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Abstract

We develop a theory of convexity for arbitrary metric spaces that is based on
standard convexity in Euclidean space. Versions of the classical combinatorial theo-
rems of Radon, Helly, and Carathéodory are formulated in the general setting, and
numerical invariants associated with these theorems are calculated for two specific
classes of metric spaces: the surfaces of Euclidean n-spheres and the grid, integer
n-tuples with the L! metric.

A family F of subsets of a metric space M is diametral provided that F is closed
under intersections and every subset S of M is contained in some member T of F
such that S and T have the same diameter. We show that every metric space has a
unique smallest diametral family of subsets. In Euclidean space, the unique smallest
diametral family is the family of compact convex sets. Using this minimality, we
show that the theorems of Radon and Helly cannot be improved in the sense that no
diametral family can have lower Radon and Helly numbers than those assigned by
Radon’s and Helly’s Theorems.

The inductive property is satisfied by a family F of sets for which the supremum
of every directed subfamily of F is a member of . Not only does every metric
space have a unique smallest inductive diametral family of subsets, but this unique
smallest family in the Euclidean metric space is the family of all Euclidean convex
sets. By treating the unique smallest diametral and the unique smallest inductive
diametral families in a general metric space as analogues of the Euclidean families of
compact convex sets and convex sets respectively, we obtain a theory of metric space
convexity that allows us to formulate general versions of classical theorems concerning
convexity.

Much of our attention is focused on the grid. In particular we introduce diagonai
bozes which generate the “convex” sets in the grid. In the final chapter we apply
our theory to the surfaces of Euclidean n-spheres. Here the results are negative in
the sense that any possible notion of spherical convexity which satisfies the basic
diametral and inductive properties of Euclidean convexity must necessarily have a
family of “convex” sets that is so large as to be non-interesting.

Thesis Supervisor: Daniel Kleitman
Title: Professor of Mathematics
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Chapter 1

Introduction

This introduction is meant as an overview of the following chapters and as such is
merely a broad outline of the many details and proofs that will follow. For unfamiliar
terms, see the paper itself.

There are two main goals for this paper. The first goal is to develop a theory
of convexity for general metric spaces. That is, given a set of points whose only
structure is a known distance between pairs of points, we want to be able to say
which subsets are convex and why are they called convex. The second goal is to look
at combinatorial results from the literature of convexity theory in Euclidean space
and apply these results in the general setting. Along the way, we hope to learn more
about the classical results.

The starting point for a theory of convexity is naturally n-dimensional Euclidean
space. Standard convexity in Euclidean space can be formulated solely in terms of
the standard Euclidean distance: a set is convex provided that it contains every point
lying on the shortest path between any two of its elements. This characterization
of convexity motivates the usual method of generalizing convexity to metric spaces,
a form of convexity called geodesic convexity in which a (geodesically) convex set
is one which contains every point lying on any shortest path between any two of
its elements. Our approach to convexity relies on an alternate characterization of
standard convexity that does not utilize geodesics.

Let C; denote the family of all Euclidean convex sets, and let C, denote the
subfamily of compact convex sets. Both of these families are intersecting families,
meaning that each family contains all intersections ¢ ¢ its members. We begin with
a characterization of C,. Note that every subset of Euclidean space has the same
diameter as its convex hull. If F is an intersecting family of sets, then we can
generalize convex hulls by saying that the F-hull of a set S is the intersection of all
members of F which contain S. Let us call an intersecting family F of subsets of a
metric space M diametral provided that any subset of M has the same diameter as
its F-hull. We show that the unique smallest diametral family in Euclidean space is
the family C, of compact Euclidean convex sets.

The diametral property allows us to characterize the family C, of Euclidean space.
But just as Euclidean space has a unique smallest diametral family, so also we show
that every metric space has a unique smallest diametral family which we denote by



Q(M). We treat the family Q(M) as the analogue in M of the family C, in Euclidean
space. Before proceeding to characterize the family C; of all Euclidean convex sets
and determining the appropriate generalization of C; in a general metric space, let us
first consider two theorems concerning C,,.

Two of the cornerstones of combinatorial geometry, the theorems of Radon and
Helly, present us with a means of assigning positive integers to families of sets, num-
bers which say something about the “complexity” of the structure of families. Let F
be a family of subsets of U. Informally the Radon number r(U, F) is the least integer
such that any subset of U having r(U, F) elements can be partitioned into two blocks
with intersecting F-hulls, while the Helly number A(U, F) is the least integer for which
we are guaranteed that if any h(U, F) members of a subfamily of F share a common
point of U then all members of that subfamily share some common point of U. In
their classical instances, the theorems of Radon and Helly amount to telling us that
r(R*,Cn) = n+2and h(R",C,) = n+ 1. As a family grows larger, its “complexity” as
measured by Radon and Helly numbers increases. Because every diametral fainily in
Euclidean space contains C,,, we deduce that no diametral family in Euclidean space
can have smaller Radon and Helly numbers than the family C,,. It is in this sense that
we show that Radon’s and Helly’s Theorems cannot be improved. By substituting the
family Q(M) of a general metric space for C, in the classical instances of Radon’s and
Helly’s Theorems, we obtain generalizations of these theorems. And because Q(M) is
the smallest diametral family in M, the generalized theorems that we obtain cannot
be improved as in the sense above.

To pass from the family C, to the family of all Euclidean convex sets, we consider
the inductive property which is satisfied by C; but not by C,. A family of sets has
the inductive property provided that the family contains the supremum of any of its
chains. (In practice we find it more convenient to work with directed subfamilies
which are very similar to chains.) We prove that C; is a subfamily of every inductive
diametral family in Euclidean space. In other words, C; is the unique smallest induc-
tive diametral family. As we might expect, there is also a unique smallest inductive
diametral family Q(M)* in any metric space M, and it is the family Q(M)* that we
treat as the analogue in M of the family C; in R™.

We close chapter 2 by considering Carathéodory’s Thearem which is closely related
to the inductive property. Informally, the Carathéodory number of the family F of
subsets of U is the least integer ¢(U, F) such that any element x taken from the F-hull
of any subset S C U is an element of the F-hull of some subset of S which has no
more than ¢(U, F) elements. Carathéodory’s Theorem says that ¢(R*,C;) = n + 1.
By calculating the number ¢(M, Q(M)") we obtain a generalization of Carathéodory’s
Theorem in M.

It is not difficult to see that the C,-hull and the C;-hull of any finite Euclidean
subset are the same. It is this fact that allows us to say that r(R",C,) = r(R",C;,) and
transform Radon’s Theorem, which is really a statement about C;, into a statement
about C,. What is more interesting is that C; is the unique inductive family containing
C, for which hulls coincide on all finite sets. We will show that this unique relationship
between C, and C; also holds between their analogues (M) and Q(M)" in M.

In chapter 3 we leave Euclidean space and consider a discrete metric space called



the grid, which is 2" with the L! metric. It is known that compact convex sets in
Euclidean space can be expressed as intersections of half-spaces. Using the geometry
of the grid, we introduce a family of sets which can be expressed as intersections of
special half-spaces in the grid. We call this the family of diagonal bozes.

The family of diagonal boxes is ("), the unique smallest diametral family in Z*
and hence the analogue of C,. Therefore the Radon and Helly numbers of the family
of diagonal boxes are minimum among all diametral families in the grid. These
numbers are calculated and shown to be 2" + 1 and 2" respectively, giving us versions
of Radon’s and Helly’s Theorems for the grid.

In the same way that we pass from C, to C; in Euclidean space by removing the
compactness requirement, we pass from the family of diagonal boxes to a family of
extended diagonal bozes in the grid. The family of extended diagonal boxes is Q(z2™)",
the unique smallest inductive diametral family in the grid and as such is the family
of “convex” sets in the grid. We show that (Z")* deserves the status as the grid’s
analogue of C;; by showing that €(2")" is diametral and inductive, has the same Radon
number as the family (}(z"), and is the unique inductive family containing }(2") for
which hulls agree on finite sets. In other words Q(Z")* bears the same relationship
to (z") that C; bears to C,. We close chapter 3 with a version of Carathéodory’s
Theorem for the grid, showing that ¢(z", Q(z")*) = 2",

Though we have been freely considering general metric spaces in this introduc-
tion, the first place that we concentrate exclusively on the setting of an arbitrary
metr:c space is in chapter 4. There we give a characterization of (M) by giving
an intersection basis. And by a process which we call inductive completion, a means
of beginning with one family F and enlarging it to obtain an inductive family F=,
we characterize 2(M)". We show that Q(M) and (M)~ have the desired relation-
ship, meaning that Q(M)" is diametral and inductive, has the same Radon number
as the family Q(M), and is the unique inductive family containing Q(M) for which
hulls agree on finite sets. Thus we can formulate versions of Radon’s, Helly’s, and
Carathéodory’s Theorems for M.

Finally in chapter 5 we consider the n-dimensional Euclidean sphere S™ and spher-
ical convexity. We characterize the families Q(S™) and Q(S™)" and calculate their
Radon, Helly, and Carathéodory numbers. It turns out that the every possible subset
of S™ which does not contain antipodal points of the sphere is a member of Q(5™)".
Because 2(S5™)" is the smallest inductive diametral family in S™, any possible notion
of spherical convexity which satisfies the basic diametral and inductive properties of
Euclidean convexity must necessarily have a family of “convex” sets that is so large
as to be non-interesting.



Chapter 2

Euclidean Convexity

2.1 Preliminaries

In this section introduce a class of families of sets which we call the diametral
families and lay the groundwork for an investigation into the relationship between
this class and the notion of convexity in Euclidean space.

Capitol letters A, B,C,...,Z will denote sets, while script letters A,B,C,..., 2
will denote families of sets. The letter M is reserved for metric spaces. If d is the
metric of M, then we denote the diameter of a subset T C M by

#(T) = sup{d(z,y) : 7,y € T}.

If T is an unbounded set then p(T) = oo.

Every member of a given family will be a subset of some fixed set. Often that
fixed set will be the Euclidean space R". References to distances in R" will assume
the standard Euclidean metric which we denote by 4.

One special family of sets in the Euclidean space R is the family of all conver sets
where we say that a subset T C R" is convex provided that given any two elements
z,y € T, the entire line segment between z and y lies in . A Euclidean set that is
both compact and convex is called a conver body. For any subset T of R", there is a
unique smallest convex set containing T'; this convex set is called the convez hull of
T and is denoted by conv(T).

Soon we will define diametral families. The definition is based on two important
properties of the family of all convex subsets of Euclidean space. The first property
is that the intersection of arbitrarily many convex sets is also a convex set. And the
second property is based on the fact that though every subset T of Euclidean space
is contained in its convex hull conv(T), both T and conv(T') always have the same
diameter. In order to formulate the definition of diametrality for families in general
metric spaces, we now turn to consider the appropriate generalizations of these two
properties in a broader setting.

A family of sets is an intersecting family when it is closed under arbitrary intersec-
tions of its members. The notion of convex hulls can be generalized to any intersecting
family as follows. Let U be a fixed set and let F be an intersecting family of subsets



of U. We define the F-hull of a subset 7' C U as the intersection of all members of
F which contain the set T, that is

hulle(T) = ) A (2.1)

TCAEX

Note that U € F because intersecting families are closed under the empty intersection.
As a consequence for (2.1), there will always be some member A in F wkich contains
T. The convex hull in Euclidean space is merely the F-hull when the family F consists
of all the convex sets.

Definition: A family F of subsets of a metric space M is diametral if and only if

1. F is an intersecting family.
2. For every bounded subset T C M we have u(hullg(T)) = u(T).

There is an equivalent way of defining diametrality which will be useful to us, a
way that does not refer to hulls. Consider an intersecting family F of subsets of M
and a given bounded subset T'C M. If F is a diametral family, then T is contained
in some member of F having the same diameter that T has, namely T C hullz(T).
Conversely if we know that T is contained in some member T’ € F having the same
diameter that T has, then we know that F is diametral because

T Chulleg(T)C T
Therefore we have shown the following result which is an assertion that diametral
families are “sufficiently large”.

LEMMA 1 A family F of subsets of a metric space is diametral if and only if

1. F is an intersecting family.

2. Every bounded subset T is contained in a member of F having the same diameter
that T has.

Beginning in the next section we examine the relationship between diametral
families and Euclidean convexity. The definition of diametrality captures much, but
not all, of what it means to be convex. But for now we turn to a discussion of hulls,
letting F be an intersecting family of subsets of U for the remainder of this section.

An important property of hulls is that if 7 and H are both intersecting families
of subsets of the same set U, where 7 C H (ie F is a subfamily of ), then the
containment relation of hulls is the reverse of the containment for the families. In
other words for any set T C U,

hully(T) C hulle(T). (2.2)
One immediate consequence of (2.2) is the following.
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LEMMA 2 Let F, and F; be two intersecting families of subsets of a metric space
where F; is a subfamily of F5. [f Fy is diametral, then so is F;.

PROOF For any bounded subset T we know from (2.1) and (2.2) that
T C hully,(T) C hulls, (T).
Together with the fact that F; is diametral, this implies that
W(T) < p(hully,(T)) < phulls (T)) = w(T).
Therefore p(T) = p(hulls,(T)), and F; is by definition diametral. ]

Note hullr is a set operator that maps subsets of U to subsets of U. In fact
because of the intersecting property of F, the F-hull of any subset of U is a member
of F. This gives us a one-to-one correspondence between the collection of F-hulls
and the family F itself, namely

F = {hulls(S): SCU}.
Equivalently, and more useful for our purposes, we have that for any subset T C U
T e€F<+<=T=huls(T). (2.3)

The hull operator hulls is a closure relation on U, meaning that hullz(T) is a map
from subsets of U to subsets of U which satisfies the following three properties:

T C hulls(T) (2.4)

If S C T then hulls(S) C hullx(T) (2.5)
hullg(hullg(T)) = hull(T)

On the other hand given any closure relation on U, the image of the closure
relation is an intersecting family of subsets of U. What this means is that we can
equivalently take either point of view: closure relations or intersecting families. We
will concentrate on intersecting families, but everything that we do could be cast in
terms of closure relations instead.

2.2 Convex Bodies

As seen in the previous section, the definition of diametrality is motivated by
two properties of Euclidean convexity. In this section we will see that these two
properties of convexity permit a characterization of the family of convex bodies in
Euclidean space. In particular we show that the family of convex bodies is a very
special diametral family in that the family of convex bodies is a subfamily of any
other Euclidean diametral family. In other words, the family of convex bodies is the
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unique smallest diametral family in R*. As an immediate corollary we will conclude
that the class of Euclidean diametral families is closed under intersection.!

In the previous paragraph we overlook a technical consideration. The family
consisting of the convex bodies alone cannot be a diametral family because it is not
even an intersecting family due to the fact that the family of convex bodies is not
closed under the empty intersection, ie due to the fact that the set R™ itself is not a
convex body. In order to have an intersecting family, we make the following definition.

Definition: We let C, denote the family whose membership includes every convez
body in R™ as well as the set R™ itself.

It is Cn which we call the family of convez bodies. We claim that C, is not only
an intersecting family (clearly), but also a diametral family. Given any bounded set
T C R", the set hull (T) is the topological closure of the convex hull of 7. It is
well-known that a set, its convex hull, and its closure all have the same diameter in
R™. From this fact we deduce that the family C, is a diametral family in Euclidean
space. Theorem 3 shows that C, is the unique smallest diametral family in Euclidean
space.

THEOREM 3 If F is an intersecting family of subsets of R®, then
F is diametral < C,, C F.

PROOF Let F be an intersecting family of subsets of R™.

It is an immediate consequence of lemma 2 and the fact that C, is a diametral
family that if C;, C F then F is also a diametral family. Sc suppose that F is a
diametral family and let us argue that C, is a subfamily of F.

Because the set R" is o member of both the families C,, and F, it suffices to show
that an arbitrary convex body in R™ is a member of F. Let T be a convex body, that
isT e€C, — {R"}.

The proof that T' € F will consist of establishing two facts.

1. Every closed ball in R" is a member of F.
2. T can be expressed as an intersection of closed balls in R".

Because F contains the intersections of all of its members, the above two facts
are sufficient to establish that T € F.

(Proof of 1): Let B be an arbitrary closed ball? in Euclidean space. We know that
B is a subset of hulls(B) by (2.4). Furthermore because B is a bounded set and F
is a diametral family, we have by the definition of diametrality that

u(B) = p(hullx(B)).

!By the intersection of families, we mean the new family whose members are members of each of
the old families.

2B is a closed ball provided that there exists a real number m > 0 and an element z € R" such
that B = {w € R" : §(z,w) < m}.

12



It is well-known that a closed ball in Euclidean space cannot be a proper subset of
another set having the same diameter. Therefore B = hullr(B) and hence by (2.3)
we know that B € F.

(Proof of 2): In order to show that T can be written as an intersection of closed
balls, it suffices to show that for each ¢ T there exists a closed ball B; containing
the set T but not containing z. If this were the case then

T=()B.
z¢T

is an expression of T' as an intersection of closed balls.

Informally, the approach that we take is to show that given any element z ¢ T,
we can always find a closed ball such that T is on the inside of the closed ball and z
is on the outside. We do this by considering closed balls which have centers lying on
the “opposite” side of T from z and which have diameters just big enough to contain
the set T. No matter how close z is to T, it is still possible to find an apprecpriate
closed ball because we can locate the center of a ball arbitrarily far from T, making
the ball’s boundary that lies between T and z as “flat” as we like.

Let us make these ideas more precise. Choose z ¢ T. Because T is closed, we
know that

inf{6(z,y):y €T} >0.

In fact, there exists a unique element a € T of minimum distance from z, ie
8(z,a) = inf{é(z,y):y€ T} > 0.

To see the uniqueness of the point a, suppose that a' is an element of T satisfying
8(z,a) = §(z,a’). If a # a’ then there is some point p € R™ on the interior of the
line segment joining a to a’. The point p lies in T by convexity and is closer to z
than either a or a’, contradicting the fact that a was chosen in T to have minimum
distance from z.

Let ¥ denote the ray which begins at z and proceeds in the direction of a. Let ¢
be the point of ¥ lying midway between z and a, and let H denote the hyperplane
which passes through ¢ and is orthogonal to v.

Claim: H strictly separates the point r and the set T.

Let us see how the theorem follows from the claim. The hyperplane H determines
two open half-spaces of R"; let A denote the open half-space which does not contain
z. If the claim is true then T C A. Every point of A lies on the surface of a single
n-dimensional sphere which is tangent to H at ¢. Consider the map f : A — R which
assigns to each point in A the radius of the unique such n-sphere containing that
point. Because the map f is continuous, the range f(T) of the compact set T is a
compact subset of R. Thus there exists a real number u defined by

u=sup{f(t):te T}

Let z denote the point of A which lies on # and for which d(z,c) = u. We show that

13



a closed ball containing T, but not containing z, is given by
Ball(z,u) = {y € R" : é(z,y) < u}.

To see this, first note that c lies on ray ¢ between z and z, so d(z,z) > d(z,¢c) = u.
Therefore = ¢ Ball(z,u). Also note that any point y in T lies on the surface of some
n-sphere S5’ which is tangent to A at ¢ and which has a radius no greater than u.
Heuce the n-sphere S’ is a subset of Ball(z,u). Because y is arbitrary, we conclude
that T C Ball(z,u). Let B, = Ball(z,u) and the theorem follows from the claim.

To finish the proof, it remains to establish the claim that the hyperplane H strictly
separates T' and z. This involves showing that T is bounded away from H, meaning
that elements of T are not arbitrarily close to H. This proof will be a variant of the
many separating hyperplane theorems for convex sets. (See [3] or [15].)

Let H' be the hyperplane which passes through the point a and which is orthogonal
to . The hyperplanes H and H' are distinct and parallel. Therefore there is a
minimum positive distance whicn separates them. If T does not intersect the open
region between hyperplanes H and H’, then T is bounded away from H. So we are
finished when we show that H' is a supperting hyperplane of T', which means that
if A’ denotes the open halfspace of R® determined by H’ which contains the point z,
then T does not intersect A’.

For contradiction suppose that there is some point b € T N A’. Because b € A’,
the line segment joining b to a contains some point ¢ which lies closer than §(z, a) to
a. But by the convexity of T, we have ¢ € T. This contradicts the fact that a is the
nearest element of T to z. ]

Recall that the intersection of two families is the new family whose every member
is a member of each of the old families.

COROLLARY 4 The class of diametral families in R is closed under intersections.

PROOF Let F denote a family which is an intersection of diametral families. By
theorem 3 we know that each of these diametral families that make up the intersection
F must contain C,, so F necessarily contains C,. The intersection of intersecting
families is an intersecting family, so it follows by theorem 3 again that F is a diametral
family. [

2.3 Combinatorial Invariants of Convex Bodies

We now turn our attention to twe combinatorial invariants associated with fam-
ilies of subsets, namely the Radon and Helly numbers. These numbers provide a
convenient quantitative tool for working with families. Informally we say that “nice”
families have low Radon and Helly numbers. It is in this respect that we demonstrate
that no diametral family of Euclidean sets is “nicer” than the family C, of convex
bodies.

14



First we look at the classical theorems of Radon and Helly and then we see how
these theorems allow us to assign integers to families. Theorems 5 and 9 show a
sense in which Radon’s Theorem and Helly’s Theorem are best possible for diametral
families. The reason that these classical theorems are best possible for diametral
families is that both involve the family C,, which we know by theorem 3 is the unique
smallest diametral family in Euclidean space. For a general survey of research relating
to these theorems, see [5].

Radon’s Theorem: Each set of n + 2 or more elements in R™ can be
expressed as the union of two disjoint nonempty sets whose convex hulls share
a common element.

Helly’s Theorem was discovered by Helly in 1913 but first published by Radon in
1921. The hypotheses of Helly’s Theorem can be given in more generality than we
have stated them here.

Helly’s Theorem: Suppose K is a family of at least n + 1 convez bodies
in R*. If each n + 1 members of K share a common element, then there is an
element common to all members of K.

Both of the above theorems are optimal in the sense that n+2 and n+1 respectively
are the least integers that make each theorem true. These two theorems motivate the
definition of Radon numbers and Helly numbers which we now define in a general
way. Let U be a fixed set.

Suppose that F is an intersecting family of subsets of U. The Radon number
r(U, F) of the family F is the least positive integer such that each set of r(U,F)
elements of U can be expressed as the union of two disjoint nonempty sets whose
F-hulls have nonempty intersection. If no such positive integer exists, then we say
(U, F) = oo.

Following [6], we say that a Radon F-partition of a subset T of U is a partition of
T into two disjoint nonempty sets which have intersecting F-hulls. Then the Radon
number of F is the least number for which every subset of U having that cardinality
admits a Radon F-partition.

Now let F be any family of subsets of U, not necessarily an intersecting family.
The Helly number h(U, F) of the family F is the least positive integer such that if K
is a subfamily of F satisfying the following two conditions,

1. K has at least h(U, F) members and
2. each h(U,F) members of K have nonempty intersection,

then all members of K share some common element of U. If no such positive integer
exists, then we say that h(U, F) = oo.

In theorem 5 we show that a strict lover bound for the Radon and Helly numbers
of diametral families in R™ is given by Radon’s and Helly’s Theorems respectively. In
other words n + 2 and n + 1 provide strict lower bounds for the Radon and Helly
numbers of all diametral families in R".
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Theorem 9 of this section provides an even stronger version of theorem 5 for the
case of Helly numbers. In essence theorem 9 says that we can weaken the definition
of diametral families to obtain a larger class of extra-diametral families and still have
the n + 1 lower bound for the Helly numbers of families in this larger class.

THEOREM 5 Let F be a diametral family of subsets of R".
1. The Radon number r(R", F) is at least n + 2.
2. The Helly number h(R", F) is at least n + 1.

PROOF  The proof of this theorem is accomplished by means of three propositions.
Proposition 6 tells us that as families become larger, their Radon and Helly numbers
also become larger. Therefore no diametral family can have smaller Radon and Helly
numbers than the numbers of the diametral family C, because all diametral families
in R® contain C, as a subfamily.

Therefore the theorem is proven by calculating the Radon and Helly numbers of
the family C,, showing that r(R*,C,) = n + 2 and h(R",C,) = n + 1. We calculate
these numbers directly from Radon’s and Helly’s Theorems after dealing with two
technical details in propositions 7 and 8. Radon’s Theorem is really a statement that
the Radon number of the family of all Euclidean convex sets is n + 2. Proposition 7
shows how we can easily convert Radon’s Theorem into a statement about the Radon
number of the family C,. Helly’s Theorem tells us that the Helly number of the family
C. — {R"} is n + 1. Proposition 8 deals with the fact that the set R was artificially
adjoined to C, to give us an intersecting family. With these two propositions we
obtain the desired Radon and Helly numbers for C, directly from Radon’s Theorem
and Helly’s Theorem respectively. [ |

PROPOSITION 6 Let 7, C F; be two intersecting families of subsets of U. Then
1. (U, F) <r U F).
2. h(U, ) < (U, F).

PROOF  (Proof of 1): The Radon number of any family of sets is at least two, yet
if 7(U,F1) = 2 then r(U,F,) < r(U,F,) trivially. So we consider the case where
r = r(U,F)) > 2. Note that r may not be finite.

Given any positive integer m with 2 < m < r, by the minimality involved in the
definition of Radon numbers there is a set A,, consisting of m elements of U which
does not admit a Radon F,-partition. In other words A,, cannot be written as the
union of two disjoint nonempty sets whose F;-hulls intersect. By (2.2) we know that
hullr, (T) C hullg, (T) for any set T C R", so it follows that each set A, also will not
admit an F;-partition. Therefore r(U, F3) > r.

(Proof ot 2): We consider the nontrivial case in which h = h(U, F;) is at least
two. Note that A may not be finite. By the definition of a Helly number, given any
positive integer m where 1 < m < h, there is a subfamily K,, of F; satisfying
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1. |Kn| 2 m.
2. Any m members of K,, have nonempty intersection.

3. There is no element of U common to every member of K.

Because each K, is also a subfamily of F,, we conclude that h(U, F3) > h. ]

As a result of theorem 3 and proposition 6, we know that the value of the Radun
number of any diametral family of subsets of R" is at least 7(R",C,). We use propo-
sition 7 to show that the value of the Radon number r(R",C,) is equal to n + 2.
Proposition 7 tells us that when acting or finite sets, we can freely interchange the
standard convex hull operator conv and the C,-hull. So when we consider finite sets
as we do in Radon’s Theorem, the existence of a Radon C,-partition is equivalent
to the existence of a Radon partition with respect to the family of all convex sets.
Therefore the Radon number of the family C, is equal to the Radon number of the
family of all convex sets which by Radon’s Theorem is equal to n + 2.

The relationship between families whose hulls agree on finite sets will be explored
in great detail in later sections.

PROPOSITION 7 Let T be a finite subset of R*. Then the convex hull of T 1is
given by
conv (T) = hulle, (T).

PROOF The operator conv is the hull operator for the family of all convex sets.
Because C, is a subfamily of the family of all convex sets, we know by (2.2) that

conv (T) C hulle (T).

The reverse containment follows from the fact that conu(T) is a convex body
whenever T is finite. (]

From theorem 3 and proposition 6 we know that the value of the Helly number
of any diametral family of subsets of R is at least A(R",C,). That the Helly number
h(R",C,) equals n + 1 is a consequence of proposition 8. Helly’s Theorem tells us
that the Helly number of the family of convex bodies, without the artiiicial addition
of the member R", is n + 1. Proposition 8 is the price we pay for the convenience of
including the set R® as a member of C, in order to have an intersecting family.

PROPOSITION 8 If F is a family of subsets of U, then
h(U,F) = h(U,F U {U}).

PROOF We know that A(U,F) < h(U,F U {U}) by proposition 6. To show the
reverse inequality, it suffices to consider the case where h = h(U, F) is finite. Suppose
that K is a subfamily of FU {U} having at least A members such that any A members
have nonempty intersection. By showing that all members of X share a common
element of U, we establish that A(U, F U {U}) < h. There are two cases to consider.
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Case 1 : Suppose U ¢ K. Then K is a subfamily of F, and the fact that all mem-
bers of K share a common element of U follows from the definition of the Helly
number A.

Case 2 : Suppose U € K. If |[K| = h then by assumption all the members of K
have nonempty intersection. Otherwise || > h+1. Then K—{U} is a subfamily
of F having at least A members such that any h members have nonempty
intersection. By the definition of the Helly number A, there is an element of U
common to every member of K — {U}. This common ele.... at is then clearly
common to every member of K.

The goal of the remainder of this section is the establishment of theorem 9 as a
strengthening of the second part of theorem 5. We show that the class of Euclidean
diametral families is part of a larger class of “extra-diametral” families, none of whose
Helly numbers have value less than n + 1. More generally, in proposition 10, we show
that the least Helly number of a diametral family of subsets of U is never greater
than the Helly number of an extra-diametral family in U.

We have defined the notion of diametrality to capture two property of Euclidean
convexity. The first property is that diametral families are automatically intersecting
families, reflecting the fact that the intersection of convex sets is a convex set. An
advantage of having intersecting families is that we have hull operators, a necessity
for defining the Radon number of a family. But hull operators are not necessary
for defining Helly numbers, so families which are not intersecting families still have
well-defined Helly numbers. In order to explore Helly numbers for non-intersecting
families, we extend the notion of diametrality to include non-intersecting families.

The second property of Euclidean convexity captured by the definition of diame-
trality is that a set and its hull have the same diameter. But lemma 1 gives an
equivalent form of the definition of diametrality that does not require the concept of
hulls or intersecting families. Our plan is to drop the intersecting property part of
the definition of diametrality and consider the second property of convexity alone as
given by lemma 1.

Definition: F is an extra-diametral family of subsets of a metric space M if and
only if

T C M is bounded = JA € F such that T C A and u(T) = p(A).

The question is now whether in the larger class of ertra-diametral families in R"
there is some family whose Helly number is smaller than n + 1.

THEOREM 9 If F is an extra-diametral family of subsets of R® then

AR, F)2>n+1.
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PROOF Let F be an extra-diametral family of subsets of R". By allcwing all
possible intersections of members of F, we generate the family #F. That iy, the
members of 7 F are subsets of R" that are intersections of members of F. The family
nF is both an intersecting family and an extra-diametral family, so by lemma 1 we
know that mF is diametral. Therefore by theorem 5, tke family nF has a Helly
number whose value is at least n + 1. But the first purt of proposition 10 tells us that
the Helly numbers of the families 7 and nF are equal. ]

PROPOSITION 10 Let F be a family of subsets of U and let ©F denote the in-
tersecting family generated by F. Then

(U, F) = h(U, = F).

Therefore the Helly number of an extra-diametral family can never be lower than the
least Helly number of a diametral family.

PROOF The proof of the second part of proposition 10 follows from the first part
in the same way that theorem 9 does. The proof that we give here establishes the
first part of proposition 10.

By proposition 6 we know that A(U, F) < h(U,nF) and also that if A(U, F) is not
finite, then neither is A(U, #F). Therefore it suffices to consider h = h(U, F) finite
and show that A(U,nF) < h.

Let K be a subfamily of 7 F having at least h members such that the intersection
of any h members from X is nonempty. The proposition follows when we show that
there is an element common to all members of K because then the definition of Helly
numbers tells us that h(U,7F) < h. Consider the family

K'={T € F: ACT for some A € K}.

We claim that there is a element of U common to every member of K’. Let
us see how the proposition follows from this claim. Let x be a point common to
every member of K’. Note that because K is a subfamily of #F, any A € K can be
expressed as an intersection of members from F. But this means that any A € K can
be expressed as an intersection of members of K'. Consequently z € A, and we have
shown that the element z is common to every member of K.

Now to prove the claim. Choose an integer m such that m < h and m < |K'|.
Consider any members T3,...,T,, € K'. For each T; € K’ where 1 < i < m, there
exists A; € K such that A; C T;. Because there are at most h different A,’s, all of
which are members of K, we know by assumption that the intersection of the A;’s

=1 1=

is nonempty. But F] A; C ﬁ T; shows that the sets Ti,..., Ty also have nonempty
1

intersection.

Now if |K’| < h then letting m = |K'| allows us to conclude that there is an
element of / common to every member of K’. Otherwise |[K'| > h. Note that K' is
a subfamily of F. Therefore having shown that the intersection of any A members of
K’ is nonempty (the m = h case above), we can conclude from the definition of the
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Helly number A that there is an element common to all members of X’. Thus the
claim is established. [

Given any extra-diametral family F of subsets, proposition 10 tells us that the
“complexity” of F as measured by Helly numbers is the same as the complexity of
the diametral family #F. Nothing is gained from the standpoint of generalizations of
Helly’s Theorem in considering the larger class of extra-diametral families. For this
reason we will limit ourselves to discussions concerning intersecting families for which
we have the convenient notion of hull operators.

2.4 Inductive Families

We have seen that the two properties of Euclidean convexity captured by the
definition of diametrality allow us to characterize the family C, of convex bodies as
the smallest family satisfying these properties. In this section we look at a third
property of convexity called the inductive property. The family C, is not inductive,
but the family consisting of all convex sets is. We show that the inductive property
plus the two properties from the definition of diametrality allow us to characterize C.
The precise statement of this characterization is theorem 11 which tells us that the
family of all Euclidean convex sets is the unique smallest inductive diametral family.

Hereafter we will use C;; to denote the family of all Euclidean convex sets. The
reason for this choice of notation will be apparent in chapter 4 when we introduce
inductive completion. We need several definitions in order to proceed and will follow
the notation of [2].

Let F be a family of subsets of U. An upper bound of F is a subset of U which
contains every member of . The family F is directed provided that F contains an
upper bound for any pair of its members. By induction we see that a directed family
contains an upper bound for any finite number of its members. The unique smallest
upper bound for the family F, called the supremum of F, is denoted by

supF = | A
AEF

Definition: A family F is inductive provided that F contains the supremum of
each of its directed subfamilies.

Note that C, is not an inductive family. To see this, consider the directed subfamily
of C, consisting of all closed balls centered at some fixed point z € R" and having
radius strictly less than 1. The supremum of this subfamily is the open unit ball
centered at z. But open balls are not convex bodies, and so the fact that C, has a
directed subfamily whose supremum is not a member of C, tells us that C, is not
inductive.

On the other hand C; is an inductive family. To see this let F = {A;};es be
a directed subfamily of C;. To see that C; is inductive, we must show that the set

sup F, that is the set | A;, is convex. Pick z,y € sup F. Then there exists p,q € J
i€d
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such that z € A, and y € A,. Because F is directed, there also exists r € J such that
ApU A, C A,. Thus A, is a convex set containing both z and y, so A, contains the
entire line segment joining r to y. The line segment between r and y is consequently
contained in sup F, and so we know that sup F is a member of C;,.

Theorem 11 shows that C; is the unique smallest diametral family in the class
of inductive families in R", or equivalently that C; is the unique smallest inductive
family in the class of all diametral families. This theorem is an analogue for inductive
families of theorem 3.

THEOREM 11 [f F is an inductive intersecting family of subsets of R*, then
F is diametral < C, C F.

PROOF Let F be an inductive intersecting family of subsets of R™.

Suppose C; C F. The family C, of convex bodies is a subfamily of the family C;
of all convex sets, so it follows that C, is a subfamily of F as well. Because F is an
intersecting family, we can conclude by theorem 3 that F is diametral.

Suppose now that F is diametral. By theorem 3 we know that C, C 7. Because
F is inductive, it contains the supremum of all of its directed subfamilies. Therefore
we know that C; C F when we prove proposition 13. |

Before we state proposition 13 and finish the proof of theorem 11, we prove
lemma 12. In essence this lemma says that the members of an inductive intersecting
family are precisely those sets which can be expressed as the unions of the hulls of
their finite subsets.

LEMMA 12 Let F be an intersecting family of subsets of U. If A € F, then the
family
K4 = {hullg(Ay) : Ay is a finite subset of A}

is a directed subfamily of F such that A = supK4. Furthermore if F is inductive,
then the converse is true.

PROOF Let F be an intersecting family of subsets of U. Suppose that A € F.
Then K, is a subfamily of F by the definition of F-hulls. To see that K, is a
directed family, let hullz(A;) and hullr(A;) be two members of K4 where A, and A,
are finite subsets of A. Then A, U A, is also finite subset of A, so hullr(A1UA;) € K4.
Note that by (2.5), we have

hullr( A1) U hullg(As) C hullr(A; U Ay),

so K4 is by definition a directed family.
We now show that A =supK4. If £ € A then

z € {z} C hullr({z}) € Ka.
Therefore z € sup K4, and we deduce that A C supK4.
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To see the reverse containment, suppose y € sup K4. By the definition of supre-
mums, some member of K 4 contains y, say y € hullr(A;) where A; is a finite subset
of A. Then using (2.5) we see that

NS hull_r(A;) - hull;-(A) = A.

Therefore we have shown that K, is a directed subfamily of F such that A = sup K 4.

As for the converse, if K4 is a directed subfamily of F such that A = sup K4, then
A € F whenever F is inductive because inductive families contain the supremums of
their directed subfamilies. [

PROPOSITION 13 Every member of C;, is the supremum of a directed subfamily
of C,.

PROOF Let T € C; be an arbitrary convex set.
From lemma 12, a directed subfamily Kt of C;; such that T = sup K is given by

Kr = {hulls(A) : A is a finite subset of T'}.
Using proposition 7 we see that

Kt = {hull,(A) : A is a finite subset of T'}.

Therefore T' = sup Kt is an expression of T as the supremum of a directed subfamily
of the family C,. E

In proposition 13 we see a relationship between C; and C, which will be explored
further when we intrcduce inductive completions.

2.5 The Finite Hull Coincidence

Recall that in proposition 7 we showed that C,-hulls and Cj-hulls coincide on
all finite subsets of R®. We used this fact to conclude that the Radon numbers
of the families C,, and C; are equal. But proposition 7 is just a hint of a unique
relationship that exists between C, and C;. There is only one inductive intersecting
family containing C,, for which hulls of finite subsets coincide.

THEOREM 14 Let H be an inductive diametral family of subsets of R® such that
hully(T) = hulle, (T)
for all finite subsets T C R*. Then H =C;,.

PROOF Let H be an inductive diametral family that satisfies the hypotheses of
the theorem. From theorem 11 we know that H contains C;. It remains to show that
H C Cy. Let A € H. The remainder of the proof consists of showing that A € C}.

22



By lemma 12 we know that a directed subfamily K4 of H for which A = sup K4
is given by
= {hully(Ay) : A« is a finite subset of A}.

Therefore

A = sup{hully(Ay): Ay is a finite subset of A }
= sup{hulle,(Ay) : Ay is a finite subset of A }
= sup{hullcs(Ay) : Ay is a finite subset of A }.

The last line of this series of equations is an expression of the set A as the supre-
mum of a directed subfamily of the inductive family C;. Hence we know by lemma 12
that A€ C;. ]

The relationship between families that is exhibited in theorem 14 will be explored
more fully in a general setting.

2.6 Carathéodory’s Theorem

We used Radon’s Theorem and Helly’s Theorem as the bases for defining Radon
and Helly numbers. In this section we will look at another theorem from the clas-
sical literature on convexity on which we can base another type of number called
Carathéodory numbers. The following theorem was published by Carathéodory in
1907.

Carathéodory’s Theorem: When T C R", each element of the conver
hull of T is an element of the convez hull of some subset ofT which has at most
n+ 1 elements.

As with Radon’s and Helly’s Theorems, Carathéodory’s Theorem gives us yet
another type of number to associate with families of sets. See [13].

The Carathéodory number of an intersecting family F of subsets of U is the least
positive integer ¢(U, F) such that for all T C U and all x € hullz(T), there exists a
subset Ty C T with |Ty| < ¢(U, F) and z € hulls(Ty). If no such integer exists, then
we say that ¢(U, F) =

The integer n + 1 is the least number for which Carathéodory’s Theorem is true.
Therefore Carathéodory’s Theorem tells us that the Carathéodory number c(R" Cr)
is equal ton + 1.

It is natural to ask for which families is the associated Carathéodory number finite.
This question leads us to the definition of the finitary property whose importance in
the study of abstract convexity was first noted in [10].

Definition: Let F be an intersecting family of subsets of U. We say that F 1is
finitary (or algebraic) if and only if for all T C U we have

z € hullz(T) = = € hullz(Ty) for some finite subset Ty of T.
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Note that every member of a finitary family is a union of the hulls of its finite
subsets.® In lemma 12 we saw that the members of an inductive family are precisely
those sets which can be expressed as a union of their finite subsets. It is known that an
intersecting family F is finitary if and only if F is inductive. (See [4]. From this fact
we see that Carathéodory’s Theorem provides another proof that C; is inductive.) So
a partial answer to the question of which families have finite Carathéodory numbers
is that families which are not inductive will never have finite Carathéodory numbers.

Immediately we see that the non-inductive family C, has ¢(R",C,) = oco. We can
see that ¢(R",C,) = oo directly by considering an open unit ball B in Euclidean space;
the Cn-hull of B is its closure, a closed unit ball, yet any point on the boundary of
hullr(B) is not in the C,-hull of any finite subset of B.

We close by showing that the fact that a family is inductive does not necessarily
imply that the family has finite Carathéodory number, even in R™.

PROPOSITION 15 There ezists an inductive family F of subsets of R® which has
infinite Carathéodory number.

PROOF Let n be a fixed positive integer throughout the proof. For each integer
t > n+1, we let p; denote the element (¢,0,...,0) in R*. Also for each integer
1 2 n+ 1, we use closed balls to define the family B; of subsets of R® by

B; = {T : T C Ball(p;, %) and |T| < i}.
Consider now the family

f=C;UBn+1 UBn+2U...

We first show that the Carathéodory number of the family F is not finite. Pick an
integer m such that m > n+1. Let S, be the boundary of the closed ball Ball(pn, 1),
that is

}.

Then hullr(Sn) = Ball(pm, 3), and so pn € hullr(Sn,). Yet if S, is any finite subset
of S;, having fewer that m elements, then

pm ¢ hullx(S)) = S,.

Q| —

Sm={z €R":é(z,pm) =

Therefore ¢(R",F) > m. Because m can be chosen arbitrarily large, we see that
¢(R™, F) cannot be finite.

We now show that F is inductive by snowing that F is finitary. Let A be any
subset of R" and let z € hullr(A). In order to show that z is an element of the F-hull
of some finite subset of A, there are two cases to consider.

CASE 1 In this case suppose that A is not a subset of some single Ball(p;, :3’-) for

3The hulls of finite subsets are called polytopes.
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any integer : > n + 1. Then
T € hullr(A) = hulle;(A).

Therefore Carathéodory’s Theorem applies to show that = € hullc.(Ay) where
Ay is a subset of A having at most n + 1 elements. If A is not a subset of some
single Ball(p;, ;) for some i > n + 1, then we are finished because

T € hullc;(A,) = hull}-(Af).

Otherwise there is some integer j > n + 1 such that Ay C Ball(p;, ). By the
fact that A Z Ball(p;, ), we know that there exists y € A — Ball(p;, }). Then

z € hulles(A;) C hulles(As U {y}) = hullr(A; U {y}).

Thus we have shown that an arbitrary element z from hullr(A) is an element
of the F-hull of some finite subset of A.

CASE 2 Suppose now that A is a subset of Ball(p, 1) where m is an integer no less
than n+1. If A has finitely many elements then we are done. So suppose that A
has infinitely many elements. Because C; C F, (2.2) tells us that = € hullc.(A).
Therefore by Carathéodory’s Theorem, r € hulle;(Aj) for some subset As of A
having at most n + 1 elements. Form the set A’ by adjoining to A; as many
elements of A as needed so that |A’| = m + 1. Then

z € hulles(Ay) € hulles (A') = hullz(A').

Thus we have again shown that an arbitrary element r from hullr(A) is an
element of the F-hull of some finite subset of A.
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Chapter 3

Convexity in the Grid

3.1 Preliminaries

The primary setting of chapter 2 is the Euclidean space R*. For chapter 3 the
setting is a discrete version of Euclidean space known as the grid. Our aim is to
develop a theory of convexity for this discrete space based on the convexity results
for R" that we obtained in chapter 2. In particular we obtain analogues in the grid
for the families C, and C; in R", and we use these families to obtain Radon, Helly,
and Carathéodory type theorems for the grid.

The grid is the metric space consisting of the set Z* with the L! metric, or the Man-
hattan metric as it is called in [11]. In symbols, given two elements z = (z,,...,z,)
and y = (y1,..-,yn) of Z*, then their distance apart is given by

n

d(z,y) = lei - ¥il-

i=1

In this chapter x(T') denotes the diameter, possibly infinite, of a set T C zZ".

Recall that finite sets played an important role in chapter 2. In the grid, a set is
finite if and only if it is bounded.

We can think of the grid as a graph with vertices Z* and with edges connecting any
pair of vertices whose distance apart is one, ie any pair of vertices whose coordinates
are identical except in the single component where they differ by one. Then the
distance between two vertices is the number of edges in a shortest path between
them. For other treatments of the notion of convexity in graphs, see {1, 7, 8, 9, 14].

In lemma 16 we introduce another perspective on distances in Z" that we will
take quite frequently. Throughout this chapter let ¥" denote the collection of the 2"
n-tuples having the form [ey,...,€,) where each ¢; € {—1,1}. If e = [e1,...,€,) € ¥",
then for each z € Z" we define the integer-valued product € - = as

C-x:[6[1-.-7611]-(:L‘l,...,zn)=61xl+...+€nzn.

LEMMA 16 Ifz,y € 2", then

d(z,y) = max{e-z —¢-y:e€ ¥Y"}.
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PROOF Fix z,y € 1". Given any ¢ € Y™,

d(z,y) =) |z — il = D_ le(zi = y)| 2 |D_€ilzi —wi)| = |e -z — € y|.
i=1 i=1 i=1
1 if T, 2 Y

Now define the element n = [, ...,7.) € ¥™ according to 7; = { 1 otherwi
- rwise.

Then . i
d(z,y) =Y lei—yil =) mi(zi—p)=n-z—1n-y.

i=1 i=1

If e = [e1,...,€n] € U™, then we say —e = [—¢€y,..., —€,) € Y™
We close this section with a lemma that proves an obvious-seeming fact concerning
closed balls.

LEMMA 17 No closed ball in I" is properly contained in another set of the same
diameter.

PROOF WLOG consider the closed ball Ball(c,m) where ¢ = (0,...,0) € 2" and
m is a positive integer. It is easy to see that such a ball has diameter at most
2m. Suppose that Ball{c,m) is a proper subset of T'. Then there exists an element
y = (¥1,.-.,Yn) € 2" such that y € T — Ball(c,m), ie

de,y) = o lul > m.

=1

Choose a shortest path in the graph 2" from —y to y which goes through c¢. The
length of this path is more than 2m. As we began at —y and move along this path
toward y, we pass two vertices whose distance from c is exactly m. Call the first one
of these z. Now a shortest path from z to y has length greater than 2m. Because
z € Ball(¢,m), we know that

u(T) 2 d(z,y) > 2m 2 p(Ball(c,m)).

The assumption that Ball(c,m)) is a proper subset of T leads us to the conclusion
that u(T) > p(Ball(c,m)). Therefore the lemma is established. .

3.2 Diagonal Boxes

In this section we characterize the family of diagonal boxes, the analogue in the
grid of the family C, of convex bodies in R®. The reason that the family of diagonal
boxes deserves this status is that the family of diagonal boxes is the unique smallest
diametral family in Z" just as C, is the unique smallest diametral family in R™.
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We begin by noting that every convex body in F* is a bounded set that can be
expressed as the intersection of halfspaces. We define tiic diagonal boxes as bounded
sets which are intersections oi special “halfspaces” in Z".

Definition: We say that a set D C 7" is a diagonal box if and only if

1. D is bounded.

2.
D= n {ze€e?”:e-z>¢-t, for somet, € D}.
ceEYn

In defining the family C, we say that it consists of all convex bodies and also the
single set R", the latter member being included to guarantee an intersecting farrily.
Similarly we define the family Q(Z") to be the family of all diagonal boxes plus the
single set 2".

In theorem 19 we show that the family Q(Z") is the unique smaliest diametral
family of subsets of Z" and as such is the analogue in Z" of the family C, in R®. But
first we prove that (3(Z") is an intersecting family and give a representation of its hull
operator for finite (ie bocunded) sets. (Note that because diagonal boxes are bounded,
the (Z")-hull of any unbounded subset of Z* must be all of 2".)

LEMMA 18 The family Q(Z") is an intersecting family whose hull operator is given
by
hullg.z7)(T) = [\ {z€1":¢-2 > €-t, for somet, € T}
ceYn

when T ts any bounded subset of 7™.

PROOF We begiu oy showing that the family 2(Z") is an intersecting family. Let
K be an arbitrary subfamily of 2(2"). It suffices to show that the intersection of
all members of K is a member of 2(2"). Nothing is lost in supposing that " ¢ X
and ¢ ¢ K. For convenience let J serve as an index set for the family K, that is
suppose that K = {D,};es where each D; is a diagonal box. Again nothing is lost in
supposing that J # ¢ and ﬂJ D; # ¢.
J€
Clearly the intersection ) D; is a bounded set because each diagonal box D; is
i€d
bounded. Therefore by the definition of diagonal boxes, we show that N D; is a
JEJ
diagona! box by showing that

ﬂDjz ﬂ{rEZ":c-zZe-teforsometceﬂDj}. (3.1)
J€J cEYn 1€J

The containment in one direction of (3.1) is trivial, so we establish the other

direction by showing that the right hand side of (3.1) is a subset of _ﬂJ D;.
j€

1We shall consider the empty set ¢ to be bounded. Hence ¢ is a diagonal box.
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Fix 1 € J. If y is an element of the right hand side of (3.1), then for ail e € ¥™,

there exists an element t, € | D; such that e-y > ¢-t.. Sinceeacht, € N D; C D;,
j€J s€d
we know from the definition of diagonal boxes that y € L,. Because i is arbitrary,

we conclude that y € N D; as well. Thus ﬂJ D; is a diagonal box, and so (Z") is
j€J J€
an intersect.ng family.
Now we establish the representation for hulls as given in the statement of the
lemma. Let T be a bounded (ie finie) subset of 2". We claim that a unique smallest

diagonal box D which contains T is given by

D= ﬂ {rel":e-2>¢-t, forsomet, €T}
cEWn

Establishing this claim invoives showing:
1. If D’ is another diagonal box containing T', then D C D".

2. D is a diagonal box, meaning

(a)
D= r] {z€*:¢-z>¢-a, for some a, € D}
cEPn

(b) and D is a bounded set.

The first point (1) is easy to see because if D' is a diagonal box containing T', then

DC ﬂ {re?":e-x>¢c-t forsomet, € D'} =D
cEYn

To see the second point (2a), it suffices to suppose that

y € ﬂ {re?”:¢-2>¢-a,for some a, € D}
eeYn

and then show that y € D. For each ¢ € ¥", there exists a, € D such that e-y > €-a..
Because a, € D, there exists t, € T such that ¢-a, > €-t,. Thuse-y > ¢t shows
that y € D.

The third point (2b), that D is bounded, is a technical consideration. We proceed
as follows. Given v,w € D, there exists n € ¥" such that d(v,w) =7-v—1n-w by
lenirna 16. By the definition of D we know both of the following:

7-v,p-w>min{p-t:t €T}

(=n)-v,(-n)-w > min{(-n)-t:t € T}
It follows that

min{n-t:t€T}<n-v,p-w < —min{(-n)-t:t€T}
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Letting f : ¥" — Z be given by
f(e) = —min{(—¢€)-t:t €T} —min{e-t:t e T},

we have d(v,w) =9 -v—-n-w < f(n). We conclude that D has finite diameter, and
consequently is bounded, because

p(D) < max{f(e): e € ¥"}.
.

Now we are set to prove the main theorem of this section, which establishes not
only that Q(2") is a diametral family, but also that it is the unique smallest diametral
family of subsets of Z".

THEOREM 19 If F is an intersecting family of subsets of I*, then
F is diametral <= Q(7") C F.

PROOF Suppose that Q(z") C F. To show that F is diametral it suffices to
argue that Q(Z") is a diametral family, because any intersecting family containing a
diametral family is itself a diametral family by lemma 2.

Because lemma 18 tells us that (Z") is an intersecting family, to show that Q(Z")
is a diametral family, it is enough to prove that pu(hullyz~\(T)) < p(T') where T C 2"
is a given bounded set. Recall

hullyzny(T)= [ {z €1":€ -z > €-t, for some t, € T}.
cEWn

Let v,w € hullyz~(T). Lemma 16 tells us that there exists 7 € ¥™ such that
dlv,w)=n-v—-n-w.
Because w € hullyz~)(T), we know that there exists w' € T such that
n-w2n-w.
Also v € hullgz~\(T') and (—n) € ¥" implies that there exists v’ € T such that
(=m)-v > (=n)- o'
Adding these two equations gives
n-w—n-v2n-w-n-v.
Using lemma 16 again we have

dv,w)=n-v-n-w<n v -9 w <d,vw') < uT).
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Because v and w are arbitrary elements of hullgz~)(T')), we conclude that

pu(hullaz~(T)) < u(T).

Therefore the family (2") is diametral.

We have argued that the supposition 2(2") C F implies that F is a diametral
family and now will argue the converse of this statement. Let F be a diametral family.

Our proof will be based on the method used to prove the similar result for the
family C,, in theorem 3. We claim that all closed balls of 2" are members of F. To see
this claim, note that the fact that F is diametral implies that any closed ball in Z" is
contained in some member of F having the same diameter. But lemma 17 shows that
a closed ball cannot be a proper subset of another set having the same diameter, so
we know that every closed ball must be a member of F. Therefore we finish the proof
when we show that every diagonal box is an intersection of closed balls, because then
we will have shown that all diagonal boxes are members of the intersecting family F.

Let D be a given diagonal box for the remainder of this proof. That is,

D= ({z€t":e-z>c¢-t, for somet, € D}.
ecPn

In order to show that D is an intersection of closed balls, it suffices to show that
given z ¢ D, there exists y, such that d(y.,z) > u(D U {y.}). Because then if we
let m, = u(D U {y.}), we have that D C Ball(y,,m,) yet z ¢ Ball(y,,m.). Thus we
would have an expression ot D as an intersection of closed balls, namely

D = () Ball(y,,m.).
z¢D

Suppose z ¢ D. Then there exists A = [Ay,...,A,] € U such that A-z < A- ¢ for
allt € D. Pick any a = (ay,...,a,) € D and define y € 2" componentwise according
to

yi=a; + A,y(D) (32)

We wish to show that d(y, z) > u(D U {y}). First note that

d(yaz) 2 A'y"’\'z
> Ay—2A-a

Zn: Aiyi — z": Aia;
=1

i=1

f: [Miai + 32u(D)] - ij Aa;

1=1

nu(D)
u(D).

AV
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Given any ¢ € D, we know from lemma 16 that
d(y,c) =max{e-y —e-c:c € ¥Y"}.

We claim that a maximum occurs when € = ). To see this, note that we can use (3.2)
to rewrite this last formula as

d(y,c) = max{e-a—e-c+ Y elip(D): e € ¥"}.

a=1

Because a,c € D impliese-a — ¢ - ¢ < d(a,c) < u(D) for any ¢ € ¥", we see that a
maximum occurs when ¢ = A. Therefore

dly,c)=A-y—A-c<A-y—Ar-z2<d(y,2).
We conclude that d(y, z) > u(D U {y}) and are done. (]

As was argued in the proof of theorem 19 and will prove useful later, we record

COROLLARY 20 Every diagonal bozx is an intersection of closed balls in 7".

3.3 Radon and Helly Numbers

Earlier we calculated the Radon and Helly numbers of the family C,, in Euclidean
space and showed that no diametral family in R® can have lower numbers. In support
of the assertion that (}(Z") is the analogue in Z" of C,, we show in this section that
no diametral family in Z" can have lower Radon and Helly numbers than those of the
family 2(2*). The main work of this section will be in calculating the Radon and
Helly numbers of §2(Z"). We will see that these values give us versions of Radon’s
and Helly’s Theorems for the grid.

THEOREM 21 Let F be a diametral family of subsets of T".
1. The Radon number r(2",F) is at least 2" + 1.
2. The Helly number h(Z", F) is at least 2".

PROOF Because of theorem 19 and proposition 6, it suffices to establish that
r(Z*,2(2")) = 2" + 1 and A(2",Q(Z")) = 2". Consider the set

Qn = {(al,...,a,.) €Z":a;€ {Oal}}

Claim: Any subset of Q, is a member of Q(Z").
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Let us see what follows from this claim.

If every subset of @Q, is a member of (}(Z"), then we know by (2.3) that every
subset of @, is its own (Z")-hull. Thus the set @, admits no Radon Q(z")-partition.
Because |@Qn]| = 2", it follows that r(z",Q(Z")) > 2", and we have a lower bound of
2" 4+ 1 on the Radon number of the family Q(z").

The claim also gives us a lower bound on the Helly number A(2",2(2")). Consider
the family

K:n = {Qn_ {d}!ae Qn}

The family K, has exactly 2" members. The intersection of all members of K,, is
empty. But any collection of 2" — 1 members of K, will intersect at a single element
of the set @,. If the claim is true then K is a subfamily of Q(z"). Therefore by the
definition of Helly numbers we see that h(Z",(Z")) is strictly greater than 2" — 1.

We seek now to establish the claim.

The n = 1 case is left to the reader, so suppose that n > 2. Lemma 17 tells us
that a closed ball in Z" is never properly contained in another set having the same
diameter. From this it follows that any diametral family necessarily contains all closed
balls. Because diametral families are closed under intersections, any diametral family
also contains all sets which are intersections of closed balls. 2(Z") is diametral, so we
can show that the set Q, is a member of 2(Z") by expressing @), as an intersection
of closed balls.

Such an intersection is given by

Q. = () Ball(a,n). (3.3)

a€Qn

To see this (note that the “C” direction follows because elements of @, lie at most
a distance of n apart), suppose b = (by,...,b,) ¢ Q.. Then for some j** component
we know that b, ¢ {0,1}. Define the function f:Z* — @, componentwise by

1 if T _<_ 0
0 otherwise.

(f(z)); = {

It follows that d(b, f(b)) > n. Because b ¢ Ball(f(b),n), we see that b is not a
member of the right hand side of (3.3). We therefore have an expression of @, as an
intersection of closed balls, showing @, € Q(Z").

To finish establishing the claim, we consider a proper nonempty subset S C Qn
and show that S is also in Q(Z"). For each a € Q,, let T, = Q. — {a}. Then

T, = Qn n Ba'll(f(a)an - 1)

is an expression of T, as an intersection of members of (Z"), showing that T, € Q(z").
The fact that S is in 2(Z") follows from

S= (| T
a€Qn-S

33



This establishes the claim.

We now continue with the proof by showing that 2" is an upper bound for
k(z™, Q(Z™)).

By proposition 8, in calculating the Helly number of the family Q(z"), nothing is
lost in removing the member 2" from Q(Z"), ie

h(z", QZ")) = h(Z", AT") - {2"}).

Let K be a subfamily of (Z") — {2"} having at least 2" members such that any 2"
members of X have nonempty intersecticii. We need to show that all members of K
share some common element z.

Fix elements ¢ € ¥™ and Ay € K. All the members of K are bounded sets and
consequently finite. Therefore for any A € K, there exists an integer

ge(A) = min{e-z: z € A}. | (3.4)

We are interested in finding some set A, € K for which the integer value of g.(A.) is
as large as possible. To see that there is indeed a maximum to the possible integer
values, note that for any A € K the nonempty intersection A N Ap guarantees that

g(A) =min{e-z:z € A} < max{e-z :z € Ap}.

Therefore we have an upper bound on the size of the integers in (3.4), and so there
exists some set A, € K which makes the value of (3.4) as large as possible.

There are 2" elements in ¥™. So considered over all of ¥", we obtain a subfamily
K’ of K having at most 2" members by letting

K' = {A,,:ne A

The intersection of all the members of the subfamily K’ is nonempty by the assump-
tions on K, and so there is some element z common to every member of K’. We want
to show that z is common to every member of K as well. We will show that z € D
where D is an arbitrary member of K.

By corollary 20 we know that D is an intersection of closed balls. Therefore it
suffices to show that any closed ball containing D must also contain z. Suppose that
D C Ball(c,m) for some nonnegative integer m and some ¢ € Z". We show that
z € Ball(c,m) by showing that d(z,c) < m.

By lemma 16 there exists an element 7 € ¥™ such that d(z, c) =17-z—-1-c Note
that z € A_,, so

min{(-n)-z:z € A_,,}'
g-ﬂ(A-n)
9-n(D).

For any finite set X of integers, max{z : ¢ € X} == —min{-z : £ € X}. Using

(—=n)-z2

v It IV
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this fact we obtain

—9-4(D)
—min{(-n)-z:z € D}
—min{—(n-z):z € D}
max{n-z:z € D}.

=
N
N IA

Let y be an element of D for which n -y = max{n-z : z € D}. Then because
y € D C Ball(c,m), we know that

m2>d(y,c)2n-y—-n-c2n-z-n-c=d(zc).

From the above we can conclude that = is common to every member of K, and so
we have shown that A(2",Q(Z")) is at most 2".

It now remains to establish that 2" + 1 is an upper bound for the Radon number
r(Z",9(Z")). Given any subset T C 2" which has 2* + 1 elements, suppose we know
that there exists a nonempty subset Ty of T having at most 2" elements such that

hu"n(zﬁ)(T) = huun(zﬂ)(Tj).

(The actual proof of this fact is the content of the next proposition.) Then we can
partition T into two disjoint nonempty sets Ty and T — T, such that

h‘ll”g(l")(T - Tj) n huun(zﬂ)(Tf) = huun(Z")(T - Tj) N hulln(zn)(T)
= hullz~)(T - Ty) # ¢

We now have the required Radon Q(Z")-partition, namely the partition of T into T
and T — Ty, to show that r(z",Q(Z")) < 2" + 1.
All that remains is to prove proposition 22. [

PROPOSITION 22 IfT is any bounded subset of I", then there exists a nonempty
subset Ty C T having at most 2" elements such that

hUlln(Z")(T) = hullmzn)(T/).

PROOF Let T be a bounded subset of Z*. We show that there exists a set T;
satisfying the conditions of the proposition.

For each € € Y™, choose an element t, € T such that e-z > ¢-t forallz € T.
(We can do this because T is finite.) Let

Ty ={t.:e€ ¥"}.
Clearly hullgzn)(Ty) C hullgz~)(T) because Ty C T. Now hullpzn(Ty) is a
member of Q(Z") and consequently by corollary 20 is an intersection of closed balls.

So to show .hat hullyz~(T) C hullyz~(T}), it suffices to show that any closed ball
containing hullqz~)(Ty) must necessarily contain hullyzn)(T') as well.
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Suppose hullgz~(T;) C Ball(c,m) for some nonnegative integer m and some
¢ € 2". Choose y € hullgz~(T). To show that y € Ball(c,m), we must show that
dic,y) < m.

By lemma 16 there exists an element n € ¥" such that d(c,y) = n-c—7n-y. Then

dic,y)=n-c—n-y<n-c—n-t, <d(c,t;) <m.
8

Note that proposition 22 is not true for unbounded sets T'. Later we will see that
this fact is related to the fact that Q(z") is not inductive. An extension of proposi-
tion 22 will be given in lemma 30 that will serve as a starting point for computing
Carathéodory numbers in 2".

For now we deduce a version of Helly’s Theorem for the grid from theorem 21
using (Z") in place of C,. Note that Radon’s Theorem is a statement about convex
hulls and not about C,-hulls. Therefore a version of Radon’s Theorem for the grid
must wait until we have looked at grid convexity more completely.

A Helly Theorem for the Grid: Suppose K is a family of at least 2"
diagonal bozes in Z". If each 2™ members of K share a common element, then
there is an element common to all members of K.

3.4 The Convex Analogues of the Grid

The family Q(Z") of diagonal boxes plays a role in Z" that the family C, of convex
bodies plays in R", namely each is the unique smallest diametral family. Therefore
we say that the family (Z") is the grid’s analogue of C,. In this section we want
to characterize a family in Z" which is the analogue of the family C; of all convex
sets in R". Recall that C; is the unique smallest inductive diametral family of R".
Therefore the candidate family for being the grid's analogue of C} is the unique
smallest inductive diametral family of 2".

We begin with a definition. The sets that are members of the family C;; are the
result of beginning with the definition of convex bodies and removing the compactness
requirement. The sets of the family Q(z")* of eztended diagonal bozes are the result
of beginning with the definition of diagonal boxes and removing the boundedness
requirement.

Jefinition: An extended diagonal box is a set A € 2" satisfying

A= ﬂ {z€l”:¢-x>¢€-t, for somet, € A}.
cEYn
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LEMMA 23 The family Q(Z")" of extended diagonal bozes is a diametral family

whose hull operator is given by

hullgz~).(T) = ﬂ {z€Z":e-x2¢-t, for somet, € T}
CcEWn

for any subset T C 7"

PROOF Because (z") C Q(Z")*, the fact that the family 2(2")* is a diametral
family is a consequence of lemma 2 once we know that §2(Z")" is an intersecting family.
We omit the proof that (Z")* is an intersecting family because it proceeds exactly
like the proof in lemma 18 that ©(Z) is an intersecting family. We continue with a

Claim: An equivalent condition for defining extended diagonal bozes is:

A is an ertended diagonal box if and only if there ezists some subset A’ C "
such that
A= ﬂ {z€1":¢-z>¢-a, for some a, € A'}.
cEYn

To show that the definition of extended diagonal boxes and the seemingly weaker
definition given in the claim are indeed equivalent, it suffices to consider a set A C 2"
satisfying the condition of the claim and prove that A is an extended diagonal box.

Suppose there exists a set A’ C 2" for which

A= ({z€1*:¢-z2>¢-a, for somea € A'}.
cEWYn

Pick an arbitrary y € 2" such that

y€ [ {z€1":¢-z>¢-t, for some t. € A}.
ecyn

Then it suffices to show that y € A.

For each ¢ € ¥" there exists t, € A such that ¢-y > €-t,. Because t, € A, there
exists a, € A’ for which €-t, > €¢-a.. The fact that ¢-y > € a, shows that y € A.
Therefore the claim is established.

Now we finish the proof by establishing the representation for }(2")"-hulls.

Let T C 7. By the claim, we know that

D= ({z€l*:¢e-z2>¢-t. for somet. € T}
cEWY"

is one extended diagonal box containing containing T. If T C D’ for some extended
diagonal box D', then by the definition of extended diagonal boxes we have

DC ﬂ {re?":e-x>¢-t forsomet, € D'} =D
cEYn
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Therefore the unique smallest extended diagonal box containing T is given by

ﬂ{zel":c.:cZe-teforsometleT},
173 A

and we have found an expression for the Q(Z")*-hull of T'. (]

Comparing lemmas 18 and 23, we record the following useful observation that
parallels a similar relationship between C, and C;, in Euclidean space.

LEMMA 24 For any finite subset T of 7%,
hllllQ(Z")(T) = hullg(z»).(T).
|

In Euclidean space, one difference between the families C,, and C;, is that only the
latter is inductive. The situation in the grid is parallel to the Euclidean case.

PROPOSITION 25 The family Q(2Z™)* is an inductive family whereas 2(Z") is not.

PROOF We begin by showing that Q(Z") is not an inductive family.
Fix n > 2. It suffices to find a directed subfamily F of ©(Z") such that sup F is
not a member of Q(Z"). Fix ¢ € ¥" and make the following definitions:

T, = {{z1,...,z,) €ETI" : -z = 0}

F = {hulln(zn)(A) : A is a finite subset of T,}.

Now F is a subfamily of Q(z") by construction and is directed because
hUIIQ(Z")(Al) U hulln(zn)(Ag) (_: hUUQ(Z")(A| U Az).

It is easy to see that T,, C F, so sup F is an unbounded set. Because diagonal boxes
are bounded sets, sup F is a member of 2(Z") only if sup F = Z". But in fact we will
show that sup F = T,, # 2". To do this it suffices to choose y € sup F and show that
y € Th.

By the definition of supremums, we know that y is an element of some member
of F, say y € hullgzn)(A) where A is a finite subset of T,. By lemma 18, there exists
an element ¢t € A such that ¢-y > ¢-t = 0. But (—¢) € ¥" also, so by lemma 18
there exists an element ¢’ € A such that

—(e-y)=(—€¢)-y2(-¢)-t'=—(e-t')=0.

We conclude that € -y = 0, meaning that y € T,.
We have shown that if n > 2, then (Z") is not inductive. For the n =1 case,
consider T} = {(z) € 2! : £ > 0} and proceed as above.
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Now we prove that Q(2")* is an inductive family. To do this we show that if
K is a directed subfamily of Q(Z")*, then supK € Q(z")*. It suffices to show that
hullgz~\«(sup K) C sup K.

Pick z € hullqz).(sup K). By lemma 23, for each ¢ € W" there exists an element
t. € sup K such that ¢-z > ¢-t,. For each t,, there exists a member A, € K such that

t. € A.. And by the directedness of K, there is a member A € K containing |J A..
cewn
Then by lemma 23 we conclude that ¢

T € hulln(zn).( U tt) Q hulln(zn).(A) = A.
11 A

Therefore z € sup K. .

As a result of proposition 25 we know that (2") is not finitary and hence cannot
have a finite Carathéodory number. In theorem 31 we calculate the Carathéodory
number of Q(Z")".

Not only is Q(Z")* an inductive family, but we can now show that among all
diametral families of Z", the unique smallest inductive family is Q(Z")".

THEOREM 26 If F is an inductive intersecting family of subsets of ", then

F is diametral <= Q(2")° C F.

PROOF Let F be an inductive intersecting family of subsets of Z".

Suppose Q(Z")* C F. Then because (Z") is a subfamily of (z")*, we know that
F also contains Q(Z"). By theorem 19 we conclude that F is diametral.

On the other hand suppose that F is diametral. Then by theorem 19, we know
that Q(z") C F. We wish to show that Q(Z")* C F. Because F is an inductive family
and hence contains the supremum of any directed subfamily, it suffices to show that
every member of (Z")* is the supremum of a directed subfamily of Q(z"). This is
the content of proposition 27. 1

PROPOSITION 27 Every extended diagonal boz is the supremum of a directed
subfamily of Q(Z™).

PROOF Let A € Q(Z")" be an arbitrary extended diagonal box. By lemma 12, we
know that A = sup K4 where K4 is the directed subfamily of F given by

Ka = {hullag~).(As) : Ay is a finite subset of A}.
But by lemma 24 we see that
Ka = {hullgg)(Ayf) : Ay is a finite subset of A}.

Therefore T = sup K4 is an expression of A as the supremum of a directed subfamily
of the family Q(z"). ]
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3.5 Radon’s Theorem Revisited

In this section we uncover a relationship between the families 2(2") and Q(z")*
that parallels a similar relationship between C, and C; in Euclidean space. We show
that (2(2")" is the unique inductive intersecting family containing Q(Z") for which the
hulls of these two families agree on all finite sets.

Earlier we stated a version of Helly’s Theorem for the grid and said that a version
of Radon’s Theorem for the grid would have to wait until we studied convexity further.
At the end of this section we submit a version of Radon’s Theorem for the grid.

THEOREM 28 IfH is an inductive diametral f.mily of subsets of I® such that
hully(T) = hullgz~\(T)
for all finite sets T C 7", then H = Q(Z™)".

PROOF  The proof is exactly the same as the proof of theorem 14 when the following
substitutions are made:

1. Q(z") for C,,
2. Q)" for C;

3. Theorem 26 for theorem 11.

COROLLARY 29 The following Radon numbers are equal:
r(Z",U7")) = r(Z",Z")").
PROOF Let r = r(2*,Q(Z"}). By proposition 6, we know r < r(Z", Q(Z")*).
On the the other hand if T is a set of r elements, then by the definition of Radon

numbers we know that T admits an )(Z")-partition. By theorem 28, this partition is
also an Q(2")*-partition. Therefore r(z*,Q(2")*) <r. a

As a result of theorem 21 and corollary 29 we can now state

A Radon Theorem for the Grid: FEach set of 2" + 1 or more elements
inI" can be expressed as the union of two disjoint sets whose Q(Z")*-hulls share
a common element.
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3.6 Carathéodory’s Theorem for the Grid

In this section we will prove an analogue of Carathéodory’s Theorem for the
grid I". As we saw in a previous section, the classical instance of Carathéodory’s
Theorem in Euclidean space is essentially a calculation of the Carathéodory number
¢(R™,C;). Therefore our formulation of Carathéodory’s Theorem for the grid involves
a calculation of the Carathéodory number ¢(Z",Q(Z")*), that is a calculation of the
Carathéodory number of the grid’s analogue of C;.

We already know that ©(2")" is inductive and therefore finitary. But as we saw
in proposition 15, the fact that a family is finitary is insufficient evidence to conclude
that its Carathéodory number is finite. Lemma 30 tells us that ¢(zZ",Q(2")") is at
most 2". We will use this lemma as the starting point in the proof of theorem 31,
and then show that we can cut this initial upper bound in half when n > 2.

LEMMA 30 Given T C Z" and an element y € hullgzn).(T), there is a subset
Ty C T which has at most 2" elements such that y € hullgz~).(Ty).

PROOF Let T C 7" with y € hullgz~.(T). By proposition 23, we know that for
each € € Y™ there exists an element t, € T such that ¢-y > €-t.. But then it follows
that

Y € hu”n(zn).( U tﬂ)'
neWn"

Let Ty = {t, : 9 € ¥"}. ]

The fact that ¢(z',Q(2')*) = 2 is left to the reader. We now deal with all other
cases.

THECREM 31 (A CARATHEODORY THEOREM FOR THE GRID)
Letn > 2. When T C 7", each element of the Q(2")"-hull of T is an element of the
Q(z™)*-hull of some subset of T having at most 2"~! elements.

PROOF We will prove that 2*~! is the least number for which the statement of the
theorem is true. That is, we will prove that

(2, Q2")") =2 for n > 2. (3.5)

There are two parts to the remainder of the proof.

Upper Bound: We first establish the upper bound for (3.5). Consider T C 7"
and choose z € hullyzn).(T). Our goal is to find a subset T” of T having at most
2"-1 elements such that x € hullyz~).(T").

By lemma 30 there is a subset Ty of T having at most 2" elements such that
z € hullgz~).(Ty). Consider the function g, : ¥" x Ty — {~1, 1} given by

1 ife-z>e-t
—1 otherwise.

9z(e,t) = {
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Put an equivalence relation ~ on the set Ty by saying that
t) ~ ty <= g-(€,t)) = g-(€,t2) Ve € U™,

Let T’ be a complete set of equivalence class representatives taken from T, that is
given any element y € Ty there is exactly one element y’ € T such that for all e € Y™,

g,,-(e, y) = g,(e, yl)'
Claim: = € hullg.(zn)(T').

To establish the claim we must show that given arbitrary n € U™, there is some
element ¢, of T such that 7.z > n-t;. We do this now. From the representation of
Q(Z")*-hulls given in proposition 23, the fact that = € hullyzr).(TY) tells us that there
exists an element ¢, € Ty such that n-z > 5-t,. In other words, g.(7,t,) = 1. But the
fact that T is a complete set of equivalence representatives means that T’ contains
some element ¢; equivalent to t,. Thus g;(n,t;) = 1, meaning that -z > 5 -t, and
we can conclude that z € hullg.z7)(T'). The claim is therefore established.

Let us see what follows from the claim. If |T'| < 2"~!, then the upper bound that
we are seeking is established. So suppose that |T’| > 2*~!. Note that there are at most
2" possible equivalence classes. A simple counting argument shows that it must be
the case that there exists a pair of elements p;, p; € T’ such that g.(€,p1) = —g:(¢, p2)
for all € € ¥™. Ther z € hullygzn).({p1,p2}) because for any ¢ either € -z > € - p,
or €-z > €-pp. So the supposition that |7’ > 27! implies that z is really in the
(z")*-hull of a two element subset of T.

Lower Bound: Now we demonstrate the lower bound for ¢(Z",(Z")") as given
in (3.5). To do this for the general case n > 2, we find a set P, C Z" having exactly
2"~! elements such that there exists some element ¢ € hullgzn.(P,) where c is not
contained in hullyz»).(Fy,) for any proper subset P, C P,

First consider the n = 2 case. Let P, be the two element subset {(—2,2),(2,2)}
of Z2. It is easy to see that the element (0, 0) of Z* is an element of hully(zn).(P). But
because (0,0) is not in the Q(Z?)*-hull of any proper subset of P, we conclude that
c(22,9(2%)") > 2.

Now for the general case of n > 3. Consider the set P, C 2" whose elements have
the form (p1,...,pn) where

p € {-2,2},
pi € {-2"%,2"%} for2<i<n—1,
pn = 22,
We shall denote an arbitrary element of P, by

(2ay,...,2 %a,;,...,2"7%),

where ¢ is understood to range from 2 through n — 1 and each of the numbers
ai,...,an is either 1 or —1. Clearly |P,| = 2"~!.

Consider now ¢ = (0,...,0) € 2". Our plan is to show that ¢ € hullyzn).(P,) but
that ¢ ¢ hullqz~).(P') for any proper subset P, C P,. Note that this will allow us to
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conclude that ¢(zZ",Q(z")*) > 2*~1.

To proceed, we show that for each ¢ € U™, there exists t, € P, such that ¢-c > ¢-t,.
This will establish that ¢ € hullgz~).(P.). Given any € = [e1,...,€,] € ¥, let t. € P,
be given by

te = (~261,...,-2"%,...,2""2).

Then
rn-l .
ot = —2€ - I.E 2"26?] + 2" %,
=2
n-3 )
= —2 — Z?_‘} + 2n—-2€n
1=0
= =2 (2% 1)+ 2" %,
= (en — 1)2""2 -1
< 0
= ¢€-¢C

Thus ¢ € hullyzn).(Pr).

Finally we must prove that c is not contained in the (2(Z")*-hull of any proper
subset P; of P,. Suppose that P, is a proper subset of P, such that c € hullyz~).(Py).
We argue to a contradiction. Since P, is a oroper subset of P,, there exists an element
y € P, — P, say

y = (2ay,...,2 %a;,...,2""%)

where each a,,...,a,_; is either —1 or 1. Consider
€ =[-ay,...,—a;,...,1] € ¥".

By proposition 23, there exists an element ¢, € P, such that ¢-¢ > ¢-t.. Let us say
that the coordinates of t, are given by

te =(2by,...,2""%;,...,2""%)
for some by,...,b,-; which are either —1 or 1. Because y ¢ P, and t, € P,, we know

that a; # b, for some j € {1,...,n — 1}. Then

n-1 n-1
2a1by + ) 27 %aib; < (2 + 2‘-2) —2=2"%_1.

=2 1=2

Using this equation we reach a contradiction:

n-1
6=¢-c>¢€-t, = —2a,b — (Z 2"2a,'b;) +2"2 > 1.

=2
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Chapter 4

Convexity in Metric Spaces

4.1 The Intersecting-Maximal Family

In chapter 3 we generalized Euclidean convexity and the classical convexity theo-
rems of Radon, Helly, and Carathéodory from their usual Euclidean setting to another
inetric space, the grid 2" having the Manhattan metric. In chapter 4 we provide the
full generalization of our previous results to arbitrary metric spaces. Throughout let
(M, d) be a metric space with u(T') denotirg the diameter of a subset ' C M, that
is p(T) = sup{d(z,y) : z,y € T}. Any topological reference connected with a metric
space refers to the metric topology of the space.

In this section we introduce a special family of subsets associated with a metric
space M, a family which we call the intersecting-mazimal family Q(M). We will see
that (M) is the general metric space analogue of the family C, of convex bodies in
R". In fact Q(R") = C,. Previously we used the notation §2(Z") to denote the family
of diagonal boxes in Z". We will see that our notation is justified in that the family
of diagonal boxes in Z" is the intersecting-maximal family for Z". We begin with a
definition.

Definition: A subset S of a metric space M is a maximal set if and only if S is
not properly contained in another subset of M having the same diameter.

There are a number of facts about maximal sets that we can deduce immediately.
Because a set and its closure have the same diameter, we know that all maximal sets
are closed sets. Note that in the metric spaces R® and Z" discussed earlier, every
closed ball is an example of a maximal set. But in both of these spaces there are
maximal sets which are not closed balls.

The set M is itself a maximal set. With the possible exception of the set M
though, all maximal sets are bounded.

Let (M) denote the intersecting family of subsets of M generated by the collec-
tion of maximal subsets of M. In other words (M) is the family whose members are
those subsets of M which can be expressed as intersections of maximal sets. As such,
QM) is the smallest intersecting family of subsets of M which contains the entire
collection of maximal subsets of M. We call Q(M) the intersecting-mazimal family
of M.
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PROPOSITION 32 For any metric space M, the family Q(M) is diametral.

PROOF The family Q(M) is an intersecting family by construction. Our proof
shows that Q(M) meets the second condition of diametrality, meaning that for an
arbitrary bounded set T C M we have u(hullqiapy(T)) = pu(T).

Let T be a bounded subset of M. Consider the family

Gr={A:T C Aand p(A) = u(T)},

that is all of supersets of T which have the same diameter that T has. Note that Gr
is nonempty because it contains T.

We claim that arbitrary nonempty directed subfamilies of G have upper bounds in
Gr. Let us see what follows from this claim. If the claim is true then by the maximal
principle (ie Zorn’s Lemma) we know that Gr contains some member T’ which is not
properly contained in any member of Gr. Then by definition, 7" is a maximal set and
therefore a member of Q(M). It follows from (2.1) that hullaar)(T) € T'. Thus

u(T) < plhulloan)(T)) < w(T') = u(T).

So if the claim is true, we know that (M) is a diametral family of subsets of M.

Now to establish the claim. Let H be an arbitrary nonempty directed subfamily
of Gr. We will show that sup™ € Gr. We know that T C sup H, and consequently
that u(T) < p(sup H), so it remains to show that u(supH) < u(T). To see this,
select z,y € supH. Then there are members A; and A, of H containing z and y
respectively. Because H is directed, there is some member A € H containing both
A; and A, and consequently containing both z and y. Therefore

d(z,y) < u(A) = w(T).

We conclude that u(sup H) = u(T) and therefore that sup H € Gr. (]

We have a potential problem with notation. Earlier we used ((2") to denote the
family of diagonal boxes in Z*. Now we have another definition of Q(z") as the family
generated by taking all possible intersections of maximal subsets of 2". Thecrem 33
shows that both of these usages are consistent. In addition, the theorem 33 also gives
us the fact that Q(R") = C,.

THEOREM 33 [f F is an intersecting family of subsets of M, then
F is diametral < Q(M) C F.

PROOF Let F be an intersecting family of subsets of M.
Suppose that F is a diametral family. Given a maximal subset S of M, we know

both of the following:
1. S C hullg(S).

2. p(S) = p(hullz(S5)).
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The only way that both of these facts can remain consistent with the definition of
maximal sets is if § = hullr(S); in other words if § € F. Therefore F contains all
maximal subsets of M. The fact that F is an intersecting family now guarantees that
QUM)C F.

The converse follows from the fact that (M) is diametral /rroposition 32) and
the fact that any intersecting family containing a diametral family is itself a diametral
family (lemma 2). .

COROLLARY 34 The class of diametral families is closed under intersections.

PROOF  The proof is exactly the same as the proof of corollary 4 with Q(M) and
theorem 33 substituting for C,, and theorem 3 respectively. .

4.2 Numbers and Relationships

As a result of proposition 6, proposition 32, and theorem 33, we immediately have

THEOREM 35 Let F be a diametral family of subsets of M.
1. The Radon number r(M,F) is at least r(M,Q(M)).
2. The Helly number h(M,F) is at least h(M,Q(M)).

The Radon and Helly numbers of diametral families of subsets in any metric space
have the given lower bounds. We are led to the following definitions.

Definitions: Let M be a metric space.

1. The diametral Radon number r(M) is the least Radon number of any
diametral family of subsets of M, ie r(M) = r(M,Q(M)).

2. The diametral Helly number r(M) is ihe least Helly number of any diame-
tral family of subsets of M, ie h(M) = (M, QY M)).

Note that either r(M) or (M) may be infinite.

We have shown that r(R") = n+2, h(R*) = n+1, r(Z") = 2" +1, and A(Z") = 2".
It is to be observed that R® has a diametral Radon number one greater than its
diametral Helly number, and that the same is true for Z". Earlier we noted that
maximal sets are closed and that with the possible exception of M are also bounded.
In R® and 7", closed and bounded sets are compact. In the case of a general metric
space M in which all proper maximal sets are compact, we prove in theorem 36 that
the diametral Radon number exceeds the diametral Helly number by one. Actually
we prove a stronger result in proposition 37 from which theorem 36 follows.
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THEOREM 36 Let M be a metric space in which every proper subset of M thal is
mazimal is also compact. Then

h(M) = r(M) - 1.

PROQOF If proper maximal subsets of M are compact, then setting F = Q(M) in
proposition 37 yields

h(M) = h(M,Q(M)) = r(M,QM)) - 1 = r(M) — 1.

PROPOSITION 37 Let M be a metric space and F an intersecting family of sub-
sets of M. Then

1. h(M,F) 2 r(M,F)-1.
2. If every member of F — {M} is compact, then
h(M,F) =r(M,F) - L.

PROOF We use r and h to denote (M, F) and h(M, F) respectively. Note r > 2.
(1) For any positive integer k such that k < r, there exists a k-element subset T}
of M which does not admit a Radon partition. Let

Gr = {Ti — {2} : z € T}:}.

Then G; is a family of ¥ members such that any k£ — 1 members of Gi share a common
element of M. But no element of M is common to every member of Gi. We conclude
that A > k — 1. Because k is arbitrary, we have that 2 > r — 1 ‘“henever r is finite
and that A is infinite if r is not finite.

(2) Suppose that every member of F — {M} is compact. It suffices to show that
h <r —1 when r is finite.

Let K be a subfamily of F having at least r — 1 members such that any r — 1
members of K have a nonempty intersection. We show that there is an element of M
common to every member of K. If X = {M} then this is trivially true, so assume
that there is a compact member A € K.

We claim that K satisfies the finite intersection condition, meaning that every
finite collection of members of K has nonempty intersection. Let us see how the fact
that there is an element common to every member of K follows from this claim.

A well-known theorem from topology says that if A is compact, then for every
family H of subsets of A satisfying the finite intersection condition, there is an element
of A common to every member of . Consider the following family of subsets of A:

H:{BnA:BGK}.
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If the claim that K satisfies the finite intersection condition is true, then H also
satisfies the finite intersection condition. Therefore we conclude that there exists an
element common to every member of H, which is necessarily a common element of
every member of K also.

Now to establish the claim that K satisfies the finite intersection condition. (The
following proof technique is found in [5).) Let £ be a finite subfamily of K. We
argue by induction on the cardinality j of £ to show that there is an element z € M
common to every member of L.

Because we know that any r—1 or fewer members of KX have nonempty intersection,
we can proceed to the general case j > r > 2. Given any member T € L, by
inductive hypothesis there is an element pr of M common to every member of the
family £ — {T'}. Let

V={pr:TeCL}

Note that V is a set of at least r elements and so can be partitioned into two disjoint
subsets whose F-hulls have nonempty intersection, say including some element z € M.
For any T € L, consider the block B of the partition of V which does not contain the
element pr. Note B C T and so

z € hullg(B) C hulle(T) =T.
Because T is arbitrary, we conclude that z is contained in every member of L. .

See [6, 12] for further relationships between Radon, Helly, and Carathéodory num-
bers.

4.3 Inductive Completion

In this section we obtain a generalization of the family C;, of all Euclidean convex
sets for arbitrary metric spaces. This family of generalized convex sets will be both
diametral and inductive. We take this family to be the unique smallest inductive
diametral family in a metric space.

Let us begin by arguing that there is indeed a unique smallest inductive diametral
family for a general metric space M. Let the family X be the intersection of all
inductive diametral families of subsets of M, that is A € X if and only if A is a
member of every inductive diametral family of subsets of M. Note X’ is an irtersecting
family because it is the intersection of intersecting families. This fact, together with
theorem 33, tells us that X’ is diametral. It is easy to see that the intersection of
inductive families remains an inductive family. So we conclude that X is the unique
smallest inductive diametral family.

In order to characterize the unique smallest inductive diametral family of a general
metric space, and to show its relationship with the family (M), we introduce the
notion of inductive completion, a method of starting with one family and “completing”
it to obtain a larger family. One advantage of the completion is that the family
obtained upon completion is necessarily inductive.
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Definition: The inductive completion of the family F is the family

F* = {supK : K is a directed subfamily of F}.

Clearly if F is an inductive family, then * = F. More importantly we will show
that F* is always inductive (and consequently finitary).

LEMMA 38 For any intersecting family f' the inductive completion F* is both
intersecting and inductive.

PROOF First we suppose that F in an intersecting family and argue that F~ is
intersecting also.
Let {T;};cs be a subfamily of F*. We wish to show that ﬂ T; € F*. To do this

we must show that there exists a directed subfamily £ of F such that ﬂ T; =supL.

Note that for each j € J, there exists a directed subfamily K; of .7: such that
T; = supK;. We want to consider the family £ whose members are those sets which
can be expressed as an intersection of exactly one member from each of the K;’s, that
is
L={NV;:V; eKk;}.

Jj€J

Note L is a subfamily of F because F is an intersecting family. We claim that £ is
a directed family such that () T; = sup L. From this claim we can conclude that F~
jedJ

is an intersecting family.

To see that £ is directed, let | V; and ﬂ V; be two members of L. Each family
K, is directed and so has some Jr(:l.:amber U; whlch contains both V; and V;. Then
J_QJU is an upper bound in £ for ,QJ V; and ﬂ V], showing that £ is dlrected

Now we show that (| T; = sup L.

To see that sup £ JCEJﬂ T;, it suffices to choose an arbitrary A € £ and show

that A C N 7;. There exnsts a collection {A;};es where each A; € K; such that
j€d
A= N A,. Then
ieJ

A= ﬂA,Q ﬂsuple= ﬂTj.
jed jeJ jed
To see that ﬂ T; C sup L, choose z € ﬂ T;. For each j € J, the fact that

T; =supK; tells us tha.t thereis a set B; € K; such that z € B;. Thenz € ﬂJ B; e L.
JE

Thus z € sup L.
Now we argue the remaining part of the lemma, ie we show that F* is inductive.
Let K be a directed subfamily of F*. In order to show that F* is inductive, we
show that sup K € F*. By the definition of inductive completion, we must show that
there exists a directed subfamily H of F such that sup K = sup . Here we produce
H but we must wait until we prove the first part of theorem 42 to see that H is truly
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a subfamily of F. Consider
H = {hullr.(A) : A is 2 finite subset of sup K}.

There are three things to show:
(1) supK CsupH: If z € sup K, then z € hullr.({z}) € H. Therefore z € sup H.
(2) supH C supK: If z € sup ¥, then z € hullr.(A) for some finite A C sup K.
Each element p of A is contained in some member A, € K. Because K is directed,
there exists a set B € K such that

U 4, € B.
pEA

Then we see that z € sup K because

z € hullp.(A) C hullz. (| A,) C hulls.(B) = B € K.
PEA

(3) H is directed: Suppose that hullr.(A,) and hullr.(A;) are two members of H
where A, and A; are finite subsets of supK. Then A, U A, is also a finite subset of

sup K and
hullp(Al) U hull}-- (AQ) g hu”}‘c(Al U AQ)

COROLLARY 39 Inductive completion is a closure relation. That is for any in-
tersecting family F,

1 FCF
2. IfF CG, then F* CG".
3. (Fry = F.

PROOF The first two points follow immediately from the definition of inductive
completion. Consider now the third point. In light of the first point, it suffices to
show that (F=)" C F~.

Let A € (F°)". Then A is the supremum of a directed subfamily of F*. By
lemma 38 we know that F* is an inductive family and so contains the supremum of
all of its directed subfamilies Therefore F* contains A. [

In the proof of corollary 39, we see that the fact that (F*)* = F* follows tfrom
lemma 38. But we can show that this fact is actually equivalent to the result of
lemma 38 that F* is always inductive. Suppose (F*)* = F* and let K be a directed
subfamily of 7*. Then by the definition of inductive completion, we have that we
conclude that F* is inductive because sup K € (F*)" = F~.

We now justify an earlier choice of notation. Recall that in R® we denote the
family of all Euclidean convex sets by C;, and that in Z* we denote the family of
extended diagonal boxes by Q(z")".
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PROPOSITION 40 The inductive completion of the family C,, of conver bodies is

the family of all Euclidean convez sets and the inductive completion of the family
Q(Z") is the family of extended diagonal bozes.

PROOF Let (C,)* denote the inductive completion of C, and let C; denote the
family of all Euclidean convex sets. In proposition 13 we showed that every member
of C;, is the supremum of a directed subfamily of C,,. This shows that C;; C (C.)*. The
reverse containment involves showing that supremums of directed families of convex
bodies are convex sets. (It is not necessarily true that nondirected families of convex
bodies are convex sets.) To see the reverse containment, note that by corollary 39
and the fact that C; is inductive, we have

Ca CCo = (Ca) S(C)) =C

Now let (£2(Z"))" denote the inductive completion of the family ©(Z") of diagonal
boxes and let 2(Z")* denote the family of extended diagonal boxes.

In the proof of theorem 26 we showed that any extended diagonal box can be ex-
pressed as the supremum of a directed family of diagonal boxes, ie Q(Z")* C (Q(Z"))".

On the other hand in proposition 25 we showed that {2(Z")* is inductive. Therefore

z") € U2)" = (UZY)" € (UZY))" = QZ7)"
]

We now characterize the unique smallest inductive diametral family of a general
metric space as the inductive completion of the unique smallest diametral family.

THEOREM 41 If F is an inductive intersecting family of subsets of M, then
F is diametral <= Q(M)" C F.

PROOF Let F be an inductive intersecting family of subsets of M.

If F is diametral, then by theorem 33 we know Q(M) C F. So by corollary 39 we
know that Q(M)* C F* = F.

On the other hand Q(M) C Q(M)* C F would show that F is diametral. (]

4.4 An Agreement for Polytopes

In this section we generalize some of our previous results. Recall that hulls of
finite sets are called polytopes. In theorem 42 we show that hulls with respect to
either a family F or its inductive completion F* agree on all finite sets. Furthermore,
F* is the unique inductive intersecting family that contains F for which this is true.
As a corollary we will conclude that Radon numbers are blind to inductive closure.
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THEOREM 42 Let U be a set and let F be an intersecting family of subsets of U.
Then
hullz.(T) = hullg(T) for all finite T C U.

Moreover, F* is the unique inductive intersecting family with this property, meaning
that if G is an inductive intersecting family containing F such that

hullg(T') = hullg(T) for all finite T C U,
then G = F~.

PROOF Let T be a finite subset of U. We know that hullr.(T) C hullg(T) from
(2.2). To see the reverse containment, we make a

Claim: If A is a set such that T C A € F~, then hulls(T) C A.

Note that from the claim we immediately have

hulle(TYC [\ A= hullp.(T).
TCAEF*

To establish the claim suppose that we have a set A such that T C A € F*. Then
A = supK where K is a directed subfamily of F. If we can find a set B € F such
that T C B C A, then the claim follows from

hulls(T) C hulls(B) = B C A.

For each z € T, the fact that z € A = sup K tells us that z € B, for some B; € K.
Because K is directed and T is finite, there exists a member B € K containing these
finitely many B.’s. Then B € F and T C B C supK = A. We have established the
claim and consequently the fact that hullr.(T) = hullg(T) for all finite T C U.

Now suppose that G is an inductive intersecting family containing F which satisfies
the hypotheses of the theorem. By corollary 39 we know that

FCG=>FCg =g
To show that G C F*, we apply lemma 12. Given S € G, we know that
Ks = {hullg(S;) : Sy is a finite subset of A}
is a directed subfamily of G such that S = supKs. By hypotheses
S = supKs = sup{hulls(Sy) : Sy is a finite subset of A}

shows that we can express S as the supremum of a directed subfamily of F. Therefore
S € F* and consequently G C F*. ]

We remark that the previous results have given us
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COROLLARY 43
r(U, F) = r(U, F*)

PROOF Clearly r(U,F) < r(U,F*) because ¥ C F*. Assume r = r(U,F) is
finite. Any r elements of U can be partitioned into two disjoint nonempty sets having
intersecting F-hulls. These two sets are finite and so have the same F*"-hulls by
theorem 42. Thus r(U,F*) <. (]
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Chapter 5

Spherical Convexity

5.1 Further Study

We define the diametral Carathéodory number ¢(M) of a metric space M as the
Carathéodory number of the unique minimum inductive diametral family of M, a
family whose existence is guaranteed by theorem 41. In other words, we have that
(M) = ¢(M,Q(M)*). So Carathéodory’s Theorem tells us that ¢(R*) =n + 1. And
by theorem 31 we know ¢(Z") = 2"~1.

For any metric space M we have developed the underlying theory for two asso-
ciated families of sets and for three associated types of integers. The first family
is (M) which can be regarded as an analogue of the family of Euclidean convex
bodies. The Helly number of this family is the diametral Helly number of the space.
The second family is (M)* which can be regarded as an analogue of the family of
all Euclidean convex sets. The Carathéodory number of this family is the diametral
Carathéodory number of the space. The Radon number of either family is the same
and is taken as the diametral Radon number of the space. )

So for any given metric space M we have the following problems:

L. Characterize (M), the analogue of Euclidean convex bodies.
2. Characterize (M), the analogue of Euclidean convex sets.
3. Determine the diametrai Radon, Helly, and Carathéodory numbers of M.

Having carried out this three part program for a specific metric space M, we arrive
at versions of the following classical theorems just as we did for the grid.

A Radon Theorem for M: Each set of r(M) or more elements in M can
be ezpressed as the union of two disjoint sets whose QUM )*-hulls (or equivalently
Q(M)-hulls) share a common element.

A Helly Theorem for M: Suppose K is a family of at least h(M) members
of (M) — {M} in M. If each h(M) members of K share a common element,
t' n there is an element common to all members of K.
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A Carathéodory Theorem for M: When T C M, each element of the
Q(M)*-hull of T is an element of the Q(M)*-hull of some subset of T having at
most ¢(M) elements.

In the next section, the three part program outlined above is carried out for the
Euclidean spheres. But first we give the following technical lemma which is useful for
recognizing members of Q(M).

LEMMA 44 Let T be a subset of the metric space M. Then
T € Q(M) if and only if Vz ¢ T,y such that d(y,2) > p(T U {y}).

PROOF SupposeT € (M) and z ¢ T. Because T can be written as an intersection
of maximal subsets of M, there exists some maximal set V containing T — {z}. V is
maximal and does not include z, so we conclude that there exists y € V such that

d(y,z) > u(V) 2 (T U {y}).

For the other direction suppose that the condition is satisfied for T', that is given
z ¢ T, there exists y such that d(y,2) > u(T U {y}). By the maximal property, there
is a maximal set V, containing T U {y} with diameter u(V;) = (T U {y}). Because

p(Ve U {z}) > d(y,2) > p(T U {y}) = u(V2),

we can conclude from the fact that V, is maximal that z ¢ V,.

We have shown that given arbitrary 2z ¢ T, there is a maximal set V, which
contains T but not z. Thus T can be expressed as an intersection of maximal sets,
namely

T=V.,
z2¢T

and so we conclude that T € Q(M).

5.2 The Diametral Numbers of the Sphere

In this section we consider the surface of the Euclidean n-sphere S™ as a metric
space in which distance is measured as the length of the shortest path between points
along the surface of the sphere. We will be carrying out the three point program
outlined in the last section. That is, we characterize 2(S™) and Q(S™)*, the “convex
bodies” and “convex sets” of S™ and then calculate the diametral Radon, Helly, and
Carathéodory numbers of S™.

The results of this section indicate that there is only a trivial notion of spherical
convexity which satisfies the three basic properties of Euclidean convexity with which
we have been dealing.
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We begin with a characterization of the intersecting-maximal family of S™. For
every point z of S™ there is a unique point y situated at a maximum distance away
z, the antipodal point of z. We call the pair £ and y a pair of antipodal points.

THEOREM 45 The family Q(S™) consists of S™ itself and all closed subsets of S™
which do not contain a pair of antipudal points.

PROOF By the definition of the intersecting-maximal family, we know that any
member V € (S™) is an intersection of maximal sets. Because maximal sets are
necessarily closed, we have that V is closed. Note that the only maximal set which
contains antipodal points is the set S™ itself. Thus if V € Q(S™) is a subset of S™
that contains antipodal points, then V = hullgsn)(V) = S™. So we conclude that
every member of 2(S™) must be either S™ itself or a closed subset of S™ which does
not contain antipodal points.

Let T be a closed subset of S™ whick contains no antipodal points. We claim that
p(T) is strictly less than u(S™). Let us see what follows from this claim. Choose
z ¢ T, and let y denote the antipode of z. Now u(T'U{y}) < d(y, z) = pu(S™) because
z is not a limit point of V. Therefore by applying lemma 44 we see that T € Q(M).

We now establish the claim. Suppose for contradiction that u(7T") = p(S™). Then
there exists sequences {p; }i>o and {g;}i>0 in T such that d(p;, ¢:;) > p(S™)— 5‘; Infinite
bounded subsets of the surfaces of Euclidean spheres will have limit points, so our
two sequences have limit points, say p and ¢ respectively. Because T is a closed set,
both p and ¢ are elements of T. Then given any real number § > 0, there exists M
such that

i > M = d(pi,p),d(gi,q) < 6.

Hence d(pi, qi) < d(p,q) + 26 for : > M. Therefore
1
d(p,q) 2 d(pigi) — 26 > w(S") — 5 - 26

Because 6 is arbitrary and ¢ can be chosen arbitrarily large, d(p, ¢) = ¢(S™). Therefore
p,q € T are antipodals. But this contradicts the assumption that T has no antipodal
points. Therefore u(T) < p(S™). .

With the characterization of the intersecting-maximal family of S™, which is the
spherical analogue of the Euclidean family of convex bodies, we can calculate the
Radon and Helly numbers of this family. We will see that neither of these numbers
is finite, which means that no diametral family in the sphere can have a finite Radon
or Helly number.

THEOREM 46 Neither r(S™) nor h(S™) is finite.

PROOF By the definition of 7(S™) and h(S™), we must show that neither the Radon

number nor the Helly number of the intersecting-maximal family 2(S™) is finite.
Fix a positive integer k and consider a set @ € 2(S™) consisting of k£ + 1 elements

of S™ which all lie in an open half-sphere. Every subset of @ is a closed set without
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antipodal points and consequently a member of £2(S") by theorem 45. Immediately we
see that @) does not admit a Radon Q(S5™)-partition. Therefore r(S™, Q(S™)) > k+ 1.
For each element z € @, define the set @, = Q@ — {z}. The family

f={Qz:$€Q}

is a family of £ + 1 members such that any k¥ members of F have a nonempty in-
tersection. Yet there is no element of S™ common to all members of 7. Therefore
h(S™,Q(S™)) > k.

The theorem follows from the fact that k can be arbitrarily large. .

Now we characterize the inductive closure of the intersecting-maximal family of
S™, the sphere’s analogue of convex sets. We see that the smallest family which
satisfies the basic properties of Euclidean convexity is quite large.

THEOREM 47 The family Q(S™)* consists of S™ itself together with every subset

of S™ which does not contain antipodal points.

PROOF The family Q(S™)" is the inductive completion of the intersecting-maximal
family Q(S™) and must therefore contain 5™ as a member. Let T C S™ be a proper
subset. There are two cases to consider.

Case 1: Suppose that T contains a pair of antipodal points. We further
suppose that T € Q(S™)* and argue to a contradiction. By the definition
of inductive completion, there is a directed subfamily K of (S™) such that
T =supK. Let = and y denote a pair of antipodal points in 7. Then there are
members A; and A, of K which contain z and y respectively. By directedness,
there is a member A € K containing both A; and A, and hence both of z and
y. Because K is a subfamily of 2(S"), we know from theorem 45 that A = S™.
Then

S"=ACsupKk =T

contradicts the assumption that T is a proper subset of S™. Therefore we can

conclude that T ¢ Q(S™)".

Case 2: Suppose that T contains no pair of antipodal points. By theorem 45,
any finite subset of T is a member of Q(S5™). Then the family F consisting of
all finite subsets of T is a directed subfamily of 3(S™) such that T = sup F.
We conclude from the definition of inductive completion that T € Q(S™)".

Finally we calculate the diametral Carathéodory number of S™. We discover
that as measured by Carathéodory numbers, the complexity associated with taking
“convex hulls” in S™ (for any positive integer n) is equal to the trivial complexity
associated with taking convex hulls in R!.
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THEOREM 48
o(S™) = 2

PROOF By definition, the diametral Carathéodory number of the n-sphere is equal
to the Carathéodory number of the family (S™)*. Let T C S™ and z € hullgsn)-(T).
If T € Q(S™)", then hullysn)-(T) = T and z is an element of the (S™)*-hull of the
subset {z} C T. On the other hand if T ¢ Q(S™)*, then by theorem 47 we know that

T is a proper subset of S™ which contains a pair p; and p, of antipodal points. Then
S hu”n(sn)-({pl,pg}) = S"

In either case, z is an element of the (S™)*-hull of a subset of T that has at
most two elements. Hence ¢(S™, Q2(S")) < 2. To see that ¢(S™, Q(S™)) = 2, consider
the case where T consists of only a pair ¢, and ¢; of antipodal points and where
z € S" — {q1,92}. Then z € hullgsny+(T) = S™, yet = ¢ hullyisnye({q:}) = {q:} for
i € {1,2}.

]
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