PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

A scalable optical neural network
architecture using coherent detection

Sludds, Alexander, Bernstein, Liane, Hamerly, Ryan,
Soljacic, Marin, Englund, Dirk

Alexander Sludds, Liane Bernstein, Ryan Hamerly, Marin Soljacic, Dirk
Englund, "A scalable optical neural network architecture using coherent

detection," Proc. SPIE 11299, Al and Optical Data Sciences, 112990H (24
February 2020); doi: 10.1117/12.2546940

SPIE. Event: SPIE OPTO, 2020, San Francisco, California, United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 09 Nov 2020 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



A Scalable Optical Neural Network Architecture Using
Coherent Detection

Alexander Sludds?®, Liane Bernstein®, Ryan Hamerly®, Marin Soljacic?, and Dirk Englund®
2Research Lab for Electronics, MIT, 50 Vassar Street, Cambridge, MA, 02139, USA

ABSTRACT

Keywords: Optical neural network, Optical information processing, Machine learning, Hardware accelerator,
Coherent computing, Photonics Accelerators

Storing, processing, and learning from data is a central task in both industrial practice and modern science.
Recent advances in modern statistical learning, particularly Deep Neural Networks (DNNs), have given record
breaking performance on tasks in game playing,' 2 natural language processing,® computer vision,* computational
biology,” ¢ and many others. The rapid growth of the field has been driven by an increase in the amount of public
datasets,” improvements to algorithms,® and a substantial growth in computing power.” In order to perform well
on these tasks networks have had to grow in size, learning more complicated statistical features. The training
and deployment of these large neural networks has spurred the creation of many neural network accelerators to
aid in the computation of these networks. 012

Existing general purpose computing devices such as CPUs and GPUs are limited both by thermal dissipation
per unit area and yield associated with large chips.'®* The design of Application Specific Integrated circuits
(ASICs) has aided in decreasing the energy consumption per workload substantially by limiting the supported
operations on chip. An example of this is the first generation tensor processing unit (TPU)'® which is able to
perform the inference of large convolutional neural networks in datacenter in < 10ms with an idle power of 28W
and an workload power of 40W. It may seen counterintuitive then that the limiting factor for the implementation
of DNNs is not computation, but rather the energy and bandwidth associated with reading and writing data from
memory as well as the energy cost of moving data inside of the ASIC.!5-16 Several emerging technologies, such
as in-memory computing,'” memristive crossbar arrays'® promise increased performance, but these emerging
architectures suffer from calibration issues and limited accuracy.'®

Photonics as a field has had tremendous success in improving the energy efficiency of data interconnects.?’
This has motivated the creation of optical neural networks (ONNs) based on 3D-printed diffractive elements,?!
spiking neural networks utilizing ring-resonators,?? reservoir computing®® and nanophotonic circuits.?* How-
ever, these architectures have several issues. 3D-printed diffractive networks and schemes requiring spatial light
modulators are non-programmable, meaning that they are unable to perform the task of training. Nanophotonic
circuits allow for an O(IN?) array of interferometers to be programmed, providing passive matrix-vector multi-
plication. However, the large (= 1mm?) size of on chip electro-optic interferometers means that scaling to an
array of 1002100 would require 10, 000mm? of silicon, demonstrating the limitations of scaling this architecture.
To date no architecture has demonstrated high-speed (GHz) speed computation with more than N > 10,000
neurons.

Here we present an architecture that is scalable to N > 10° neurons. The key mechanism of this architecture
is balanced homodyne detection. By scaling the architecture to such a large size we show that we can decimate
energy costs per operation associated with the optical component of this architecture, reaching a bound set by
shot noise on the receiving photodetectors which leads to classification error. We call this bound a standard
quantum limit (SQL) which reaches 100zJ/MAC on problems such as MNIST. We also analyze the energy
consumption using existing technologies and show that sub-fJ/MAC energy consumption should be possible.
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Figure 1. (a) A vector Z© encoding an input to a neural network model passes into the first layer of weighting values A
which is a matrix. A non-linear activation function is then applied to the output vector resulting from the matrix-vector
product generating the new vector V). (b) Here how homodyne detection can be utilized for computation is shown. A
vector Z®) is passively fanned-out. The rows of the associated weight matrix A™) are transmitted simultaneously in time.
These two signals interfere on a balanced homodyne detector which generates charge proportional to the product of the
incident electric field strengths. This charge is accumulated and read out to a processing element which can perform the
non-linear activation function. Finally, data is serialized for computation in the next layer of the neural network.

This paper is organized as follows: In section 1 we will discuss the function of this architecture as a matrix-
matrix processor. In section 2 we will analyze the energy consumption of the architecture. In section 3 we will
discuss methods for training and extending the accelerator to a broader scope of problems, namely convolutionally
neural networks (CNNs).

Coherent Matrix Multiplication

Here Figure 1 demonstrates the architecture. Deep neural network shown here is a sequence of K layers. Each
layer is a matrix-multiplication of a weighting matrix A* and an input vector ¥ and, after an element-wise
nonlinear function f, returns the input to the next layer #**1. Specifically, in terms of the individual vector

components we see that
k+1 k .k
;T = f< g Aijxi>

K2

These nonlinear functions are typically the Rectified Linear Unit (ReLU) function for fully-connected and
convolutional neural networks and sigmoid/tanh for RNN problems.! The computation of these nonlinear
functions, especially for ReLU, is very easy and represents less than a percent of the total computational workload
in most CMOS based systems.

For a given layer, let N and N’ be the number of input and output neurons. Data is encoded as a sequence
of time-multiplexed pulses where each pulse is on it’s own seperate channel. Each row of the weighting matrix

-k

A; is encoded in time on a separate channel. Over N timesteps the data from the weight matrix is transmitted,
meaning that on each timestep the j*" column of the weight matrix is sent. Data from the inputs is fanned out
(passively repeated) onto an array of coherent detectors. Each detector, shown in the Figure 1 inset operate as
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a quantum photoelectric multiplier. To see why they operate as such, first we calculate the homodyne product
of the two signals incident on the detector:

_ 2ne

Q=% JRe[E (t) x BN (6)]dt oc > Ay
J

Here EZ-(m), Ei(wt) are the magnitude of the input and weight electric field respectively for the i" receiver. If
these are sequences proportional to z; and A;; then the accumulated amount of charge on the i*" integrator is
proportional to the vector-vector inner product. When we consider all N’ outputs simultaneously the computed
result is the matrix-vector product! The product is now in the electronic domain, stored as charge. The data is
then passed to an element-wise nonlinear function before being serialized and passed to another coherent source

for further processing (either another layer or the final steps of classification).

As a device, balanced homodyne detectors offer very promising properties for photoelectric multiplication.
First, the upper bound on bandwidth for balanced homodyne detectors is only limited by the bandwidth of
beamsplitters and photodetectors, which are both larger than THz. The bandwidth of the integrator can be
much slower, since charge only needs to be read out after the completion of each layer. This architecture also
avoids major hurdles from all-optical computing associated with the need for low-power nonlinear optical devices.
These photodetector based devices are readily scalable in existing CMOS processes to millions of pixels and can
be combined in the same process with electronic logic.

Energy Consumption
Standard Quantum Limit

Modern high performance computing is limited by a fundamental energy problem, where general purpose com-
puters operate at a reduced clock so that chips don’t exceed a fixed power dissipation budget.'* Here, we will
consider the long-term limits on scalability of the architecture as well as the near-term estimates for the energy
consumption per operation.

Fundamental limits to energy consumption stem from quantum limited noise associated with the shot noise
of a receiver. Considering the quantization of electrical and optical signals we see that Eopticar = and

L Tel, the electrical signal duration, is on the order of 100ps and Tphot0, the optical signal duration

Tel

is % which is femtosecond scale. This means that the quantized energy for the optical portion of the system
is 10* orders of magnitude larger than the electrical portion. As a result, we can view the electrical signal as
classical and limited by thermal noise. The optical signal, however, is limited by vacuum fluctuations, which
produces a Poisson distributed photocurrent on the photodetector.2?> The photocurrents are substracted in the
homodyne detectors, meaning that the standard deviations of the fluctuations adds in quadrature. This leads to
the following expression for shot-noise limited performance of an optical neural network (the derivation of this
equation can be found in the supplemental section of the original PRX publication:?%

AR (| (k)
(k+1) (k) (k) (k) | ||z )
x; =f E Az Fwy ) —me——
(j 7 VINN'Npac

Tphoto

Eelectrical =

(k)

Here w;"” is a zero-mean, unity variance Gaussian random variable and the norm taken here is the L? norm.

Nmac- A quick sanity check of this equation says that noise in this equation scales as n;ﬁl/cz, leading to a signal
to noise ratio scaling as SNR o nyac. This signal to noise ratio places a limit on how low the number of photons
per mac can go, limited by how much it changes the accuracy of the model it is running.

A simulation is performed of the effects of shot noise on the accuracy of the MNIST dataset. Each layer is
implemented using equation . The results are shown in Figure 2.

A counter-intuitive part of this plot is that the energy consumption per operation is able to fall below the
Landaur limit?” 28 of non-reversible computation. At first glance this may seem counter-intuitive, implying that
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Figure 2. (a) A plot of the original model accuracy of several different layer configurations for the MNIST dataset. As
the size of the networks increase here (modeled as the total number of MACs), they learn more complex features and
their error drops. (b) The simulation results of the effect of shot-noise on the overall network accuracy for each of these
models. (c) The smalling cost of the architecture when compared to several benchmarks. Shown here is the 1pJ/neuron
plot, representing an energy consumption feasible in the near term with existing technology. 1fJ/neuron is also shown,
represeting future scaling of the technology. The SQL is also plotted, represented here by dots and error bars, where the
dots represent the energy per MAC which results from a 1.5 times increase in the model error. The error bars span the
range of 1.2 times to 2.0 times increase in model error. The SQL is calculated assuming 1550nm light.

there is some thermodynamic bound not accounted for in the architecture. However, the reason the cost per
operation can fall below the Landaur limit is because the process of photoelectric multiplication is a reversible
computation (light interferes on a beamsplitter, which is reversible, and then charge accumulates on photode-
tectors, which is also a reversible process). The non-reversible process comes from the readout of accumulated
charge using an ADC and TIA. It is not to say that there does not exist a Landaur limit for this system, but
rather than thermodynamic bound for this system is lower than the Landaur limit for conventional computing.
In fact, it is a factor of N lower since an ADC read now encompasses N computations, leading to an effective

Lo kTin(2)
thermodynamic limit of —5~=.

Electronic Energy Consumption

Light by itself cannot best the energy consumption of a custom CMOS ASIC. In particular, many peripherals
are required in order to enable computation with light. In particular this system requires N + N’ high speed
DAC’s, to encode data from memory into the amplitude of light. An addition, a configuration with ADCs will be
required which enables the readout of the accumulated charge. However, the energy consumption of these ADCs
per receiver array readout is independent of the number of ADCs, since we have a fixed number of readouts we
wish to do. Since these readouts can be done slowly we leave the design of this ADC readout system as a free
parameter, since the energy will be constant anyways, and the tradeoff being made is between adding more area
and reducing the readout bandwidth. Each pixel may contain a transimpedance amplifier, leading to O(N?)
transimpedance amplifiers. However, these circuits are very scalable as they are replicated next to the detector
in CMOS.

In the near term, the energy consumption of these devices is roughly: ADC’s: 1
TIA’s: 1001130

sample

pd 29
sample”

DAC’s 1safn ‘;le since many ADCs are implemented as high speed DACs using successive approximation.
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Modulators: 1—2L_ 31
sample

Addition in 45nm node (as a proxy for nonlinearity): 30fJ implying 7nm node energy is 3%{ = 1fgM

Each of these costs has a different scale associated with it for an (N, N)X (N, N) matrix multiplication. In
particular, we need to do N2 ADC reads, N2 uses of a TTIA, 2N?2 uses of a DAC, 2N? uses of a modulator, and
N2 uses of simple CMOS logic for a nonlinear function. However, the number of operations performed by all of
this hardware is N3 multiply and accumulate operations. This means that the total cost of all of this hardware
can be decimated by increasing the size of the associated hardware. Further advances may leads to decreases in
the energy consumption of each of these components.

The benchmark to beat is a modern day custom ASIC (shown in Figure 2 as a solid 1 ijc line. It’s worth

noting however that a significant portion of this cost in modern ASICs comes from the cost of memory + data
movement. As noted in'4 the energy consumption of an 8bit MAC operation in a 45nm node is 200fJ. Scaling this
to a 7Tnm node leads to an energy consumption < 10fJ per MAC. Our analysis here shows that this architecture
can beat this cost using near-term technology, but it is worth noting here that the cost of a multiply is not
the metric to beat, rather the total system energy consumption including memory access and data movement is
critical.

Convolutional Neural Networks and Training

The optical computing system in 1 performs matrix-vector products. This was then scaled into a matrix-
matrix multiplier by making use of free-space optics to fan out in 3D space 3. One way to view this free
space architecture is to view the receiver as a 2D array of processing elements similar to existing accelerator
architectures.!"1® Here, we first discuss a method for performing convolutional problems that maps them directly
onto matrix multiplication. Then we discuss a more general framework for modeling convolutional problems on
this architecture.

Convolutional Neural Networks

Convolution has become a critical opeartion for accelerators to support in order to perform the computation
necessary for machine vision tasks. In Figure 3 a method for converting convolution problems into matrix
multiplication is discussed. This method, as well as similar methods such as the use of a Toeplitz matrix,
show that the complex problem of convolution can always be converted for processing by vector-vector product
accelerators. However, as is discussed in the paper timeloop®? there are many many efficient ways of mapping
convolutional problems onto hardware that do not convert them into matrix-multiplication. As a result, our
discussion of CNNs will be more general.

A framework from computer architecture literature that is very useful for considering how to map a given
problem onto an accelerator is the general loopnest description of convolutional neural networks. Shown here in
Figure 4 we see the loopnest for a convolutional neural network. We can see that matrix-multiplication is a subset
of this problem by setting R =S = P = @ = 1. From part b of Figure 4 we see a loglog plot of the number of
MAC operations that are performed for each layer of these networks compared with the number of distinct values
required for those layers (which is the sum of the sizes of the input, weight, and output tensors). From this we
see that convolutional problems have a larger amount of data reuse available than matrix-multiplication. That
is, the amount of MACs performed per data access is much larger. Problems that maximize this metric are of
particular interest, as they represent problems with the greatest opportunity for photonic hardware accelerators
to best custom ASICs in CMOS. Because of the limited data access these problems have both the highest chance
for CMOS chips to get fundamentally limited by their clock-speed, as well as having the lowest memory hierarchy
cost per MAC. A careful analysis of the limits of on-chip memory in CMOS, as well as it’s scaling, is required.

Training
The creation of neural network models involves finding weights to the model which minimize a function, known as

the loss function L, which represents error in this model (loss functions are typically simple functions of the model
error itself such as the mean square error or cross-entropy). Training of a network starts with a forward-pass
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Figure 3. (a) Here signals from two arrays of sources, M; and M2 are broadcast to the rows and columns respectively
of a 2D receiver, generating the outer product between two vectors on each timestep. (b) Incoming data is passed to
control circuitry, such as a DAC and router, which distribute RF control signals to modulators. (c) Required matrix
operations for inference, training, and backpropagation in a deep neural network. (d) A patching method for performing

convolutional matrix multiplication.
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through the network (in the same manner as inference above) which computes Y = AX. This generates a vector
at the output of the network where the largest value in the vector is the estimate of the class of the input to the
network. We can pass this estimation vector, as well as a vector with one-hot encoding into the loss function
giving us Vy L. We wish to minimize V 4 L for this input, but in order to do this on all layers we must have a way
of finding the error in early layers in the network from later layers. Backpropagation® is a technique which allows
use to compute this by using the chain rule we see that: V4L = (VyL)X? VxL = AT(VyL). One we have
propagated a layer output back to it’s input the final step is to use chain rule to compute Vyx-1 L = f'(VxrL).
This technique can be extended to deal with convolutional neural network. We can take the proposed tiling
method from above which casts CNN problems into a matrix multiply, and train on that. Further optimizations
are possible by mapping the problem of training onto the hardware.

In the near term, training of a full network from scratch may not be feasible as limitations in DAC/ADC or
nonlinearities in modulating devices produce limits on the accuracy possible to train to. Where this technique
really has an advantage, however, is in post-training tuning for the hardware. Often in neural network accelerators
a process of fine-tuning is employed in order to take a model generated in 32-bit floating point, quantize it to
8-bit integer/fixed-point, and train it for several additional epochs in the presence of quantization noise to regain
any lost accuracy from the quantization.'® In this way, post training fine tuning for photonic hardware could
regain lost accuracy from fabrication error, process variation, or other architecture specific phenomena.

Discussion

This paper presents an optoelectronic accelerator which is scalable to N > 10 neurons in the near-term. The
primary benefit in this architecture is that multiply and accumulate operations can be performed passively via
optical inference. As a result the architecture does not have a fixed cost per operation, meaning that the number
of data reads and writes required for a matrix-multiplication operation scales as O(3N?) while the number of
operations performed scales as O(N?3). This means that for large problems and scaled hardware the IO cost
per operation can be decreased by a factor % To an extent CMOS accelerators can also do this, but as large
portions of memory cost are from data movement scaling a CMOS architecture leads to both an increase in total
IO energy. Even if 10 energy does not scale in CMOS they fundamentally run into the bound of the cost per

operation on the order of 10fJ.

The exponential growth in computing performance associated with Moore’s law is slowing. As statistical
models become more complicated the need for larger and larger layers which can learn more complicated features
increases.'® 16 Photonics, in the future, may become necessary to assist in computation as the cost of both logic
and interconnects'® stops scaling. The architecture presented in this paper promises significant short-term
performance gains over state-of-the-art electronics, with long term performance bounded by a standard quantum
limit, of many orders of magnitude improvement.
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