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Abstract—Large-area lithium-drifted silicon (Si(Li)) detectors,
operable 150◦C above liquid nitrogen temperature, have been
developed for the General Antiparticle Spectrometer (GAPS)
balloon mission and will form the first such system to operate in
space. These 10 cm-diameter, 2.5 mm-thick multi-strip detectors
have been verified in the lab to provide < 4 keV FWHM energy
resolution for X-rays as well as tracking capability for charged
particles, while operating in conditions (∼-40C and ∼1 Pa)
achievable on a long-duration balloon mission with a large
detector payload. These characteristics enable the GAPS silicon
tracker system to identify cosmic antinuclei via a novel technique
based on exotic atom formation, de-excitation, and annihilation.
Production and large-scale calibration of ∼1000 detectors has
begun for the first GAPS flight, scheduled for late 2021. The
detectors developed for GAPS may also have other applications,
for example in heavy nuclei identification.

I. INTRODUCTION

The first lithium-drifted silicon (Si(Li)) [1], [2] detectors
to satisfy the unique geometric, performance, and produc-
tion requirements of the General Antiparticle Spectrometer
(GAPS) experiment have been produced and their performance
validated and understood. GAPS is designed to detect low-
energy (<0.25 GeV/n) cosmic antinuclei, in particular rare
antideuterons that could be signatures of dark matter, using a
novel exotic atom-based particle identification scheme on three
Antarctic balloon missions (∼3 months total exposure) [3], [4].
In this contribution, we present the X-ray energy resolution and
particle track reconstruction capabilities of the GAPS Si(Li)
detectors.
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II. REQUIREMENTS AND SPECIFICATIONS

The GAPS instrument consists of a plastic scintillator time-
of-flight (TOF) surrounding a tracker composed of ∼1000
Si(Li) detectors arranged in 10 planes. A cosmic antinucleus
first traverses the TOF, which measures velocity and energy
deposition and is the basis of the system trigger. The particle
then loses energy as it moves through the Si(Li) tracker, where
it is eventually captured by a silicon nucleus, forming an exotic
atom in an excited state. Particle identification is based on the
de-excitation X-rays and hadronic annihilation products of the
exotic atom in the tracker, as well as dE/dx and stopping depth
information. The Si(Li) system is critical to the success of the
GAPS experiment as it serves as the target for the incoming
low-energy antinucleus, measuring its energy deposition and
stopping depth in the instrument, and capturing the antinucleus
into an exotic atom; the spectrometer for X-rays from the de-
excitation of the exotic atom; and the tracker for the products
of the nuclear annihilation. The detectors must provide the
large geometric acceptance needed for a rare-event search and
operate with a low-power readout. Since the large instrument
size precludes the use of a cryostat or pressure vessel, the
detectors are designed to operate at flight pressures and at
temperatures ∼-40◦C, achievable using an oscillating heat pipe
system [5] for cooling. Since the GAPS design calls for > 1000
detectors, a low-cost fabrication method with high yield is also
required.

The GAPS Si(Li) fabrication method, which has a yield
> 90%, was developed in collaboration with Shimadzu Corpo-
ration [6], [7], [8] and is based on a silicon substrate developed
in collaboration with SUMCO Corporation. The materials cost
per detector is ∼$500. The geometry for the GAPS flight
detectors is shown in Fig. 1. The 2.5 mm depth is thick enough
to stop a 0.25 GeV/n antinucleus in <10 layers, but thin enough
to provide high escape fractions for 20−100 keV de-excitation
X-rays. With a diameter of 10 cm, ∼1000 devices are needed
to fill the ten 1.6 m ×1.6 m planes of the tracker.

An energy resolution of .4 keV FWHM in the 20−100 keV
range is required for discrimination between de-excitation X-
rays of different exotic atom species and is thus fundamental
to the GAPS particle identification scheme. At the same time,
the readout electronics must operate on a limited power budget
to be compatible with GAPS’ balloon nature. In light of
the limited power for readout electronics, the Si(Li) system
can reach the required energy resolution by controlling de-
tector leakage current and capacitance, two of the dominant

978-1-7281-4164-0/19/$31.00 c©2019 IEEE

ar
X

iv
:1

91
2.

06
57

1v
1 

 [
ph

ys
ic

s.
in

s-
de

t]
  1

3 
D

ec
 2

01
9



detector-related noise sources as discussed in section III-C. The
low leakage current is achieved at relative high temperatures
(∼ −40◦C) by implementing a thin undrifted layer on the
detector’s p-side and a guard ring structure (Fig. 1) that limits
surface leakage current in the detector’s active area [8]. The
capacitance and leakage current are further controlled by seg-
menting the detectors into strips, which also improves spatial
resolution for particle tracking. With 8 strips per detector, the
per-strip capacitance of ∼40 pF is sufficiently low that the
required energy resolution can be achieved with a low-power
application-specific integrated circuit (ASIC). The ASIC power
of . 10 mW per channel is low enough to read out 8 channels
for each of > 1000 Si(Li) detectors while staying within the
overall 110 W power budget for readout electronics, and a
custom ASIC will be used for Si(Li) detector readout during
flight [9], [10].

Detectors that meet these requirements may also be suitable
for other applications, e.g., identification of heavy nuclei at
rare isotope facilities such as the National Superconducting
Cyclotron Lab or Facility for Rare Isotope Beams [11], [12].
A few GAPS detectors would provide sufficient stopping power
for relevant nuclei, and fine spatial resolution is not required.

III. SI(LI) DETECTOR PERFORMANCE

A. Laboratory Testing Setup

Details of detector preparation and experimental methods
are in [13]. In short, the detector’s p-side is biased at −250 V
relative to the guard ring and signal processing electronics.
While the ASIC is under development, each strip is read out
from the n+-side by a discrete-component charge-sensitive
preamplifier [14]. Temperature is monitored with a calibrated
diode.

Energy resolution in the 20–100 keV range is assessed in an
aluminum vacuum chamber at ∼1 Pa, with the detector cooled
by flowing nitrogen in a closed system. Two γ lines are used,
59.5 keV (241Am) and 88.0 keV (109Cd). Signal from a pream-
plifier channel is shaped by a Canberra 2020 Spectroscopy
Amplifier with variable peaking time and digitized by an Ortec
Ametek Easy MCA module.

The cosmic muon measurement is recorded in a nitrogen
atmosphere cooled by injecting cold nitrogen. To eliminate
non-muon background, coincident hits are required between
the corresponding strips of two vertically-stacked detectors.
The preamplifier signals are processed by a CAEN N6725
digitizer, enabling coincident triggering. A rough calibration
is extrapolated from the 59.5 keV peak of 241Am.

B. Tracking Performance

The response of a strip at −40◦C to heavy particle tracks
is assessed using cosmic muons. The data in the top panel of
Fig. 2 show the cosmic muon spectrum obtained by the method
in section III-A, which is consistent, given the uncertainty in
calibration, with the expected distribution of energy deposition
in 2.3 mm of active silicon depth.

Antinuclei in the GAPS energy range are too slow to be
MIPs and therefore will deposit more energy as they traverse

the detectors. Different energy deposition signatures can be
used for identification of incident particles as they slow to stop
from up to 0.25 GeV/n. Accordingly, the ASIC is designed to
accept signals up to 100 MeV before saturating.

C. Energy Resolution Performance

The response of a GAPS detector strip irradiated by 241Am
and 109Cd is shown in the middle panel of Fig. 2. Each mono-
energetic line manifests as a Gaussian photopeak and a nearly-
flat low-energy tail from Compton scattering from surrounding
materials. < 4 keV FWHM was achieved at the relatively high
temperature of −35◦C.

To understand the different noise contributions to the energy
resolution, we use the established noise model [15], [1] for a
semiconductor read out by a discrete-component preamplifier
and shaping electronics:

ENC2=
(

2qI+
4kT

Rp

)
τFi+4kT

(
Rs+

Γ

gm

)C2

τ
Fν+AfC

2Fνf ,

FWHM=2.35(ε/q) × ENC. (1)

In (1), q is the electron charge, k is Boltzmann’s constant,
T is temperature, and ε is the ionization energy of silicon. I
and C are the leakage current of the strip and total capacitance,
the latter having strip, preamplifier, and stray components. The
parallel resistance Rp, scaling factor Γ, and transconductance
gm are preamplifier properties while multiple sources may
contribute to the series resistance Rs and coefficient of 1

f noise
Af . τ is the peaking time of the shaper and Fi, Fν and Fνf
are shaper-dependent coefficients of the different noise terms.
Detector contributions to I and C are measured independently.

In the bottom panel of Fig. 2, the energy resolution of the
59.5 keV line is recorded at two temperatures and a range of
peaking times for a single detector strip, and (1) is fit to the data
using the fitting method detailed in [13]. The energy resolution
as a function of τ and T is well-described by the noise model,
lending us confidence in predicting energy resolution with
different readout electronics or at varying flight temperatures.

IV. CONCLUSIONS

Si(Li) detectors meeting the unique requirements of the
GAPS experiment have been produced by Shimadzu Corpo-
ration and their tracking and energy resolution performance
have been tested and understood in the laboratory setting. In
particular, the detectors exceed the requirement of < 4 keV
FWHM energy resolution at −40◦C, when read out with
custom discrete preamplifier electronics in the laboratory set-
ting. In flight, they will be coupled with a custom ASIC for
readout. Large-scale production and calibration are underway:
since January 2019, the GAPS collaboration has received ∼70
detectors monthly, and ∼1000 detectors will operate on the
first GAPS flight scheduled for December 2021.
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Fig. 1. Top: Cross-sectional diagram of a GAPS detector (not to scale).
Drifting is facilitated by a ∼1 mm-deep, ∼3 mm-wide top-hat brim (1). Li
ions from the ∼0.1 mm-thick n+ Li-diffused layer (2) are drifted through the
p-type wafer to form a compensated active volume (3). The top hat brim and
a 0.1 mm-thick p-side remain undrifted (4). The electrical contacts consist
of ∼20 nm Ni (5) and ∼100 nm Au (6). The ∼1 mm-wide, ∼0.3 mm-deep
grooves separate the guard ring (7) from the active region (8) and segment
the active region into parallel strips of equal area and capacitance. Bottom:
Photograph of a GAPS flight detector.
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Fig. 2. Top: Spectrum of cosmic muons. A Landau distribution (red) fitted
to the data describes the fluctuations of energy loss in the detector. Middle:
Spectrum of 241Am and 109Cd around their 59.5 and 88.0 keV peaks, with
fits to the photopeak and Compton scattered components. The inset shows the
same data in semi-log format to better display the 88.0 keV peak. Bottom:
Energy resolution at 59.5 keV varies with peaking time at two temperatures.
The best fit of (1) is shown in red.
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