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Gauge fields, real or synthetic, are crucial for understanding and manipulation of physical systems. The
associated geometric phases can be measured, for example, from the Aharonov–Bohm interference. So far, real-
space realizations of gauge fields have been limited to Abelian (commutative) ones. Here we report an experi-
mental synthesis of non-Abelian gauge fields in real space and the observation of the non-Abelian Aharonov–
Bohm effect with classical waves and classical fluxes. Based on optical mode degeneracy, we break time-reversal
symmetry in different manners—via temporal modulation and the Faraday effect—to synthesize tunable non-
Abelian gauge fields. The Sagnac interference of two final states, obtained by reversely-ordered path integrals,
demonstrates the non-commutativity of the gauge fields. Our work introduces real-space building blocks for
non-Abelian gauge fields, relevant for classical and quantum exotic topological phenomena.

Gauge fields are the backbone of gauge theories, the earliest
example of which is classical electrodynamics. However, until
the seminal Aharonov–Bohm effect [1], the scalar and vector
potentials of electromagnetic fields have been considered as
a convenient mathematical aid, rather than objects carrying
physical consequences. It has been realized by Berry [2] that
the Aharonov–Bohm phase imprinted on electrons can be in-
terpreted as a real-space example of geometric phases [2, 3],
which in fact appear in versatile physical systems. For charge-
neutral particles, such as photons [4, 5] and cold atoms [6–
8], synthetic gauge fields can be created in real, momentum,
or synthetic (i.e. other parameters besides position or mo-
mentum) space. These synthetic gauge fields enable engin-
eered, artificial magnetic fields in systems of either broken
or invariant time-reversal symmetry; and thus play a pivotal
role in the realizations of topological phases [8–11], quantum
simulations [12, 13], and optoelectronic applications [14, 15].

Gauge fields are classified into Abelian (commutative) and
non-Abelian (non-commutative), depending on the commut-
ativity of the underlying group. Synthetic Abelian gauge
fields have been realized in various platforms including cold
atoms [16–24], photons [25–34], phonons [35–37], polari-
tons [38], and superconducting qubits [39–41]. The synthesis
of non-Abelian gauge fields is more challenging, due to the
requirements of degeneracy and non-commutative, matrix-
valued gauge potentials. So far, they have been achieved only
in the momentum and synthetic spaces. Specifically, non-
Abelian gauge fields have been realized in the momentum
space using two-dimensional spin-orbit coupling [42, 43]
in cold atoms. In the synthetic space, non-Abelian geo-
metric phases [44, 45], initially observed in nuclear mag-
netic resonances [46–49], have enabled non-Abelian geomet-
ric gates [50] and the simulation of an atomic Yang mono-
pole [51]. As yet, however, the realization of non-Abelian
gauge fields in real space remains a bottleneck; therefore, the
non-Abelian generalization of the Aharonov–Bohm effect—a
real-space phenomenon that has stimulated longstanding the-
oretical interests [6, 52–60]—remains experimentally elusive.

Here we report the observation of the non-Abelian
Aharonov–Bohm effect by synthesizing non-Abelian gauge
fields in real space. Exploiting a degeneracy in photonic
modes, we create non-Abelian gauge fields by cascading mul-
tiple non-reciprocal optical elements that break the time-
reversal symmetry (T ) in orthogonal bases of Hilbert space.
We demonstrate the genuine non-Abelian condition of our
gauge fields in a fiber-optic Sagnac interferometer. The ob-
served interference patterns show the signature features of
the non-commutativity between a pair of time-reversed, cyc-
lic evolution operators. We also demonstrate that our syn-
thetic magnetic fluxes are fully tunable, enabling controlled
transitions between the Abelian and the non-Abelian re-
gimes. Taken together, our results lay the groundwork for the
synthesis of non-Abelian gauge fields in real space, which
provides basic ingredients for studying relevant single- or
many-body topological states in photonic platforms.

Synthetic non-Abelian gauge fields demand a degeneracy
of levels, which can, for example, be achieved by utilizing
the internal degrees of freedom in quantum gases or exploit-
ing the polarization/mode degeneracy and electromagnetic du-
ality in photons. For a particle moving along a closed path
in a non-Abelian gauge field, its evolution operator reads
W ≡ P exp i

∮
A dl, where P represents path-ordered integral

and A is the matrix-valued gauge field. Its trace, W ≡ Tr W,
is gauge-invariant, and is also known as the Wilson loop [61].
For particles with N-fold degeneracies, the non-Abelian gauge
fields can take forms of U(N). Here we focus on the SU(2)
gauge fields, since our photonic system enables the definition
of a pseudospin—a two-fold degeneracy in the polarization
states. Crucially, we focus on the situations where the involved
gauge fields break T -symmetry and state transport becomes
nonreciprocal. In what follows we illustrate the consequence
of real-space guage fields on the pseudospin evolution in Hil-
bert space [i.e. the Poincaré (or Bloch) sphere].

The difference between how a state evolves in Abelian
gauge fields versus in non-Abelian gauge fields is shown in
Fig. 1. In a uniform Abelian gauge field ∝ σz, the evolution
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operator along a closed loop can be simplified as W = eiφσz ,
where σz is the z component of the Pauli matrices and φ is the
flux of the gauge field through this closed loop (Fig. 1a). Con-
sequently, the state rotates by 2φ around the z axis of the Poin-
caré sphere (Fig. 1b). If the state evolves along two consecut-
ive closed loops, the two evolution operators are commutative,
which reflects the Abelian nature of this gauge field. Similarly,
a homogeneous gauge field ∝ σy in real space (Fig. 1c) is also
Abelian, as the state always evolve around the y axis in the
Hilbert space (Fig. 1d).

In contrast, non-Abelian gauge fields require inhomogen-
eous gauge structures. Fig. 1ef illustrate such an example
where two different σz and σy gauge structures are concaten-
ated into one compound closed loop. The same initial state si
can now evolve into different final states: sθφf or sφθf (Fig. 1g),
depending on the different ordering—φ and then θ, or altern-
atively, θ and then φ—of the two gauge structures. The inter-
ference between the two final states sθφf and sφθf is known as
the non-Abelian Aharonov–Bohm effect [6, 52–60]. This ef-
fect, that we will experimentally demonstrate later, is the most
direct manifestation of non-Abelian gauge fields in real space.

In our photonic implementation, we experimentally syn-
thesize the inhomogeneous gauge potentials in a fiber-optic
system, which is conceptually illustrated in Fig. 2a. We
identify the horizontal and vertical transverse modes (denoted
by |h〉 and |v〉 respectively) in optical fibers as the pseudospin.
Crucially, we synthesize two types of gauge fields, φσz and
θσy, using two distinct methods to break T -symmetry.

To construct a gauge field of φσz, we first employ dynamic
modulations that dress |h〉 and |v〉 with nonreciprocal phase
shifts of ±φ, respectively. Specifically, four LiNbO3 phase
modulators—two (labeled 1 and 2) for |h〉 and two (labeled
3 and 4) for |v〉—are driven by arbitrary waveform generat-
ors that create phase shifts in the form of sawtooth functions
in time (Fig. 2b). Modulators 1 and 4 are positive in slope:
φ1,4 = ωt mod 2π; and modulators 2 and 3 are negative in
slope, φ2,3 = −ωt mod 2π. The delay line between modulat-
ors 1 and 2 (3 and 4) corresponds to a delay time τ. As a res-
ult, besides dynamic phases, |h〉 (|v〉) picks up an extra phase
φ = ωτ (−ωτ) in the forward (i.e. left-to-right) direction, but
an opposite phase −φ (+φ) in the backward direction. This
pair of opposite nonreciprocal phases for opposite pseudospin
components (|h〉 and |v〉) correspond to a φσz gauge field,
which is continuously tunable by varying the modulation fre-
quency ω.

A second, orthogonal type of gauge field, θσy, is created us-
ing the Faraday effect. Specifically, light is coupled out of the
fiber, sent through a Terbium Gallium Garnet crystal placed
in an external magnetic field, and then coupled back into the
fiber. Through the Faraday effect, pseudospin of light is ro-
tated in a nonreciprocal way, which corresponds to a gauge
field of θσy. This gauge field is also continuously tunable
through the external magnetic field.

We then concatenate the two non-Abelian gauge fields to
demonstrate the non-Abelian Aharonov–Bohm effect via Sag-
nac interferometry (inset of Fig. 2d). In such Sagnac con-
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Figure 1. Comparison between SU(2) Abelian and non-
Abelian gauge fields in real space and in Hilbert space. a-d.
Along a closed loop inside an Abelian gauge field A ∝ σz (a) or σy

(c), the state evolves by rotating around the z (b) or y (d) axis of the
Poincaré sphere. Within each case (a-b or c-d), the state evolu-
tion are always commutative. e-f. In non-Abelian gauge fields, the
evolution operators for different loops are no longer commutative,
which leads to different final states, sθφf and sφθf , for the same initial
state si. The non-commutativity can be tested by an Aharonov–
Bohm interference of the two final states.

figuration, the two sites A and B in Fig. 2a are combined
into the same physical location to enable well-defined non-
Abelian gauge fluxes. Evolved from the clockwise (CW) and
counter-clockwise (CCW) paths of the Sagnac loop, the two
final states are sθφf = σzeiθσy eiφσz si and sφθf = e−iφσz e−iθσyσzsi,
where the σz term maintains a consistent handedness of the
polarization for counter-propagating states. The interference
of the two final states is given by (Sec. S6)

sf = sθφf + sφθf = −σx

(
eiθ′σy eiφσz + eiφσz eiθ′σy

)
si, (1)

where θ′ = θ + π/2 and σx is a global spin flip. This interfer-
ence describes a Sagnac-type realization of the non-Abelian
Aharonov–Bohm effect [6]—the interference between two
final states, which originate from the same initial state,
but undergo reversely-ordered, inhomogeneous path integrals
(Fig. 1e-g) in the CW and CCW directions.

Fig. 2d details our experimental setup (Sec. S1). We place
a polarization synthesizer in front of the Sagnac loop, to pre-
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Figure 2. Synthesis of non-Abelian gauge fields. a. Non-
Abelian gauge fields for photons. Temporal modulation and
the Faraday effect, which break T-symmetry in two orthogonal
bases of the Hilbert space, are used to synthesize σz and
σy gauge fields, respectively. b. Pseudospin-dependent non-
reciprocal phase shifts are created through sawtooth phase mod-
ulations, which corresponds a synthetic gauge field along σz.
c. Non-reciprocal rotation of the pseudospin is achieved via
the Faraday effect in a terbium gallium garnet crystal, which
corresponds to a synthetic gauge field along σy. d. Experi-
mental setup. The interference between different final pseudospin
states—originated from reversed ordering of the gauge structures
(CW and CCW, inset)—is read out through a Sagnac interfer-
ometer, which gives rise to the non-Abelian Aharonov—Bohm
effect. PBS/C: polarization beam splitter/combiner; PM: phase
modulator; AWG: arbitrary waveform generator; COL: collimator;
TGG: Terbium Gallium Garnet; PD: photodetector.

pare any desired pseudospin state as the input in a determin-
istic manner. After exiting the Sagnac loop, the two final states
sθφf and sφθf interfere with each other. The associated inter-
ference intensity is projected onto the horizontal and vertical
bases, which are then measured separately. Within the Sag-

nac loop, a solenoid—driven by tunable pulsed currents (peak
current ≈ 2 kA, duration ≈ 10 ms)—provides a magnetic field
between 0 and ≈ 2 T (Sec. S2) for the Faraday rotator. The
solenoid also provides a temporal trigger signal for the de-
tection. For the dynamic modulation, we assign four different
modulation frequencies (i.e. slopes of the temporal sawtooth
functions) +ω1, −ω2, −ω3, and +ω4 to each of the modulat-
ors with ωi defined to be positive. We impose an additional
constraint that ω ≡ (ω1 +ω2)/2 = (ω4 +ω3)/2. This modified
arrangement from Fig. 2b maintains the same nonreciprocal
phases and thus the gauge fields φσz (Sec. S8). The advant-
age of this modification is an experimental one: it relocates
the relevant interference fringes from zero to a nonzero car-
rier frequency Ω ≡ ω1 − ω2 + ω3 − ω4, which is less sensitive
to environmental or back-scattering noises.

We next define our experimental observable and explain its
relevance to non-Abelian gauge fields. In the original U(1)
Abelian Aharonov–Bohm effect, the observable is the inter-
ference intensity as a function of the Abelian magnetic flux.
In our case, analogously, for each given set of non-Abelian
gauge fluxes (θ, φ), we measure the contrast ρ between the in-
terference intensities projected onto the horizontal and vertical
bases. Specifically, we measure ρ(θ, φ, α, β) ≡ IΩ

h /I
Ω
v , where

(α, β) are the latitude and longitude of the input pseudospin
state on the Poincaré sphere and IΩ

h(v) is the intensity of |h〉 and
|v〉 component of the output pseudospin state at the carrier fre-
quency Ω, respectively. Therefore, ρ is defined on a manifold
of S 2 × T 2, which is spanned by the Hilbert space of the input
pseudospin S 2 and the synthetic space of the gauge fluxes (θ,
φ) that is T 2.

For a fixed set of magnetic fluxes (θ, φ), the contrast func-
tion ρ(α, β) always exhibits two pairs of first-order zeros and
poles on the Poincaré sphere (Fig. 3a; also see Sec. S9).
Within each pair, the zero and the pole are always antipodal
and thus represent orthogonal pseudospins. One pair, being
linear polarizations (1, 0) (zero) and (0, 1) (pole), is fixed
on the two ends of the equator, regardless of the choice of
(θ, φ). The other orthogonal pesudospin pair, however, is tun-
able on the entire sphere via the synthetic gauge fluxes (θ, φ).
These zeros and poles are conserved quantities on the Poin-
caré sphere and dictate the behavior of the contrast ρ function.
Their generation, evolution, and annihilation are directly re-
lated to the transitions between the Abelian and non-Abelian
regimes. Fig. 3bc show the latitude α and longitude β of the
tunable pole on the Poincaré sphere, as a function of mag-
netic fluxes (θ, φ). When θ = mπ/2 or φ = nπ/2 (m and n are
integers), the tunable zero-pole pair appears on the equator
(red dashed lines in Fig. 3b). This key feature—an on/off-
equator zero/pole—can be used to straightforwardly differen-
tiate between Abelian and non-Abelian gauge fields synthes-
ized in our experiment (see Fig. 3ef).

The necessary and sufficient condition for gauge fields to
be non-Abelian is as follows. There exists two loop operators,
W1 and W2, both starting and ending at the same site in space,
such that they are non-commutative, i.e. W1W2 , W2W1 [8].
In an Aharonov–Bohm interference, whether Abelian or non-
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Figure 3. Non-Abelian Aharonov–Bohm interference. a. Contrast function ρ on the Poincaré sphere, featured by a fixed zero/pole pair
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Abelian, W1 and W2 can be identified as a pair of time-reversal
partners that share the same physical path. We first examine
W1 = l−1

b · lt and W2 = l−1
t · lb in the Abelian Aharonov–Bohm

experiment, whose two distinct top and bottom paths are de-
noted by lt and lb, respectively. Under time-reversal, both mo-
mentum and vector potential flip sign, rendering W1 = W2 =

eiγ that are clearly commutative and exhibit identical, scalar
Berry phases γ (Sec. S7.A). In our non-Abelian Aharonov–
Bohm experiment, the time-reversal pair W1 and W2 can be
analogously defined by replacing lt and lb with CW and CCW
paths (Fig. 2d inset), which yields (Sec. S7.A)

W1 = P exp i
∮

CCW−1·CW
A dl = σzeiθσy eiφσzσzeiθσy eiφσz , (2)

W2 = P exp i
∮

CW−1·CCW
−A dl = eiφσz eiθσyσzeiφσz eiθσyσz. (3)

The condition for W1 and W2 to be non-commutative is sat-
isfied when θ , mπ/2 and φ , nπ/2 (Sec. S7.A)—the same
condition also guarantees the existence of a zero and a pole
of the contrast function away from the equator (Fig. 3b). W1
and W2 are also connected via a unitary gauge transforma-
tion (Sec. S7.A); therefore they always share the same Wilson
loop (Sec. S7.C) W = Tr W1 = Tr W2 = 2 − 4 cos2 θ sin2 φ.
Fig. 3d shows this Wilison loop on the T 2 space of gauge
fluxes. Generally speaking, in an N-fold degenerate system,
|W | = N means the state evolution can be trivially understood
by decoupling the system into the product of N Abelian sub-
systems [8]. In our case, such trivial configurations are shown
with red dashed lines [θ = (m + 1/2)π, φ = nπ, or θ = mπ
and φ = (n + 1/2)π] in Fig. 3d. Nevertheless, |W | , N is
only a necessary but insufficient condition for gauge fields to
be non-Abelian [8], as evident from the comparison between
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Fig. 3b and Fig. 3d: some configurations with |W | , N are still
Abelian.

In Fig. 3ef, we characterize our synthetic gauge fields by
measuring the contrast function ρ. We present the compar-
ison between theoretical predictions (top row) and experi-
mental measurements (bottom row) for five sampling points
on the synthetic space T 2: Q, U, V are Abelian; and X,
Y are non-Abelian. In the Abelian case Q [(θ, φ) ≈ (0, 0)],
the tunable pole and the fixed zero annihilate each other at
(α, β) = (0°, 0°); so do the tunable zero and the fixed pole at
(α, β) = (0°, 180°). As a result, the contrast remains a con-
stant ρ = 1 regardless of the input pseudospin state. This is
a direct consequence of the preserved T -symmetry in the ab-
sence of gauge fluxes. In case U [(θ, φ) ≈ (−0.21π, 0)], the
annihilation of poles with zeros are lifted; nevertheless, both
poles and zeros appear on the equator, and the gauge structure
remains Abelian, since we only break T -symmetry once. In
case V [(θ, φ) ≈ (−0.21π, 0.50π)], which is still Abelian, the
two poles (zeros) coalesce and produce a second-order pole
(zero) on the equator. In cases X [(θ, φ) ≈ (−0.21π,−0.30π)]
and Y [(θ, φ) ≈ (0.24π,−0.30π)], our synthesized gauge fields
become non-Abelian, as indicated by the observed off-equator
zeros and poles. For all the cases, our observations show
agreement with the associated predictions. In our interfero-
meter, the two spin basis |h〉 and |v〉, are not perfectly degen-
erate due to the difference in their refractive indices (∼ 10−4).
This difference leads to a reciprocal, linear birefringent phase
(i.e. a dynamic phase contribution), which is calibrated and
consistently applied to all measurements (Sec. S4).

Up to this point, we have measured the contrast ρ for fixed
gauge fluxes, while changing the input states. In a comple-
mentary manner, we can now fix the input state (α, β) and
demonstrate the tunability of the synthesized non-Abelian
gauge fields by measuring the contrast ρ for different syn-
thetic gauge fluxes (θ, φ). As shown in Fig. 4, we reach similar
agreeement between the theoretical prediction and the meas-
urement.

In summary, we demonstrate an experimental synthesis of
non-Abelian gauge fields in the real space, which is confirmed

by our observation of the non-Abelian Aharonov—Bohm ef-
fect using classical particles and classical fluxes. The realized
gauge fields demonstrate a viable way to engineer the Peierls
phase in the simulation of topological systems, such as the
non-Abelian Hofstadter models [56, 62] (also see Sec. S10).
Our experiment also introduces non-Abelian ingredients for
realizing high-order topological phases [63–65] and topolo-
gical pumps [66, 67]. Besides, recent advances in on-chip
modulation [68] and magneto-optical materials [69] could en-
able future observations of non-Abelian topology in integ-
rated photonic platforms. Towards the quantum regime, non-
Abelian gauge fields may be utilized to help generate non-
Abelian anyonic excitation [70–72] to offer an alternative,
synthetic approach for topological quantum computation. Fi-
nally, the synergy of non-Abelian gauge fields with engin-
eered interactions (e.g. bosonic blockade and superconducting
qubits) may enable the realization of many-body physics such
as the non-Abelian fractional quantum hall effect.
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