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Abstract

There are two fundamental issues of interest in multi-access communications: the stochas-
tic nature of the arrival of messages to be transmitted and the noise and interference that
affect the transmission of these messages. The two main schools of research in this field
are split by these issues. Each concentrates on one (and only one) of the issues and
the classical analysis techniques they use either ignore or trivialize the other aspect of
the problem. In this thesis we will present an analysis that takes into account both the
random nature of message arrivals and the random nature of the transmission process.
This is accomplished by noticing an equivalence between certain aspects of multi-access
communications and the classical queueing theoretic problem of processor sharing queues,
and by combining this insight with an information theoretic analysis of the multi-access
channels.

The latter part of this thesis deals with the information theoretic analysis of errors-
and-erasures decoding schemes for single-user discrete memoryless channels. This prob-
lem arises naturally from our multi-access communication model, in the sense that such
decoding schemes underlie every automatic repeat request system in which the receiver
utilizes a feedback line to request retransmissions in case of a detected error (detected
errors are also called erasures). Errors-and-erasures systems have been previously ana-
lyzed by FORNEY in the late 1960s. Here we will improve upon his results and derive
new exponential upper bounds on error and erasure probabilities. A by-product of these
results will be a stronger lower bound to the zero-undetected-error capacity of discrete
memoryless channels.

Thesis Supervisor: Robert G. Gallager
Title: Fujitsu Professor of Electrical Engineering and Computer Science
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Chapter 1
Introduction

A multi-access communication system consists of a set of transmitters sending informa-
tion to a single receiver. Each transmitter is fed by an information source generating
a sequence of messages; the successive messages arrive for transmission at “random”
times. It is usual to assume that the arrival process is POISSON. The signal received at
the receiver is related (stochastically) to the signals sent by the transmitters. A common
example is the additive GAUSSian noise channel where the received signal consists of the
summation of the transmitted signals with an independent GAUSSian noise. We will fur-
ther assume that the feedback from the receiver is limited; in particular, the possibility
of any transmitter observing the received signal is ruled out.

From the description above one sees that there are two issues of interest: (i) the
random arrival of messages to the transmitters and (ii) the noise and interference during
transmission. The main bodies of research in multi-access communications seem to treat
these two issues as if they were separable. The collision resolution approach focuses on the
random arrival of messages but ignores noise and trivializes the (mutual) interference of
the transmitted signals. The multi-access information theoretic approach, on the other
hand, develops accurate models for the transmission process (noise and interference)
but the random arrival of messages is totally ignored. In addition, one can say with
some oversimplification that the results generated by the two approaches are of different
character. The information theoretic results mostly state upper and lower bounds (which
sometimes coincide) to the performance of the best possible scheme, whereas collision
resolution results mostly analyze the performance of particular algorithms.

The obstacle faced by the multi-access information theorists in analyzing delay in
multi-access systems is twofold. First is the arbitrarily large intervals of time that are

required for the coding theorems. Once we have imposed these arbitrarily large time




intervals, any delay analysis will be meaningless. This is largely a theoretical problem,
and may be worked around. The second is the assumption that each user of the system is
active all the time. In principle, by appropriate source coding to remove the randomness
in the arrival process, this may be achieved. But, using source coding to remove the
burstiness in the arrival of messages will inevitably introduce large delays, thus trivializing
the attempts to analyze the delay in the system futile. Note that this second problem
is more than a technicality because the delays required to smooth sources is typically
orders of magnitude larger than the delays introduced by coding.

In the following few paragraphs we will discuss a somewhat contrived example and
will analyze the performance of this multiple-access system by using tools borrowed from
both the approaches described above.

Suppose our multi-access environment consists of an additive GAUSSian noise channel.
All our transmitters have equal power P, and the noise density is No/2 over a frequency
band of W. Suppose messages arrive at the transmitters in accordance with a POIssoN
process and the aggregate arrival rate is \. We will make the simplifying assumption that
a new transmitter is created for every message that enters the system. This is known
as the infinite user population assumption, and it removes the problem of dealing with
queues of messages at each transmitter. As soon as a message arrives, the transmitter
will encode it into an infinite duration time signal and begin transmitting it. However,
the transmitter will not transmit the whole duration of the signal; it will transmit only
until the receiver decodes the message and instructs the transmitter to stop (see Figure 1-
1). Thus, if the system is stable, with probability 1 only a finite initial segment of the
infinite duration codeword will be transmitted. The decoder will treat each transmitter
independently; each message is decoded regarding the other transmissions as noise. If
there are n active transmitters at a given time, the signal to noise ratio for a particular
transmitter is P/((n — 1)P + NoW). At this point let us assume that the decoder can
resolve

2
Wlog,(1 + m-1P 7 %)

bits per unit time for each transmitter. Note that this is an unjustified assumption. There
is no known coding theorem that guarantees that such a decoder exists. The formula is
simply the information theoretic capacity of an additive GAUSSian noise channel with
the said signal to noise ratio. With this remark, it is clear that the analysis that follows is
unjustified. However it provides the intuitive setting in which to understand the essential

ideas of a correct analysis presented in Chapter 3. With the assumption, the decoder has
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In the figure above, n(t) denotes the number of active transmitters. The lower
illustration focuses on a particular transmitter. A message arrives at t; and is
transmitted until ¢ty at which time it is decoded at the receiver. The duration D
of transmission is a random variable which is dependent on the values of n(t) for
t>t,.

Figure 1-1: Transmission of a packet in the example system

a total information resolving power of

P
(n —1)P + NoW

nW log, (1 + ) bits/unit-time
which it shares equally among the active transmitters.

One can liken the situation to that of a processor sharing system where jobs compete
for the processor’s time. The role of the ‘jobs’ are taken by the transmitters that are
‘served’ by the decoder. The more transmitters that are active at a given time, the
less ‘service’ each will get due to interference. We can indeed formulate the problem
as a classical processor sharing system in queueing theory, with the following difference:
the total processing power of the processor depends on the number of jobs competing
for service. The next chapter (Chapter 2) analyzes a processor sharing system with
a processor whose power depends on the state of the system. The key observation is
that such a system is “quasi-reversible”, and this observation allows us to solve for the
steady-state probabilities of various events. In particular one can characterize the delay

experienced by the incoming messages. The last section in Chapter 2 presents the results
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obtained when one applies the processor sharing results to our example system.

Note that essential to the working of our example system is the feedback that trans-
mitters receive from the receiver. To understand how these kinds of decision feedback
schemes work we will focus on a single user system of this type in Chapter 4. An impor-
tant result of Chapter 4 will be a new lower bound for the zero-undetected-error capacity
of discrete memoryless channels. This lower bound is better than the previously known
bounds and we will identify the channels on which our bound is exact. The approach
used in these chapters is purely information theoretic. Our efforts to prove a converse to
show that the new lower bound is exact for all channels led us to a counter-example: a
channel whose zero-undetected-error capacity is larger than the said lower bound. The

construction of this example is done in Chapter 5.
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Chapter 2
A Queueing Theoretic Result

In the introduction we pointed out the similarity between a particular multi-access scheme
and processor sharing queues. The classical queuing theoretic results on processor sharing
do not allow the server’s rate to depend on the state of the system. In this section we will
generalize the classical results to apply to queues in which the server’s rate depends on
the state of the system. The notion of server rate will be defined during the course of the
discussion. The results of the following section can also be found in (Kel79]. However, the
derivations we give for these results differ significantly from those in [Kel79] and involve
a more natural discretization argument.

2.1 Queues With Processor Sharing

Suppose that customers in a processor sharing system arrive in accordance to a POISSON
process of rate A. Each customer requires a random amount of service, S, distributed
according to G:

Pr[§S < s] = G(s).

The service requirements of customers are independent. Given u customers in the system
the server can provide service at a rate of @(u) > 0 units of service per unit time, and
divides this service equally among all the customers in the system. That is, whenever
there are u customers in the system, each will receive service at a. rate of @(u)/u per
unit time. A customer will depart the system when the service it has received equals its
service requirement.

We will assume that sup, #(u) < oco. In this case we may further assume that
sup, ¢(u) < 1 since we can define $' = S/ sup, ¢(u) and ¢'(2) = ¢(i)/ sup, ¢(u), and

11



the new system will be identical in performance to the original.

To analyze the system we adopt a discrete time approximation, dividing the time
into slots of duration h. Define Ay = Ah, the probability of an arrival in any time slot,
Sy = h[S/h], which has distribution Ga(k) % Pr[Sy < kh] = G(hk). Further define
ga(k) & Pr[Sy = hk] = Gu(k) — Ga(k — 1), and q(k) = ga(k + 1)/Ga(k); that is, (k)
is the probability that a customer will depart when it is next served given that it has
already received kh units of service. Note that G, denotes 1 — G4. Let the state of the
system be s = (ug,u1,...), where u; is the number of customers in the system who have
already received ik units of service, and let u = 3, u;. We will restrict the state-space to
those sequences that are summable and therefore the state-space will be countable. Let
p(s) be the limiting state probabilities and let P(0) be the probability that the system is
empty. The server’s behavior is described as follows: at the beginning of each time slot,
the server

e either, with probability )4, accepts a new customer into the system;

e or, with probability (1 — )\4), chooses an existing customer at random, and with
probability ¢(u) gives it h units of service.

We will let Pr[s — s'| denote the transition probabilities of the corresponding MARKOV
chain. To solve for the limiting state probabilities we will employ the following theo-
rem [Ros83, p. 128]:

Consider an irreducible MARKOV chain with countable state space E and
transition probabilities { P;;, i, € E}. If one can find non-negative numbers
{;, i € E} summing to unity, and a transition probability matrix {P}, i,j €
E} such that

m Py = WjPJ-:;, L,JEE

then {r;, i € E} are the stationary probabilities and {P%, 1,j € E} are the

15?
transition probabilities of the reversed chain.

Let Pr*[s — s'] denote the transition probabilities of the reversed chain. We make

the following conjecture regarding the reversed process (i.e., a guess at the Pr*’s):

Conjecture 2.1 The reverse process is a system of the same type, the state representing
the numbers of customers indezed by the residual workload less h. That is s = (uo,u1,...)

where u; is the number of customers who need (i + 1)h units of service to depart.
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To analyze the system and verify the conjecture we define e; : E — E as
e,-(s) = ('l.Lo,ui_l, ceey Uy — 1,u,-+1, .. )

for s = (uoy - .-, Uizt Usy Uit1,...), and u; > 0.

With the conjecture we have

in forward: s — e;(s) with probability (1 — As)q(?)uid(u)/u;
in reverse: e;(s) — s with (joint) probability Aiga(s + 1).

Hence if p(s) is the limiting probability, then

p(8)(1 = Aa)g(D) ™) — pei(s))Nagali + 1),

u

leading to
u

pls) = 125 s Culidple().

1

Solving this iteratively,

1 u A u =
p(s>=m( )(1_3) PO [ICuti)*, (2.)

Ug U1

u

where ¢i(u) = [] #(¢). Summing over uo, u1,. .. such that 3, u; = u, and making use of
i=1
the multinomial formula

(gai) z{{u,-},-|u.-§2.ue=u}( ug Uy - )1:[:12“,

and noticing that Y Ga(i) = E[S4], we have

i>0

Pr{u customers in the system} = ﬁu)(l /\d)‘ E[S’d])uP((D), u > 0.
' — Ad

Using
P(0) + >_ Pr{u customers in the system} = 1

u=l

13



we obtain

Pr{u customers in the system} =

Ad )u
e > 0.
(1~/\4E[Sd] ; u__O

where K = 1 + 3 (1 /\d/\ E[Sd]) /q.’)g(u).
u=1 —\d
To verify the conjecture we need to verify that the state probabilities given by equa-
tion (2.1) satisfy
P(s)Pr{s — s'} = p(s') Pr*{s’ — s} (2.2)

for each s and s'. Both sides of the equation are zero except in the following cases:

1. For some i > 0, s" = ei(s). In forward, this corresponds to the departure of a
customer with ¢ units of service after receiving service one more time. In reverse,
1t corresponds to the arrival of a customer with service requirement equal to (i +1)A.
Since p(.) was constructed using (2.2) for this case, the equality is immediate.

2. s = (ug,uq,...) = eo(s’). In forward this corresponds to the arrival of a customer.
H b p
In reverse, it corresponds to the departure of a customer after receiving one more
unit of service. Thus

u0+1

Pr{s —s'} = ), Pr*{s' - s} = (1 - Ag)é(u + 1) il

Substituting equation (2.1) and noticing that G4(0) = 1, the equality in (2.2)
follows.

Pr{s — s'} = (1 ), (Culs +1 )/Ga(3)) wid(u)/u,

Pri{s’ - s} = (1- Ad) (tipr + 1) é(u)/u.

Substituting equation (2.1) and noticing that

(/2 u
u; = (i1 + 1) )
Uy Uipq oo e u; — 1 ui+1+]_ .

we see that equation (2.2) is satisfied and the conjecture is thus verified.

14




The conditional probability of the state given u customers in the system is

p(slu) = p(s)/ Pr{u customers in the system} = ( ” uu; ) H [g_ﬁ;i_)] l ’

which depends only on the equilibrium distribution Gy, of G4, defined by gge = G4/ E[S,).

As h tends to 0, the scheme tends to a continuous time processor sharing system; it
is easy to see that limp_o \dE[S4] = AE [S]. Tt is intuitively clear that in the limit the
randomized service scheme converges to processor sharing. This latter fact can be easily
proved as follows: let (s,t) be a time interval during which no arrivals or departures
occur. The number of discrete time intervals in this period is N = (t — s)/h. Let u
be the number of customers in the system during this interval and consider a particular
customer in the system. For 1 < ¢ < N, let X; = 1if this customer receives service at the
ith discrete interval and let X; = 0 otherwise. Note that {X;}X, forms an independent
and identically distributed sequence of random variables with Pr(X; = 1] = ¢(u)/u.
Thus, the total amount of service this customer receives in this interval is

N N
Y Xi=(t-s)N'Y X,
i=1 =1

which converges to (t — s)¢(u)/u with probability 1 as A — 0. Therefore in the limit as
h — 0, the service scheme approaches processor sharing. Now we can state a continuous
time result.

Theorem 2.2 For the Processor Sharing Model the number of customers in the system
has the distribution

1
K¢y(u)

where K = 14332 ,(AE([S])*/#1(u). Given u customers in the system, the completed (or
residual) workloads are independent and have distribution G, defined by go = G/E[S].
The departure process is POISSON with rate ).

Pr{u customers in the system} =

(AE[S])*, u2>0,

A particularly interesting case is when ¢(u) = 1 for all u. Then K = (L-XE[S)?
and

Pr{u customers in the system} = (1 — AE [SD(AE[S])*, u>0.

This last result is the well known processor sharing result [Ros83]. It is also worth noting

15




that one can obtain this processor sharing result by using a round-robin server [Yat90].
In this case the server maintains a list of customers in the system and gives them service
by going through the list one by one, starting from the beginning when it reaches the
end. The new customers are placed at the current position in the list so that they are

served immediately.

2.2 Additive GAussian Noise Channel With Deter-

ministic Service

As advertised in the introduction, we now use the results above to analyze the multi-access
model considered in the introduction. Let us recall that we are considering an additive
G AUSSian noise, multiuser communication system with noise density No, bandwidth W
~ and equal power users each with power P. With independent decoding and random

coding, given that there are u users in the system,

W log, (1 + o 1)Ilj+ N0W> bits per unit time

of mutual information for each user is generated per unit time. We will assume that
the decoder will be able to resolve the same number of bits per unit time. Note that
the mutual information model is exact, that is, the formula above is indeed equal to the
average mutual information between the transmitted message and the received signal.
What is not exact is, whether a message can be decoded with small probability of error
when the average mutual information between the message and the received signal is
equal to the number of bits in the message. We may attempt to decode the message and
let the customer depart when the number of bits in the message is equal to the average
mutual information; this will make our analysis exact, but we cannot guarantee that the
error probability (the probability that the decoded message is different from the message
sent) will be small.

With the assumption that the decoder can decode as many bits of the message as

there is mutual information, we can set the service requirement S of a message to be the
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number of nats! in the message and then the function ¢ (u) above is given by

1

#(u) =uWln (1 + ) nats per unit time.

'The extra factor u is to take into account that ¢ is a measure of the total (not per user)
service rate. Since we can compute the statistics of the number of customers in the
system, we may use LITTLE’s law to compute the average waiting time. For a given
value of SNR &' P/(NoW), the average number of customers in the system is a function
of ¢ AE[S]/W, which is the loading of the system in terms of nats per second per unit
bandwidth: A is the arrival rate of the messages, thus AE[S] is the nat arrival rate in
nats per unit time, and this quantity is further normalized by the available bandwidth.
Figure 2-1 shows the dependence of average waiting time to the signal to noise ratio SNR
and the loading ¢. Note that since

1
lim ul (1 ):1,
e U U T T SNRT

the sum

K =1+ Y (AE[S)*/é(u)

u=1

exists when £ is strictly less than unity and diverges for £ > 1. Thus the system is

stable if and only if £ < 1. In a very real sense then, the throughput of the system is

1 nat per second per Hertz. Note that in the definition of ¢, the value of E[S]is measured
in natural units, not in bits.

It will turn out that the results of this section can be interpreted as the limiting case

of the results in the next chapter as the message length gets large.

!We will find it convenient to use natural units instead of binary units. Here 1 bit = In 2 nats.

17
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The average waiting time D is shown as a function of the load ¢ < \E [S]/W and

the signal to noise ratio (SNR). The six curves correspond to different SNR values
ranging from 0dB to 60dB in increments of 10dB. The delay is normalized by the
average service requirement per unit bandwidth E[S]/W. Note that the service
requirement is measured in natural units, not in bits.

Figure 2-1: Average delay as a function of loading and SNR
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Chapter 3
Multi-Access Systems

In this chapter we will present an analysis of a multi-access scheme over an additive
white GAUSSian noise channel. In our analysis we will model both the random arrival
of messages and the channel noise and interference. The first section presents our model
of the channel. We will show that any additive GAUSSian noise channel, whose inputs
and outputs consist of waveforms, can be represented as a sequence of scalar GAUSSian
noise channels, thereby allowing us to use the tools of information theory. Although this
is a long known result, we feel that it is largely ignored outside of the information theory
community. A reader already familiar with this representation of waveform channels can
skip the following section and continue with Section 3.2 on page 26. That section intro-
duces our multi-access model and shows how, by combining some results from the theory
of processor sharing queues and the classical information theoretical analysis technique
of random coding, we can get bounds on the performance of this multi-access scheme.
Since our model takes into account both arrival and transmission processes in a multi-
access system we are able to quantify the tradeoff between the transmission parameters

like error probability and arrival parameters like queueing delay and arrival rate.

3.1 Waveform Channels

Most communication problems encountered in practice include a channel whose inputs
and outputs are waveforms over some time interval. The usual approach in analyzing
such channels from an information theoretic point of view is to assume that the inputs
and outputs of the channel belong to some class of functions with a set of properties
that allow us to represent each input and output by a countable sequence of coefficients.

The channel, at least conceptually, can be specified by describing how the countable
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sequence that specifies the output relates to the countable sequence that specifies the
input. The next section will present an example, namely the case of a bandpass additive
white GAUSSian noise channel, Lelore presenting a general treatment of a linear channel
with GAUSSian noise. Readers who are not interested in HILBERT spaces may skip the
general treatment and take the result on faith. We hope that the example presented by
the next section will be convincing enough.

3.1.1 Treatment of the Bandpass Additive Gaussian Noijse
Channel

Suppose we are given a channel that is bandlimited to the frequency band [-f, —
W/2,—fo + W/2] U [fo — W/2, fo + W/2] with f, > W/2 and W > 0. Assume that

the channel response is flat in the band, i.e., the channel transfer function H. is given by

H.(f) = {1 if“f'—fo‘SWﬂ

0 else.

The input « and output y of the channel are related by

y(t) = (he * z)(t) + w(t)

where k. is the channel impulse response, hc(t) = 2 cos(2r fot) sin(rWt)/(xt), and w(t)
is white GAUSSian noise of intensity No/2, so that, the power spectrum of w is

Sw(f) = N0/2.

Since the channel suppresses the component of the input outside the pass-band, we may
choose the input signals to be in the pass-band to begin with. Note that any bandlimited
signal ¢ can be represented as

o(t) = Re{#(t) exp(—j2r fot)}

for some Z that is bandlimited to [-W/2,W/2]. Such a signal, can in turn be represented
by uniform samples taken at a rate of W:

n(r(Wt — 1))
m(Wt — 1)

#(t) = Y (&1 + ja{@) 2w )2

20




Putting the above together, we see that

z(t) =Y ! (1) I)(t) + Z AR (@4

where in(e(Wit - 1))
([) _ 1/2 sin|\ T —1
@ (t) = (2W) T (WE—7) cos 2 fot
and . We_ i
P (t) = (2W)1’25m("( =) gin 27 fot.

(Wt — 1)

Note that {¢{ : i € z} and {p{? :i ¢ Z} satisfy the following orthonormality relations:
/ oD ()pP(t) dt = / D)o@ (t)dt = §;; and / oD(£)p(@(t) dt = 0.
We can compute {zV) : 5 ¢ z} and {z{? :i ¢ z} from z(t) as follows:

o) = [a(el()dt and 22 = [=(t)pt)de.

At the receiver side, we know that any component of the received signal that is out of
the band must be noise, and hence is independent of the transmitted signal, and thus
may be ignored. The in-band component of y(t) can be represented in the form that is
given for z(t) above:

yxn(t) _ Zy(f) (I) t) + ZyEQ) Q)(t

where
= [v®el®dt and ¥ = [y(1)pl®t)

If there are multiple users in the channel, each of their signals may be represented as
above, and the received signal will be the sum of all their signals and noise. Figure 3-1
shows this case. We then have

yD = Z zD 4+ a  and y{Q) =y 29 + n(@)
&
where the sum is over the users and

n{) = / w(t)p!(t)dt and n{® = / w(t)p{?(t) dt.
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z1(t)
cos(2m fot)

S
y(t)
;za?’s(t—z'/vv) i
sin(27 fot) HL,(f)
2/W
cos(27 fot) w2 W/2>
Hy, —J\’—-"’yy)
y(t) —— s
Hy ——/\'-—".%(Q)
1/w
sin(27 fot)

The figure shows the model of a multiuser, bandpass, additive GAUssian noise chan-
nel. The model makes use of the fact that any bandpass signal z(t) with spectrum
consisting a band of W around fy can be written as z(t) = Re(&(t) exp —j27 fot)
where Z is a complex lowpass signal occupying the band [-W/2,W/2]. Any such
low pass signal, in turn, can be represented by its uniform samples taken at a rate
of W per second. Since Z is complex, these samples have real and imaginary parts,
we call them the in-phase (I) and quadrature-phase (Q) components.

Figure 3-1: Model of Bandpass Communications
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Recall that {o{" i ¢ }Uu{p{®:i e Z} form an orthonormal sequence, and thus the set
of random variables {n{") : i € z}U {nSQ) i1 € Z} is a sequence of independent, identically
distributed, GAUSSian, zero mean random variables each with variance Noj2.

We have thus reduced the waveform channel into a sequence of independent scalar
channels. We can view the waveform channel as follows: for each time ¢ of the form
t = 1/W, the transmitters choose the values of :cg) and :cfc?) This happens W times
every unit time interval, and thus each transmitter provides 2W samples per unit time.
The channel sums the (I) and (Q) values separately, adds noise to each sum and delivers
these two values to the receiver as y{*) and y!?). Note that the noises added to the (1)
and (Q) parts are independent from each other and also independent from the noises in
the other time instants.

It can be shown that

N
jim o [0 = Jim 55 S ((0)7 4 (=49))

and thus power constraints on z translate to constraints on the sequences {mﬁ” 11 € 7}
and {z$°’ : 1 € Z}. In particular, if these sequences are chosen as sequences of independent
identically distributed random variables with zero mean and variance P/(2W) then z(t)
will have time-average power P with probability 1.

3.1.2 A Mathematical Approach!?

The channel of the previous section is a special case of linear additive GAUSSian noise
channels. Here we present the treatment of this general case. Note that time-invariance
is not required. When dealing with linear, additive noise waveform channels, we will find
it useful to represent the inputs to the channel (the input waveforms) by the sequence of
coeflicients of their expansion with respect to a complete orthonormal basis. The implicit
assumption is then that the waveforms belong to a separable real HILBERT space X. To
recapitulate: given a complete orthonormal basis {¢; : 1 > 1} for X, we will represent a
waveform z € X by the sequence {z; € R:4 > 1} where

T = Zfﬂi%‘,

i>1

1This section is largely based on [(Gal68, Chapter 8] ; we have simply translated it into the language
of HILBERT spaces. For a treatment of HILBERT spaces the reader is referred to [RSN90] , [Fri82] or
[Hal57].
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or equivalently z; = (=, ¢;), with (-,-) denoting the inner product in the real HILEERT
space. For z € X, we will denote the norm of z by ||z|| = (z,z)'/2. Note that, from
PARSEVAL’s identity, we have

lel® = > faif.

i>1
The channel model will be
y=Hz+n

with y the output, z the input waveforms, H : X — X a bounded linear operator, and n
“white GAUSSian noise” of intensity No/2. What we mean by the last statement is the
following: for any orthonormal sequence {pi € X :4 > 1} the sequence {(n, ) 14 > 1}is
a sequence of independent GAUSSian random variables, each with mean zero and variance
No/2.

Let {¢: € X : i > 1} be the eigenvectors of the operator H*H, where H* : X — X
is the adjoint of H. Let {); : i > 1} be the corresponding eigenvalues. Since H*H is
self-adjoint and positive, {); : i > 1} C R*. Without loss of generality we may assume
that |j¢;|| = 1 for all ¢ > 1. It then follows that {i; : 5 > 1} form a complete orthonormal
set, and also

(Hei Hoj) = (H*Hei, ;) = Miiy 05) = Aiby;,
and thus {¢; = A:l/zHga,- :22>1,) > 0} form an orthonormal set that is complete in

the range of H. Let S = {i > 1:); > 0}. Let Po : X — X denote the orthogonal
projection onto the range of H. Then,

Poz = (z,4:)¢;
i€S
and it is clear that when we write y = Pyy + (I — Po)y, the second component, consists
only of noise, and is independent from the input. Similarly, if P; denotes the projection
onto the space spanned by {¢; : i € S} (that is, the orthonormal complement of the null
space of H), then

Prz = Z(Z,‘Pi)%
i€S

and if we write z = Prz + (I — Pr)z we see that only the first component matters in the
operation of the channel since the second component produces null output. We can now
describe the operation of the channel as

yi = A\ %z + niy, 1€S8
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where y; = (y,%:), ©: = (¢,;) and n; = (n,¥;). By the definition of n, we see that
{n; : 1 > 1} is a sequence of independent, identically distributed, zero mean, GAUSSian
random variables, each of variance Ny/2. We have now transformed the waveform channel
into a sequence of independent scalar channels, which we know how to deal with.

As a somewhat more general case, we may consider an additive noise channel where
the noise is not white, but is “colored”, that is, the noise is of the form Gn where
G : X — X is a bounded linear operator and n is “white” GAUSSian noise. The channel

model is then
y = Hz + Gn.

Let {piy : 1 > 1} be the normalized eigenvectors of G*G corresponding to eigenvalues
{X\ig i1 > 1}. Define {¢;, = /\,-_,;/2(}’(,0,-’3 :1> 1,0, >0} Let S, ={i >1:X, >0}
As before, it follows that {¢p;, : 7 > 1} is a complete orthonormal basis for X and
{tig : © € S,} is an orthonormal set, complete in the range of G. Let Po, be the
projection onto the range of G:

PO,gz = 2(29 ¢i,g)¢i,g-

i€S§

Then; Py G = G, and
PO,gy= PO,gHw+Gn’ y—PO,gy= (I—Po'g)HIB.

If (I — Po,g)H # 0, then there exists a noiseless channel from input to the output, and the
communication problem in this case is trivial. We therefore assume that (I — Po,4)H =0,
that is, the range of H is included in the range of G.

Let K : X — X be given by

Kz=Y 2 }2(z,%:0)p14-
i€S,

Note that KGw = Yics,(w, ¢iqg)pis and thus KG = Prg, the orthogonal projection
onto the orthonormal complement of the null space of of G. Note that K is one-to-one
on the range of G (which includes the range of H) and thus knowing K Hz one can

recover Hz and knowing KGn one may recover Gn. Thus multiplying y by K is an

information-lossless operation, and the channel y = Hz + Gn can be replaced by an
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equivalent channel:
z=Ky=KHz+ KGn = (KH)x + Prgn.

Now let {pip : i > 1} be the normalized eigenvectors of (KH)*KH, {Xio : i > 1} the
corresponding eigenvalues, So = {i > 1 : Ao > 0}, and {¢i0 = A;(}/zﬁ'Hgoi,o 11 € So}.
Since the range of G includes the range of H, the range of KG = Pp,4 includes the range
of K H and thus Pr ;0 = i for ¢ € So, implying:

(PIign’ ¢i,0) = (n1 "bi,o), Z E SO,

and we get an equivalent representation of the channel as
z; = )\}_{)2171' +n;, € So,

where z; = (z,%i0) = (Ky,%i0), ¢i = (z,9i0) and n; = (n,i0). As before, the random
variables {n; : i € So} form an independent identically distributed zero mean, GAUSSian
sequence, and each n; has variance No/2.

3.2 Random Coding for the Multi-Access Additive

Gaussian Noise Channel with Decision Feed-
back

We previously analyzed a processor-sharing queueing system. Let us recall the assump-
tions and the results: apart from the usual assumption of POISSON arrival of customers,
we assumed that each customer had a demand which could be characterized by a single
real number; moreover, as the customer remained in the system it accumulated service
over time with a rate that was a function of the total number of customers currently
in the system. When the accumulated service exceeded the demand, the customer de-
parted the system. Under these conditions we showed that the departure process was
also PoIssoN and we found the steady-state distribution of the number of customers in
service.
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3.2.1 Problem Setting

Here we look at a multi-access system for an Additive White GAuUssian Noise (AWGN)
channel with decision feedback from the receiver to the transmitters. The receiver will
decode each transmitter regarding others as noise; we may think that there are as many
receivers as there are transmitters, each receiver decoding a single transmitter and re-
garding the other transmitters’ signals as interference. In our analysis we will choose the
codewords of each transmitter as samples of bandlimited GAUSSian noise. Each receiver
will know the codewords of only one transmitter, the signals transmitted by the other
transmitters are indistinguishable from those emitted from a GAUSSian noise source.
However, we will assume that each receiver is cognizant of the total number of active
transmitters at a given time. (This is a sensible assumption: we may imagine that there
is a separate channel on which the transmitters announce their start of transmission
so that a decoder will be assigned to them.) To be able to use our previous result on
processor sharing queues to analyze this multi-access system we must identify the de-
mand of each transmitter and the service rate offered by the receiver to the transmitter.
Intuitive candidates for these quantities are the following: the number of bits (i.e., the
amount of information) in the transmitters message could constitute the demand, and
the average mutual information over the channel could be the service. The intuition
behind this hunch is that the number of bits of the transmitters message resolved per
unit time should be related to the mutual information over the channel, and thus rate
of information flow should constitute the service. The preceding, however, is simply an
intuition and needs verification. It will turn out that these intuitive candidates are too
simplistic and we will define the demand and service differently in the following section.
Nonetheless, we will see that the intuitive candidates can be interpreted as the limiting
case of the analysis that follows.

Before proceeding any further let us examine the channel model in more detail. Our
transmission model will be that described in Section 3.1.1: the transmitter signals will
be constrained to a frequency of width W centered around fo. The received signal will
be the sum of the transmitted signals with white GAUSSian noise. The model is shown
in Figure 3-2. In the figure, z4(t) is the signal of transmitter k and w(t) is the white
GAUssian process, and is independent of the transmitted signals. The power spectrum
of w(t) is flat with intensity Ny/2:

Sw‘w(f) = %NO
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“w(t)
z1(t)

H(f) = y(t)

zu(t)

Figure 3-2: Channel Model

In the figure H(f) is an ideal band-pass filter and w is a white GAUSssian process
of intensity No/2.

The filter H is an ideal band pass filter:

H(f)={1 if || £ — fo| < W/2

0 else.

From the previous section, we see that our continuous time model is equivalent to a
discrete time model shown in Figure 3-1 and the relationship of the received signal to

the transmitted signals is captured in the equations

S = Yo b and 4 = el
k k

where {nEI) 11 € Z} and {nﬁ‘?) : i € 7} form two independent sequences of independent
identically distributed GAUSSian random variables, each with mean zero and variance
No/2. Thus instead of a waveform channel we may think that we have a sequence of
scalar channels, {(C{", c:iez}.

The codebooks of the transmitters consist of a set of bandlimited waveforms, so that
each waveform z is determined by its samples {(zgl),ccgq)) : i € 7}. Let us now use a
random coding argument to evaluate the performance of our system. The codebooks of
all the transmitters will be chosen according to a probability measure that makes the
samples independent and GAUSSian with variance P/(2W) and mean 0. (That is, the
codewords will be samples of bandlimited GAUSSian noise of power P.)

One should note that since we are choosing the codewords to be bandlimited, they

occupy an infinite duration in time and are also non-causal. (One can see this by ex-
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amining Figure 3-1 and noticing that the filters are non-causal.) If we admit non-causal
filters in our model, then there are no difficulties. However, if one were to implement
such a system, then one would use causal filters with finite response times, in which case
our model will be only approximate.

Let us focus on a single transmitter-receiver pair, and condition on the process
u(t), t > 0, the number of active transmitter—receiver pairs at time ¢. Our goal will
be to show that a modification of the information based service measure will qualify for

the analysis.

The samples of the process u(t) will be integer valued step functions. Define to, &f 0
and let ¢;, ¢ > 1 be the times the process changes value and u;, = > 1 be the value of the
process in the interval (¢;_,,¢,].

The noise power for the scalar channels C,-(I) and C,-(Q) is then:
0'3 = No/2 + (uk - l)P/(ZW), Wti_y <1< Wty.

This expression indicates that the noise seen by a particular transmitter-receiver pair
when there are u — 1 other users in the system is GAUSSian with power No/2 + (u —
1)P/(2W).

Note that the scalar channels are made available over time at a rate of 2W per unit
time (during At time units we gain 2W At degrees of freedom). Let the number of
codewords be M (i.e., the message is log, M bits long). If we use the output of the first d
channels to decode the transmitted message, we get the following random coding bound
on the error probability [Gal68, pp. 149-150]: for any 0 < p < 1

d
P, <exp [p In M - Eo(p, a',-)] .
i=1
Now, for a GAUSSian channel with independent GAUSSian input ensemble with variance
P/(2W) and with noise variance o2

p P
E =-In|{l4+ —7—+-—].
o(p,0) = £n ( b o p))
If we fixa p € (0,1] and a tolerable error probability P., then we can view —In P, +pln M
as the demand, and Ey(p,0) as the service (per transmitter-receiver pair per degree of
freedom). Note that to cast these parameters in the context of our queueing result, we

need to express the service in terms of total service (service to all customers, not just
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one) per unit time and not in terms of per customer per degree of freedom. This leads

to a service rate:

2wunm@mﬂn=u@mwm(L*u+pxmwikﬂw—UP)'

The factor 2W accounts for the degrees of freedom per unit time; to obtain the total
service provided by the system we need the additional factor of u(t). Note that scaling
the demand and service by the same factor does not change the system; we will do so by
factoring out Wp from both, thus defining the demand as

S =W —(InP.)/p + In M)

and the service function (rate of service as a function of total number of customers) as

P
¢(u) = uln (1 T AT W T (s 1)P)) '

In this second form, we see that the hand-wavy analysis we had done after the processor-
sharing results were not so far off the mark: there, the demand did not include the

—(In P.)/p term, and the service function was

uln (1 + P
NoW 4+ (u—1)P '

In spite of the apparent similarity, differences surface when one tries to find the
conditions for the stability of the system. In the model of the previous chapter we had
concluded that the system is stable whenever the aggregate arrival rate per unit time per
unit bandwidth was less than 1 nat (log, e bits). In this model we have a more realistic
result. As we insist on lower error probabilities, the aggregate rate that our system can
support decreases. The following analysis makes this relationship clear.

For stability we need:
AE[S]

Jim o(u)

where ) is the arrival rate. Let us define

<1,

(= \E[ln M)/W
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as the loading of the queue and
E.% —(InP.)/Elln M]

as the error exponent. The quantity Elln M) appearing in the definition of ¢ is the
expected length of the messages (in natural units); £ is the total nat (as opposed to bit)
arrival rate per unit bandwidth (in the units of nats per unit time per unit bandwidth).
The error exponent E. relates the error probability to expected message length. Since
p(u) = 1/(1+p) asu tends to infinity and

E(S] = WE(ln M — (ln P.)/p] = W-1E[la M)(1 + E/p);

we get

Loy MELS]

u—co d)(u

= {1+ Be/p)(1 +p);
and we can rewrite the above stability condition as
{1+ p)(1 + Ec/p) <1 for somep e [0,1]. (3.1)

This is equivalent to the statement
Eorélggl(l +p)(1+E./p) <1

This minimization occurs at p = 1 for E. > 1 and at p = JE. for E. < 1. The
corresponding value of the minimum is 2(1 + E.) and (1 + VE.)? respectively. In sum,
the stability region of the processor sharing queue is

-2
(F,t): 0< E.<1,0S(< (1+\/E) YU {(Ee ) : B >1,0<<(2+2E)")

Figure 3-3 shows this stability region. The region of interest will depend on the mes-
sage length. If one has long messages, then one is satisfied with relatively small error
exponents, whereas for small message lengths one will be interested in large exponents
to achieve small error probability. Note that E. can be made arbitrarily large if one is
willing to sacrifice throughput.

Given a stable (E., {) pait and a signal to noise ratio SNR &f p/(NoW), our processor
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The stability region of the multi-access system is shown. The vertical axis £ is the
loading of the system, the nat (as opposed to bit) arrival rate per bandwidth. The
horizontal axis is the error exponent, the natural logarithm of the error probability
divided by the packet length (in nats).

Figure 3-3: Stability region of the multi-access system

sharing results enable us to find the average number U of customers in the system:

U= Y wEIS/4(w) | S EISI/éi(w)

u>1 u>0

with ¢i(u) = [[%, #(i). Using LITTLE’s law we obtain an expression for average delay:
A\D=U, WD/ElnM]="U/L

Another issue is the choice of p. From the discussion above, for any stable (E.,{)
pair, we know that there is a p € [0,1] which makes the system stable. For a stable pair
(E.,£), let T be the set of p’s in [0, 1] that satisfy (3.1). Choosing any p € T will lead to
a stable system, but, one should presumably choose p to minimize the expected delay.
Figure 3-4 shows the optimal p and the corresponding delay for various values of {, E.,
and SNR.

Our analysis, although theoretically sound, can be criticized on the following ground:
the decoding rule we employ chooses the time of decoding only on the basis of the number

of interferers, and ignores what is actually received. The optimal decoder (the one that
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We see the dependency of expected delay and the optimal p as they vary with the
error exponent E., SNR and ¢. Each curve in the graph is to be read off from the
axis closer to it. Note that the expected delay is normalized with the bandwidth

W and the average message length.

Figure 3-4: Expected Delay D and optimal p vs. error exponent E.



minimizes the expected delay subject to a probability of error constraint) will make use of
all the information available in choosing the decoding time. Let y,...,y4 be the outputs
of the first d channels and let

Pr[yi,...,ya|lm is transmitted|

T(d) = X Smigm PI(y1, .., ya|m' is transmitted]’
The optimal rule will decode when T'(d) exceeds a pre-determined threshold T', and
decode the message m that achieves the maximum in the expression for T((d). This
decoding rule does not (as far as I see) lend itself to an additive service characterization,
so I don’t see how we can analyze this decoding rule. A modified rule would replace
the denominator in the T(d) expression by the ensemble probability of the sequence
Y1,...,Ya. Then, since the channel is memoryless the service function becomes additive,
but it also becomes non-deterministic in the sense that knowing the number of interferers
does not determine the service rate; it only determines the probability distribution on

the rate of service.

3.2.2 An improved decoding rule

We had noted above that the decoding rule used in our analysis determined the decoding
time irrespective of the received vector. We will now introduce a slight modification to
this decoding rule. In this modified rule, the decoder proceeds in stages. The duration
of each stage is determined by the number of interferers during that stage and at the
end of each stage the decoder decides whether to decode or to proceed to the next
stage. This decision to decode or to proceed is made on the basis of the received signal
during the current stage. Note that the transmitter does not need to know about the
stages, it just keeps transmitting the signal corresponding to the message. Let Px be
the probability that at the end of a stage the decoder will not decode but proceed with
the next stage. Then the number of stages the decoder will take to decode the message
is a geometrically distributed random variable with mean (1 — Px)~'. If the expected
service requirement of the individual trials is E[S], then the overall service will have
expected value E[S]/(1 — Px). To analyze this decoding rule we will derive a parallel
channels result, analogous to the parallel channels result [Gal68, pp. 149-150] on the
error exponent. Let us introduce the following quantity: '

Ex(p,4,Q,P) = ~In £ £ @00 Py | [T @) Pl ]

34




We then have the following [For68]: for each p, s satisfying 0 < s < p < 1, and for each
T > 1 there exists a decoding rule with

Px < MPT’exp —Eo(p,5,Q,P) and P. < M"T("_l)exp—Eo(p,s,Q,P),

where the expectation is taken over the ensemble of codes whose codewords are chosen
independently according to the distribution Q. Note that the upper bounds on the
error and erasure probabilities differ by a factor of T. It is easy to see that if Q(x) =
Qi(zy1)--- Qn(z,) and P(y|x) = P1(3!1|1’1) Tt P,,(y,,|:c,,) then,

EO(P7 37Q1P) = Z Eo(p,s, Qi)lpi)
=1
with

Eo(p,s,Qi, P) = —In ; [Zz: Qi(w)Pi(yFC)l_’] [; Q,-(z')P,-(ylzc')’/"] "

If we are given the values of tolerable error and erasure probabilities P, and Px, we
may identify their ratio Px/P. as T, —InPx + slnT + pln M as the demand and
Eo(p, s,Q;, P;) as service (per degree of freedom). We may now use our queueing results
since the service is additive. We may eliminate the parameter T from our definition of
demand and write it only in terms of the error and erasure probabilities:

S=—(1-38)InPx —slnP, +pln M.

The service thus defined, does not take into account the fact that decoding may
consist of several stages. As we have said above, the average total service will exceed
E[S] by a factor of (1 — Px)~'. For a given value of Py, one may still use the curves
that we will compute by increasing the loading £ by a factor of (1 — Px)™! and reading
the curves at the new loading.

As an aside, note that with s = p/(1 + p) the expression for Eo(p,s,Q, P) reduces
to the expression for the Fq of the previous section. With this value of s, the service
requirement becomes S = —In P,l{/ (1+e )Pe"/ (1+2) 4+ pln M. In the previous section the
service requirement was —In P, + pln M.

Also note that, for the additive GAUSSian noise channel with noise variance o2 and
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for an input distribution that is GAUSSian with variance P,

; Plis (p — s = sp)(s/p)(P/o?)
Eolers, Pfo7) = gln [1 * (s/p)ﬁ] taln [1 = 1+ (37P)(;/02)

As before, the work function @(u) will be given by 2WuFE, evaluated at the SNR
corresponding to u — 1 interferers:

p
o) = oW [1+ 6l

(p— s — sp)(s/p)(P/(NoW + (u — 1)P))
1+ (s/p)(P/(NoW + (u —1)P))

+uWln [1 “+-

The limit of ¢(u) as u approaches infinity is

lim qﬁ(u):Ws[Z—l;ps].

uU—0

If we define £ = W~ \E|[ln M] as the nat arrival rate per unit bandwidth, E. = E;[%n—;;]
n
as the error exponent and Ex = _—lﬂ as the erasure exponent we see that
E[ln M]

E[S) = W/{[p+ sE. + (1 — s)E,],

and the stability condition
. AE[S]
lim

u—oo ¢(u) <l

reduces to

0P +sE. +(1—s)E
s(2 —s(L+p)/p)
This, in turn, is equivalent to

X <1 for some 0 < s < p < 1.

! mi . p+3sE.+(1—-3)Ex
min min
0<p<1 0<a<p  3(2 — s(1 4 p)/p)

< 1.

The minimization over s can be done via differentiation and we obtain

_ p+ Ex ( )
s_—Ee—Ex v1+20-—-1
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E, — . . .

where 3 = 3(p) def : i n EEX. Using the inequality /1 +z < 1 4 z/2, we see that
pp X

8 < p/(1+p) and thus s < p as desired. Substituting this value of s we get the following

condition for stability:

. VITH
W e RV (e i (3:2)

where (3 is defined as above. The quantity to be minimized is a decreasing function of
B, and thus the minimizing p in equation (3.2) is the one that maximizes B(p). The

ﬂ/(Ee - EX)

(1+VEx)?

=

(2 + 2Ex)_l

The nature of the mapping p — 3(p) depends crucially on the value of Ex. All
the possible cases are shown in the figure above. The maxima and minima of the
curves are also indicated.

Figure 3-5: 3 as a function of p for various cases of Ex.

nature of the mapping p — B(p) depends on the value of Ex. There are three cases as
illustrated in Figure 3-5:

1. Ex = 0. The range of the mapping p — 3 is [%E,, E.]. The maximum is achieved
at p = 0.

2. 0 < Ex < 1. The range is [0,(E. — Ex)/(1 + v/Ex)?]. The maximum is achieved
at p = /Ex.
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3. Ex > 1. The range is [0,(E. — Ex)/(2 + 2Ex)]. The maximum is achieved at
p=1

Putting everything together, we have the following stability conditions:

1. H0O<Ex <1

2

2
%e(1+ Ex+\/(1+ Ex) +2(Ee—Ex)) <1

2.if Ex > 1

%f(\/1+Ee+\/1+Ex)2 <1,

Note that at Ex = 1, the conditions give identical expressions. Also if Ex = E. = F,
we recover the stability conditions of the previous section.
If we are interested in maximizing E. for a given { irrespective of Ex, we see that

this maximum occurs when Ex = 0. The condition on £ and E, is then the following:

%e(1+E,+,/1+2E,) < 1

This region is shown in Figure 3-6. For £ close to 1, E. needs to be small, and we
can approximate this condition to E. < (1 — £). Thus for large loading ¢, the system
can support error exponents up to 1 — . Compare that with the decoding rule of the
previous section: the largest error exponent the previous system could support for large
{ is approximately (1 — £)2/4.

As in the previous section, we can compute the average delay for any given E., Ey,
SNR and £. In Figure 3-7 we plot the normalized average delay as a function of E, for
various values of the other parameters. Each point on the curve shows the result of an
optimization over p and s. A comparison with Figure 3-4 shows that there is a significant
improvement in the supportable E, and the corresponding delay.

We can easily make the following observations:

1. For fixed bandwidth and bit arrival rate, the average delay increases linearly and

error probability decreases exponentially with increasing packet length.

2. Increasing the SNR has a more pronounced effect on delay at lower loads than at
higher loads. At higher loads, the effective SNR is governed by the interference
rather than the intrinsic noise.

38




0.6

0.4 T

0 ! t } i ——o> E.
0 0.5 1 1.5 2 2.5 3

Note the enlargement of the region as compared to Figure 3-3. The difference is
especially pronounced at £ close to 1.

Figure 3-6: The stability region of the multi-access system as Ex — 0.

3. Increasing the bandwidth has a two-fold decreasing effect on delay: (i) it decreases
the loading, thereby reducing the normalized delay W D, and thus (ii) it decreases
the actual delay by an extra linear factor.

We can also make the following comments on our system model, and the analysis:

1. The model can be generalized to other waveform channels that have a time-frequency
decomposition property. The RAYLEIGH Fading Channel is an example that comes
to mind.

2. The decoding rule the receiver employs fixes the values of the parameters p and
s for all time. A better decoding rule would optimize the values of p and s as
more degrees of freedom are observed: when the outputs of the first d channels are
observed, the decoder would find the p and s that minimize the bound on the error
probability and would decode when this upper bound is small enough. However
this decoding procedure cannot be analyzed with the machinery we have developed
so far: the service is not additive any more. In any event, the analysis we have
done with the suboptimal decoding rule provides a lower bound to the performance
of this improved decoding rule.
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Figure 3-7: Delay vs. Error Exponent
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Chapter 4

Erasures and Errors Decoding for a

Single User Channel

In most communication schemes the decoder produces an estimate of the transmitter’s
intent without indicating its confidence in the estimate. However, such a confidence
measure may enhance the performance of systems that make use of the decoder’s output.
The simplest kind of confidence indication is achieved by allowing the decoder not to
decode, i.e., declare an erasure. A communication scheme utilizing such a decoder is
called an “errors-and-erasures” scheme. If there is a feedback link available, the decoder
can then inform the transmitter of an erasure and request a retransmission. This type of
feedback is termed “decision feedback” and is weaker than that in which the transmitter
is aware of the actual channel outputs.

The problem of finding the performance of errors-and-erasures and decision feedback
schemes has been studied by FORNEY in 1968 [For68]. In his studies, FORNEY describes
the optimum decoding rule, and uses a (single-letter) random coding argument to find
simultaneous exponential upper bounds to error and erasure probabilities. His results
were believed to be exponentially tight at least in the high rate region. CsiszAR and
KORNER [CK81] rederived these bounds using a fixed composition argument.

A consequence of FORNEY’s studies is the existence of a class of channels for which
zero error and arbitrarily small erasure probabilities are simultaneously achievable for
rates smaller than some “zero error decision feedback” capacity. We will use the term

“zero undetected error capacity” to refer to the same quantity, and will denote it by Cp,!.

1The reason for the rather awkward symbolism is that other logical choices were taken: Co denotes
the zero error capacity and C, t denotes the zero error capacity with channel feedback [Sha56]. In general
Co < Cou < Coy < C.
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We will write Co,(P) when we are referring to the zero undetected error capacity of a
particular channel P. FORNEY also gives the lower bound?

Cou(P) = mg,xij In(1/v;), (4.1)

where Q is an input probability distribution, w; is the corresponding probability of
output j and v; is the collective probability of inputs that lead to output J with positive
probability®. If one believes that the exponential bounds of FORNEY are tight, one is led
to the conclusion that this lower bound is the actual value of Co,.

However, PINSKER and SHEVERDYAEV in 1970 [PS70] proved the following: given a
channel P construct the channel graph, a bipartite graph obtained by listing the inputs
and outputs of the channel and connecting an input-output pair by an edge if the output
can be reached from the input with positive probability. If this graph contains no cycles,
then Cou(P) is equal to the (usual) capacity C'(P). This leads to exampl‘es for which (4.1)
is not a tight lower bound.

The following example contains the essential ideas in PINSKER and SHEVERDYAEV’s

proof.
Example 4.1. Co, of the Z-Channel

Consider the channel shown below. Let C' denote the capacity of this channel, and
let xi,...,Xa be the codewords of a block code of length n, rate R = (In M)/n and

Figure 4-1: Z-Channel

maximum error probability A\. That is, Pr[Error|x,] < A for all m = 1,..., M. Classify
the codewords according to their weight (the number of 1’s they have). Since there

are at most n + 1 classes, the most crowded class has at least M/(n + 1) codewords.

2We will use natural units for rates and capacities throughout the paper.
3Both w; and v; are a function of Q as well as P, and should be notated w;(Q, P) and v;(Q, P)
respectively. However, we will use the shorter form for brevity.
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Eliminate all codewords except the members of this most crowded class. The new code
has a maximum error probability at most ) (eliminating codewords cannot increase the
probability of error) and rate at least

lln M =R_ln(n+1).
n n+l n

Thus we conclude that if n is large any block code can be converted into a fixed weight
code with negligible loss of rate.

Let the common weight of the codewords thus obtained be a, and consider a received
sequence y of weight b. Since the channel cannot change 0’s into I’'s, b < a. For a
codeword X,, that leads to y with positive probability, b of its 1’s are received as 1’s and

a — b of its 1’s are received as 0’s. Thus
Prly|xm] = (1 — €)®e®®,

Since the right hand side of the equation is independent of m, we conclude that all m’s
that are at all possible are equally likely. Therefore, for any y, either there is a single
possible X,,, in which case the decoder can be assured of the correctness of its choice, or
the decoder has to choose between equally likely candidates. Since in the latter case the

decoder will commit to an error with probability at least 1/2 we have

%Pr[there is more than one candidate] < ).

A decoder that erases whenever there is a chance of making an error will thus have
erasure probability at most 2X. For any R less than C, ) can be made arbitrarily small
by increasing n, so we see that Cp, = C. For this example FORNEY’s lower bound gives
(1 — €)/e which is strictly smaller than C' = In(1 + (1 — €)e™=), which is illustrated in
Figure 4-2.

The above example shows that lower bounding Co,, using a single-letter random coding

argument does not yield tight answers. In this chapter, we will derive a tighter lower
bound for Cy,.
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The figure compares the lower bound given in (4.1) with the actual undetected
error capacity Co, for the Z-channel. The lower bound is denoted by Ry,.

Figure 4-2: FORNEY’s Lower Bound

4.1 A Tighter Lower Bound to Zero Undetected Er-
ror Capacity

To determine our lower bound to Co, we will use a constant composition approach. We
will show that*

> i . .
Cou(P) > mgxpléx‘;.(lg‘P)I(Q,P ) (4.2)

In this expression P is the transition probability matrix of the given channel, and Q is an
input distribution. P;. denotes the conditional probability of output j given input % and
Qr denotes the probability of input k. p(Q, P) denotes the set of transition probability
matrices P’ such that P and P’ impose the same output distribution when the input

distribution is @ and P’ introduces no extra connections to the channel:

p(Q,P) = {P':ij =0= Pj =0,Tx QuPji = Ts Qkpjk} (4.3)

*We will prove that this is a better bound than (4.1) in Appendix 4.A on page 66.
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I(-,-) is the mutual information function,

!
' [ L
I(Q,P) = %Qk jkln—ZiQJiP;i'

We will abbreviate the constraint Pj, = 0 = P}, = 0 to P’ < P, borrowing this
notation from measure theory [Hal74]. One can see that p(Q, P) is a convex set and
I(Q, P') is convex in P’, so that the minimization can be easily done. However, after
the minimization over P’, the resulting function of @ to be maximized is in general not
concave (even though I(@Q, P) is), so the maximization may prove to be difficult. This
lack of concavity will have important consequences that hinder our search for a converse.

We will give an example of this non-concavity after we first prove the lower bound in (4.2).

4.2 The Proof of the Lower Bound

To prove (4.2) one proceeds as follows: Pick a constraint length » and an input distri-
bution @ such that for each input letter k, nQ), is an integer. An input sequence x of
length n is said to be of composition @ if each input letter £ occurs nQ} times in x. One
can easily show that the size of the set of all sequences of composition @ is expnH(Q)

to the first order of n in the exponent. Here H is the entropy function:
H(Q)=-) Qxln Q.
k

Select M codewords X1, ...,Xp randomly from this constant composition set according to
a uniform probability distribution. The code thus obtained will be a constant composition
code.

Consider transmitting the sequence x,, and receiving y. Count the number of &k to
j transformations for this transmit-receive pair. Divide this count by nQ) (the number
of positions where x was k) to obtain the “observed channel behavior” P;,. We will also

say that y is “P generated” from x,,. The conditional probability of y given x,, is then

n “nA- = -P
ylxm] H PJth _ (H ijPJka) exp _nz Qkij In P_J:
k,j k,j J

Notice that the term in parentheses in the above expression is the conditional probability
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of y given x, for a channel with transition probabilities P rather than P. If we define

~ e P P
D(P|PIQ)¥ > QuPj In 2%
k.j Pii

we can rewrite the above as
Ply|%xm] = Ply|xm]exp —nD(P| P|Q).

If we sum this expression over all y that would result in channel behavior P and overbound

the right hand side by summing over all y, we get the following bound:
Pr[channel behavior P} < exp —nD(P| P|Q).

Now consider the event that there is some X/, m’' # m, for which P[y|x:] > 0. Let
P' be the observed behavior for the pair (X,n1,y). To satisfy P[y|Xm:] > 0, P’ should not
contain connections that are not present in P. Also, the fraction of j's in y, w;, is equal
to both 3, Qkpjk and 3" QkP),. Thus P’ imposes the same output distribution P does
under the input distribution ). Let A denote the set of x’s of composition @ for which
the observed behavior of the pair (x,y) is P'. Out of n positions in y, there are nw;
positions occupied by the letter j. In the corresponding nw; positions of x the letter &

must occur exactly nQi Pj, times. Thus the size of A is given by

_ (nw;)!
Al = l:I [1k(nQrPj)!

From this we can easily show that the fraction of x’s of composition @ for which (x,y)
has observed behavior P'is exp —nI(Q, P') (again to the first order of n in the exponent).
Combining the above with the union bound,

P|Erasure, P'|P] < min{l,(M — l)e‘"I(Q’P')} <exp-n(I(Q,P')— R —¢,)",

where at denotes the positive part of a, and lim, ., €, = 0. Summing over P’ and

removing the conditioning, we get

P[Erasure] < ,Z exp{—n[D(ﬁHPlQ) + (I(Q,P') - R- fn)+]}’
P,P’
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where P' is subject to the constraints described above. One can show that there are
polynomially many (in n) P’s and P"’s, so that we can bound the summation by the

maximal term with a vanishingly small loss in the exponent:
P[Erasure] < exp{—n(xlu'n [D(P||P|Q) + (I(Q, P — R) +] - e:,)}
pP,p!

where lim,_, €/, — 0. One now notices that as long as R is less than the right hand side

of (4.2) either D(P||P|Q) or (1(Q, P') — R)* is positive. (For if 2 # P, D(P||P|Q) > 0
else P = P and the constraint on P'is P’ € #(Q, P)). Since the minimization is done over
a compact set and the function to be minimized is continuous we see that the minimum
is positive for R less than the right hand side of (4.2).

Note that the bound derived above applies to the ensemble average erasure probability
of a class of codes. However, the standard techniques of random coding can easily convert
such a result to a bound on the maximal erasure probability of the best code in this class.

It would have been nice to show that the expression in equation (4.2) is in fact Co,
rather than being a lower bound to it. The conventional converse proofs for results
proven by constant composition code arguments go through the following steps: First
find an upper bound to the achievable rate of codes whose codewords have composition
Q. Suppose now that this upper bound coincides with the achievability result for such
codes. Since any code has a significant constant composition sub-code the converse will
follow. Note that this type of approach proves something even stronger: it also finds the
performance of constant composition codes. Qur achievability result shows that with a
code of composition @ one can achieve rates as close to minpre,,p) [(Q, P') as desired.
For the conventional converse to work we need to show that one cannot do any better
with codes of composition Q. This unfortunately is not true as the example below will
show. The example demonstrates that minpiey,r) I(Q, P') is not a concave function of
Q. However, if I,(Q)) denotes the achievable rate with codes of constant composition @,
then the following holds:

Lemma 4.2 I, is concave function.

Proof. By using time sharing between codes of composition @ and Q' one obtain a code
of composition 4Q + (1 - 1)@ of rate uLu(Q) + (1 — )L(Q'); thus L(kQ + (1 — p)@') >
pL(Q) + (1 - p)L(Q"). O
We already know that I,(Q) > minpicyq,p) I(Q, P'); We can now improve this lower
bound to L,(Q) > I**(Q), where I**(Q) is the smallest concave function not less than
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minpiey,p) I(Q, P'). In Appendix 4.C on page 69 we show a construction to obtain I**.
However, as noted in Appendix 4.C the replacement of minpiegg,p) I(Q, P’) by I**(Q)
will not change the value of the maxima over Q.

Example 4.3. Non-concavity of minpic,,r) I(Q, P') as a function of @

Consider the following channel (see Figure 4-3 on page 48) with three inputs (0, 1,
and 2), three outputs (0, 1, and 2), and transition probabilities

0 0
€
1 1
€ €
2 2

Figure 4-3: Channel for non-concavity example

1—6 1,:_)
P(j|k)={e j—1=1mod3
0 else.

For this example only, let us define

ILi(Q) = P'erg(lg.P)I(Q’P )
Consider evaluating Iy at Qo = @1 = Q3 = 1/3. The output probabilities for P and
hence for P! € p(Q, P) are Wy = W, = W; = 1/3. The class p(Q, P) then consists of all
channels P’ that are of the same type as P:

1—€ 1=
P'(jlk) =< ¢ j—t=1mod3
0 else.

The P' that minimizes I(Q, P') is the one with ¢ = 1. The value of I(Q, P’) is In(3/2),
and thus Io(3,3,3) = In(3/2). Now consider evaluating I, for Qo = Q; = 3 Q2 = 0.
Note that since Q2 = 0, the value of P'(j|2),j = 0,1,2 is irrelevant in the computation
of I(Q, P’). The conditions imposed by (4.3) force the remaining transition probabilities
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to be same as those of the original channel P. So we see that P is a minimizing P’ and
the value of Io(3,3,0) is I(Q, P) = In2 — }h(e), where #(z) = —zlnz — (1 — z)In(1 — z)
is the binary entropy function. Since the channel has cyclic symmetry, the same value
applies to Io(0, 3, %) and Io(2,0,3). Now observe that

a. (3,3,3) is a convex combination of (3,3:0), (0,3,3) and (3,0, 2):

(3

Wl

3) =355 0 +30,5,3) + 36,0,
b. however, for small enough® e,
To(,3,0) = 10, ,3) = Io(3,0,4) = In2 — 1h(e) > In(3/2) = Iu(}, 3, 1)

that is, minpie,q,p) I(Q, P') is not concave.
The previous computation implies the following for the channel in the example:

1. Given any A > 0 and § > 0, there is a sufficiently large n for which we can find a
code with block length n, and rate greater than In2 — 1k(e) — & that achieves zero
error probability and erasure probability less than ). Furthermore, we can choose
this code such that all the codewords are of composition (3,3,0). Let us denote

the codewords of this code by a;,...,ap.

2. We can find another code that satisfies the same requirements but whose codewords
have composition (0, 1, 3). Indeed, if we let

bij=aij+1m0d3, i=1,...,M,j=1,...,n,

by,...,ba will be such a code. Even another code with codewords ¢y, ..., cy, each
with composition (3,0,1), can be formed by letting

c,-j=b,-,-+1mod3, i=1,...,M,j=1,...,n.

3. We can form M? codewords of length 3n by forming the concatenation a;b;cy, for
each ¢,5,k € {1,...,M}. This new code has rate at least In2 — 3h(e) — 6, zero

error probability and erasure probability at most 3. Note that the composition of

111

each of the codewords of this new code is (3,3, 1).

S¢ < 0.26221802965817382038147969404895510099 . . . to be more precise
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4. Thus we have constructed a zero error code of composition () with rate greater
than minpicyg,p) I(Q, P'). Hence we see that minpieyq,p) I1(Q, P') is not a tight
lewer bound to the maximum rate of zero error codes of composition Q. However
the supremum of this quantity over @ might be the actual zero undetected error
capacity. We will show that this is the case for some but not all classes of channels.

The Result of PINSKER and SHEVERDYAEV With the lower bound in (4.2) it is easy
to obtain the result of PINSKER and SHEVERDYAEV mentioned earlier: if the graph of
the channel as defined on page 42 contains no cycles, then we claim that

P' € p(Q,P) = Vk,j QcP'(jlk) = QrP(jlk),
and thus
I(Q,P') = I(Q, P).

Thus Cou(P) = maxq I(Q, P) = C(P), and the lower bound is exact. To prove our claim,
let W; = ¥\ QxPjx and note that P’ € p(Q, P) implies

W, = ¥ QuP (14)
P
and also y
Qx =) QwP. (4.5)
J
Suppose there exists ko and j, such that Quo Pjok, # QkoPioko- Then, to satisfy (4.4)
there must exist k; # ko such that Qi Plr, # Qi Pigk,. To satisfy (4.5) there must

exist j1 # jo such that Q P}, # Qi Pjr. Continuing in this manner we find a
sequence ko, jo,k1,J1,... such that k, # kny1, jn # Jntis @k P 1, # QknPjok, and
Qknis Pknyy # Qkngy Pinkny,- Furthermore ko, k... must be all distinct, otherwise, if,
say kn = knym then the sequence of nodes k., jy,,...,knim would form a cycle in the
graph. Since the input alphabet is finite, this is a contradiction.

Channels whose graphs do not contain cycles are not the only ones for which Cou(P) =
C(P). Channels for which P(j|k) is constant over its support (i.e., the set of positive
values of P(j|k) is a singleton) also have this property. We will prove this result by
showing that I(Q, P) < I(Q, P') for any Q and any P’ € p(Q, P).

Another observation is that Co,(P) > 0 if and only if there is an output j that can be

reached from some but not all inputs: if each output can be reached from every input,
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then no matter what code we devise every output sequence would be reachable from every
codeword, never leading to certainty. On the other hand, if there is one such output then

it is easy to see that FORNEY’s lower bound is positive.

4.3 Some Special Classes of Channels

Here we note a few classes of channels for which Cp, = C'. One such class, namely, the
channels whose graphs are trees was noted above. The channels for which the non-zero
values of Pj. only depend on k (i.e., the non-zero transitions from any given output
k have equal probabilities; see Figure 4-4 for an example) also have the property that

1
3

The channel shown above has the property that the non-zero values of P; it depend
only on k£ and not j: all the non-zero transitions from a given 1nput have the
same probability; here, the transitions from input 0 have proba,blhty and the
transitions from 1 have probability i 3

Figure 4-4: Example for Cy, = C
Cou = C. If the non-zero values of P;; are determined by & only, P;, must be of the form
Pjr = 01ck,

where 0;; takes on the values 0 or 1. As proved in Appendix 4.B this means that P is a
minimizing P': I(Q, P) < I(Q, P') for all P’ € p(Q, P). Thus the lower bound in (4.2)
is the capacity C of the channel, and thus Co, = C. .

Similarly channels for which the non-zero values of P, depend only on j have the

same property. The intersection of these classes is the class of channels for which
Pjt. = bjic,
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that is Py is either 0 or c.

4.4 Errors-and-Erasures Schemes

Now we turn to the question of improving the exponential bounds derived in [For68]. Re-
call that the decoder is allowed to declare an erasure and, unlike the previous discussion,
is not required to be error free in its estimates. Our aim is to minimize the probability

of error for a given bound on the erasure probability. FORNEY [For68| shows that, for a

given set of codewords {x;,...,xp}, the optimal decoding rule is to decode m if
Pry|xm]
> exp(nT
Em’;ﬁm Pr[)’|x‘m'] ( )’

where n is the length of the block code and T is a parameter chosen to satisfy the
requirements on the erasure probability. Note that if 7 > 0 then there can be at most one
m satisfying the condition. If no m satisfies the requirement then the decoder declares
an erasure. 1 governs the tradeoff between errors and erasures. Larger values of T
impose higher confidence levels, thus decreasing the error probability P. and increasing

the erasure probability Py. FORNEY shows that for a decoder using this decoding scheme,
Px <exp-nE(R,T) and P.<exp-nE;(R,T),

where E;(R,T) = [Eo(s,,Q, P) — pR — sT|, Eo(R,T) = Ex(R,T) + T and

max
Q,0<s<p<1

Eo(s,p,Q,P)=—1n z [; Qklek"] [; Qk,Pj’,{’p]”.

j

There are two natural ways to proceed to improve these bounds. The first is the
idea that we can apply the bounds to the channel P™ representing the n-fold use of the
original channel P. The second is to rederive the bound independently from a constant
composition coding argument. We have pursued the first approach with the input distri-
butions restricted to those that are uniform over a set of constant composition in [TG89].
Here we present the second approach, which seems to be the more natural framework. I
believe one can show that the two approaches yield identical results.

Let x;,...,xp be the codewords, and let y be the received sequence. Assume that
each X,, is of composition @, and let P,, be the type of the pair (y,x,,). Note that P,Q
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is the composition of y and thus does not vary with m. We will propose a decoding rule
of the following type:

Decode m if
P, < Py for all m' # m. (4.6)

If no m satisfies the criterion (4.6), declare an erasure.

The relation < will be left arbitrary; we will only assume that at most one of V < W
and W < V will hold, i.e., that < is asymmetric. This will exclude the possibility of
more than one m satisfying the decoding criterion. The issue of choosing an appropriate
~< will be discussed later.

Let us try to estimate the erasure and error probabilities for this decoding rule. An
erasure will occur if no m satisfies (4.6). In particular, the m that was transmitted should
not satisfy (4.6). Thus we may overbound the erasure probability by the probability of

this second event®. Using the same argument as in Section 4.2,

Px < Pi[Pn, A Py for some m' # m|x., transmitted]

< Yexp(-nD(P|PIQ)) 3 exp(-n|I(Q,P') - RJ*)

P:Pgp!
P'Q=FQ
< exp—n[_min D(P|P|Q)+|I(Q,P") - RI* — o(n)].
P.p.Psp
PQ=pP'Q

Given that m is transmitted, an error will occur if, for some m' # m, P, < P,.» for all
m' # m'. This event is contained in the event that P, < P,,. Thus

P. < Pr[Pn < P, for some m' # m|x,, transmitted|
< Y exp(—nD(P||P|Q)) > exp(-n|I(Q,P')— RJ*)
P P':P'<P
P'Q=PQ
< exp—n[_min _D(P||P|Q)+ [I(Q,P') — R|* — o(n)]
P,P':P'<p
Po=pP'Q
= exp—n[_min D(P'(|P|Q)+ |I(Q,P) — R|* ~ o(n)].
B.p.P<p
PQ=P'Q

In the last line, we interchanged the roles of P and P’ to illustrate the duality between

®Note that this is an overbound to Px + P,
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Py and P.. Now define

Ex(Q,P R)= min D(P||P|Q)+|I(Q,P)- R|, (4.7)
P,P":PAP'
PQ=P'Q

E.Q,P,R)= _min D(P'||P|Q)+|I(Q,P) - RI*. (4.8)
P':P<P'

PQ=pP'Q
We see that Ex and E. are lower bounds to the erasure and error exponents for this

particular decoding rule, and the particular choice of code composition Q.

4.4.1 How to choose <.

Now we address the issue of choosing a suitable relation <. Suppose we are given a
minimum tolerable value T of the erasure exponent and we want to maximize the value

of the error exponent. We would then set
P < P' whenever D(P||P|Q)+|I(Q,P') - R|* <T.
We will then have

Ex(R,P,Q)2T, E.RPQ)=  min D(P'||P|Q) + [(Q, P) - RI*.
_ PP:PQ=P'Q
D(P||P|Q)+|I(Q,P')-R|*<T
Note that if this second minimization yields a value greater than T, the relation < thus
defined will be asymmetric as required.

We will first examine a special case in detail: Suppose we are interested in very small
but positive values of T'. Then the demand on erasures is that their probability decays
to zero as the blocklength increases, but no restriction is made on the rate of such decay.
The limiting behavior as the values of T' get ever smaller can be examined by analyzing
the case when T' = 0. We shall call the maximum achievable error exponent the “feedback
exponent” and denote it by E¢(R, P, Q). In this case

o~

D(P||P|Q) + |I(Q,P') — R|* <0 implies Py = Py, for Q. > 0, and, I(Q,P') < R,
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and thus

Ef(Ra-P’Q) = Ee(R’ P7Q) = D(P’”PIQ) + |I(Q)P) - R|+

min
P:I(Q,P')<R
PQ=P'Q
If we define
EfoP(R’ P,Q) = V:I(rg,lllfl)gﬁ D(V||P|Q)
PQ=VQ

then we can express the above as
Ef(Ra P)Q) = E.fJP(Rv P’Q) + |I(Q’P) - R|+

Note that Et,,(R,P,Q) > E,,(R,P,Q) & miny.rq,v)y<r D(V||P|Q). In particular, for

tree channels, we know that R < I(Q, P) implies Ey,,(R,P,Q) = +00. For totally sym-
metric channels, with a () achieving the maxima in E,(R,P)¥ maxq E,,(R, P,Q), we
have Ef,,(R, P,Q) = E,,(R, P), and, E.(R,P,Q) = E,,(R,P) + C(P) — R. Also note
that for a given P and Q, Ey,, is a convex, non-increasing function of R. The second
of these assertions is trivial and the first one follows from the convexity of D(V||P|Q)
and I(Q, V) with respect to V. We may also define E¢.»(R, P) &f maxq Ey,,(R, P,Q),
which will inherit the convexity and monotonicity (in R) of Ey,,(R, P,Q). Figure 4-5
illustrates the relationship between Ey,,(R, P) and E.,(R, P) for various classes of chan-
nels. Figure 4-5(a) illustrates the case of a binary symmetric channel; for this case, E;,,
and E,, coincide. In Figure 4-5(b) we see the case of the Z-channel: E;,(R) is infinite
for R < C. Figure 4-5(c) shows the case for which 0 < maxq minpieyg,p) I(Q, P') < C,
and Figure 4-5(d) shows the case for which Cy, = 0. Unshown is the possibility of E,,(R)
becoming infinite.

We can obtain a curious result if we evaluate the feedback exponent Fy at R = 0:

Ef(O’PaQ) = EfSP(O’P’Q)+I(QaP)

= g, DVIPIQ) + I(Q, P)
PR=VQ

Now, I(Q,V) < 0 and VQ = PQ imply Vi = W; & 5, Q,.Pyy, and we get

W P;
E{(0,P,Q) = > QuWiln—L +3 QP ln 2%
Py Pir i W;
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E-’P(R’P) = Efsp(Rvp)

E¢.(R, P)

. R
Rj,o(P) C(P) _
(c) (d)

The figure shows the relationship between E,, and Ey,, for various channels. In (a)

we see tl}lef case of a totally symmetric channel, (b) shows the case for which
{2

Rf.(P) = maxgminpicy,p)[(Q,P') = Cou = C, (c) illustrates the case for
which 0 < Ry, < C, and in (d) we see the case for which Co, = 0 but E,, # E¢,p.

Figure 4-5: Relationship between E,, and Ey,,
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= ZQk(Wj — Pjic)In %

Jjk

= ZQ" W ij)lnP—

k,j ik
P
= Q:QrPj, In ==
z;,] ! PJ"'
and P,
E4(0,P) & ma.fo(O P,Q) = max 3~ QiQuPIn P—k.
i,k,j Jt

We will prove the following theorem:

Theorem 4.4 For any given channel P, and any input distribution Q, an erasure ezpo-
nent of 0 and an error exponent of E¢(0, P, Q) is achievable. Moreover, for any sequence
of block codes Cy,Cy, ... of increasing block length and with P.(C:) = 0, Px(C:) — 0 and
M(C;) — oo,

Pe(Ci) 2 exp ~m;[E4(0, P) + o(n;)).

Here n; is the blocklength of the code C; and M (C:) denotes the number of codewords in
the code C;.

Proof. The first part of the theorem is already proved. We need to prove the con-
verse. Let x;,...,x3 be the codewords and let Dq,...,Dp be the decoding regions
corresponding to these codewords. We will use the fact that processing does not increase

informational divergence, i.e., for any two distributions V and V' and for any set S

( ) 1-V(s) :

By rearranging the terms we get

V(S)n ———+ (1 - V(S))ln D(V|V') + h(V(S))

1
V'(S) *( 1=v(5) =

where % is the binary entropy function. Further lower bounding the right hand side by
eliminating the second term, and rearranging, we get

DVIIV') + ~(V(S))
V($)

V'(S) > exp —
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Let us take V = P™(+|Xpn), V' = P*(:|%m) and S = Dr,. We see that

D(P™(-[ %) [ P"(-%1)) + A(P"(Dim [%Xm))

P*(Dy|Xm:) > exp — Pr (D)

Now let Epm & D(P™(-|%n)|| P*(+{%m)). Then

Empm = D(P"(-|%m)[| P"(-%m:))

— n x nPn(yle)

_ o ) 1n LWelZme) (ytlwmz)
B E%P(w‘ ml)l P(y1|f'3 ’t)

= ZZx,k(m m)ZPJ,ln

=1 i,k

where

X p(m,m') = {1 if Zme = 1, Zmit = K,
' 0 else.

Now let us sum over all m # m' and get

Z Em.m' = Z Em,m'

m#m/ m,m/

= ZZPJ,ln P Zx,kmm

=115,k -7 m,m!

= M”ZZQ Q¢ P;;In =2

£=1 1,5,k

PJt
Pjy,

where Q¢ = |{m : ¢ = k}|/M. The first step follows from Emm = 0, and the last step

follows from

i# k= |{(mm):eme =1,Cme =k} = Hm : @me = i} - [{m' : e = K},

a.nd f01‘ 1= k, ln(Pji/ij) = 0. Thus,

M(M -1) rr;léin Epm < Z Epm < nM? mg.xZQ QkPJ,InI; =nM?E;(0,P)
m#m' ik

m#Em! 1,0,k
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and hence

n;in, Emm < (M/(M —1))nE4(0, P).
It is now clear that for m and m' achieving the minimum above,

1
M—1 P"(Dmlxm)[

P, > Pn(Drnlxm’) > €Xp —n E.f(OaP) + 1/"‘]

where we have upper bounded the binary entropy term by 1. Since P, and Px are both
approaching zero, P*(Dp|X,) approaches 1. Similarly M/ (M —1) — 1 as n gets large.
From these observations the proof follows. d

We see that the feedback exponent E is tight at zero rate. This is somewhat unexpected,
since one usually has to go through expurgation techniques to obtain tight bounds at
low rates. One should also note that E; is only a lower bound to the actual feedback
exponent. The fact that it is not equal to the actual feedback exponent at rates greater
than zero will be implied by the result of the next section. N amely, if £y were equal to
the actual feedback exponent, our lower bound to Cp, would be tight. The next section
establishes that the latter fact is not true, and hence, E ¢ is in general not equal to the
feedback exponent.

For values of T other than zero, we may lower bound E. by removing the constraint

PQ = P'Q. We then get

E(R,P,Q) 2 _ min D(F'||P|Q) + 1(Q, P) — R|*
B,P:D(PI|P|Q)+|1(Q,P")-RI+<T
= min  min min  D(P'|P|Q) + |I(Q,P) - RI*

0<a<T D(P”PlQ)<a I(Q,P")<T+R—-a

= min [E,,(R+T-a,P,Q)+| min I1(Q,P) - R[]
0<a<T D(P||P|Q)<a

= 0 [Ep(R+T —a,P,Q) +|E;'(a, P,Q) - RI*,

where we define

E;}(a,P,Q) = inf{R: E,(R, P,Q) < a},

as a customary definition of an inverse function for decreasing functions. For R > Rt
and T < E,,(R, P,Q), it can be shown that the minimization occurs at a — T, and we
obtain

E(RPQ)>E,,,(RPQ)+E (T,P,Q)— R
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If we set B < E (T,P,Q) > R, we see that
Z:(R,P,Q) > E,(R,P,Q), E.R,P,Q)>E,(R,P,Q)+R- R,

are simultaneously achievable for any R > R. This same result will be rederived in the

next two sections by a different approach.

4.4.2 A Parametric Approach

Instead of fixing a particular erasure exponent and trying to find the largest possible
error exponent, we may parametrize the tradeoff between these two exponents. To this

end, consider for A > 0

__min _ [D(P||PIQ) +|1(Q,P') — R|* + \(D(P'||P|Q) + |1(Q, P) — R|*)] (4.9)
B,P:PQ=PIQ

Since the minimization is done on a compact set, and since the function is continuous,
the minima is achieved. Let P()) and P'()\) be the values of P and P’ that achieve the
minimum. We see that for any P and P’ such that PQ = P'Q, at most one of

D(P||PIQ) + I(Q, P') — RI* < D(P(N)|IPIQ) + (@, P'()) — RI* (4.10)

D(P'|P|Q) + [(Q, P) — RI* < D(P'(V)|IPIQ) +1(Q, P())) - RI* (4.11)

can be satisfied. We will put P < P’ whenever (4.10) is satisfied. Note that this will

ensure that < is asymmetric. Now using equations (4.7) and (4.8) we can easily see that
Ex(Q,P,R) > Ex(Q, P, R,)) = D(P())||P|Q) + |1(Q, P'(%)) — RI*

and

E.(Q,P,R) > E.(Q,P,R,)\) ¥ D(P'(\)||P|Q) + |I(Q, P(\)) — R|*.

It is clear that A\ governs the tradeoff between the error and erasure exponents. How-
ever, the range of values of D(P()\)||P|Q) + |I(Q, P'()\)) — R|* as ) changes may not
cover the range between 0 and E,,(R,P,Q). For example, even for A = 0, the lower
bound to erasure exponent may be strictly positive, inhibiting the analysis of the feed-
back exponent.
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4.4.3 Comparison with CsiszAR and KORNER’s results

Here we will compare our results on the error and erasure exponents with those derived
in [CK81], which are in turn essentially the same as those in [For68]. One difference
between [CK81] and [For68] is that the sphere packing exponent used in (CK81] is tighter
for compositions that are not optimal; this difference disappears once one maximizes over
the input distribution.

First consider a relaxed version of the minimization done in (4.9):

I;LI}[D(JSHPIQ) + (@, P') - RI* + XD(P'(|PIQ) + [I(Q, P) — RI*)] (4.12)

The only difference between (4.9) and (4.12) is in the removal of the constraint PQ = PqQ.
Relaxing our constraints can only decrease the values of the exponents we obtain. One

notices that this new minimization can be done in separate steps:
min D(P||PIQ)+ AlI(Q, P) - RI* + Almin D(P'||P|Q) + A7HI(Q, P') — RI*]. (4.13)
Using thé notation of [CK81, p.174] we recognize the above as
E.\(R, P,Q) + AE,,/x(R, P,Q),

where E, \(R,Q,P) = miny D(V||P|Q) + MI(Q,V) — R|*. It can be shown ([CK841,
p. 174]) that
E.(R,Q,P) if R > R,
" {E,,,(RA,Q,P) + ARy —R) if0<R<R,

where E,,(R, P,Q) = miny.yq,v)<r D(V||P|Q) is the sphere-packing exponent and R, is
the smallest R at which the convex curve E.(R, P,Q) meets its supporting line of slope
—A. For R < I(Q, P), the minimization for E.p(R, P,Q) always occurs at a V for which
I(Q,V) = R, so we can write E,(R,P,Q) = miny.rQ,v)=r D(V||P|Q) in this range.
Note that the minimizing V in E, », V*, satisfies

D(V*||P|Q) = E.(R, P,Q) I(Q,V*)=R if R > R,
D(V.”P'Q) = Esp(RMP’ Q) I(Q’V‘) = R, if R < R,.

We can now express a lower bound to erasure and error exponents in terms of the

sphere packing exponent E,». For a given R, choose 0 < ) < 1. There are three
possibilities:
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1. R < Ry/» < Ry. Denote the minimizing P and P’ in (4.13) by P(}) and P'(A)",
We see that I(Q,P()\)) = Ry, D(P(M)||P|Q) = E.p(Rx, P,Q), I(Q, P'()\)) = Ry,
D(P'(N)||P|Q) = Ewp(Ry/x, P,Q), and

D(P(z\)”P‘Q) + |I(Q?P,(’\)) - R|+ = EsP(R/\’P) Q) + Rl//\ - R’

D(P’”PIQ) + |I(Q7P(A)) - R|+ = Esp(Rl/MPa Q) + RA - R’

and that these are achievable error and erasure exponents. Figure 4-6 gives a

geometric construction for these quantities.

2. Rus < R < Ry We see that 1(@,B(\) = B, D(B(V|PIQ) = Eu(R, P,Q),
I(@, P'())) = Ry and D(P'())||P|Q) = E,p(Rx, P,Q). Then

D(P(N)IIPIQ) + [H(Q, P'(X)) — R|* = Ew(R5, P,Q),

D(P'(V|PIQ) +1(Q,P())) — RI* = E(R,P,Q) + R — R,
and E,,(R,P,Q) + Ry — R and E,,(R», P,Q) are achievable error and erasure

exponents. We can also give a geometrical construction to obtain these lower

bounds. The procedure is illustrated in Figure 4-7.

3. Ryyx < By < R. We see that 13()\) and P'()) satisfy

D(P(V)||P|Q) = D(P'(V)||PIQ) = E.,(R, P,Q)
and
1(Q,B(V)) = I(Q, P'(\)) = R.

Thus
D(P(M)|IPIQ) + |I(Q, P'())) — R|* = E.,(R, P,Q),

D(P'(N)||PIQ) + 11(Q, P())) — R|* = E,,(R, P,Q),
and thus the bound does not improve on the previous case.

For R > R q: def R,, Ry > R implies Ry, < R. In this case, by varying A we see that
E.(R) — R+ R and E,,(R) are achievable error and erasure exponents for any R > R.
Cs1szAR and KORNER give similar lower bounds: For every R > R, E, \(R,P,Q)—R+R

"We could have written P(1/)) in place of P'(})
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Eap(R,3 Pa Q)

4 t t +— R’
0 R R1/,\ RX I(Q,P)

With B < Ry/5 < Rx we can achieve error and erasure exponents of E,,(R;/) +
Ry/»— R and E,,(R)) + R) — R. The figure gives a geometric construction for these
quantities.

Figure 4-6: Construction of error and erasure exponents for small R
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slope=—1/A
E.(R)

] } — R
0 Ry R R» I(Q,P)

For any given value of R; /), < R < R), we can achieve an error exponent of E,,(R)—
R + R» and an erasure exponent of E,,(Ry). The figure also shows E, y(R) and
E,1/»(R) of CsiszAR and KORNER. In the figure R) denotes the value of R at

which E,,(R) meets a slope of —~\. Similarly R, denotes the value of R at which
E,p(R) meets a slope of —~1/A.

Figure 4-7: Construction of error and erasure exponents for high R.
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for error and E,;/s\(R, P,Q) for erasure exponents. Since E,, dominates both E, ) and
E, 1/, we see that our construction gives at least as good bounds in this region.
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4.A Comparison of Equation (4.2) and (4.1)

‘We had claimed that the lower bound in (4.2) is better than the one given in (4.1). Here

we prove that it is indeed so.

Lemma 4.5 — Y w;lnv; < I(Q, P) where w; = > QuPj and v; = > Q.
j k

Fe: Py >0

Proof. On noting

~Y wilnv; - I(Q,P) = 3.3 QiPuln “1’;
J ik
= Z Z QkPJkln PJk

J k:Pjp>0

< > QkPJk[ P 1}

FE. ] PJ,,>0

= ij—].:O,
J

the proof follows. O

Lemma 4.8 If Q, P, and P’ satisfy P' < P and w; = T, Qv P, = i QuPix = W,
then

_ijlnij—Zw;Inv;,
j j
Z Qi and v = Z Q.

k:Pj). >0 k:P!, >0

Proof. Simply note that P’ < P implies

E ka z Qk'_—'v;a

k:Pj1 >0 k:P!, >0
and that ln is an increasing function; O
Theorem 4.7 Equation (4.2) is a better lower bound than (4.1). That is,
max — > w;lnv; < max min _I(Q, P').

F Prep(Q,P)
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Proof. By the two previous lemmas, for all P’ € p(Q, P)
~> w;lnv; < - > wilhv: < I(Q, P')
J J
and thus

— Inv; < min I(Q,P").
;wJ“:—p,;‘;zap) (Q, P

Now take maximums over both sides to complete the proof.

67




4.B Some Technical Aspects of minpic,g,p) I[(Q, P')

Here we state some of the properties of the P’ that mininiizes

I

I(Q'/P ZQkPJkln ZzQ

while being constrained to the set
p(Q,P) ={Pp=0= P} =0, Xk:QkP;k = ;Q::ij}-
To this end we form the Lagrangian
Fo(P', ), 1) = I(Q, P)+ZA 2. kP HZMZ

Note that the first additional term corresponds to the constraint that the probability
of the letters symbols should be unaltered when P is replaced by P’ and the second
additional term is to ensure that P’ is a probability distribution. Taking the derivative
of Fgy with respect to those P/, that are not bound by the P’ < P constraint and setting
these derivatives equal to zero we obtain

Pl
E'L Q‘l Je

which yields (again for those P}, not bound by P’ < P)

Qrln =—2— + X;Qr + pr = 0,

Pk—de

J

If we let
{ 1 Py >0
Oir, =

0 else,
we can write
]
P'k = Ojkckd,-

J

The choice of ¢ and d; must satisfy the conditions

> bikced; =1 and > Qubjkckd; =Y Qi P
j k k
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4.C Minimal Concave Functions

In Section 4 we claimed the following: Let £ : RX — R. Define ¢* : RX — R as®
E(p) =infp-Q - UQ),

and ** : RK - R as
(Q) =infp-Q — (p);

then £** is the minimal concave function that dominates ¢. In the preceding R denotes the

—£*(p) is the minimal y-intercept of all lines of slope p that lie completely above £.
Some other lines of slope p are shown in the figure in dotted lines.

Figure 4-8: Illustration of infg pQ — 4(Q).

extended reals, i.e., R = RU{+o0}, and - denotes scalar product, i.e., p-Q = ¥ prQ«. The

8¢* is called the LEGENDRE transform of /.
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concept of minimal concave function is well defined since the class of concave functions
is closed with respect to taking minimums. For brevity we will prove the claim only for
- K =1, the proof is verbatim for other K.

By definition —£*(p) = supg £(Q) — pQ is the amount by which the line p@ should be
shifted so that it lies above £ (see Figure 4-8). Thus pQ — ¢*(p) is the line with minimum
y-intercept among the lines of slope p that are above £. The function ¢** is the lower
envelope of these lines. Being a minimum of lines it is a concave function, and since all
the lines were above ¢ to begin with so is £**.

Now suppose f is any other concave function that is above £. Since f is concave, for

each Qo, there exists a po such that for all Q

6Q) < f(Q) < po(Q — Qo) + F(Qo)-
Rearranging the terms we see that, for all @
poQo — f(Qo) < po@ — £(Q);

thus poQo — f(Qo) < £*(po), and hence

£*(Qo) < poQo — £ (po) < f(Qo),

proving that £** is indeed the minimal concave function that dominates £.
As a further note, the supremum of £** and £ coincide:

sup £(Q) = sup £**(Q).
Q Q

This is rather easy to see since the constant function supg £(Q) is trivially concave and

dominates £.
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‘Chapter 5
Notes on the Converse

In this section we will show, by means of an example, that the inequality in (4.2) is, in

general, not an equality. That is, we will find a channel P for which

Cou(P) > max PIGII‘:(IS‘P) I1(Q, P).

Upon GALLAGER’s suggestion [Gal91a] we will search for an example within the class of
“almost noiseless” channels. The class consists of channels that have the same number

K of outputs as they have inputs, and have transition probabilities

l—ek k=]
ij={ ¢

€jk else.

We will assume that for a set E of ordered input-output pairs, €k, for j # k satisfies

0 < ¢jx <€, for(k,j)€E,
€ =0, else.

By convention we will include ‘diagonal’ elements of the form (k,k) in this set E, i.e., E
will the set of (k,j) pairs such that

E ={(k,j): Py > 0}.

We will be interested in computing Cy, in the limiting case as € approaches 0 (and hence
the name “almost noiseless”). In this limit 3, QkPjr = Qj, i.e, the output probabilities
are the same as the input probabilities. Note that this limiting case is completely charac-
terized by the directed graph G = (V, E), where V = {0,1,..., K —1} is the set of inputs

71



(identical to the set of outputs) and E is the set of pairs described above. Figure 5-1
shows a few examples of channels and their associated graphs. In drawing these graphs,
we will omit the self loops. _

Suppose now that we are given U C V such that the induced graph (U, F') contains
no cycles. This means that if we restrict the input set to U, the aforementioned theorem
of PINSKER and SHEVERDYAEV [PS70] applies, and as € | 0 we get

Cou Z ln |U|
Maximizing the cardinality of U, we can write

Cow > In  max |U|,
UcvV:(U,E(U))
is acyclic

where (U, E(U)) denotes the induced graph, i.e., E(U) = EN (U x U). We can sharpen
the bound by applying it to a channel that denotes the n-fold use of the original one. Let

E" ={(x,y): x,y € V", P(y|x) > 0} = {(x,¥) : Vi (2s,u:) € E}.
Also define E*(U) = E" N (U x U). Then we have

Cou > lln max |U]. (5.1)
no UCYR(UEND)

Furthermore, Cy, is the limit superior’ of the right hand side as n — oco. To see that,
suppose {Xi,...,Xnm} is the set of codewords of a zero-error block code with block length
n. Viewed as a subgraph of V™, this set must not only be acyclic, but each node must
be isolated from the others. If not, assume there is a directed link x; — x,,. Whenever
Xm is transmitted, the received sequence will be x,, with very high probability (since
the channel is almost noiseless). But the decoder will not be able to decode since the

possibility of x; being the transmitted codeword cannot be eliminated.
One hopes that the expression in (5.1) would be independent of n; in that case
considering n = 1 would suffice to determine Cp,. However this is not the case as the

following example? shows.

In appendix 5.A on page 78 we will prove that the right hand side has a limit. This fact is not
necessary for our current discussion.

2The example we have here is a simplified version of one due to GALLAGER [Gal91a). His example
is a graph with 7 nodes. It is not difficult to prove that 5 is the least number of nodes necessary to

72




3
0 0
2 2
3 3 1 3
2
4 4

(b) A more complicated channel and its graph

This figure shows two channels and the graphs associated with them. A directed
link (k,j) appears in the graph if input k leads to output j. The first example (a)
shows a 5 x 5 channel with input & leading to output k + 1 mod 5, which results
in a cyclic graph. The second example (b) shows a more complicated channel and
its associated graph. We will refer to this channel in Example 5.1 on page T4.
The transition probabilities are not marked so as not to clutter the figure; it is
understood that they obey the convention given in the text. Note that some of the
links in the associated graph are bi-directional while some others are not.

Figure 5-1: Examples of “almost noiseless” channels and their associated graphs
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Example 5.1.

Take the graph shown in Figure 5-1b. One can see that any set of three nodes has to
include a cycle: if node 1 is in the set, the set cannot include nodes 0 and 2; thus it has
to include nodes 3 and 4. But 3 and 4 form a cycle of length 2; thus node 1 cannot be
in our acyclic set. A similar argument shows node 3 cannot be in the set either. That
leaves us with nodes 0, 2 and 4, but these form a cycle too. However, the square of this
graph has an acyclic component of size 5: {01, 14, 22,40,43}% (See Figure 5-2).

14

40 01 22 43

Figure 5-2: A five node acyclic subgraph of the square of the graph shown in Figure 5-1b

How does all this relate to finding an example for which

Co, > max mi I(Q, P)?

o7 P%Mgf)(Q’ )

The key to this is to relate maxq minprey(q,p) (@, P') for an “almost noiseless” channel
P and In maxycy, acyelic |U| of its associated graph. If one looks at ‘cyclic’ channels as in
Figure 5-la, one sees that the two quantities are equal (see Appendix 5.B on page 80),
and in general, the argument given in the previous paragraph establishes that

max min I{(Q,P)>In_max |U|.
Q P'ep(Q,P) UcCV,acyclic
It is not necessary to prove the equality of the two terms in general to obtain an example;
it suffices to show equality for the channel shown in Figure 5-1b. The following, due to
GALLAGER [Gal91b], will do precisely that.
First consider a related channel, the graph of which is shown in Figure 5-3. Note that
we have split node 2 of the original channel into two distinct nodes 2’ and 2"”. We will

refer to this channel as P. First, we will show that for any input distribution @ for the

construct such an example.

3This is one of 24 such subsets, all of which were enumerated by a small C program. There are no
acyclic components of size 6. It is interesting to note that the problem of finding the largest acyclic
component of a graph is NP-complete [GI79, p. 195].
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2! 2"

Note that node 2 of the graph in Figure 5-1b is broken into two separate nodes, 2’
and 2", and a directed between these two nodes is added.

Figure 5-3: A channel related to the one in Figure 5-1b

original channel P, there exists an input distribution () for this related channel P and a
P' € p(Q, P) such that

Qk = Qk, k = 0,1,3,4, in + an = Qz, and I(Q ﬁ )
To this end, choose P” such that
=Q.‘i/(@0+@1+@2’)7 j,k=0,1,2',

Jk. - QJ/(QO + Ql + QZ”)7 ja k= 2", 334,
and A' = 0 for all other j and k. We see that I(Q, P") = R(Qo + Q1 + Q) < In2,
P"Q = PQ, but B & P. We will remedy that in our next step. First choose §, and
an such that Qz Qzl + an and Qzlpozl = Q211P42u, 1.e.,
3@y _ Qs
Qo+ Q1+Qx Qu+ Qs+ Q4

Note that a solution always exists, since the left hand side is an increasing continuous
function of Q, with the value 0 when Q2 = 0, whereas the right hand side is an increasing
continuous function of Qn (decreasing in @, with the value 0 when Q2+ = 0. Now define

P’ by setting
Py =Puy=0, QuP, = QuBly = QoBy,
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and PJ’k = A]’L for all other j and k. Note that P’ € p(Q, P) and

P~ ey P = - = 9) ’p,l " P~ = 9) p'
HQJU==HQpﬁ+Qﬂ%Aﬁ¥4L+QJQm2;ﬁ
Q2 Qar Q4Qo
A Dn A Dn
— Qz!ﬁélzy ln % —_ Q4P2’:l4 ].n %ﬁ
Q2Qo Q2 Q4
= I(QaP”)
< In2.

Finally consider the following arrangement shown in Figure 5-4. The end-to-end channel,

0 0 0 0

1 1 1 1
Qz/Qs | o o

2 < p > 2
Qzﬂ/Qz N o

3 3 3 3

4 4 4 4

Here we cascade 3 channels: the first splits the input 2 into 2’ and 2", the second
is the channel P’ described above, and the third makes the outputs 2’ and 2"
indistinguishable. Note that if the input distribution is Q, the distribution at the
input of P is Q.

Figure 5-4: A cascade of channels, with P’ in the middle
P’ satisfies P' € p(Q, P) and by the data processing theorem
I(Q,P)< I(Q,P')<In2.
Thus for this channel, we see that

. n
mgxp"irg(lg‘P)I(Q,P )=1n2,
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whereas, Co,(P) > %1n5 > In2.
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5.A Right Hand Side of (5.1) Has a Limit

Here we prove that the right hand side of equation (5.1) has a limit. We will first prove
a result of independent interest, that the product of two acyclic graphs is acyclic. Let us
first define what we mean by a cycle:

Definition 5.2 Given a graph (V, E), a sequence of nodes vi,...,v, form a cycle if:
1. they are all distinct, (i # j implies v; # v;),
2. n is at least 2,
3. forall1 <k <n (vg,vet1) € E, and (vn,v1) € E.

Theorem 5.3 Suppose G = (V,E) and H = (W, F) are two acyclic graphs. Then the
graph (V x W, E x F) is also acyclic. By E x F we mean

Ex F = {((v,w),(z,y)): (v,z) € E, (w,y) € F}.

Proof. Suppose (VxW, Ex F) contains a cycle, i.e., a sequence of distinct pairs (v, wk ),
k=1,...,n such that for 1 < k < n, (Vk,Vks1) € E, (Wi, Wrt1) € F, (vp,v1) € E and
(wn,w;) € F. Consider the projection of this sequence on its first coordinate, vy,...,v,.
If vy = v; = -+ = vy, then the sequence wy,...,w, forms a cycle in (W, F') and we arrive
at a contradiction. Thus suppose that not all v’s are equal. However, the sequence
v1,...,V, may contain runs: ! and k for which v; = v;;; = --- = v;44. Remove these runs
by retaining only one term of each run. Let the resulting sequence be uy,...,u,* We
see that m > 1; for 1 < k < m, (uk,ur+1) € E, and (um,u1) € E. If uy,...,unm are all
distinct, then they form a cycle in (V, E); otherwise let

L = sup{k: uq,...,u, are all distinct,},

and

l=inf{k: ur = up41}-

4For the purist, define a function r : Zt — Z% recursively as

r(l) = 1,

{inf{l ek —1) <l<mn, vy Zvy_1} if the set is not empty

and for k > 1, r(k) nt1 L
else.

Let m = sup{k : r(k) < n}, and let ux = v,(4) for k=1,...,m.
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Note that 1 < L < m and [ < L. Furthermore, [ # L, since u, # ur41 by construction.
Thus w;,...,ug are all distinct, and form a cycle in (V, E) leading to a contradiction. [
Now let
a, = l In max |U|.

n UCvV™:(U,E™(U))
is acyclic

We see that 0 < @, < In |V, and, by the theorem above, for any n and m,
(n 4+ m)anim > na, + manm, (5.2)

forif U;, C V™ and U,, C V™ are maximal acyclic subgraphs, then U, x U, is an acyclic
subgraph of V"tm,

Theorem 5.4 The sequence a,, n = 1,2,..., has a limit.

Proof. By equation (5.2) we see that the subsequence az,k =0,1,...,1is non-decreasing
and bounded, and thus has a limit a, with 0 < a < In |V].

Given 0 < € < 1, choose M such that a; > a — ¢/(1 + a) for all k > M.

Note that any N can be written as N = 2 k>0 2%by, with b, € {0,1}. Furthermore

only finitely many terms of this sum will be non-zero. For N > N(e) = 2M(1 4 a)/e we
see that

Nay >3 2%brag > Y 2%bap > (N — 2M)aym > (N — 2M)(a — €/(1+ a)),
k>0 k>M

thus
ay 2 (1—€/(1+a))(a—€/(l+a))>a—c.

To prove an inequality in the opposite direction, choose K such that 2N < 2K <4N.
Then

2K > 2Kq,6 > Nay + (2% — N)ax_n > Nay + (2% - N)(a —¢),
2KE+Na > Nay,
a + 4e 2 ay.

Thus, we see that a is the limit of the sequence a,, n = 1,2,.... O
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5.B Case of the ‘Cyclic’ Channels

Now consider a channel with K > 1 inputs and K outputs with transition probabilities

l1—¢ k=j
ij={e j—k=1mod K

0 else.

As € approaches zero from above, its value shows up only in the P’ < P constraint but
does not change the output probabilities, i.e., the probability of output ; will be equal
to the probability of input j.

If the input probabilities are given by Qx, k = 0,..., K — 1, the constraint on P’ will
be

Qopc;o + QK—I(l - }3}"{—1,}'{—1) = Qo
Q1P1'1 + Qo(l - pc;o) = Ql

QB + Qr-1(1 - pl:-l,k—l) = Q&

QK—IPI'{-1.K-1 + Qkr-2(1- p}{-z,f(_z) = @kr-1

Leading to

Qo(l —Poo)=--=Qr(1 - P) = =Qg_1(1 - Py 1 k1) =c

where c satisfies 0 < ¢ < min, Q. Thus we see that

Ph,:k:l_c/Qk

and

1Q,P)=3% I2lené +(Qr —c)In(Qr —¢) + clne| .
P

Taking the derivative of this expression with respect to ¢ and setting equal to 0 yields

;m (% _ 1) =0, (5.3)
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or equivalently

S In(Qr~-c) = Y Ine.
k k
Substituting this equivalent form in the expression for I(Q, P'), we get

Qr—c
Q}

I= mcinI(Q,P') =3 Qiln
P

with ¢ satisfying (5.3). Now consider

_ Qr —c 1 —c/Qs
I_ln(K—l)—zk:lenQﬁ(K—l) g; Eo1

If we can show that Y, ¢/Qr > 1 for ¢ satisfying (5.3), then the last quantity in the

equation above is less than zero, and hence
I<In(K -1).

This last step is equivalent to showing that

Zlogak=0:»z
k k

1
21,
1+ak

with a; = (Qr/c—1). To this end, let us minimize k[l + ai]~! subject to T In oy = 0,
i.e, [l ax = 1. The minimum occurs when one of the ar’s approaches zero while the

others approach infinity. The value of the infimum is 1, and hence the result follows.

81



Chapter 6

Conclusion

In the first part of this thesis (Chapters 2 and 3) we described a multi-access communica-
tion system and presented a method of analysis that accurately models both the message
arrival process and the transmission, and shows the tradeoff between such quantities as
error probability and queueing delay. However, one should note that, we are not making
any claims that the multi-access scheme proposed is in any way superior to the current
multi-access schemes. In fact, it is clear from Figure 2-1 and the discussion following
it, that our multi-access scheme is limited to 1 nat per second per Hertz of throughput
regardless of the signal to noise ratio. Thus, schemes that are derivatives of ALOHA,
employing a scheduling of transmissions, will exceed the performance of our system at
high signal to noise ratios. This, however, is not because of the unscheduled nature of
the transmissions in our multi-access system, rather, it is because of the independent de-
coding of the messages. A true multi-access decoder would employ joint decoding of the
transmitters and perform better than the system we have analyzed. Indeed, an analysis
akin to that given at the end of Chapter 2 indicates that regardless of the signal to noise
ratio, the throughput of the system is unbounded. However, the analysis that leads to
this result is based on the same heuristic as in Chapter 2 and its predictions should be
taken with a grain of salt.

We note the following as problems to research further in connection with this part of
the thesis.

¢ Recall that our analysis assumes that all the transmitters have equal power. To
relax that assumption and still make use of the techniques we have developed entails
the solution to the processor sharing problem with multiple classes of customers.

Our attempts to tackle this problem have so far failed.
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o We believe that the analysis can be applied to transmission models other than
additive white GAUSSian noise channels. As long as one can discretize the time
as we have done in Section 3.1.1 the only modification in the analysis is to the
quantity Fy.

e The reduction of the waveform channel to a sequence of scalar channels is done in
a somewhat clumsy way, since it involves non-causal and infinite duration signals.
At this point we do not see any clean way of getting around this problem, since it

is inherent in bandlimited systems.

In the second part of the thesis (Chapters 4 and 5) we focused on an information
theoretic problem, namely, the performance of errors and erasures decoding schemes over
discrete memoryless channels. We derived new and stronger upper bounds to error and
erasure probabilities, and a new and stronger lower bound to the zero undetected error
capacity. We also showed that the bounds are not equal to the actual quantities. Again
there are several open problems, all seemingly difficult:

e What is the zero undetected error capacity of discrete memoryless channels? Even
though we have shown that for some channels our bound is exact, there is no known
closed form expression to compute this quantity. It is also clear that one gets closer
and closer to the capacity by considering the bounds for the n-fold channel derived

from the original. One question is whether one achieves the capacity at some finite

n.

e One can describe a multi-access analog of the errors and erasures schemes described
in Chapter 4. This will differ from the multi-access model described in the first
chapters of the thesis, because the new model will not consider random message
arrivals, and the channel will be a general discrete memoryless channel. One can
calculate upper bounds to error and erasure probabilities using a single-letter ran-
dom coding argument. However the results so obtained would not be tight, since
they would be the analogs of FORNEY’s bounds. If one can generalize the fixed
composition type arguments to this multi-access case, then one can derive stronger
upper bounds to error and erasure probabilities. At present we do not know how
to do this generalization.
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