetching threshold is set at half the cache size
while for direct-mapped caches it is set at 10% of the cache size. These numbers have both been
chosen somewhat arbitrarily.

Another situation in which miss scheduling is likely to outperform RAAD prefetching occurs when a
loop contains a large number of badrefs relative to the average number of iterations associated with a
loop execution. For loops, the two forms of scheduling exhibit two different forms of pipeline fill and
drain overheads. RAAD prefetching incurs pipeline overhead on initial and final iterations of the
loop. The initial iteration incurs a miss for each badref. The final iteration contains prefetches for
potentially unused memory addresses. Prologue prefetching reduces the cost of initial iteration misses
if enabled. Unnecessary misses in the final iteration could be eliminated by performing loop peeling
to produce an epilogue with no prefetches, however, c-flat does not perform this transformation. As
a result of these added misses in the final iteration, RAAD prefetching has a pipeline drain cost
proportional to the number of badrefs. The benefit associated with these costs is that the memory
system can be actively processing misses during loopback.

As a result of scheduling misses for a sequential trace, miss scheduling produces code in which the
memory system is likely to be idle at the beginning and end of traces. In the context of loops the trace
is broken at the loopback edge. Due to this inability to overlap prefetching activity across loopback
edges, loops scheduled using miss scheduling have memory system pipeline fill costs in each loop
iteration proportional to the memory latency. Consider a memory bandwidth limited loop. Since
the memory system is idle under miss scheduling during loopback the latency of each loop is likely
to be extended by at least the difference between the memory latency and intersubmission latency,
mlat - mbwlat.

For memory bandwidth limited loops the cost of each strategy can be compared. Consider a loop
with I iterations. The RAAD version incurs a number of misses on each iteration approximately
equal to the sum of the miss rates of its badref memory references. Because of software pipelining,
these misses are incurred I + 1 times. In a bandwidth limited loop, the time to execute the loop
will be approximately the product of the total number of misses and mbwlat. The miss scheduled
version incurs the same number of misses each iteration but only I iterations worth. It has an added
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cost of approximately mlat — mbwlat in each iteration due to memory pipeline end effects. The two
costs are indicated below.

Costpaap = () m;)* mbuwlat * (I +1) (5-13)
badrefs
Costomiss = (( Z m;) * mbwlat + mlat — mbwlat) » I (5—-14)
badrefs

Dividing each equation by mbwlat and simplifying leads to the following condition for using RAAD
prefetching.

Z m; < I *(mconc — 1) (5-15)
badref

Notice that if mconc is 1, the right hand side is zero, suggesting that RAAD prefetching should never
be used. From a practical standpoint, the performance of miss scheduling has been overestimated. It
may well incur a per iteration cost differential of more than mlat - mbwlat. In c-flat, the differential
is assumed to be at least mlat, resulting in the modified formula below.

E m; < I * mconc (5—16)
badref

5.7.1 Optimal Loop Scheduling

For loops in which the number of badrefs exceeds the maximum memory system concurrency, mconc,
a prefetching technique which blends the techniques used in RAAD prefetching and miss scheduling
could be applied in order to avoid the pipeline costs associated with each. Mconc characterizes
the maximum number of miss transactions which can be pending at loop back. There is minimal
advantage to producing prefetch code which shifts more than mconc prefetches across loop iterations.
The only potential advantage is reduced software overhead when prefetches are directly adjacent to
their badrefs. Rather than RAAD prefetching, miss scheduling could be performed. The prefetch
stream merged into the loop code would consist of two sets of prefetches. Prefetches for all but the
first mconc badrefs in the loop produced using the standard miss scheduling technique would be
first in the prefetch stream. Following these prefetches would be mconc RAAD-based prefetches for
the first mconc badrefs in the loop produced using a PIC value of 1. In this scheme, a minimal
number of prefetches are shifted across loop boundaries, minimizing software pipelining overhead.
This technique has not been implemented in c-flat.

5.8. Summary

This chapter describes modelling, analysis and heuristic techniques applicable to memory latency
tolerant compilation primarily in the context of c-flat, the prototype latency tolerant compiler im-
plementation developed for this research. The first major problem in memory latency tolerant
compilation is modelling the behavior of static memory references. Based on the observation of
static locality correlation and badref behavior, the badref model, a compiler model in which static
references are partitioned into a goodref set modelled as hits and a badref set modelled as misses is
described.

One finds empirically that explicit or implicit loops provide a major source of frequently executed
badrefs. Tolerance to very high latencies is faciliated by a technique which allows miss latency
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to be overlapped with several loop iterations. RAAD prefetching, a technique related to software
pipelining, is developed as a means to achieve this overlap in scheduled code. Prefetching schemas
for a variety of RAAD data structures are described as well as heuristics for dealing with loops
involving conditional behavior.

A secord scheduling technique termed miss scheduling is also described. This technique is applicable
to code not containing identifiable loops. The technique merges prefetch instructions into a long
sequential trace of instructions, exploiting reverse parallelism. Heuristics are developed to govern
the choice between RAAD prefetching and miss scheduling when both are potentially applicable.
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Chapter 6

Compiler Results and Evaluation

Several types of experiments can be performed using c-flat. The process of compilation produces
structural information about programs and the static costs of latency tolerance optimizations. C-flat
must classify the misses in programs in order to identify an appropriate prefetching strategy. When
summarized in tabular form with dynamic memory behavior statistics this information serves to
identify the prevalence of various forms of badrefs within programs, both in terms of their static
frequency and their dynamic contributions to program references and misses. In addition to compiler
gathered information, code produced by c-flat can be run in conjunction with a memory timing
simulator in order to evaluate the real runtime performance of latency tolerant code. Benchmark
codes are tested using a variety of memory system parameters and processor models. This chapter
presents results gathered using c-flat.

6.1. Characterization of Badrefs

Each memory reference within a program is analyzed by c-flat. Based on a miss rate threshold,
references are classified as goodrefs and badrefs. Badrefs are further considered for prefetch op-
timization. Information about badrefs is stored into tables at two poirts during the compilation
process. Information is first stored when badrefs are recognized. At this point a high level cate-
gorization is performed, i.e. the reference is identified as an array RAAD, a linked-list RAAD, a
badref to be scheduled by miss scheduling, etc. Subsequently, upon actually performing prefetch
optimization, additional information is recorded. This additional information identifies the specific
prefetching strategy adopted for the reference and the estimated overhead measured in terms of
added instructions.

Badref thresholding and subsequent optimization strategies are dependent upon the memory param-
eters assumed during a compilation. As a consequence, the statistics gathered during a compilation
are also dependent upon this parameterization. The tables below categorize badrefs for each bench-
mark based on memory statistics gathered using the FA cache model and assuming a miss processing
latency of 20 cycles and a memory concurrency of 1.

. For each category of badref four statistics are presented. The first column, labelled Stat, is the
number of static references in the given category. The second and third columns, labelled Dyn
and Miss, are the number of dynamic references and misses arising from static references in the
category based on the memory performance data used during compilation. The final column, Ovhd,
is the dynamic weighted average prefetch overhead for the category. The dynamic weighted average
overhead is the sum of overheads for each individual reference in the category weighted by the
fractional contribution of the particular static reference towards the total dynamic references of the
category. This is an estimate of the expected average dynamic cost of prefetches in the category.

Rows in the tables are broken into 5 major categories. The first four categories are associated with
those badrefs arising in explicit loops for which loop prefetching techniques are considered. The
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categories include Array RAAD:s, Indirection Array RAADs, Linked-list RAADs and an additional
category for unrecognized references. Within each major category references are further partitioned
depending on whether they occur in loops without conditional behavior, labelled Norm, or loops
with conditional behavior, labelled Cond. Prologue prefetches for loop-constant address badrefs are
included as a special class of Array RAADs, labelled Prologue. Prefetches which are eliminated by
cost-benefit heuristics due to excessive overhead are tabulated in rows marked Unpref’d.

The final major category of rows includes all badrefs handled by miss scheduling. The row labelled
Short tallies those references for which the desired miss-use spacing based on memory latency is
not achieved. The following line, labelled Distance, indicates the miss weighted average distance
by which references fell short of the desired spacing. This number can be less than one. When the
spacing is not achieved a prefetch for another reference is moved to fill the gap if possible. If overhead
instructions for this jockeyed prefetch instruction exceed the shortfall the badref is still counted in
the short category but a 0 is averaged into the shortfall distance statistic. The weighted averaging
technique used to compute the shortfall distance statistic is based on dynamic misses rather than
dynamic references since shortfalls only effect performance in conjunction with misses. The shortfall
statistic only reflects those references tabulated in the Short column.

After rows associated with RAAD prefetching and miss scheduling there is a row labelled Tctal.
The total row indicates the total number of references for which some form of latency tolerance
optimization is actually performed and the fraction of dynamic references and misses impacted by
these optimizations.

doduc eqntott
Stat Dyn Miss Ovhd |[Stat Dyn Miss Ovhd
Array RAADs 207 0.0125 | 0.0534 36 0.7911 | 0.8178
Norm 172 0.0093 | 0.0323 1.19 17 0.0574 | 0.0516 1.02
Cond 22 0.0023 | 0.0201 1.00 13 0.7335 | 0.7660 1.00
Prologue 10 0.0007 | 0.0007 2.20 4 0.0001 | 0.0002 3.00
Unpref’d 0 0 0 1 0.0001 | 0.0000
Ind Arr RAAD 0 0 0 4 0.0002 | 0.0017
Norm 0 0 0 0.00 3 0.0001 | 0.0007 3.00
Cond 0 0 0 0.00 1 0.0001 | 0.0010 3.00
Unpref’d 0 0 0 0 0 0
Lnk-Lst RAAD 0 0 0 8 0.0005 | 0.0030
Norm 0 0 0 0.00 5 0.0003 | 0.0033 1.27
Cond 0 0 0 0.00 3 0.0001 0.0009 1.67
Unpref’d 0 0 0 0 0 0
Unrecognized 0 0 0 1 0.0000 | 0.0000
Miss Scheduled 668 0.0591 | 0.7325 2.44 42 0.0447 | 0.1526 1.75
Short 389 0.0328 | 0.4098 14 0.0290 | 0.0733
Distance 1.4931 0.0146
Unpref’d 0 0 0 0 0 0
Total 872 0.0714 | 0.7856 2.22 88 0.8363 | 0.9764 1.04

Table 6-1: Badref Categorization for Doduc and Eqntott

The data in Tables 6-1 to 6-4 can be used to evaluate the relevance and effectiveness of the RAAD
prefetching and miss scheduling techniques. Data in the Miss column indicates the number of misses
potentially avoided with a particular technique, indicating its benefit. Data in the Dyn and Ovhd
columns indicates the costs of a technique.

Based on miss coverage data, in three of the benchmarks, matrix300, nasa7 and tomcatv, array
RAAD prefetching, even if applied only to non-conditional loops, would be an adequate latency
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espresso fpppp
Stat Dyn Miss Ovhd |[[Stat Dyn Miss Ovhd
Array RAADs 161 | 0.0874 | 0.3845 22 0.0007 { 0.0053
Norm 91 0.0729 | 0.2564 1.09 12 0.0600 0.0001 1.83
Cond 40 | 0.0130 | 0.1269 1.02 6 0.0004 | 0.0049 1.99
Prologue 2 | 0.0000 | 0.0000 1.00 0 0 0 0.00
Unpref’d 6 | 0.0005 | 0.0005 1 0.0003 | 0.0006
Ind Arr RAAD 8 | 0.0001 0.0004 0 0 0
Norm 2 | 0.0000 | 0.0002 3.00 0 0 c 0.00
Cond 2 | 0.0000 | 0.0001 4.00 0 0 0 0.00
Unpref’d 4 | 0.0001 0.0001 0 0 0
Lnk-Lst RAAD 37 [ 0.0026 | 0.0103 0 0 0
Norm 13 | 0.0002 | 0.0067 2.19 0 0 0 0.00
Cond 24 [ 0.0008 | 0.0222 1.37 0 0 0 0.00
Unpref’d 0 0 0 0 0 0
Unrecognized 45 0.0030 0.0128 3 0.0012 0.0031
Miss Scheduled 250 | 0.0532 [ 0.4470 1.87 || 510 0.0660 | 0.6223 1.39
Short 84 | 0.0158 | 0.1541 144 0.0145 0.1203
Distance 0.0148 1.5666
Unpref’d 0 0 0 0 0 0
Total 424 | 0.1400 | 0.8596 1.38 || 528 0.0664 | 0.6272 1.40

Table 6-2: Badref Categorization for Espresso and Fpppp

matrix300 l nasa’?
Stat Dyn Miss Ovhd [[Stat Dyn Miss Ovhd
Array RAADs 7 | 0.2832 | 0.9868 235 0.2122 0.9145
Norm 7 | 0.2832 | 0.9868 2.50 || 232 0.2119 | 0.9132 1.81
Cond 0 0 0 0.00 2 0.0003 | 0.0013 1.00
Prologue 0 0 0 0.00 0 0 0 0.00
Unpref’d 0 0 0 0 0 0
Ind Arr RAAD 0 0 0 0 0 0
Norm 0 0 0 0.00 0 0 0 0.00
Cond 0 0 0 0.00 0 0 0 0.00
Unpref’d 0 0 0 0 0 0
Lnk-Lst RAAD 0 0 0 0 0 0
Norm 0 0 0 0.00 0 0 0 0.00
Cond 0 0 0 0.00 0 0 0 0.00
Unpref’d 0 0 0 0 0 0
Unrecognized 0 0 0 6 0.0000 | 0.0001
Miss Scheduled 10 | 0.0014 | 0.0049 1.33 23 0.0000 0.0002 2.65
Short 7 | 0.0009 | 0.0033 8 0.0000 | 9.0000
Distance 2.0017 4.8335
Unpref’d 0 0 0 0 0 0
Total 17 | 0.2846 | 0.9917 249 || 257 | 0.2122 | 0.9147 1.81

Table 6-3: Badref Categorization for Matrix300 and Nasa?

tolerance technique. In these benchmarks array RAADs in non-conditional loops account for over
90% of program misses. In another benchmark, eqntott, array RAADs account for over 80% of
misses. Although these RAADs occur in a conditional loop, they do not exhibit conditional behavior
and are handled by a straigtforward application of the array RAAD prefetech schema. Overall, these
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spice L tomcatv
Stat Dyn Miss Ovhd [Stat Dyn Miss Ovhd
Array RAADs 44 0.0165 | 0.0167 51 | 0.2144 | 0.9971
Norm 15 [ 0.0055 | 0.0166 1.12 47 | 0.2005 | 0.9327 1.52
Cond 8 | 0.0000 [ 0.0060 1.03 2 | 0.0138 | 0.0643 1.50
Prologue 5 | 0.0000 | 0.0000 2.00 2 | 0.0001 | 0.0001 2.00
Unpref’d 1 0.0000 0.0000 0 0 0
Ind Arr RAAD 2 | 0.0000 | 0.0000 0 0 0
Norm 0 0 0 0.00 0 0 0 0.00
Cond 2 | 0.0000 | 0.0000 3.50 0 0 0 0.00
Unpref’d 0 0 0 0 0 0
Lnk-Lst RAAD 0 0 0 0 0 0
Norm 0 0 0 0.00 0 0 0 0.00
Cond 0 0 0 0.60 0 0 0 0.00
Unpref’d 0 0 0 0 0 0
Unrecognized 24 0.0136 0.0564 0 0 0
Miss Scheduled 759 0.2575 | 0.7831 6.09 15 | 0.0000 | 0.0000 1.86
Short 249 | 0.1114 | 0.3158 12 | 0.0000 | 0.0000
Distance 0.0204 0.0127
Unpref’d i 0 0 0 0 0
Total 789 0.2629 | 0.7997 5.99 66 | 0.2144 | 0.9971 1.52

Table 6-4: Badref Categorization for Spice and Tomcatv

benchmarks achieved the highest level of miss coverage. The prevalance of misses in non-conditional
loops indicates very structured behavior. Structured behavior is most amenable to scheduling-based
latency tolerance techniques of which both RAAD prefetching and miss scheduling are examples.

Examining the categorization of individual RAAD references, it is clear that in the benchmarks
analyzed, indirection array RAADs and linked-list RAADs play a minimal role.

In another set of benchmarks, consisting of fpppp, spice and doduc, RAAD prefetching is of very
limited benefit. In these programs badrefs which are RAADs account for between 1 and 5% of
misses. Miss scheduling is able to cover 60 to 80% of misses. In the final benchmark, espresso,
roughly equal fractions of misses are covered by RAAD prefetching and miss scheduling. Based on
the fact that about half the benchmarks are handled by each technique one might argue that latency
tolerant compilers should support both techniques.

The data warrants some clarification on two points. First, this data probably underestimates the
fraction of references which might be identified as RAADs in a more aggressive compilation envi-
ronment. No form of interprocedural analysis is performed in c-flat. As a consequence, if a RAAD
is isolated from its loop by a procedure call it is not recognized. In a compiler which performed
interprocedural flow analysis one might apply loop-based prefetching across procedure boundaries
to generate prefetches for these hidden RAADs. Upon examination of fpppp and doduc, two of
the benchmarks for which miss scheduling is primarily utilized, one observes that many badrefs
are indeed array references in loops in which the array references are separated from the loops by
procedure boundaries.

Second, the number of references which can be optimized using miss scheduling is probably under-
estimated by the data. In c-flat a relatively stringent initial thresholding is applied to references
in order to qualify for miss scheduling. For the data presented, no reference with a miss rate less
than 20% is miss scheduled. This thresholding is applied in c-flat because of the way miss schedul-
ing models memory bandwidth consumption. In particular it assumes that each badref consumes
bandwidth for a miss transaction, irrespective of the miss rate of the badref. Separation between
prefetches is determined based on bandwidth utilization so performance can be adversely impacted
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by grossly overestimating the bandwidth requirements of badref references. By relaxing the miss
rate threshold, perhaps in conjunction with the use of 2 more sophisticated bandwidth consumption
model for badrefs with relatively low miss rates, miss scheduling could achieve better miss ~overage.

While miss data measures potential prefetching benefit, dynamic reference data and overhead esti-
mates can be used to assess the costs of prefetching. In seven of the benchmarks prefetched references
account for between about 7 and 30% of dynamic references. Differentiated treatment of badrefs
and goodrefs has eliminated a substantial amount of unnecessary overhead by ignoring from 70 to
90% of references. In one case, eqntott, prefetched references account for over 80% of dynamic
references. In this benchmark, two particular static references in a loop produce about 70% of the
dynamic references and 75% of the misses. Given the miss threshold chosen for badref partitioning
these references are both identified as badrefs. As a consequence, in this benchmark the badref set
accounts for over 80% of dynamic references. Only 20% of references are considered goodrefs. One
of the two primary static references just barely exceeds the badref miss rate threshold. For a latency
of 20 the threshold is 5%. The two references exhibit miss rates of about 6 and 20%. If the threshold
were moved slightly the lower miss rate reference would be classified as a goodref, decreasing the
miss coverage by 18% but excluding an additional 36% of references from overhead. This marginal
prefetch is only added because it has an overhead of one instruction and thus is deemed slightly
beneficial. At an overhead of two it would be rejected.

Estimated overhead costs for prefetching are also included in the tables. Overheads for both array
RAAD prefetching and miss scheduling typically fall between about 1.5 and 2.5 instructions, in-
cluding the prefetch instruction. In general RAAD prefetching involves slightly lower overhead than
miss scheduling although there a few exceptions to this rule. The highest array RAAD overhead
ocurs for matrix300. Matrix300 has loops with non-constant, loop-constant strides. Code generated
by c-flat in this case could be improved by one instruction per prefetch by additional loop-constant
optimization.

An additional noteworthy statistic is the overhead due to miss scheduling in spice. In this benchmark
the average miss scheduling overhead is about six instructions. Costs of moving instructions across
basic block boundaries exceed those for intrablock scheduling due to increased copying for address
computation instructions. Two of the benchmarks which extensively used miss scheduling, doduc
and fpppp, had a prevalence of very large basic blocks. These benchmarks exhibit the lowest average
miss scheduling overheads. In the case of spice substantial code motion across blocks has lead to
a very large average overhead fcr miss scheduling. C-flat has fairly primitive dataflow analysis and
must be conservative in copying code for cross block miss scheduling. It is quite likely that overhead
in spice could be lessened given better dataflow analysis.

The final statistics of interest in the tables are the fractions of miss scheduled references for which
the desired miss-use gap is not achieved and the average shortfall distances for these references. In
the four benchmarks in which miss scheduling is significant, scheduling exceeds the desired miss-use
gap for the majority of badrefs. The shortfall distance, which is computed only for badrefs in the
Short row, is also relatively small. The worst case for miss-use shortfall is doduc in which about
60% of misses experience shortfalls averaging about 1.5 instructions.

6.2. Optimized Code Size

An additional static statistic which can be measured is the fractional increase in code size associated
with prefetching. This information is presented in tabular form below for compilations based on the
FA cache model for three different memory performance parameterizations.
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Relative Code Size
Benchmark 20 10 20 20 160 20
doduc 1.06 1.06 1.15
eqntott 1.05 1.04 1.07
€espresso 1.03 1.03 1.05
fpppp 1.07 1.06 1.09
matrix300 1.09 1.09 1.10
nasa7 1.06 1.06 1.06
spice 1.03
tomcatv 1.30 1.30 1.33

Table 6-5: Fractional Increase in Optimized Code Size

Code size variation is relatively undramatic in most cases, typically measuring between 5 and 10%.

In one benchmark, tomcatv, code expansion is somewht more pronounced. This can be traced
primarily to poor generation of prologue prefetch code. In order to avoid misses in initial loop
iterations c-flat can emit a prologue which performs these prefetches. It generates poor code for
loops with a large number of badref array references in which the initial index variable value is not
zero. It duplicates the scaling of this index variable in each individual prologue prefetch computation.
In the case of tomcatv this results in a substantial amount of code. The unusually large increase
in code size for tomcatv can be avoided by either suppressing prologue code generation, (an option
available under c-flat), or subjecting this code to a common subexpression elimination pass. By
suppressing prologue code generation the optimized code is only 8% larger than the unmodified
code, in comparison to the 30% increase reported in the table. The number in the table is an
artifact of the prototype compiler.

6.3. Dynamic Performance

Code produced by c-flat is executed in conjunction with a timing simulator in order to measure
the dynamic performance of the compiled code. Tiie performance of latency tolerance techniques is
impacted by more than just cache hit rate. Prefetched blocks may be used by a required reference
before they arrive in the cache, resulting in a stall. Similarly, miss processing traffic generated by
prefetches may result in delays for miss processing of non-prefetched references. A detailed timing
model for processor/memory interface behavior is used in order to assess the performance of software
latency tolerance through prefetching in the presence of these effects.

6.3.1 Processor and Interface Models

Two distinct processor models are simulated. The models are referred to as the Stall model and the
Interlock model. The primary difference between these two models from the standpoint of memory
latency tolerance is in the behavior of the processor/memory system interfaces.

The Stall model assumes all forms of processor/memory synchronization and flow control are
achieved through immediate stalls. If a load or store operation cannot be serviced by a cache
hit a stall occurs for the duration of miss processing. This effectively ensures that all memory ref-
erences have an apparent latency with respect to the processor of a single cycle, avoiding the need
for further synchronization. No addtional form of flow control is required between the processor
and memory system for loads or stores under the Stall model because a new transaction cannot be
initiated while an old transaction is pending.

Under the Stall model prefetch operations are assumed to be buffered within the cache. The size
of this buffer is parameterized in the timing simulations. In the data presented the size is set to
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one more than the memory concurrency. Thus at any time one uninitiated prefetch request can be
buffered by the cache. Since prefetch operations do not return data to the processor no form of data
synchronization is required for prefetches. Prefetch operations are flow controlled. If a prefetch is
attempted by the processor when the prefetch buffer is full a stall results until a buffer slot becomes
available.

The Interlock model uses explicit mechanisms for all processor/memory synchronization. The
model assumes that registers within the processor have scoreboard information or full/empty bits
specifying their availability. When a load operation is initiated the target register becomes un-
available. Upon receipt of the appropriate data from the memory the register becomes available.
Synchronization related stalls are not incurred until a loaded value is actually used in a subsequent
instruction. Since write operations do not return values to the processor they are not subject to
these forms of stalls. Both load and store operations are buffered by the cache just as prefetch
operations are buffered in the Stall model. Flow control stalls occur if a memory request would
result in buffer overflow. Prefetch references are similarly buffered in the Interlock model

In order to simulate load synchronization stalls in the Interlock model each miss reference is tagged
with timestamps identifying the time at which a memory transaction for the miss is initiated and the
time at which the value is ultimately used by the processor. The use time is updated to reflect any
stalls which intervene between instruction issue and use. After all intervening stalls have occurred
the separation between transaction initiation and use can be compared with the memory latency to
determine if use of the data produces a stall. This same timestamp mechanism is used to determine
whether prefetched data arrives in the cache soon enough to avoid stalls for subsequent hits on the
data.

The Interlock model assumes that the processor/memory interface supports multiple transactions
through an explicit tagging scheme. An arbitrary number of load and store operations can be
simultaneously active at the interface. This is subject only to buffer size limitations for uninitiated
transactions within the cache and also to the constraint that only one load per register may be active
simultaneously.

The Interlock model provides a suitable mechanism for memory latency tolerance without a prefetch
instruction since all load operations are non-blocking and the interface supports multiple outstanding
requests. C-flat does not directly target this mechanism so an explicit prefetch instruction is included
as part of the model as well. The prefetch instruction is buffered and flow-controlled. Two separate
buffers are modelled in the Interlock memory system, one for uninitiated prefetch operations and
one for uninitiated required references, i.e. loads and stores. Required references receive priority for
miss processing bandwidth. If a buffered, uninitiated prefetch is the target of a required reference
the status of the reference is changed from prefetch to non-prefetch and it is moved between buffers.
Cache write-back operations arising from either prefetch or non-prefetch references are treated as
required references and added to the required reference buffer, consuming a buffer slot. In the
data presented in this section the Interlock model uses buffer capacities allowing one urinitiated
reference each of required and prefetch references to be buffered.

The Stall and Interlock models were designed to reflect two extremes in terms of the flexibility
with which a processor and memory system might interact. The processor/memory interface in
the stall model limits the number of outstanding required transactions to one and has no explicit
means of synchronization other than stalls. The interface in the Interlock model provides explicit
synchronization mechanisms and allows an arbitrary number of outstanding required transactions.

6.3.2 Memory System Modelling

The memory system underlying either interface uses a fairly simple model. This model corresponds
exactly with the model assumed within c-flat, namely an asynchronous pipeline with a processing
latency, mlat, and a minimum intersubmission latency, mbwliat. Transactions are completed a
fixed time after they are initiated, characterized by mlat. After transaction initiation, no further
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transactions can be started for at least the intersubmission latency, mbwlat. After this time has
elapsed a transaction can be started at any time.

6.3.3 Time Accounting

Runtime in the simulation environment is partitioned into three distinct categories: instructions,
latency stalls and bandwidth stalls. Each simulated cycle is charged to one of these three
categories.

Instructions, as implied by the name, correspond to cycles on which new instructions are issued.
Based on the definition of a cycle as the inverse of the maximum instruction issue bandwidth at
most one instruction can issue in a cycle. The total number of instruction cycles is exactly equal to
the total number of instructions executed and represents a lower bound on the total execution time.

Cycles on which instructions are not issued are stalls. Stalls can arise in the timing model for two
different types of reasons and are subclassified as latency stalls and bandwidth stalls. Latency
stalls arise when a processor is forced to wait for the completion of a required memory transaction.
Bandwidth stalls occur when a processor must wait to initiate a transaction due to some previously
initiated transaction.

In the Stall model there are two sources of latency stalls and in the Interlock model there is one
source. In the stall model a latency stall occurs for any required memory reference, either a load
or store, which cannot be immediately serviced with a cache hit. In this model, required misses
result in a stall at least as long as the memory latency. The stall can exceed the memory latency if
transactions due to prefetches or writebacks are pending. Stall cycles beyond the miss latency occur
when the intersubmission interval has not passed since initiation of the most recent transaction.
Latency stalls can similarly be incurred for required references which experience hits on blocks for
which a prefetch transaction is pending but not completed. In this case the stall is equal to the
time remaining before the completion of the prefetch-initiated miss transaction. Latency stalls in
the Interlock model are only incurred when loaded data is accessed. A stall occurs when the time
at which a value is accessed precedes its arrival time in the processor. The stall experienced upon
using a value in the Interlock model can vary from a a single cycle to a number in excess of the
memory latency. (For both the Stall and Interlock models the maximum stall for any instruction
is bounded by the sum of miat and the preduct of mbwlat and the number of previous transactions
which may be buffered externally to the processor.) Under either model if a stall classified as a
latency siall exceeds mlat, the miss processing latency, that component of the stall beyond mlat is
counted as a bandwidth stall rather than a latency stall.

Bandwidth stalls occur when one reference is delayed by another due to memory bandwidth lim-
itations. When a latency stall exceeds mlat that component above mlat has occurred because of
bandwidth limitations. Flow control stalls are also counted as bandwidth stalls. Flow control stalls
arise when a reference cannot be issued because its associated buffer is full.

6.3.4 Performance Results

Simulated runtime experiments have been performed for a variety of memory system configurations.
The experiments investigate three combinations of latency and bandwidth parameters. Memory
systems will be identified using a combination of their values for the parameters miat and mbwlat
with mlat appearing first. The baseline system is 20/20, i.e. it has a value of 20 for each parameter.
Also measured are 20/10 and 160/20. The first alternative configuration halves the value of mbwlat,
thus doubling the memory system concurrency and bandwidth. This bandwidth increase occurs
at latency equivalent to the baseline. The second alternative increases mlat by a factor of 8 at a
constant value of mbwlat. The 160/20 model thus has a memory concurrency of 8. Each benchmark
is simulated using both the FA and DM cache models. Since memory system performance is
characterized in terms of the latency for transactions moving a block of data and the block size
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differs between the FA and DM cache models, the underlying memory bandwidth also differs
between the models for the same simulation parameters. The DM model, with a blocksize twice
that of the FA model, has twice the bandwidth for a given memory parameterization.

The process by which simulated runtime data is produced warrants review. Benchmarks are ini-
tially compiled and run for sample input data. This run is coupled with a cache simulation using
the eventual target cache model. The simulation produces the dynamic memory performance statis-
tics used by c-flat for latency tolerance optimization. A second compilation is performed. This
compilation uses the simulated memory statistics and also receives a parameterized estimate of the
memory system corresponding to the eventual parameters. Thus for each benchmark six different
optimized versions are produced, corresponding to the two different cache models and the three
different memory system configurations. The optimized versions of the code are then run using the
timing simulation. The data used for the eventual timing is the same as the sample data. The
benchmark espresso has four different input data sets. Memory statistics for the second compilation
pass are attained by averaging the four cases and the reported runtime performance is the sum of
the four cases.

The figures below show graphs of performance data for the benchmarks. Color-coded columns
indicate the runtime of various versions of the program decomposed into the three components:
instructions, bandwidth stalls and latency stalls. Columns are marked with the following labels.

B represents a baseline column. A basline column indicates the performance of un-
modified code for some processor/cache/memory system configuration.

P represents a prefetch column. These columns show the performance of optimized
code generated by c-flat for a given configuration.

Min is a statistic derived from baseline data. It represents a lower limit on the runtime
achievable through the latency tolerance optimizations employed by c-flat. Prefetch-
ing optimizations in c-flat do not decrease either the total instruction count of the
benchmark or the aggregate traffic between memory and cache. Two lower bounds
on time can be computed. The first is the total number of instructions in the
unoptimized code representing a lower bound on processor time. The second is a
consequence of memory bandwidth. The product of the memory intersubmission
delay for the memory system, mbwlat, and the total number of cache misses and
writebacks in the unoptimized case represents a lower bound on memory time. Min
represents the maximum of these two performance lower bounds and is color-coded
to indicate whether it is an instruction or memory bandwidth bound.

6.3.4.1 FA Data

Data in the following figures is based on the FA model. All columns are scaled relative to the Min
value for the 20/20 memory system.

Speedups computed as the ratio of basline performance to prefetch optimized performance are sum-
marized in Table 6-6.

Under the Stall model using the baseline 20/20 memory system, benchmarks exhibited between
10 and 30% speedups relative to unoptimized code. Due to the small 8-byte cache blocks of the
FA model the memory system has a relatively small bandwidth for processing cache misses and
writebacks. Half of the benchmarks are memory bandwidth limited and the optimized code for
these benchmarks exhibits the highest speedups. With the exception of spice, the optimized code is
able to mask away all latency stalls, essentially reaching the performance limits imposed by memory
bandwidth. Three benchmarks, matrix300, nasa7 and tomcatv, each exhibiting a speedup in excess
of 20%, are numerical codes for which Array RAAD prefetching successfully eliminates essentially
all unscheduled misses. Spice, the remaining memory bandwidth limited benchmark, is optimized
primarily through sequential miss scheduling. It does not reach the memory bandwidth limit like
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Figure 6-2: Eqntott FA Performance

the other three because about 20% of its misses are not optimized. The reason these misses are not
optimized is discussed above in section 6.1.

The set of benchmarks which are not memory bandwidth limited includes three programs primarily
optimized using miss scheduling. These benchmarks, doduc, fpppp and espresso, exhibit speedups
of between 10 and 17% under the Stall model. In each case latency stalls are decreased by over
50%. Latency stalls are not decreased by the fraction one might anticipate based on relative miss
coverage, however.

Looking specifically at doduc, based on information in Table 6-1, the compiler estimates a coverage
of 78.5% of mis-¢s. For somewhat more than half of these misses, (41% of the total misses) a latency
tolerance shortfall is anticipated. The miss weighted average of this shortfall is predicted to be
about 1.5 cycles. Factoring in the shortfall, one might predict a relative decrease in total latency
stall cycles of 0.375 4 0.41 * (1 — 1.5/20) or a little better than 75%. In actuality, although only
21.5% of required misses remain, (exactly matching the compiler estimate), measured latency stall
cycles decrease by only about 55%.
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The discrepancy arises from a higher level of latency tolerance shortfall than anticipated. In the
simulated data only about 30% of prefetched values experienced a latency tolerance shortfall but
the miss weighted average of this shortfall is about 13 cycles. The explanation for this discrepancy
is cache writeback operations. About 40% of cache misses incurred by the benchmark resulted in
writebacks. For each writeback, memory bandwidth consumption which is not modelled by the com-
piler occurs. This bandwidth consumption is 20 cycles. Given a latency shortfall substantially higher
than expected in a fraction of misses corresponding roughly to the fraction of misses experiencing
writebacks, it appears certain that writebacks account for the performance discrepancy experienced.

Accounting for writeback bandwidth during miss scheduling would certainly be feasible in a compiler
using simulated or measured memory behavior information like c-flat. In fact, writeback information
for each reference is already available in c-flat although it is not incorporated into the miss scheduling
algorithm. The performance of doduc and other scheduled benchmarks suggests that modification
of the miss scheduling algorithm to account for writebacks is probably warranted.

Turning to performance under the Interlock model, one finds that speedups are a little less dra-



137

6.0
5.5
5.0
4.5
4.0-
3.5-
3.0
2.5
20+
15
1.0
0.5
0.0-

Stall  Interlock Stall  Interlock Stall  Interlock
20[10 20]20 160]20

Figure 6-5: Matrix300 FA Performance

g : i

B B P Mn B P B P Mn B P B P
Stall  Interlock Stall  Interlock Stall  Interlock
20[10 20]20 160}20

in

Figure 6-6: Nasa7 FA Performance

matic for both the memory bandwidth and instruction limited benchmarks than speedups under
the Stall model. The memory interface of the Interlock model is already able to exploit some
processor/memory concurrency which is only available through prefetching under the Stall model.
In particular, the Interlock model provides write buffering and does not stall on loads until data
is used. Speedup is still exhibited by most benchmarks. Excluding matrix300, speedups range from
8 to 10% at the bottom end to 25% at the top end. The performance difference between the Stall
and Interlock models for prefetched code is generally in the neighborhood of 2 to 3%, whereas
the difference in performance of the unoptimized code on the two models is more like 5 to 10%.
Code compiled without any particular attention to latency tolerance thus has some intrinsic level
of tolerance given a very unrestrictive memory interface. Even under such an interface, scheduling
specifically addressing latency tolerance has the ability to improve performance by an appreciable
fraction.

In the case of matrix300 no speedup is achieved for optimized code under the Interlock model.
The unoptimized code for matrix300 runs 27% faster under the Interlock model than the Stall
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Speedups for Benchmarks Under FA Model

Benchmark 20 10 20 10 20 20 20 20 20 160 20 160
Stall Intlck Stall Intlck Stall Intlck
doduc 1.27 1.16 1.17 1.13 2.43 1.90
eqntott 1.17 1.12 1.16 1.11 2.96 2.71
€spresso 1.31 1.25 1.12 1.11 2.28 2.24
fpppp 1.11 1.07 1.10 1.10 1.88 1.82
matrix300 1.92 1.88 1.27 1.00 5.06 5.06
nasa? 1.82 1.59 1.21 1.08 3.92 3.43
spice 1.29 1.25
tomcatv 1.65 1.28 1.30 1.23 5.85 4.02

Table 6-6: Ratios of Benchmark Speedups

model and reaches the memory bandwidth imposed performance limit. Thus there is no chance for
prefetching to improve the code.

The data presented for the Interlock model may slightly underestimate the potential performance
improvements available through prefetching. Since the model includes write buffering there is little
potential for performance improvement associated with prefetching for writes. The only performance
gain can arise from achieving more uniform bandwidth utilization. C-flat has an option to suppress
all prefetching for writes, however, this is not enabled for the data above. The two interface modeis
can be simulated simultaneously when they use the same code. In order to avoid multiple simulations,
code specifically optimized for the Stall model by performing prefetches for writes is used to gather
the data for both the Stall and Interlock models.

While speedup for optimized code for the 20/20 memory system is noticable, the speedups associated
with the other memory configurations are very dramatic. In each of these models, the memory
system concurrency exceeds one. Code optimized using latency tolerance transformations is much
more capable of utilizing this added bandwidth.

Under the Stall model using the 20/10 model, the memory bandwidth limited benchmarks show
speedups of between 65 and 90%. The only mechanism by which the Stall model can exploit
memory concurrency in the absence of prefetching is by overlapping writeback transactions with
computation. Using prefetching, all available memory bandwidth can potentially be utilized. This
leads to a speedup potential for the optimized code of as much as a factor of two. This speedup
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is nearly achieved for several of the memory bandwidth limited benchmarks. For the instruction
limited benchmarks the speedups under the 20/10 model exceed their corresponding 20/20 values.
Just as with the bandwidth limited benchmarks, the added bandwidth can be better exploited by
the optimized code.

The data gathered using the 20/10 model can be used to test the hypothesis above regarding lower
than anticipated performance improvements for miss scheduled benchmarks like doduc, fpppp and
espresso. It is theorized that writeback bandwidth is responsible for a large component of latency
stalls in optimized code by producing latency tolerance shortfalls, i.e. prefetched references used
before they arrive. Under the 20/10 memory model, additional bandwidth exists which can be used
to perform these writebacks. In the data for doduc under the Stall model, latency stall cycles for
the optimized code measure 24% of those for the unoptimized code, precisely matching the fraction
computed above based on miss coverage and expected latency tolerance shortfall.

The real test of latency tolerance in code comes from the 160/20 model. Latency is increased by
a factor of eight at constant bandwidth, leading to a memory concurrency of eight. Data for this
memory system serves both to better differentiate the performance of the Stall and Interlock
models for unmodified code and to highlight the benefits of latency tolerance optimizations.

The performance difference for the Stall and Interlock models using unmodified code is much more
pronounced for the 160/20 memory system. For doduc, latency stalls under the Stall model exceed
those for the Interlock model by over 60%. For other benchmarks the difference is typically close to
20% and is 0 for matrix300. Performance improvements for this memory system with high latency
and high concurrency result when multiple misses can be satisfied concurrently. Intrinsic ability to
exploit miss processing concurrency arises from two sources. Buffered writes which produce misses
can potentially be overlapped with following transactions. Additionally, load operations sometimes
occur in pairs followed by a binary operation combining their data. In this case, if both loads produce
misses, they can be concurrently serviced. Based on empirical observations of code, one finds that
it is relatively rare for many more than two load references to occur in series without the data for
some load being used in a computation. This would suggest a limit on the maximum intrinisic
capability to exploit memory system concurrency in codes at a level of about two. Comparison
of Stall and Interlock data for the 160/20 memory system show that in general even a memory
concurrency of two cannot be effectively exploited by unmodified code, even with a highly flexible
interface. Intrinsic latency tolerance of unmodified code is thus quite limited in the context of very
high latencies.

In striking contrast, code which is appropriately transformed exhibits substantial latency tolerance.
Speedups between unoptimized and optimized code for the 160/20 memory system range from
about a factor of two to almost a factor of six. The smallest speedup is exhibited by fpppp. This
is attributable to the relatively large number of unoptimized misses which occur in this benchmark,
about 30%. Speedups in the range of 5 to 6 are exhibited by several benchmarks.

Even more telling, as far as latency tolerance is concerned, is the relative performance of optimized
code under the 160/20 memory model and unmodified code under the 20/20 model. For several of
the benchmarks including eqntott, matrix300 and tomcatv, optimized code run using the 160 cycle
memory actually outperforms unmodified code for the 20 cycle memory. Doduc and espresso require
only about 25 to 33% more time for optimized code to run using the high latency memory system.
The worst performer, fpppp, which leaves about 30% of misses unscheduled requires 40 to 50% more
runtime. This data clearly shows that for many programs, compilation-based tolerance to even very
high memory latencies is feasible and highly effective, given that memory concurrency is used to
provide adequate memory bandwidth.

6.3.5 DM Data

Data gathered using the DM cache model is presented in figures below.
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Performance data gathered for the DM cache model does not show the same improvements as that
of the FA cache model. Several factors contribute to this behavior. The cache in the DM model
is substantially larger than that in the FA model and has a larger block size. As a consequence
of these changes, most benchmarks exhibit higher hit rates, some dramatically so. Higher hit rates
decrease the relative component of performance associated with miss processing latency. Also, since
the memory system is parameterized in terms of the time to service a miss transaction and miss
transactions move cache blocks, the increase in block size results in increased memory bandwidth.
Decreasing the pressure on memory bandwidth also serves to decrease the potential benefits of
prefetching since prefetching allows more efficient utilization of memory bandwidth.

These two factors account for some performance difference but they do not explain the behavior
of several benchmarks whose performance is actually degraded by prefetching in the data above.
In these benchmarks a large number of required misses remain after prefetch optimization. These
unoptimized misses are investigated further in coming sections.

Despite the poor behavior of some benchmarks, other benchmarks exhibit speedup under the DM
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Figure 6-11: Fpppp DM Performance

model. Matrix300 exhibits speedups of 28% for models with a memory latency of 20 cycles and
speedups of a factor of 3 for 160 cycle latency models. Tomcatv exhibits speedups of 10% to 17%
for latency 20 models and 1.5 to 1.8 for latency 160 models.

6.3.5.1 Cache Pollution

Under the DM model, modified code produced by c-flat is slower than unmodified code for several
benchmarks. The modified code for these benchmarks exhibits a large number of required misses,
in some cases only slightly less than the number exhibited by unmodified code. This code also
generates substantially more memory traffic than the unmodified code. One might first he tempted
to point the finger of blame for these required misses at cache pollution. In the DM iests, data is
prefetched directly into the cache. As soon as a prefetch is initiated, some block of data is removed
from the cache. Once prefetched data arrives it is forwarded to the emptied cache block. One can
certainly imagine hardware schemes in which old data is not replaced until new data arrives, but
this is not the scheme simulated in gathering the DM data. Cache pollution signifies added misses
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incurred due to the fact that prefetch references replace data blocks within the cache sooner than
they would normally be replaced in unmodified code.

Consider the set of prefetch operations which trigger miss transactions. In analyzing cache pollution,
one only needs to consider prefetches which actually produce misses since others do not replace cache
blocks. One can subdivide those prefetches moving data in two different ways. First, divide the
prefetches into two sets, which will be termed matched and unmatched prefetches. Each prefetch
operation is associated with some potential future instance of a badref. Matched prefetches describe
those prefetches for which the associated badref reference actually occurs at runtime. Unmatched
prefetches are speculative references for which the associated required reference does not occur.
Second, characterize prefetches as beneficial and detrimental. A beneficial prefetch occurs when a
prefetched value is used by a required reference before being displaced from the cache. A detrimental
prefetch occurs when a prefetched block is displaced prior to being used by a required reference.

Armed with this terminology, consider the circumstances under which a matched prefetch is rendered
either detrimental or beneficial. Prior to the prefetch and subsequent to the matching reference,
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the cache contents are the same in the presence or absence of the prefetch. Thus the window
of vulnerability for a matched prefetch to be detrimental is the period between the prefetch and
matching reference. The duration of this window in time is determined by scheduling heuristics.
These heuristics attempt to make this window as close to the memory latency as possible, while
erring on the high side. For purposes of cache pollution, this window must be measured in terms of
memory references, rather than cycles. One might suspect that the number of memory references in
the window would be somewhere between 1/5 and 1/3 of the window size in cycles. Using a window
size of 160 cycles and a ratio of 1/4 for the fraction of memory reference instructions in the window,
one might expect somewhere in the neighborhood of 40 memory references. At a window size of 20
cycles, this number is only 5 or 6. The DM cache model holds 16K blocks, thus one might expect
about 40/16K or one in four hundred matched prefetches which move data to be detrimental in
the case of the 160/20 memory systern. In the event of a detrimental prefetch, one miss may be
turned into three, one for the prefetch, one for the intervening reference which might have been a
hit otherwise and one for the matching reference. Tight interference patterns can produce badrefs,
leading to the behavior above. Nonetheless, one would expect relatively few matched prefetches to
be detrimental.

Next consider unmatched prefetches. The window of vulnerability for an unmatched prefetch to be
detrimental is not bounded at a number close to the memory latency since there is no matching
required reference to close this window. It is fairly likely that a block fetched by an unmatched
prefetch is displaced before it is used, resulting in a detrimental prefetch. Furthermore, if it is
displaced by the block that it originally displaced, this adds an extra miss for a required reference.
One might expect that most detrimental prefetches are associated with unmatched rather than
matched prefetches.

Detrimental prefetches can be easily measured in our simulation technique by marking each cache
block brought into the cache by a prefetch instruction, unmarking any block servicing a hit by
a required reference and monitoring the status of these marks in blocks replaced in the cache.
Furthermore, in the context of direct-mapped caches without victim caches, detrimental prefetches
represent an upper bound on cache pollution due to prefetching. If a prefetch is not replaced prior
to use of the prefetched block by some required reference it is gnaranteed that the block replaced by
the prefetch is not used during this time either, in which case prefetching has not produced cache
pollution.

Detrimental prefetches are measured for a variety of cache configurations in two of the benchmarks
exhibiting poor performance under the DM model, doduc and tomcatv. These configurations include
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both the DM model and two variants of the DMV model. In the DMV model, since the cache
system consists of two components, a main cache and a victim cache, one has the option of using
either component as the buffering storage for prefetches. In these tests, for configurations with
victim caches all detrimental prefetches are eliminated, independent of whether prefetching uses the
main or victim cache for buffering storage. For the standard DM cache without a victim cache,
detrimental prefetches occurred over 1000 times less often than required misses. Although this data
is limited to two benchmarks, based on the data one would conclude, particularly in the context of
victim caching, that cache pollution does not represent a serious limitation for prefetching.

This conclusion, however, leaves the large quantity of required misses in the DM data presented
above unexplained.

6.3.5.2 Memory Behavior Perturbation

An alternative explanation for the behavior exhibited in the DM data above is that the code
transformations applied in latency tolerance optimization perturb memory behavior sufficiently to
change the identity of goodrefs and badrefs. Examples of the potential for such behavior were
described in Chapter 5 in the context of the prefetch schemas for indirection array and linked-list
RAADs. In the case of indirection arrays such as X[Y[i]] the prefetching schema produces a new
reference to Y[i+1] which can be a badref even if the original reference to Y[i] is not. A simple,
systematic modification to memory reference behavior such as this is inconsistent with the fact that
poor performance is only associated with the DM model and not the FA model. However, one can
identify other forms of memory behavioral modification which would be much more prone to occur
in the DM model.

Before discussing these problems, it is worthwhile to note that memory behavior perturbation is
indeed the explanation for the poor performance of several of the benchmarks in the DM tests,
exemplified by doduc. Badref references exist in modified code for these benchmarks whose cor-
responding references in unmodified code are not badrefs. Data is not presented to support this
claim because it was verified by hand. Performance diagnostic tools developed in conjunction with
the compiler prototype and simulation environment provide the ability to trace the identity of par-
ticular badref memory references both to their intermediate structure in the compiler and to their
orignating constructs in the source code. Using these tools, the performance of remaining badrefs
in modified code was compared with the performance of corresponding references in the unmodified
code. To a large degree, badrefs in the optimized code were not present in the original code.

Latency tolerance transformations can perturb the memory behavior of individual static memory
references through a number of different mechanisms. In the case of multiword data structures
with some particular alignment to cache block boundaries, if these data structures are shifted with
respect to block boundaries, this could lead to the swapping of identities between goodref and badref
accesses to structure components. This problem would primarily be associated with dynamically
allocated data on the stack or allocated using memory allocation routines. By restricting allocation
routines to supply cache block aligned data and by adding alignment restrictions on stack frames,
memory behavior perturbation arising from block alignment issues can be minimized.

New badrefs observed in the experimental data are primarily associated with statically allocated
data structures which are not moved by latency tolerance optimization. Thus although memory
behavior can be changed by shifts in data structure alignment, this is not the relevant explanation
for the benchmark data.

Having ruled out detrimental prefetches and block alignment shifts, there is at least one more
way in which the latency tolerance optimizations in c-flat can impact memory performance. Miss
scheduling, and to a lesser extent RAAD prefetching, can change memory behavior by changing
register allocation and memory references associated with register spills. Miss scheduling tends to
increase the lifetimes of register variables. Additionally, when transformations are performed using
copying, new temporary variables are creating, increasing the need for storage. One might hope that
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these impacts would be relatively minimal but it appears that they are the source of the misses in
our test data.

Several factors combine to allow this spill phenomenon to be significant. Take the doduc benchmark
as an example. First, for the given cache configuration, the program demonstrates a fairly high
aggregate hit rate, 98.5%. As a consequence of the high hit rate and direct-mapped cache, new
references targetting formerly unaccessed memory addresses are reasonably likely to replace useful
data in the cache. When a newly referenced address results in such a replacement, this really
produces two new misses since the new reference misses itself and turns some future reference into
a miss. This miss magnification occurs because the cache is direct-mapped. An added consequence
of the high hit rate is that the addition of a small number of misses relative to the total number of
references potentially represents a large fractional increase in the number of misses.

Required misses in the DM test may in large part be an artifact of the prototype compiler. For
large procedures, particularly those with very large basic blocks, the compiler generates a significant
amount of register spill traffic. Furthermore, it is inefficient in the use of spill slots allocated on
the stack. New spill slots are allocated for most spills produced. Very large procedures with large
basic blocks produce many register spills and more importantly a correspondingly large number of
spill slots. Miss scheduling, by creating new temporary variables and increasing register lifetimes,
increases the number of spill slots. The new spill slots cause interference misses with other cached
values, producing the observed behavior.

Owing to their large basic block sizes and large procedure sizes, doduc, fpppp, and tomcatv are
particularly vulnerable to this spill slot induced cache pollution. The problem might well be sub-
stantially lessened in a compiler which more efliciently used stack slots. As an alternative, if a
direct-mapped cache is targetted and some amount of spill-slot inflation is anticipated, extra spill
slots could be generated and accessed in the code used to calibrate memory performance of static
instructions in order to partially compensate for this effect.

6.4. Summary

This chapter presents data gathered using the prototype compiler c-flat and a timing simulation
environment. This data takes two main forms, statically produced data from the compiler and
dynamically produced data from the simulation environment.

The static data identifies the form of badrefs identified in benchmarks. It also shows the level of
miss coverage attainable using either or both of the scheduling techniques implemented and the
average associated overheads. This data indicates that in about half the benchmarks it is sufficient
to focus solely on scheduling array RAADs. Furthermore, in no benchmarks examined are indirection
array RAADs or linked-list RAADs particularly relevant. One might expect to find more frequent
occurances of these non-array data structures in other kinds of programs. The overhead costs
associated with prefetching for RAADs, even in our fairly primitive compiler implementation, is
only in the ~ange of 1.5 to 2.5 on average.

RAAD prefetching is not applicable in about half the benchmarks. The typical reason for this is
that looping constructs are separated from RAAD references by procedure boundaries. In these
cases miss scheduling is applicable. Overheads are a little higher and miss coverage is not quite as
good for miss scheduling.

Dynamic data based on the FA cache model exhibits very encouraging performance. Speedups
vary from 10 to 30% under the moderate memory latency in the baseline model. Under a high
latency memory model, corresponding to a very fast processor, speedups as high as a factor of 6 are
exhibited. Compiler optimization can yield latency tolerant code.

Data based on the DM cache model shows more mixed results. While some benchmarks exhibit
improved performance, others are actually degraded by compiler transformation. Several possible
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sources of this performance degradation are examined. Empirical data indicates that cache pollu-
tion occuring specifically as a result of prefetch operations does not significantly impact memory
behavior. The source of performance degradation in the data is isolated to cache interference re-
sulting from increased spill code which perturbs goodref/badref behavior for some references. We
speculate that this problem could be somewhat lessened in a compiler which reused stack spill slots
in order to minimize the number required. Thus the DM data may be a somewhat anomolous
result. Nonetheless, it indicates an issue for concern in further implementations of latency tolerant
compilers.
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Chapter 7

Conclusions

Latencies associated with data cache misses are a potential performance limitation in computer
systems. Technological trends indicate that the ratio between memory latency and insruction cycle
time is increasing with time, leading to an increasing memory latency problem in the future. The
problem of efficient computation in the face of high memory latency can be addressed through
compiler-managed concurrency, overlapping one or more miss transactions with non-miss processing.
Compilation-based prefetching using explicit prefetch instructions is a means for achieving this
concurrency.

7.1. Summary

Study of the locality and parallelism behavior exhibited by programs leads to insights which can be
exploited for memory latency tolerance. Three related but distinct aspects of the locality behavior
of programs are highly relevant to latency tolerance.

Locality behavior is statically correlated. Individual static memory references witkin programs
each display their own characteristic hit/miss behavior. Similar behavior is displayed by dynamic
references produced by the same static reference both within the same program run and across
multiple program runs.

The locality behavior exhibited by static references is polarized. Program structure dictates that
many static references produce essentially no misses. Other static references exhibit characteristic
miss rates greatly in excess of the program average. Static references exhibiting miss rates compa-
rable to the program average are rare in comparison to high and low miss rate references.

While static references fall into two sets, goodrefs, with low miss rates and badrefs, with high miss
rates, these sets do not account for equal fractions of either dynamic references or dynamic misses
exhibited by programs. Dynamic references occur predominantly in conjunction with goodrefs and
dynamic misses occur predominantly in conjunction with badrefs.

Based on these observations regarding locality one can develop an appropriate metric for charac-
terizing the form of program parallelism which can be exploited for latency tolerance. Parallelism
suitable for the concurrency which leads to latency tolerance takes the form of sets of instructions
in the neighborhood of badref instances which are independent of the badref, although potentially
dependent upon one another. These instructions can and will include both arithmetic instructions
and goodrefs. Programs exhibit sufficient parallelism of this form to tolerate memory latencies of
several hundred processor cycles.

Compilation algorithms exploiting static locality behavior can access the inherent parallelism in
programs for latency tolerance. Software pipelining can be applied to badrefs with predictable
addresses which occur in loops by using prefetch instructions to initiate miss transactions for cache
blocks needed in future iterations. Miss scheduling can insert prefetches for badrefs in sequential
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code. In conjunction, these two techniques allow latency tolerance transformations to be applied to
most badrefs in programs.

Mechanicially generated code produced by c-flat, our prototype compiler implementation, demon-
strates that compilation-based prefetching is both feasible and effective. Using a fully-associative
cache model, code exhibits speedups of 10 to 30% for moderate memory latency assumptions and
factors of 2 to 6 for very high levels of relative latency which would occur in conjunction with a very
high-performance processor.

7.2. Program Behavior

The key to successful implementation of software latency tolerance is an appreciation of significant,
relevant aspects of the locality and parallelism behavior of programs. Static locality phenomena
serve to make software latency tolerance feasible by limiting the scope of the problem to badrefs.
Analysis of potential limitations on parallelism leads to techniques, such as speculative prefetch
initiation, which can relax away unnecessary constraints.

7.2.1 Static Locality Correlation

While the behavior of hierarchical memory systems is typically considered at a very coarse gran-
ularity, namely aggregate system performance, we study this behavior at a finer granularity. In
particular, we examine the cache hit/miss performance of sets of dynamic memory references arising
from the same static memory reference instructions in programs. This study leads to three related
but distinct observations about memory performance.

The first behavioral phenomenon is captured in the Static Locality Correlation Hypothesis.
Dynamic memory references arising from the same static reference exhibit correlated hit/miss be-
havior. Thus the set of dynamic references produced by a static memory reference may show a
predisposition to miss more or less frequently than the program average. Since this predispositionn
arises as a result of program structure, it occurs consistently across different program runs in which
input variations are not dramatic.

The second observation is that the miss rates exhibited by different static instructions tend to be
highly polarized with respect to the average miss rate of a program. This behavior is extremely
pronounced in some benchmarks in which essentially all static references exhibit miss rates of either
0 or 1. While not all benchmark data exhibits this ideal polarization, all data displays substantial
polarization. In no case are miss rates for static reference clustered near the program average.

The final observation regarding static hit/miss behavior concerns the actual distributions of dynamic
references and dynamic misses with respect to high and low miss rate, static references. All bench-
marks exhibit static references with miss rates at or very nearly 0. These zero miss rate goodrefs
account for at least half and sometimes more than 90% of total dynamic memory references in all the
benchmarks except one. These references cannot produce any misses, however, since they have zero
miss rates. Misses are predomirantly associated with high miss rate static references, i.e. badrefs.

The behavior which results from these observations is summarized in the Badref Hypothesis.
Badrefs, a subset of static references exhibiting miss rates much higher than the program average,
produce the majority of program misses and relatively few dynamic references. Goodrefs, references
with low miss rates, account for the predominance of dynamic memory references but few misses.

These memory behavioral phenomena are real and they are important. We prcvide empirical evi-
dence supporting this behavior across a range of benchmarks under a variety of memory configura-
tions. Programs exhibit static locality correlation and badref behavior.
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7.2.2 Implications of Static Locality Correlation and Badref Behavior

Static locality correlation and badref behavior have important implications for software latency
tolerance. Misses produced by programs can largely be isolated to an identifiable subset of static
memory references. They do not occur randomly in conjunction with all static memory references.
They occur primarily as a result of execution of badrefs, a subset of static references, and occur in
this context with a frequency much higher than the average program miss rate. Using this insight,
the problem of latency tolerance is shifted from providing tolerance to unlikely events in a wide
context to tolerating likely events in a narrow context. The latter form of problem is by far the one
to be preferred.

Badref behavior is exploited within a compiler by partitioning static references into goodref and
badref sets. Parallelism, a limited resource for latency tolerance, can then be focused specifically
on badrefs. Furthermore, goodrefs now become a component of this parallelism. They become
part of the solution rather than part of the problem. Realistically, software, latency tolerance is
impractical without partitioning static memory references based on static locality correlation and
badref behavior. Owing to the fortunate existence of this behavior, software latency tolerance
becomes practical.

Given suitable hardware and software mechanisms, the same form of simplification which can be
applied to software, memory latency tolerance might also be applied in the context of some forms
of hardware, latency-tolerance techniques. One might envision using two different forms of memory
reference instructions which carry non-semantic software hints about the expected cache performance
of the reference. Such a scheme could convey goodref/badref information to the hardware. Through
such a mechanism, hardware scheduling techniques involving either single or multiple threads might
be able to reap some benefit from static locality correlation. In the context of single-threaded,
hardware schedulers, this information might be used to elevate the priority of badref operations
and their address dependent predecessors in order to exploit some level of reverse parallelism. In
the context of multiple-threaded processors, this information might be used to start fetching and
executing instructions in a new thread upon fetching a badref memory reference. Such a mechanism
could decrease pipeline fill and drain costs associated with changing threads.

We believe that the principle means by which static locality and badref behavior can be exploited
is through code explicitly scheduled by compilers for latency tolerance. This code can use either
prefetch instructions or non-blocking loads to initiate cache misses allowing the explicit scheduling
of processor/memory and memory/memory concurrency. Nonetheless, dissemenation of the insights
above regarding memory behavior may well lead to architectural innovations beyond those currently
anticipated.

7.2.3 Parallelism

With respect to software latency tolerance, reference locality behavior is only half the battle. Suffi-
cient parallelism must exist and be identifiable to a compiler to allow the scheduling of concurrency
resulting in latency tolerance. As with locality behavior, a focused study of the problem results in
insights.

One finds that average parallelism is not a relevant metric for assessing the form of parallelism
needed for latency tolerance. Software latency tolerance should not be dismissed on the basis of
relatively low levels of instruction-level parallelism cited in the literature. Latency tolerance is not
achieved by emitting a large number of instructions in parallel. Instead, it is achieved by emitting
a long series of instructions in conjunction with servicing one or more slow miss transactions.

One can and should apply the results above concerning static locality and badref behavior to the
search for parallelism. In order to achieve latency tolerance, it is not necessary to identify con-
currency suporting parallelism for all memory references, just those which are badrefs. In point
of fact, parallelism is only needed for those instances of badrefs actually resulting in cache misses
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at runtime, but software scheduling is incapable of exploiting this. Focusing then on all dynamic
badref occurances, in order to support the desired concurrency, a set of non-dependent instructions
must exist which can be grouped with each dynamically occurring badref reference. These grouped
instructions must be independent of the badref but need not be independent of one another since
they can execute as a sequential stream concurrently with the badref miss transaction. Finally, this
set can and will include goodref memory references. If such a set can be identified for each badref
and static code can be devised in which these instructions can overlap badref miss transactions, then
latency tolerance can be achieved.

While reference partitioning based on badref behavior provides essential simplifications with re-
spect to finding parallelism, additional aspects of the problem provide further simplification. In
particular, the fact that transactions between a cache and the underlying memory system are not
semantically significant with respect to the processor can be beneficially exploited. The initiation
of a cache/memory transaction is not meaningful to the processor and as a consequence does not
have dependencies with any instructions. Only the termination of such a transaction, in which
transferred data is used or a transferred block is modified has semantic meaning. With an oracle to
predict addresses, blocks could be transferred at will. Hardware prefetchers attempt to act as such
an oracle. Using a software latency technique the addresses for transferred blocks are provided by
the software, thus producing some dependencies on the initiation side of miss transactions. These
dependencies are restricted solely to instructions required for address generation, however.

Although few actual dependencies constrain miss transaction initiation at runtime, some amount
of effort is required to relax away non-essential dependencies during code scheduling. This process
is greatly facilitated through a safe mechanism for speculatively initiating miss transactions. Safe,
in this case, specifically refers to a miss initiation mechanism which does not produce faults or
similar behavior in conjunction with the use of invalid or unmapped addresses. A safe, speculative,
prefetching mechanism, in conjunction with code copying and storage replication when necessary,
allows code motion of miss initiation across both basic-block boundaries and also memory stores
which cannot be disambiguated with respect to loads used in the prefetch address computation.

7.2.4 Parallelism Measurement

We measure potential parallelism for latency tolerance using a technique which counts independent
instructions in the neighborhood of badrefs. Dependencies which do ot arise directly from dataflow
constraints for the transaction address or the use of transferred data are relaxed away. Relaxation of
these constraints is justified based on the fact that code techniques including speculative prefetch-
ing, storage replication and code copying provide a way to relax away unnecessary constraints in
scheduling algorithms. Using this measurement scheme, substantial parallelism is indicated. Also
measured is potential parallelism for latency tolerance within the same basic blocks as badrefs. In
many benchmarks this is very small as might be expected. Somewhat surprisingly, several bench-
marks exhibit very large basic blocks and thus a reasonable fraction of badrefs with high, basic-block
parallelism measurements. Even in these benchmarks, a large fraction of badrefs still occur in small
basic blocks. Thus interblock scheduling techniques are necessary for tolerance of significant memory
latency.

On balance, parallelism data collected leads primarily to one main conclusion. Lack of parallelism
should not be a substantial limitation for tolerance to even relatively large memory latencies, as-
suming sufficient miss processing bandwidth is provided. Programs exhibit sufficient, inherent par-
allelism. Whether this parallelism can effectively be exploited through code scheduling is a different
question, but the parallelism does exist.

7.2.5 Implications of Forward vs Reverse Parallelism

Measured parallelism is classified as forward and reverse parallelism. The distinction between these
two forms of parallelism lies in the relative position of independent instructions with respect to the
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original badref reference in a sequential program schedule. Reverse parallelism describes indepen-
dent instructions identified by moving backward in time, i.e. instructions preceding the badref in
a sequential schedule. Forward parallelism describes independent instructions identified by moving
forward in time, instructions following the badref in a sequential schedule. The principle reason
for distinguishing these two forms of parallelism is that single-threaded hardware scheduling tech-
niques are more able to exploit forward parallelism than reverse parallelism. Software scheduling
techniques, particularly those employing speculative transaction initiation, can more easily exploit
reverse parallelism. Data indicates that reverse parallelism exceeds forward parallelism. This is
particularly true for instructions directly adjacent to badref loads. These instructions frequently
use the result of the load as an operand and are themselves used by successive instructions. As
a consequence, the least fruitful place to look for instructions which are independent of a badref
load is in a short window directly following the operation in a scquential schedule. Unfortunately,
this is the principle area in which single-threaded, hardware, dynamic schedulers are forced to seek
parallelism.

7.2.6 Badref Distribution

Additional issues potentially limiting successful tolerance of badref miss latency concern the place-
ment and interaction of adjacent dynamic badref instances. Memory bandwidth and concurrency
limits the number of miss transactions which can be simultaneously active. If misses due to badrefs
are highly clustered in sequential schedules then, in order to achieve latency tolerance, code trans-
formations must be applied to spread these references out in time. Address dependencies between
adjacent badrefs prevent the exploitation of concurrency between resulting misses.

Address dependencies between badrefs occur when the address computation for one badref uses a
value loaded by a prior badref. Benchmark data indicates that address dependencies between badrefs
are very rare. Dependencies between badrefs will not significantly limit overlap of miss transactions
in memory systems offering miss processing concurrency.

Benchmark data also indicates that badrefs are distributed relatively smoothly in time. The data
regarding badref occurances does not necessarily show that misses are not clustered. If a series of
several adjacent badrefs whch all produce misses were followed by a series which all produce hits,
one would find that misses would be clustered relative to the average intermiss spacing. Since not
all badrefs produce misses, the average spacing between badrefs is smaller than the average spacing
between misses. Data indicates that badrefs, representing potential misses, occur with a relatively
even distribution in time.

7.3. Compiler Issues

Identifying and publicizing the locality and parallelism behavioral phenomena above represent a
contributior with some potential impact. These insights are a fortunate derivative of the study of
compilation for latency tolerance. While it may be of less general significance, with respect to the goal
of compilation-based latency tolerance, the proof is in the implementation. C-flat is a real compiler
exploiting badref behavior and prefetch mechanisms to mechanically generate latency-tolerant code.

7.3.1 Compiler Memory Modelling

The first challenge in a compiler for latency-tolerant code is a technique for modelling memory
latency. This modelling dilemma is solved by the Badref Model, in which memory references
are partitioned based on their individual locality behavior. In order to perform badref/goodref
partitioning, miss behavior estimates are required for all static references. These estimates can be
produced through program analysis or through simulation and measurement. C-flat adopts the latter
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approach. While somewhat less elegant, this approach is easily implemented and can be applied in a
general context. Precise static analysis would appear to be an intractable problem except in the case
of highly structured loops with known limits. We do observe that many goodrefs may be identified
relatively easily as they occur in close conjunction to other references using the same address. Coarse
partitioning, separating obvious goodrefs from other static references, may represent a good start in
memory behavior modelling.

7.3.2 Scheduling Algorithms

In many programs most badrefs occur in conjunction with data structure traversal, particularly array
traversal, within explicit loops. RAAD prefetching applies the technique of software pipelining to
miss latency for badrefs in loops. RAAD prefetching uses explicit prefetching to schedule miss trans-
actions in the current iteration for badref instances in future iterations, thus avoiding any latency
penalty when the badrefs are eventually executed. By appropriate choice of the prefetch iteration
count, the number of iterations separating prefetches from their target badrefs, the technique can
be adapted to tolerate arbitrary latencies subject only to bandwidth limitations.

Application of RAAD prefetching has two requirements. The loop containing a badref reference
must be identifiable and the address computation for the badref must maich one of a set of compiler-
recognized schemas associated with common access patterns. Benchmark data shows that the set of
recognized RAAD patterns covers almost all badrefs which occur in loops. Array RAADs alone ac-
count for essentially all such badrefs. The data also shows that it is relatively common for procedure
boundaries to separate badrefs from their corresponding loops.

Miss scheduling, a prefetching technique applicable to sequential code, is applied when loops cannot
be identified for references. Miss scheduling generates prefetch operations for each badref in a
sequence, in order, and merges these prefetches into the original sequence. Limited rescheduling of
the original sequence allows address dependencies for prefetch operations to be satisfied.

7.3.3 Characterization of Badrefs

Empirical data collected using c-flat provides a characterization of the badrefs exhibited by the
benchmark set. This data indicates that in many programs the principle contributors towards
badrefs are RAAD references in loops and that these references are overwhelmingly dominated by
array RAADs with loop-constant strides. Compiler data also indicates that it is not uncommon for
this RAAD within loop structure to be split by procedure boundaries, potentially hiding it from
unsophisticated compilers. RAAD prefetching is applicable to badrefs in loops. Miss scheduling
is applied to other badrefs. This combination enables optimization of a large fraction of badrefs,
typically covering over 80% of dynamic misses and sometimes coming close to 100%.

7.3.4 Variations of Static Locality Correlation

The process of developing a strategy for loops with conditional behavior leads to an additional
observation about static locality correlation. Sometimes misses caused by a badref may be more
highly correlated with some other program event than the execution of the badref instruction. This
phenomenon is exhibited in two notable instances which are exploited by c-flat. First, in loops in
which induction variables used in address computations are conditionally updated, the conditional
induction variable update may be the program event most strongly correlated to misses. Similarly,
loop prologue code is highly correlated to misses which occur systematically on the first iterations of
loops. This correlation phenomenon is exploited by positioning prefetch code at the correlated site.
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7.4. Compiler Performance

Runtime data collected for code generated using c-flat allows the assessment of the latency tolerance
of modified and unmodified code. Data for two interface models, two cache configurations and a
variety of memory system latency parameters is presented.

By comparing the performance of the two processor models examined, the Stall and Interlock
models, one can assess the intrinsic latency tolerance of unmodified code. In general, the increased
flexibility of the Interlock model leads to performance improvements of 5 to 10% for moderate
latency parameters and about 20% 1or the high latency memory system measured. These numbers
show significant variation.

At both moderate and high memory latency, modified code outperforms unmodified code for a
fully-associative cache model. A memory system with 20 cycle latency and bandwidth sufficient
to process a single miss transaction at a time exhibits between 10 and 30% speedups. Speedups
between factors of 2 and 6 are demonstrated in conjunction with a 160 cycle memory system with
bandwidth sufficient to service 8 concurrent miss transactions. These performance improvements
both at moderate and high latencies demonstrate that compilers can indeed generate code that is
latency tolerant.

Data collected for some benchmarks using a direct-mapped cache model demonstrates a potential
pitfall. The code is degraded rather than being improved. Simulation shows that this degradation
does not occur as a result of cache pollution from prefetch operations. Detrimental prefetches,
which occur when prefetched blocks are purged from the cache before they are used, represent only
a very small fraction of misses when prefetching data directly into direct-mapped cache and are
essentially eliminated in systems employing victim caching. The performance degradation actually
results from increased spill activity in some large procedures after the application of miss scheduling.
This result may primarily be an artifact of inefficient use of stack locations by spill code generation
in the prototype compiler. It illustrates that caution is required in implementing latency-tolerant
compilers, particularly if the target memory system employs a direct-mapped cache.

7.5. Epilogue

Until some time in the future when revolutionary technology eliminates the problem of memory
latency, what should be remembered?

Static Locality Correlation, Badref Behavior, Compilation-based Memory Latency Tolerance, it’s all
real.
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Appendix A

Additional Static Locality Correlation Data

A.1. Baseline Locality Correlation Data

These figures present additional benchmark data for Section 2.2. As in section Chapter 2 these
figures indicate R(m), M (m), R.(m) and M.(m) data for benchmarks for the FA, DM and DMV

cache models.
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