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Abstract

Simplicial posets, posets with a 0 element and whose every interval is a Boolean algebra,
are a generalization of simplicial complexes, so many results about simplicial complexes
can be generalized to simplicial posets.

The f-vector of a simplicial complex is widely-studied, and, in particular, the f-vector
has been characterized for many classes of simplicial complexes and polytopes. The
outstanding problem in the equivalent program for simplicial posets is to characterize
the f-vector (equivalently, the h-vector) of Gorenstein* simplicial posets. Stanley has
almost characterized these h-vectors, but a small infinite segment of potential h-vectors
remain in doubt. We show that some of these are not h-vectors of Gorenstein* simplicial
posets, primarily by using that the link of a Gorenstein* simplicial poset is again a
Gorenstein* simplicial poset.

Bjorner and Kalai completely characterized, for a large class of CW-complexes, in-
cluding simplicial complexes, which pairs of f-vectors and Betti sequences are compatible.
We solve the equivalent problem for simplicial posets, showing that some minimal neces-
sary conditions on the f-vectors and Betti sequences are actually sufficient for the pair
of sequences to be compatible.

Stanley also defined a ring Ap associated with a simplicial poset P that generalizes the
face-ring, k[A] of a simplicial complex A. We prove a conjecture of Reiner characterizing
when Ap is a complete intersection ring. In this case, some minimal sufficient conditions
on the poset turn out to be necessary as well.

Hochster, treating k[A] as a k[V]-module (for V the vertices of A) used free resolutions
of k[A] to find the Betti polynomial of k[A)] and the Hilbert series of the local cohomology
module of k[A], by splitting the free resolution into subcomplexes. Treating Ap as a
k[V]-module, we derive the equivalent results for simplicial posets. The proof is similar,
but the resulting complex must be split even more finely.

Thesis Supervisor: Richard Stanley
Title: Professor of Applied Mathematics
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List of Notation

N,Z,Q,C natural numbers, integers rationals, complex numbers
[A] realization of a simplicial complex A
M(V), M(k[V]) set of moroomials in indeterminates from V
S\T set difference
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1 maximal element of a poset

P P\{0}

P PuUi

dy boundary of a face y
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and z is the only atom such that z < zand z £ y

AUB disjoint union

2V set of all subsetss of V

(‘:) set of all i-subsets of V

mub(z,y) set of minimal upper bounds of z and y in a poset
0] the empty set



Chapter 1

Introduction

This thesis is concerned with simplicial posets, first studied extensively in their own
right in [St7], although [Bjl, GS] mention them first. A poset (partially ordered set) is
simplicial if it has a 0 element (i.e., 0 < y for all y € P) and (equivalently):

(i) for every y € P, the interval [0,y] is a Boolean algebra; or
(i) every interval [z,y] is a Boolean algebra.

All posets will be assumed to be finite. Simplicial posets are a generalization of simplicial
compiexes (A C 2V is a simplicial complex on the set of vertices V if: V' C £: and
F CGe A= F € A)since the face-poset (i.e., poset of elements of A, called faces,
ordered by inclusion) of a simplicial complex is a simplicial poset. In fact, any simplicial
poset that is also a meet-semilattice is the face-poset of a simplicial complex. Simplicial
complexes have been studied extensively (references are too numerous to mention; specific
references to specific problems will be given below), and most of the motivation for
studying simplicial posets comes from generalizing existing results (or questions!) about
simplicial complexes. Virtually any statement about simplicial complexes can be phrased
for simplicial posets, too; sometimes (see Chapters 2 and 3), it becomes easier to prove,
and other times (see Chapters 4 and 5), much more care must be given to extend the
simplicial complex proof to simplicial posets. Many times, too, a proof about simplicial

complexes carries right over to simplicial posets; but we will not explore such proofs here.
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P fac::p_ooet r
Al l= barycentric subdivision
A®) Lo ja@)

Figure 1-1: a commutative diagram

Topological realizations

As with simplicial complexes, we will often think of simplicial posets topologically, rather
than as posets. See [Bjl] for an introduction to interpreting certain posets, including
simplicial posets, as the face-posets of certain regular CW-complexes. In particular, for
any simplicial poset P, there is a well-defined regular CW-complex I' such that P is the
face-poset of I'. This is a generalization of the realization |A| of a simplicial complex A.

Alternatively, the order complex A(P) of P := P\{0}, defined to be the simp]iéial
complex consisting of chains of P, ordered by inclusion, has a realization |A(P)| that is
homeomorphic to I'. In fact, A(P) is the face-poset of the barycentric subdivision of T'.
Note, in particular, that the face-poset of |A(P)| is not P again. In short, the diagram
in Figure 1-1 commutes. For example, see P, I', A(P), and |A(P)| in Figure 1-2.

We often abuse notation by writing |P| for I', and refer to |P| and P almost in-
terchangeably. In particular, atoms of P (i.e. elements that cover 0) are vertices (of
|P|), elements of P are faces (of |P|), and facets of P are the maximal elements of P,

corresponding to the maximal faces of |P|. If y is a face of P, then
Oy:={z€P:z<y}

is the boundary of y, corresponding to the boundary of a face of a simplicial complex.

We also define a topological property to be one that only depends on (the home-
omorphism class of) | P| (equivalently, |A(P)|). Similarly, it is possible, as in [BGS, §3]
(among others) to define homology groups (and hence cohomology. too) on a poset P in

a natural way so that H;(P;k) = H;(|A(P)|). Being topological makes a property more

8
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A(P)

Figure 1-2: an example



interesting; we will deal with several.

f-vectors

Cne feature of simplicial complexes that has been studied a great deal is the f-vector. In
particular, for many classes of simplicial complexes and convex polytopes, the f-vector
has been completely characterized (see [Bj2] for an overview and exhaustive bibliogra-
phy). It is natural then to extend this definition to simplicial posets, and continue this

characterization program.

Definitions: Let P be a simplicial poset. It is necessarily graded, that is, for any y € P,
every saturated chain from 0 to y contains the same number of elements. Call this number
7/, and define the rank of y to be r(y) := ' — 1. (In particular, r(0) = 0, and the rank

of an atom is 1.) Then let
f(P):=|{y € P:r(y) =i +1}].

(In particular, f_;(P) = 1 for the 0 element and f;(P) counts the number of 7-dimensional

faces of | P|. The number of vertices of P, fo(P), will usually just be denoted by n.) Define
d:=1+ max{i: fi(P) # 0}.

We then say that P has rank d and dimension d — 1 (corresponding to the dimension

of |P|). The vector f(P) = (fo, f1,---, fa-1) is the f-vector of P.

The characterization of f-vectors of simplicial posets was begun by Stanley in [St7].
The f-vectors of all simplicial posets and of Cohen-Macaulay simplicial posets were com-
pletely classified. The f-vectors of Gorenstein* simplicial posets were almost completely
classified, leaving a small segment of f-vectors that might or might not be the f-vector

of some Gorenstein* simplicial poset. In Chapter 2, we show that some of these vectors
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cannot be the f-vector of a Gorenstein* simplicial poset, giving more plausibility to the
thought that none of the remaining f-vectors show up in Gorenstein* simplicial posets.
In general, results about the f-vector of a simplicial poset are easier to state and prove
than the corresponding results about the f-vector of a simplicial complex.

Another question about f-vectors of simplicial complexes that has been answered
concerns the Bett: sequence, a sequence of non-negative integers characterizing the ho-
mology (over Q) of a simplicial complex. In [BK1], Bjérner and Kalai characterized pairs
of sequences that can be the f-vector and Betti sequence, respectively, of a simplicial
complex; such pairs are called compatible. The proof relied upon algebraic shifting of a
ring defined by the simplicial complex. The result was extended to regular CW-complexes
that have a certain intersection property in [BK2]. This second proof used completely
different techniques, but relied upon an involved induction.

In Chapter 3, we answer the corresponding question for simplicial posets, namely
characterizing compatible f-vectors and Betti sequences of simplicial posets. In this
case, the characterization is simpler, and nothing more than the Meyer-Vietoris sequence
is needed for the proof. In Section 3.2, we explore which Betti sequences are compatible

with which f’s, and vice versa. This is comparable to similar work in [BK1].

The ring Ap

In Chapters 4 and 5 we turn our attention to the ring Ap of a simplicial poset, defined
in [St7], which generalizes the face-ring of a simplicial complex (defined to be k[A] :=
klzy,...,za)/({=i) -+ Tinn : {Ziyy- -1 Tim} € A})). Fix a field k. (As with most of these
matters, cnce the ring k is chosen, it is all but ignored, even though it is technically part
of the definition. The idea is that before applying any of these results, one picks the field
to be used, often Q or C, and then simply does not change it again. Often, the resulting
combinatorics is independent of the ring chosen.) Let P be a simplicial poset, and let
k[P] denote the polynomial ring whose indeterminates are all the elements of P. Then

Ap := k[P]/I, where I is the ideal of k[P] generated by elements of the following form:
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e zy, for any z, y that have no common upper bound in P;

. Ty — (= A Y) Zzemub(zy) %> fOT any z, y incomparable in P, where mub(z,y) is the
(non-empty) set of minimal upper bounds of z and y (if z and y have any upper

bound z, then = A y is well-defined, since z,y € [0, z], a Boolean algebra); and
o 0—1.

If P is the face-poset of a simplicial complex A, then Ap = k[A], the face-ring of A, first
defined, independently, in [Re] and [St1, St2].

One of the most essential features of Ap is that it is a graded algebra.

Definitions: (See [St4, §1.2]). Let k£ be a field and R be a k-algebra. Then R is a

graded k-algebra if R has the following decomposition as a vector-space direct sum:

R= P R.,
a€A
where A is an additive semigroup, and R,Rs C Ra4p (and Ry = k). We will only be
concerned with two types of grading: A = Z (or N) and A = Z" (or N") (rough and fine

grading, respectively). The homogeneous elements of R are
H(R) = UaEARa-

We say that r € R, is homogeneous of degree o (deg(r) = a). An ideal I is homogeneous
if it can be generated by homogeneous elements, ~nd if I is homogeneous, then R/I is

still graded. One such ideal, in N- and N™-grading, is

x€A
a#0

12



Similarly, a module M is A-graded if it can be written as the vector space direct sum

M= M,
a€A
where RyMp C Myyp. f A =Z" (or N*), the Hilbert series of M in indeterminates
Aly..., Ay is defined as:

F(M,)) == 3 A*dim, M,,
a€Zn

where, for a = (ay,...,a,), A% := A* ... A", It is the obvious generating function for
a finely graded module.

When A = Z", we make the following definitions on A: If « = (e,.,.,ay), then
ay = (d'y,...,0 ) where
aﬁ:{ a; ifa; >0 ’

0 fe; <0

and a_ is defined similarly. We also use the following partial order on Z™: If a =
(a1,...,0a5) and B = (B,...,0n), then a < B iff a; < B; for all 2.

There is an obvious fine grading for Ap which we use. Arbitrarily labéi the vertices
of P by z;,...,z,. Let ¢, =(0,...,0,1,0,...,0) € Z" be the ¢th unit vector. T.hen, far

any y € P, let
deg(y) := Y e

t:r; <y
It is easy to see that each generator of I is homogeneous under this grading, so Ap is a

graded algebra. We often abuse notation and write

deg(T):= Y &
.2, €T

for T a subset of vertices of P. Similarly, define the type of y € P as

type(y) := {zi: z: < y}.

13



More generally, define the support of a monomial in Ap as follows: If m = [],epy®,

then let

supp(m) :: Uy:ag>0{mi H N S y}

Notice that for y € P, supp(y) = type(y). We again sometimes abuse notation and write

supp(e) := {7 : & # 0}

for e € Z™.

Ap is an algebra with straightening laws (see [St7, §3]), the main consequence of which
is, for us, that the monomials corresponding to multichains (i.e., m = l'[f:=1 ys € Ap, for
y1 < ... < y;) form a k-vector space basis of Ap. It is a corollary (Theorem 5.2.1) to this
that the set Bo(P) := {yp : y € P, supp(p) = supp(y)} is also a k-vector space basis of
Ap. We will use both bases.

In Chapter 4, we prove a conjecture of V. Reiner describing for which posets P the
ring Ap is a complete intersection ring. It is comparable to the simplicial complex version
(which it generalizes), but the proof is much more involved.

In Chapter 5, we solve two problems involving minimal free resolutions (MFR’s) of Ap
over the subring k[V] (so Ap is treated as a k[V]-module), for P a simplicial poset with
vertices V. First we generalize a result of Hochster [Ho| describing the Betti polynomial,
an invariant of any free resolution, of the minimal free resolution of k[A] over k[V], for a
simplicial complex with vertices V. Then we generalize another result of Hochster (see
[St4, §I1.4]) calculating the Hilbert series of the local cohomology modules of k[A] as a
k[V]-module for A a simplicial complex with vertices V.

In both results from Chapter 5, the outline of the proof follows Hochster’s original
proofs (which were, in turn, “obtained by a routine elaboration of Reisner’s [Re; meth-
ods”), but there is an added wrinkle in going from the simplicial complex case to the
simplicial poset case. In each case, both problems involve splitting a certain chain com-

plez (i.e., writing it as a direct sum of subcomplexes that the boundary operator acts

14



upon) as finely as possible; in the simplicial complex case, this means splitting by the
usual fine grading of k[A], but in the simplicial poset case, an even finer grading is called
for. In this case, it is not enough just to know the fine degree of a basis element yu € B,
but also which element of a certain degree lies under y. For simplicial complexes, this
always reduces to the normal fine grading.

A final warning about necessary background: This thesis assumes on the part of
the reader a certain amount of basic knowledge of combinatorics, commutative algebra,
and algebraic topology. Definitions of some basic concepts are included, but usually not
explained in depth. Any term that is not defined or explained can probably be found in
[St6], [AM], or [Mul].

15



Chapter 2

f-vectors and h-vectors of Gorenstein* simplicial

posets

The characterization of the f-vector (equivalently, h-vector) of various classes of sim-
plicial complexes has been the subject of a great deal of research. It is natural, then,
to extend this endeavor to simplicial poset:, a program begun by Stanley in [St7]. We
start by outlining and summarizing the results from [St7], which completely characterizes
f-vectors of all simplicial posets, then .of Cohen-Macaulay simplicial posets, and finally
gives an incomplete characterization of h-vectors of Gorenstein* simplicial posets (we
eventually define all these terms).

The rest of this chapter continues the program of characterization of h-vectors of
Gorenstein* simplicial posets, by demonstrating that certain vectors cannot be the h-

vectors of a Gorenstein* simplicial poset.

2.1 Background

The background material in this section primarily summarizes [St7], and, unless otherwise
stated, all results and definitions are from there. We also introduce the definitions and
well-known results that we will need later on.

For completeness, we start with the complete characterization of f-vectors of all

16




simplicial posets.

Theorem 2.1.1 ([St7, Theorem 2.1]) Let f = (fo, ..., fa—1) € Z%. The following are

equivalent:
o There erists a simplicial poset P of dimension d — 1 with f-vector f(P) = f.

o fi2(l) foro<i<d-1.

Cohen-Macaulay Simplicial Posets

The other class of simplicial posets whose f-vectors have been completely characterized
are Cohen-Macaulay simplicial posets. Cohen-Macaulay posets were first studied in [Ba]
and [Si3], independently, and have been examined extensively since; see [BGS] for an
overview and {Ga)] for combinatorial interpretations of the Cohen-Macaulayness of k[A].
The following definitions are from [BGS]; the equivalence of definitions (i) and (ii) is the
celebrated theorem of Reisner [Re], and (ii) <> (iii) is from [Mu2]. The equivalence of
the two definitions of a Cohen-Macaulay simplicial poset is just a result of the definition

of order complex.

Definitions: Fix a ring k. A simplicial complex A is Cohen-Macaulay (over k) if

(equivalently):

(i) (algebra) The face ring k[A] is a Cohen-Macaulay ring (see [Ga, St4] for more
details).

(ii) (simplicial topology) For all F € A (including F = @), H;(lkF;k) = 0 if i #
dim(lk F).

(iii) (topology) If X = |A|, then H;(X;k) = Hi(X,X — p;k) = 0 for all p € X and
i #dim X.

A finite poset P is Cohen-Macaulay (over k) if (equivalently):

17




(i) Its order complex A(P) (equivalently, if P has a 0, the order complex A(P) of P)

is.
(ii) For every z < y in P, the order complex A(z,y) of the open interval (z,y) satisfies
Hi(A(z,y);k) =0 (2.1)

if 2 < dim(z, y).

Remark: Definition (i) of Cohen-Macaulay posets and definition (iii) of Cohen-Macaulay
simplicial complexes show that a simplicial poset being Cohen-Macaulay is a topological
property. Also, a Cohen-Macaulay poset is pure (see [BGS, remark following Theorem

3.3]), i.e., every facet contains the same number of vertices.

h-vectors

Before we can give the characterization of f-vectors of Cohen-Macaulay simplicial posets,

we need to introduce the following definition (see [St5] or [St7] for more details):

Definition: Given f = (fo,..., fi-1) (and f-; = 1), define the h-vector h = (hy, ..., hq)
by (equivalently):
(i)
d . d .
Y fi(e = 1) =3 b (2.2)

1=0 1=1

or

(i)

hi = E(f’, j)(—l)*-ff,--l, (2.3)

jmo\d—1
which can be inverted to give

18




fi = i(di:i l)hj; (2.4)

j=0
or
(iii) the following “difference-table,” which is computationally the easiest way to com-

pute the h-vector for a particular example. We illustrate how it works with the

following example from [St5):

If P is (the face poset of) the four-dimensional cross-polytope, then f(P) =
(8,24,32,16). Write this f-vector along a diagonal, with a 1 to the left of fo:

24
32
16

Then, finish the table by recursively placing the difference of adjacent entries un-

derneath those entries (and placing 1’s on the left diagonal):

The final row (below fy_,) is A. In this case, h(P) = (1.4,6,4,1).

Remark: Using any of the definitions of &, (fo,. .., f;) determines (hq, ..., his+1) and vice
versa, for all <. In particular, f is recoverable from h. There are also the following simple

numerical observations about the h-vector of 1 (d — 1)-dimensional simplicial poset P:

)

19



ho = 1; hy = n — d (where n = fo(P), the number of vertices of P); and

d
z hi = fa1, (2.5)

1=0
which is just the number of facets of the poset.

As with the characterization of f-vectors of Cohen-Macaulay simplicial complexes, it
is easier not to characterize the f-vectors of Cohen-Macaulay simplicial posets directly,

but rather to characterize their h-vectors:

Theorem 2.1.2 ([St7, Theorem 3.10]) Let h = (ho,...,hs) € Z¢'. The following

are equivalent:
o There erists a Cohen-Macaulay simplicial poset P of rank d with h-vector h(P) = h.

e hog =1, and h; > 0 for all 1.

Gorenstein* simplicial posets

The next step in the f-vector characterization program of [St7] is the class of Gorenstein*

simplicial posets. But first we give the definition of a strictly weaker condition.

Definitions: (see [St6, §3.14]) Let x denote the Mébius function (see [St6, §3.7], for

instance) of a poset. A finite graded poset with 1 and 0 is Eulerian if
pz,y) = (-1~ (2.6)

for any z <p y. If P is simplicial, we will say that P is Eulerian* if P is pure and

P := Pu{i} is Eulerian.
Remark: A Boolean algebra is Eulerian, so if P is simplicial, then most instances of

20




equation (2.6) are already true, and to check if P is Eulerian*, we need only check that
equation (2.6) holds for y = 1.

Definitions: A graded algebra is said to be Gorenstein if its free resolution satisfies a
certain duality condition, which we do not actually use here; see [St4, §1.12] for details.
We then define a simplicial complex to be Gorenstein if k[A] is a Gorenstein ring (see
[St4, §I1.5]), and a poset P to be Gorenstein if its order complex A(P) is Gorenstein
(equivalently, if A(P) is Gorenstein). Following [St7, §4], a poset P is Gorenstein if and
only if the subposet Q := P\{y € P : y is related to all other elements of P} is non-
acyclic Gorenstein (i.e., Gorenstein, and not all reduced homology groups H;(A(Q); k)
vanish). We call non-acyclic Gorenstein posets Gorenstein*. See [St3, §8], [BGS, §6¢],
(St4, §IL.5], and [Ho, §5,6] for more details. Thus, a simplicial poset may be defined to

be Gorenstein* if P = P\{0} is non-acyclic Gorenstein.

We record the following observations about Gorenstein* simplicial posets:

e Boolean algebras are the only Gorenstein simplicial posets which are not Goren-
stein*.

o Being Gorenstein* is a topological property.

o Spheres are Gorenstein*.

o A simplicial poset P is Gorenstein* if and only if P is Cohen-Macaulay and Eule-
rian*.

We can take this last condition as a definition of Gorenstein* simplicial posets. Fur-

ther, it is almost enough to characterize h-vectors (and hence f-vectors) of Gorenstein*

simplicial posets. Eulerian simplicial posets satisfy the Dehn-Sommerville equations

(see [StS, §3.14]),
h; = hd._.' (2.7)

for all i. Combining the Dehn-Sommerville equations with Theorem 2.1.2, we get

21



Proposition 2.1.3 ([St7, §4]) If P is a Gorenstein* simplicial poset of rank d and
h = h(P), then |

o hy=1;

o h; >0, for all i; and

o h; =hy_;.

Further, by construction, we have the following sufficient conditions:

Theorem 2.1.4 ([St7, §4.3]) Let h = (ho,...,khs) € N1, with h; = ha_; and hy = 1.
Any of the following (mutually exclusive) conditions are sufficient for the existence of a

Gorenstein* simplicial poset P of rank d and h-vector h(P) = h:
e d is odd;
o d is even and hy; is even; or
o d is even, hqs is odd, and h; > 0 for 0 <i < d.

Since ) h; counts facets and h is symmetric, these sufficient conditions may be re-

stated as
P has an even number of facets or h; > 0 for 0 <: < d.

Completing the characterization of h-vectors of Gorenstein* simplicial posets thus
consists of closing the gap between Proposition 2.1.3 and Theorem 2.1.4, i.e., finding
which h-vectors (if any) that contain 0’s can occur as h(P) for P Gorenstein* simplicial
with an odd number of facets. Stanley [St7, §4.5] has already shown that if P is an
Eulerian* simplicial poset such that h;{P) = 0, then P cannot have an odd number of
facets (since being Gorenstein* implies being Eulerian*, the result may be specialized to
Gorenstein* simplicial posets).

In this chapter, we eliminate more such h-vectors. Although not all h-vectors contain-

ing 0’s are eliminated, none have been found (i.e., no Gorenstein* simplicial poset P with
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an odd number of facets and h;(P) = 0 has been found yet), lending some credibility to
the thought that the conditions of Theorem 2.1.4 are necessary as well as sufficient. This
is especially true given that actually very little of the properties of a Gorenstein* simpli-
cial poset are used to eliminate these h-vectors: we use Cchen-Macaulayness only for the
0th homology of certain links, and we use Eulerianness only for the Dehn-Sommerville
equations. Perhaps similar techniques using more power will finish the characterization.

The methods used to eliminate these h-vectors, however, are ad hoc, and are only
effective, so far, on small examples, so there is no particular reason to believe that a
counterexample does not exist just past the bounds of the h-vectors that have been
eliminated. In particular, if there are unexpected counterexamples, possibly some of the

techniques here can be used to pick them out from among the set of all vectors.

2.2 Links of simplicial posets

The link of a face in a simplicial complex is a well-known and useful concept. The

definition is usually given as:

Definition: Let A be a simplicial complex, and let F' € A be a face. Then

kaF:={GeA:FUGeA, FNG =0}

In this way, lka F is just a subcomplex of faces in A.

What is the “correct” generalization of link to simplicial posets? One possibility is,
thinking of our poset P topologically, to define lkpy (for y € P) to be the set of all z
that have a join with y in P, and whose meet with y is 0 (see Figure 2-1). This has
the advantage of being easily expressed and visualized topologically, as well as having
a precise non-topological poset definition. This may, in fact, be the definition to use in
many applications, but we do not use it at all here.

Instead, we use a definition that, despite appearing to ignore topology, just takes a
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IPI (two 2-simplices glued at their boundary)

Figure 2-1: what the link is, and what it is not
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different approach to the topological interpretation of the link.
Definition: Let P be a simplicial poset, and let y € P. Then

lkpy:={z € P:z 2>y}

(see Figure 2-1).

It is easy to verify that lkpy is simplicial, with its 0 element being y. This is a
generalization of the simplicial complex link because the face-poset of lka F' is isomorphic
to {H € A: F C H} (the isomorphism is given by ¢ : G — F UG, for any G € lka F).

But this is also a generalization topologically if we look more closely at F', and less
at all of A. The link of F, via our isomorphism ¢, corresponds to all the faces of A that
contain F. If we look at the subcomplex of just these faces, then we get some idea of
what A looks like “near” F; it is homeomorphic to F' *lka F' (the join of F' and lka F'), so
lka F' carries all the information of this subcomplex. Similarly, looking at the realization
of P, if we look at just the faces containing y, ignoring identification of subfaces not
containing y (which are, after all, not as “near” to y), we get y * lkpy, so lkpy carries all
the information of what P looks like “near” y (see Figure 2-2).

As a final argument for this definition of link, consider the case when y is a vertex.

In that case, we can say, using this definition,
A(lkpy) = lkypyy

(since both sides are the complex of chains of P whose minimal element is y, ordered
by inclusion). In other words, the link is topologically unchanged by taking barycentric
subdivision (see Figure 2-3). Barycentric subdivision effectively “localizes” P, so this
reinforces our idea of the link of a face showing what P looks like near that face.

Of course, the reason for using this definition, ultimately, is simply that it works
in each of the applications that calls for it (especially in Chapter 5). However, this

explanation will perhaps serve to show the reader that this is not purely a poset-oriented
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IlkuI in bold

(two 3-simplices glued along two of the
2-dimensional faces on their boundary,
abd and bcd)

Y,

ignore identification of subfaces not containing y

(The two copies of abd are still identified since
abd is a face of y. But bcd is no longer identified.)

Figure 2-2: some links near y
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definition, but a topological one as well, that is merely stated most conveniently in terms
of the poset.

The first clue that this is a good generalization comes from the following

Proposition 2.2.1 A simplicial poset P is Cohen-Macaulay if and only if
H,(lkz) =0 (2.8)

for every z € P and 1 < dim(lkz).

Proof: A Boolean algebra has only top-dimensional homology (|(z,y)| is an (n — 1)-
sphere if [z,y] = B,), so, using definition (ii) to test P for Cohen-Macaulayness, we
only have to check equation (2.1) for intervals (z,1). But (z,1) is just (lkpz)\{z}, so
Hy(A(z,1);k) = Hi(kpz; k). =

A simple but useful observation about the link in a simplicial poset is that many
properties are hereditary.

Definition: A property @ of posets is hereditary if

P satisfying Q = lkpy satisfies @ (for all y € P).

This concept was mentioned, if not formally defined, in [Ho], following [Re].

Proposition 2.2.2 Being simplicial is a hereditary property, i.e., if P is simplicial, and

y € P, then lkpy is also simplicial.

Proof: Immediate from definition (ii) of simplicial puset, since every closed interval of

lkpy is also a closed interval of P. ®

Proposition 2.2.3 The following properties are hereditary on simplicial posets, i.e., if
P is simplicial and has the given property, and y € P, then lkpy also has the given

property (and, of course, is also simplicial):
(i) Eulerian*
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(i) Cohen-Macaulay
(tii) Gorenstein®

Proof: (i) follows from equation (2.6) since the definition is entirely in terms of intervals;

(ii) is immediate from equation (2.8), and (iii) then follows from (i) and (ii). =

2.3 Eulerian* simplicial posets

In some cases, we need only assume P is Eulerian* simplicial to show that h(P) # h for
a given h. We first state a number of facts about Eulerian* simplicial posets, leading up
to eliminating certain h-vectors as the h-vector of an Eulerian* (and hence Gorenstein*)

simplicial poset.

Remark: Eulerian*ness, Cohen-Macaulayness, and Gorenstein*ness all imply purity, so
we do not need to explicitly mention purity in most of our assumptions, even though we
use purity in the following way: If P is pure of rank d, then every facet has d vertices,

and, more importantly (to us), every facet excludes k) = n — d vertices.

Lemma 2.3.1 If P is an Eulerian* simplicial poset of odd dimension d, then P has an

even number of facets.

Proof: By the Dehn-Sommerville equations, h(P) is symmetric, with an even number
(d + 1) of components, so the sum of its components is even. But this sum is just the

number of facets of P. @&

Lemma 2.3.2 Let P be an Eulerian* simpliciel poset with an odd number of facets.
Then every vertez lies in an even number of facets, and, in particular, no vertez lies in

every facet.
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Proof: By Lemma 2.3.1, P has even dimension. Now let z be a vertex of P; by
Lemma 2.2.3, lkz is also Eulerian* simplicial, of odd dimension. Lemma 2.3.1 now
gives us that lkz has an even number of facets. But the number of facets of lkz is just

the number of facets of P that z liesin. ®

Corollary 2.3.3 ([St7, §4.5], different proof) There is no Eulerian* simplicial poset
P with an odd number of farcts and hy(P) = 0.

Proof: Let P be Eulerian* simplicial of rank d with h;(P) = 0. Then n —d = h; =0,
so n = d, t.e., every vertex is in every facet. The result now follows from Lemma 2.3.2..
[

This demonstrates the surprising power of Lemma 2.3.2, at least for small hy. It
unfortunately loses its usefulness as h, gets larger, but is still quite effective at h; = 1

and even h; =2 or 3.

Proposition 2.3.4 Let P be an Eulerian* simplicial poset of dimension d — 1 with an
odd number of facets and n —d = hy(P) = 1. Then

apz ()

for -1 <:1<d-1.

Proof: Let V be the set of vertices of P. By Lemma 2.3.2, every vertex is excluded from
some facet, and, since n = d+ 1, each facet excludes just one vertex, so there is a facet of
type S for every S € (n‘_’l). Now let T C V, T # V. Then there is some S € (nl:l) such
that T C S, and hence there is a face of type T (in the facet of type S). Since there are
(i:l) = (‘f:ll) t-dimensional face-types (i.¢., subsets of V of cardinality : + 1), the result

follows. =

Corollary 2.3.5 There is no Eulerian* simplicial poset P with an odd number of facets

and

ho(P) = h1(P) = --- = hi(P) = 1, hiyy(P) = 0
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(fori>1).
Proof: This is immediate from Proposition 2.3.4 and the following two claims:

Claim 1: The simplicial poset Q that is the face-poset of the boundary of the d-simplex
satisfies hi(Q) =1 and f;.1(Q) = (d':.'l) for0<i<d.

This is most easily seen by definition (iii) of k-vector (in this case the difference-table ic

Pascal’s triangle turned sideways!).

Claim 2: If P and Q satisfy h;(P) = h;(Q) for 0 < j < m (equivalently, f;_1(P) =
fi-1(Q) for 0 < j <m), then fru_1(P) — fm-1(Q) = hm(P) — hm(Q).

This follows by induction on m, using definition (i) or (iii) of h-vector. =

Corollary 2.3.6 There is no Eulerian* simplicial poset P with an odd number of facets,

hy(P) =1, and %o hi(P) < n.

Proof: Immediate from Proposition 2.3.4 and equation (2.5). =

2.4 The missing-edge graph

Corollary 2.3.6 shows that it can be profitable to look at the faces of a simplicial poset
that are not there (in that case, the missing i-face), if there are few enough of them. We

codify that idea in dimension 1 to help us with the h; = 2 case.

Definition: Let P be a simplicial poset.. The missing-edge graph of P, me(P) is the
(undirected) graph whose vertices are the vetices of P, and whose edges are pairs {z,y}
such that z and y do xiot have a join in P, i.e., such that the potential edge between x
and y is “missing.” If P is pure, then z and y not having a join is equivalent to = and y

not lying in a common facet.
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How many edges are in the missing-edge graph? The lower bound is ('2‘) — fi; there
could be more if some of the f; edges in P are duplicates of one another, i.e., if two
or more edges cover the same pair of vertices. In our applications, we will only use the
(;) — f1 edges that we are guaranteed.

We use the missing-edge graph by finding “obstructions,” graphs H such that if H
is a subgraph of me(P), then P cannot be Gorenstein* (or even Eulerian*, sometimes)

with an odd number of faces and a given h-vector.

Lemma 2.4.1 Fiz a non-negative integer k, and let H = Ui, K; , a disjoint union of
m complete graphs of cardinalities i, through i, respectively, such that 7., (i; — 1) =
k. Also let P be an Eulerian* simplicial poset with an odd number of facets such that
hi(P) = k and ho(P) = 0. Then H is not a subgraph of me(P), unless every verter of

me(P) is in H (i.e., H and P have the seme number of vertices).

Proof: Assume P and H form a counterexample. Each component of H (i.e., each K;)
disallows ; — 1 vertices from each facet, so, altogether, H disallows k vertices from each
facet. Since n —d = hy(P) = k, every vertex of me(P) (or rather, the corresponding

vertex in P) that is not in H must be in every facet of P, contradicting Lemma 2.3.2. =

Lemma 2.4.2 Let P be a pure simplicial poset such that hy(P) = k. Then the degree of
me(P) is less than k + 1.

Proof: Assume otherwise; then there is some vertex £ € P that does not lie in a facet
with (at least) k + 1 other vertices, so any facet containing = excludes these k + 1 other
vertices. But n — d = h,(P) = k, so, by purity of P, only k vertices are excluded from

any facet of P. <. =

Lemma 2.4.3 Let H = K, U K3, the disjoint union of: the compiete bipartite graph on
parts of size 1 and k; and an edge. Let P be a pure simplicial poset such that hy(P) = k
and ho(P) = 0. Then H is not a subgraph of me(P).
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[ A =

H, H, H,

Figure 2-4: Proposition 2.4.4

Proof: Label the vertex in the first part of K; « by a, and the k vertices in the second part
by by, ..., bi; label the vertices in K by ¢y and c;. Assume P isa counterexample. Some
facet contains a, and any facet that does cannot contain any ;. But n —d = hy(P) = k,
so, by purity of P, any such facet must contain every other vertex of P, including both

c1 and ¢, contradicting the existence of the edge between them iu me(P). ®

Now we use these obstructions to eliminate some h-vectors.

Proposition 2.4.4 There is no Eulerian* simplicial poset P with an odd number of

facets and hy(P) = 2,hy(P) = 0.

Proof: Assume otherwise; let P be a counterexample and let G = me(P). The number

of edges in G is at least

(- - (5)-E (1)) veom

= [1+2d+ (g)]—[(g) +2(d-1)] =3

(using definition (i) of h-vector and some binomial identities). Pick 3 of the edges of G;
call them E. Let G’ be the edge-induced subgraph of G on edges in E.

By the Dehn-Sommerville equations, the smallest d can be is 6 (h(P) = (1,2,0,r,
0,2,1) for odd r), so n = d + 2 > 8; thus Lemma 2.4.1 dictates that neither of the
graphs H, or Hj in Figure 2-4 are a subgraph of G’. Now G’ is a graph of 3 edges, and,
by Lemma 2.4.2, has degree no more than 2. Further, since H; is an obstruction, G'

must have only one connected component, and since Hj is an obstruction, it cannot be
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a 3-cycle. This only leaves the graph Hj in Figure 2-4, which has H; (marked in bold)
as an obstruction subgraph. =«. =

2.5 The h; = 3 case

The missing-edge graph will also be of use for the h; = 3 case, but now we need to add

the Cohen-Macaulay condition.

Lemma 2.5.1 Let P be a pure (d — 1)-dimensional simplicial poset with vertices z and
y such that each facet that contains x or y has the same type S. Then P is not Cohen-
Macaulay.

Proof: Let T C S be maximal among subsets of S such that there is a facet containing
both T and some vertex not in S. T could be @, but, by assummption on z and ¥,
|T| < d—2. Let z be a face of type T. Then, by maximality of T, lkz has (at least)
two connected components: one among facets (containing « or y) of type S\T, and one
among those facets (containing neither z nor y) whose type is disjoint from S.

Therefore, Ho(lkz) # 0, even though
dim(lkz) = ((d - 1) — (dimz2))-1=(d-1) - |T| > 1,

so P is not Cohen-Macaulay by Proposition 2.2.1. =

Once again, we use this result by showing what it means for the missing-edge graph.
Then, in conjunction with our earlier results on the missing-edge graph, we eliminate

some more h-vectors.

Corollary 2.5.2 Let H = K, , the complete bipartite graph with parts of size 2 and k.
Let P be a Cohen-Macaulay simplicial poset such that hy(P) = k, and hy(P) = 0. Then
H is not a subgraph of me(P).
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H, Hs Heg H, Hg

Figure 2-5: some obstructions

Proof: Label the 2 vertices in the first part of H by a; and a3, and the k vertices in
the second part of H by by,...,bi. Assume P is a counterexample; let V' be the set of
vertices of P and let § = V\{by,...,bc}. Then any facet that contains a, or a; cannot
contain any b;. But n —d = hy(P) = k, so any such facet has type S, contradicting

Lemma 2.5.1. =

Proposition 2.5.3 There is no Gorenstein* simplicial poset P with an odd number of

facets such that hy(P) =3, and ho(P) = 0.

Proof: As with the h; = 2 case, assume otherwise; let P be a counterexample and let

G = me(P). The number of edges in G is at least

(;)—fl = (d';3)_g(j:é)hj=(d;3)_[(di2)+(d_1)3]
= [3+3d+(g)]—[(;)+3(d—1)]=6

(using definition (ii) of h-vector and some binomial identities), so we may pick 6 of the
edges of G; call them E. Let G’ be the edge-induced subgraph of G on edges in E.

By the Dehn-Sommerville equations, the smallest d can be is 6 (again, h(P) =
(1,2,0,7,0,2,1) for odd r), so n = d + 3 > 9; thus, Lemma 2.4.1 dictates that none
of the graphs Hy, Hs, nor Hg in Figure 2-5 is a subgraph of G’. Further, Lemmas 2.4.3
and 2.5.2 show that neither H; nor Hg, respectively, in Figure 2-5 is a subgraph of G'.

Now it is just a matter of showing that one of these obstructions appears as a subgraph

of G'. This will break down into several cases, none of which ir hard. G’ has 6 edges and,
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Hy Hyo Hy,
Figure 2-6: Case 2

— O

Hy, Hys
Figure 2-7: Case 3.1

by Lemma 2.4.2, degree at most 3. As a result, the possibilities are:

Case 1: G’ has at least 3 connected components.

Then Hj is a subgraph of G'.

Case 2: G' has ezactly 2 connecied components (see Figure 2-6).

Then at least one of the components must have at least 3 edges; this component
must therefore have one of Hy, Hyo, or Hy; as a subgraph (as in Proposition 2.4.4),
and G’ then contains Hy, H7, or Hg, respectively.

Case 3: G' ts connected.

We break this case down by the degree of G'; there are only two possibilities:

Case 3.1: G’ has degree 2 (see Figure 2-7).

Then G’ is either Hy; or H;3 and thus, in either case, contains Hy (indicated

in bold) as a subgraph.

Case 3.2: G' has degree 3.

We break this case down by the size of the smallest cycle of G'.
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Figure 2-8: Case 3.2
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Case 3.2.1: G' has no cycle (G' is a tree) (see Figure 2-8).
Then G’ starts with H;, and, since H; is an obstruction {and G’ has
degree 3), every remaining edge in G’ must include one of the vertices a,
b, or c. Then, since G’ is a tree, G’ depends, up to isomorphism, only on
the number of edges attached to a, b, and c. So, up to isomorphism, G’ is
either Hys or Hyg, and, in either case, contains H4 (indicated in bold) as

a subgraph.

Case 3.2.2: The smallest cycle in G' contains 5 or more edges (see Figure 2-
8).
The only possibility for G’ in this case is Hy7, which contains Hy4 (indicated
in bold) as a subgraph.

Case 3.2.3: The smallest cycle in G’ contains 4 edges (see Figure 2-8).
In this case, G’ starts with Hyg, and the sixth edge makes G’ into one
of Hyg, Hyo, or Hj, which contain Hy, H7, or Hg (indicated in bold)

respectively.

Case 3.2.4: The smallest cycle in G' contains 3 edges (see Figure 2-8).
Since Hg is an obstruction, every edge must contain one of the vertices
in the 3-cycle. But the Jdegree of G’ is 3, so each vertex of the cycle has
precisely one extra edge attached to it. Therefore, up to isomorphism,
G’ is one of Hay, Ha3, or H,4, which contain H,, Hg, or Hs (indicated in

bold) respectively.

38



Chapter 3

f-vectors and Betti sequences

In Chapter 2, we explored possible f-vectors of simplicial posets. Now, we add a twist

to this problem by asking, additionally, what homology is possible.

Definition: Fix a field k. Let P be a simplicial poset, and let
é.' 1= dimy i{.'(lpl; k) = dim; fI;(A(F); k)

Then B := (Bo, B1, B2, . . .) is the Betti sequence of P. If P has rank d, then §; = 0 for

i > d —1, so in that case, we will write the Betti sequence as 8 = (Bo, ceey Bd_,).

In contrast to the situation with f-vectors, any sequence of non-negative integers can
be the Betti sequence of a simplicial poset, for instance, simply by taking a bouquet of
spheres (i.e., a collection of spheres, all intersecting at a unique point) of the appropriate
multiset of dimensions. A more interesting question, then, is what combinations of f-
vectors and Betti sequences of simplicial posets there are. We therefore make the following

definition:

Definition: An ordered pair of sequences ( f, 3) is compatible if there is some simplicial

poset P such that f is the f-vector of P and f is the Betti sequence of P.

We will be interested in finding compatible sequences.
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This problem, and the definition of compatible sequences were examined by Bjérner
and Kalai foi the case of simplicial complexes (i.e., when P is the face-poset of a simplicial
complex) in [BK1], and then for « larger class of CW-complexes in [BK2].

The characterization of compatible sequences for both simplicial complexes and sim-
plicial posets is purely combinatorial, in that it does not depend on the field k we initially
chose. Therefore, it is possible to explore what the range of compatible sequences covers.
This is done in [BK1, §5], for simplicial complexes; we do the same for simplicial posets

in Section 3.2.

3.1 Necessary and sufficient conditions

In this section, we show that some obvious necessary conditions on the compatibility of
f-vectors and Betti sequences of simplicial posets are actually sufficient. This result has a
strong resemblance to, but is not identical to, the equivalent question for cell complexes,

answered in [BK1, §6].

Theorem 3.1.1 Suppose that f = (fo,..., fa_1) and B = (Bo, ..., Ba_1) are two given

sequences of non-negative integers, f4_1 > 0, and k is a field. Define f! = f; — (.‘-:1) and

¢i = f! — Bi. Then the following are equivalent:
(i) f is the f-vector and B the Betti sequence over k of some simplicial poset;

(i) For al0 <m < d -1,

X = 3 (= 1) 3 0; (3.1)
1=0
and
Xd-1 = 0. (32)

(i) f is the f-vector of a simplicial poset homotopic to a -wedge of spheres ( i.e. e
wedge of f; i-spheres for 0 <i < d— 1).

Proof: (iii) = (i) is trivial.
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(i) = (ii): We use induction and the Mayer-Vietoris sequence. Let P be the given
simplicial poset. Since f4_1 > 0, there is a (d—1)-dimensional face z, and an entire (d—1)-
simplex contained in it. Let Kg be the subposet {2 € P : 2’ < z}; then fi(Kc) = (.‘:1)*
so f! =0, for all i. Also K is a simplex, and hence contractible, so §;(Ko) = 0, for all 7,
and equations (3.1) and (3.2) are trivially true.

Now, we can build up P by starting with Kp, and then adding the remaining 0-faces,
and then the remaining 1-faces, and so on. If we construct P in this way, then every time
a face is added, its boundary has already been added. So assume that K, is a subposet
of P satisfying equations (3.1) and (3.2) that contains every (¢ — 1)-face of P, and that

K, is K, with an i-face y added, so 9y C K, (if ¢ = 0, then 9y = 0 € K, trivially), and

fo(Kr) if p#1

fp(K2) = { , .
fH(K)+1 ifp=1

If i = 0, then it is easy to see that

B, (Ky) if p#£0

BP(K2) = { = .
Bp(K1)+1 ifp=0

so ¢p(K2) = ¢p(K1) for all p, and equations (3.1) and (3.2) continue to hold.

If i > 0, first note that the only chain group that is changed is C;, changing only 0;
among boundary maps, hence changing only B; and B;_,. Further, since C; is increased,
i.e., Ci(K,) — Ci(K,),

Bi(K2) > Bi( K1) (3.3)

and

Bi_1(K2) < Bi—i(Ky). (3.4)
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To determine more precisely what happens to 8; and §;_;, first note that since ¢ > 0,

Ody # O, so we obtain the reduced Mayer-Vietoris exact sequence:

— Hi(8y) — Hi(y) ® Hi(K1) — Hi(K>)
— H;_1(8y) — Hi1(y) & Hioo (K1) = Hioo(K2) = Hioa(By) — -+ (3.5)

(all homology is over k). Now, topologically, dy is an (i — 1)-sphere, so

Hp(ay)={ ]

0 otherwise
and y is a ball, so H,(y) = 0 for all p; thus, equation (3.5) becomes
0— I;','(Kl) — ﬁ.‘(Kz) — k- f{.-_l(Kl) — fl,‘_l(Kz) — 0.
Since dimension is additive on exact sequences,

0 = Bi(Ky) - Bi(K2) + 1= Bioa(Iy) + Bi(K>),
$0

1 = (Bi(K2) = Bi(K1)) + (Bioa (K1) — Biza(K3)),

which, with equations (3.3) and (3.4), gives either

Bo(K3) = {'[fp(Kl)+1 ifp:i. |
ﬂP(K 1 ) otherwise
or
~ BAK)—1 ifp=i—1
Bo(Ka) = { lfp( 1) if p ,. |
ﬂP(Kl) otherwise

Either way, ¢p(K2) = ¢p(K1) for 0 < p < d-1,p # %,i — 1. Also, in the first
case, ¢i_1(K2) = #i_1(K1) and ¢i(K3) = ¢i(K1); and in the second case, ¢i_1(K2) =
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#i-1(K1) +1 and @i(K3) = ¢i(K1)+ 1. Thus, in both cases, xp(K2) = xp(K1)ifp#i—1,
and x;-1(K32) 2 xi-1(K1), preserving equations (3.1) and (3.2) for K, completing the
induction.
(ii) = (iii): Proof by construction (similar to [BK1]). For completeness, define x_; =
0. Then, for0<:<d-1,
fl = Xie1 + Bi + xi»

so let E; = A; U B; U C; be a set of f! i-simplices such that |A;| = xi-1, |Bi| = B;, and
|C;] = xi- We now construct a simplicial poset P as follows. Start with a (d — 1)-simplex
¥ with vertices numbered 1,...,d, and for 1 < j < d, let 0;_; denote the face {1,...,j}.
(The vertices and o;’s are numbered this way only to be definitive; we need only pick
o;’s in ¥ such that each o; has dimension j and, for 1 < j < d -1, o;_; is a face of 0;.)
Then we add the faces E;, for every 7, by induction on :.

First add the vertices of Ey. Next, for each ¢ > 0, add the i-simplices E; (i > 0)
assuming, by induction, that all ( — 1)-simplices in E;_, have been added such that each

cl_, € Ci.1, 1 € j < Xi-1, has the same boundary as o;_; (if ¢ = 1, this is just the
trivial observation that every vertex has @ as its boundary). Then, for each a! € 4,

1 < j < xi-1, attach a! by letting
da] = ((80;)\oi-1) U cl_y, (3.6)

which is possible since ac,i_, = do;_1. Then attach the i-simplices of B; and C; by giving
each one the same boundary as o;.

Clearly, f(P) = f, so it remains to show that P is homotopic to a 3-wedge of spheres.
We demonstrate the homotopy. For every i, 1 < i < d — 2, there are x; pairs (cf_l,a{ )
satisfying equation (3.6), so apply the homotopy that collapses a’ and ¢_, through a to
(80;)\ei_1 C E. This can be done for each pair (c/_,, a}) independently. What remains is
¥ and, for each i, §; i-simplices b;' such that b} C X. So, if we then apply the homotopy
that shrinks ¥ to a point, the resulting object is a f-wedge of spheres. =

43



Figure 3-1: first step

Example: Consider the compatible pair of sequences f = (8,8,4) and 8 = (3,2,2)
(f = (55,3); o =2, ¢ =3, and ¢, = 1; and xo = 2, xa = 1, and x2 = 0). To
construct a simplicial poset P that has f-vector f and Betti sequence 3, start with a

2-simplex (since d — 1 = 2). Now, the rest of the steps of the construction are as follows:

(i) f§ = 5, so add 5 extra vertices (all of which have the same boundary as oy, trivially).

(See Figure 3-1.)

(ii) |A1] = xo =2, |B1| = B1 =2, and |Cy| = x1 = 1, so first add xo = 2 edges (al, and
a?), each attached to vertex 2 of X and one of the new vertices added in (i); then
add B; + x1 = 3 new edges (b}, b?, and c!), each attached to vertices 1 and 2 (same
boundary as ). (See Figure 3;2.)

(iii) |A2l = x1 =1, |Bal = B2 = 2, and |C.| = x2 = 0, so first add x; = 1 new 2-face
(al), attached to edges 13, 23, and c}; then add §; + x2 = 2 new 2-faces (b} and b2),
each attached to edges 12, 13, and 23 (same boundary as o;). (See Figure 3-3.)

\
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Figure 3-2: second step

3: third step

Figure 3
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3.2 Combinatorics of (f, 3) pairs

We use the combinatorial result of the previous section to further examine the set of com-
patible (f, B) pairs. In particular, we are interested in the set of f’s that are compatible
with a given B and the set of B’s that are compatible with a given f. As in [BK1], we
address this problem by looking for the “minimal” or “maximal” f [or 3] corresponding
to 3 [or f, respectively]. In our case, three of the four problems are quite easy (we often

work with f’ instead of f, but this should cause no confusion) :

o There is no “maximal” f for a given f, since (f + €;-1, ) is compatible if (f,3)
is, where ¢;;_1 is the vector with 0’s except for 1’s in the (¢ — 1)st and zth positions
(1 €17 <d-1). Toplogically, this corresponds to adding another simplex to each

of C;_1 and A; in our construction, which does not change the homology.

e To find the minimal f for a given § or a maximal f# for a given f, the answer is
the same in both cases: let f/ = §;. This sets ¢; = 0, for all i, which satisfies
equations (3.1) and (3.2); and it is easy to see, by adding consecutive equations
of 3.1, that each ¢; must be at least 0, establishing a lower bound for each f} or an

upper bound for each f;.

On the other hand, finding the minimal 3 for a given f is less trivial. At first glance,
it might seem entirely dual to the maximal f problem; and indeed, decreasing j; and
Bi_1 produces a clearly smaller B that still satisfies equations (3.1) and (3.2). However,
unlike the f’s, there is a limit to how far this can go: every component of # must be
non-negative (there was no corresponding upper limit to f). In fact, for some fixed f,
there is no compatible § that is componentwise no greater than any other compatible 3,

as the following example shows:

Example: Let f' = (2,2,2,0). Two compatible #’s are ! = (2,0,0,0) and §? =
(0,0,2,0). But the only non-negative 8 that is componentwise nc greater than both 41
and 4% is (0,0,0,0), which is not compatible with f’. .
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So there is not necessarily a minimal compatible § in the componentwise partial order.

We settle for identifying the minimal § in the following total order, <r: 8' <r B if

o |3 < |B?| (where |{vo,--.,v4-1)} :=vo + - - - + v4_1, the weight of v)

or

o || = |B? and B! <L B, where <y is lexicographic order (i.e., for some j, (8');

(8%); for 0 < i < j, and (B'); < (B?);)-
We also show that a more or less greedy algorithm finds such minimal 3.

Proposition 3.2.1 For a fized f', the compatible § that is minimal in the above total
order <t is the lezicographically minimal compatible 3. In other words, the lericograph-

ically minimal compatible B is also a minimal weight compatible 3.

Proof: Let 3° be the lexicographically minimal compatible 3, and let 8! be any other

cornpatible 3, so

(8% = (B')i (3.7)
for 0 <i < j;and

(8%; < (BY);- (3-8)
We will find 8% <t B, so that §! is not the minimal (<) compatible 3. Since <t is a

total order, this will show that 4 is minimal in <r. First note that j # d — 1 since, in

that case, equations (3.2) and (3.7) force (#*)a—1 = (B')d-1. Two cases remain:
Case 1: j =d—-2.

Let 3% = f°. Since #° <r B' by assumption, it remains to show |3°| < |8'|. By
equations (3.2), (3.7), and (3.8),

(B%4-1 = (B%)4-2 = (B")da~1 — (B")a-2

and
(B%)4-2 < (B")d-2,
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SO

(8%)a-1 = (8")4-1 + ((B%4-2 — (8")a-2) < (8")¢-1,

which, along with equations (3.7) and (3.8), establishes |3°| < |8!|.

Case 2: j <d-2.
Let
(B)i—-1 ifi=j
(Bi=1 (BY)i+1 ifi=j+2 .
(B otherwise

Clearly 8% <7 f'; and $? is non-negative since
(8%; =(8"); =12 (8%; (3.9)
by equation (3.8). It remains to show that 3% is compatible with f’. But
xi(f,8%) = xi(f', ")
ifi# 7,7+ 1 (note that d — 1 # 7,5 + 1);
Xi(f',8%) > xi(f,8°) 2 0
(by equation (3.9)); and

Xi+1(f,8%) = xjn(f,8") +1>0.
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The algorithm

Now we describe an efficient method for finding this minimal 3. By Proposition 3.2.1,
it suffices to show that the 3 we find is lexicographically minimal among f3’s compatible
with our fixed f'.

We start by setting each B: = 0, one at a time, starting with Gy, then f:, and so on,
until this forces x; < 0 for some ¢ (note that ¢ > 0 since xo starts at f; — Bo = f4 > 0).

At this point, we change 3;_; (not f;!) to —xi, so that now x; = 0 and
Xi-1=fl—Bi—xi=f > 0.

Also at this point,
Xi+1 = f."+1 - Bi+1 —Xi = f."+1 20, (3.10)

S0 B.- will not have to be changed.
Now, repeat this process, up to x4-2 (equation (3.10) guarantees that none of our
operations will interfere with one another), so Ba_2 and Bd_l are still 0. Then, tc ensure

Xd-1 = 0:

e If x4-1 < 0, change By_z to —xd—1, and leave By4_; = 0, as with all the other x,’s

that were negative;

o If xa—1 > 0, leave B4_2 = 0, change Bi-1 to Xx4_1, and then xq_; will be 0, and in

this case there are no other equations or inequalities to check.

At each step of the construction (i.e., possibly fixing Bi_1 to ensure y; > 0) we consider
all previous ﬁ,-’s (i.e., for j < i —1) to be fixed, and set B;i_1 to be the minimal value
possible while still setting x; > 0. Thus, the resulting 8 is lexicographically minimal

since every non-zero f; cannot be made smaller without changing B; for j < i.

Example: Say f' = (3,7,2,5,10,2,1,5). To find the lexicographically minimal compat-
ible 3, start with 8 = (0,...,0). Then xo = 3 and x; = 4, but x2 = —2. So change i
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to be 2. Then x1 =2, x2 =0, x3 = 5 and x4 = 5, but x5 = —3. So change f4 to be 3.
Then-x4 =2, xs =0, x6 = 1, and x7 = 4. Then, to get x7 = 0, change 37 to be 4. The
resulting f is (0,2,0,0,3,0,0,4).
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Chapter 4

Complete intersection rings

In this chapter, we classify all simplicial posets P whose ring Ap is a complete intersection

ring; the result was conjectured by V. Reiner.

Definition: Let A be a commutative ring. Then 8 is a non-zero divisor (NZD) if

uf = 0 implies that u = 0.

Definition: Let A be a graded commutative ring. A sequence 6,,...,8, of homogeneous
elements of A is an A-sequence or regular sequence if 8, is an NZD of A and, for

every 1 <t <r,0;is an NZD of A/(6y,...,0i-1).

Remark: Any permutation of a regular sequence is again a regular sequence (implicit

from [St4, §1.6)).

Definition: A Z™.graded algebra R is a complete intersection if R = A/(6,,...,0,)

for some polynomial ring A, and A-sequence, 6y,...,0,.

Complete intersections are studied extensively by algebraic geometers, usually in very
non-combinatorial terms. Combinatorially, they are of interest because their nice presen-

tation allows certain invariants (generating functions, for instance) to be easily computed.
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For instance, it is easy to show that complete intersection rings are Cohen-Macaulay, and

even Gorenstein.

4.1 Complete intersections of simplicial complexes

There is a simple classification of all simplicial complexes whose face-ring is a complete

intersection:

Theorem 4.1.1 Let A be a simplicial complez. Then its face ring k[A] is a complete
intersection ring if and only if A is (topologically) the join of simplicial complezes of the

form
e B,

o B\

Proof:(sketch) The main point is that k[A] is just the polynomial ring on its vertices,
modulo the minimal non-faces. Once enough commutative algebra machinery is brought
into play, we can assume that the minimal non-faces form a regular sequence. So say
F=z...-z; and G = zj, - - - 7j,, are two minimal non-faces, but intersect; say, z;, =
r = zj,, so we can write F' = F'z and G = G'z. Then modulo F, F’ is not zero (since
F is a minimal non-face), but GF' = G'zF' = G'F = 0, contradicting G being an NZD
modulo F. =

This is a simple proof (modulo the commutative algebra machinery), but it is the
heart of what we will do for the more general simplicial poset: find the simplest obstacles
to Ap being a complete intersection, and show that they come up except in the simplest

of circumstances.
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4.2 Definitions and main theorem

First we state the generalization of Theorem 4.1.1 that we will prove in this chapter. As
with the simplicial complex case, the sufficiency of the conditions is almost trivial, and

we jump right into setting up the machinery to prove the necessity.

Theorem 4.2.1 (conjectured by V. Reiner) Let P be a simplicial poset. Then Ap

is a complete intersection ring if and only if P is the direct product of posets of the form

e B,
¢ B\l

e B,U1 (ie., B, with i’ that is greater than everything else in By, ezcept for i,

with which it is incomparable.)

The rest of this chapter is devoted to the proof of this theorem.
First note that some of the simplest generators of I (where Ap = k[P]/I as usual)

arise in one of the following two ways:

o duplication: If y and y' cover the same elements, then they cannot have an upper

bound, so yy’ =0 in Ap.

e elimination: If there is a set of elements D that form the boundary of a simplex
F, but that simplex is not in P, then we could think of Ap as being Ap//F', where
P' is P with F adjoined in the obvious manner. In this way, F corresponds to a

relation.

Elimination may seem somewhat contrived, until we consider the special case of a
simplicial complex. We can think of any simplicial complex as a Boolean algebra with
some faces modded out. And that is, in fact, the way to think about complete intersection
simplicial complexes; the answer in that case is to consider the set of minimal faces that
are modded out, and the simplicial complex is a complete intersection if and only if these

faces do not intersect.
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Similarly, one way to think about Theorem 4.2.1 is that none of the eliminations or
duplications overlap. It is actually somewhat more complicated than that, in that there
is no systematic way of presenting Ap as a polynomial ring modulo “minimal” relations.

We make the following assumptions throughout the rest of this chapter. P is a
simplicial poset with n vertices, z,,...,z,. The ideal I is defined by Ap = k[P]/I to
be the set of all relations among elements of P, and in fact, we often think of Ap this
way, even if it is not the most efficient way of presenting Ap. Recall that 9y := {z € P :
T < y}, t.e., the set of elements covered by y, corresponding to the usual definition of

boundary in simplicial complexes.

Definitions: Define the equivalence relation ~ by
y~y & dy=209y.

Note that, inductively, if y ~ y’, then deg(y) = deg(y’). Further, y and y' are a duplica-
tion, y || ¢, iffy ~ v, y # ¢, and r(y) = 1(y') > 1 (note that if z; and z; are atoms, then
T; ~ zj, trivially). A minimal duplication, y lo ¥’ occurs iff y || ¥’ and, for all 2 < v,
there is no 2’ such that z || 2’. In other words, y | ¥’ and the subposet of {z € P : z < y}
is isomorphic to a Boolean algebra with its top element missing. Although duplication
and minimal duplication are not equivalence relations, since y Jf ', they are transitive
on sets of distinct elements: if z,y, z are three distinct elements of P,r|y, and y | 2,
then z || z; and similarly for minimal duplications.

An elimination is an order ideal D C P such that D is isomorphic to a Boolean
algebra with its top element removed. We often identify D with this removed element

by extending certain definitions to D:

deg(D) := > ¢,

z€D



and
d(D):={z€D:AL €D, z<?}.

Example: (See Figure 4-1.) The edges y3,y4,ys are all minimal duplications of one
another (y3 |lo ¥4, ¥4 |lo ¥5, and s |lo y3). The 2-face z3 does not have any duplications
(21 and z; contain the same vertices z,, 3, z3, but 23 covers y,, while the others do not).
The 2-faces z; and z; are a duplication, but not a minimal duplication, since y3 || y4 and
ys < z3 (and 2;); therefore z; || 22, but z;| 4z,.

The missing element (D) covers an elimination. Technically, the elimination is

{0, 21, z2, 23,41, Y2, Y5}, but it is easier to think of (D) as having been eliminated.

Lemma 4.2.2 Ify |lo y’, then yy' € I.

Proof: Assume otherwise; then there is a z > y,y’.

Therefore, y and y’ are distinct
elements of the same degree in [0, z], which is isomorphic to a Boolean algebra. But

every element of a Boolean algebra has distinct degree, =><. =

4.3 Duplications in regular sequences

We bring in some results that connect the combinatorics of the poset (in particular, a

duplication) to the possibility of the ring being a complete intersection.

Lemma 4.3.1 Let R be @ graded k-algebra with ideal I containing homogeneous elements
01,...,0; generated by a regular sequence, S. Then there is another regular sequence S’

generating I containing 6,,...,0; if 6,,...,0; are linearly independent in the k-vector

space I/R, 1.

Proof: By induction on i. The case i = 0 is trivial. So assume that there is another

regular sequence S” = {60,,...,0i_1,¥,,...,%¥,} generating I. Now, §; € I, so we may
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Figure 4-1: eliminations and duplications
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write

-1 r
0; = Ea,-o,- +ij\l’,‘ (4.1)
=1 J=t

for b; € H(R). Rewrite equation (4.1) as

-1 r
0; — 2 a;0; = Z b;¥;, (4.2)
i=1 J=i

and now consider equation (4.2) modulo RyI. The left-hand side becomes a non-zero
k-linear combination of 8's; the right-hand side, since the b;’s are homogeneous, can be

written

IRA T

jbj€k
This sum cannot be 0, since the §;’s are linearly independent, so there is some b; € k\{0};
without loss of generality, since any permutation of a regular sequence is again a regular
sequence, b, € k\{0}

Then our new sequence is S’ = (0;,...,0;-1,%,,..., %, _1,6;). Now, S’ generates I,

since
=1 r—1
v, = b,“(0.~ - Za,-aj - Z bj\I’j).
1= i=t

To show that S’ is regular, it suffices to show that 6; is an NZD (mod#,,...,0;_,

¥, ..., ¥._1). So assume

u0; =0 (mod01, e ,9,’_1, ‘I’.‘,. ooy \I’,-...l).

Then, plugging in equation (4.1),

-1 r
0= “(Z a;0; + z b;¥;) = ua, ¥, (modby,...,0i_1,¥,..., ¥ _,)
j=1 y=1

so u = 0(modby,...,0i_1,%,...,¥,_,), since ¥, is an NZD (medéb,,...,0,
V,,...,¥,_1). Thus, 6; is ac NZD. =
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Lemma 4.3.2 Let y |lo y'; assume S = {¥y,...,V.} is a reqular sequence in k[P|

generating I. Then there is another regular sequence S’ generating I, containing 0 = yy'.

Proof: First note that & € I by Lemma 4.2.2. Then, by Lemma 4.3.1 it suffices to show,
with all calculations done in k[P], not Ap, that (k[P])+] does not contain §. Assume

otherwise:

0= ai, (4.3)

i€l
where each a; is homogeneous of non-zero degree, and only finitely many a; are non-zero,
say a; # 0 for : € I;. We may as well assume that every element of I is one of the
canonical generators of I, by rewriting and expanding equation (4.3), if necessary. Since
deg(0) = 2deg(y), deg(z) < deg(y) for all ¢ € Io.

But this means that for each relation uv or uv — (uAv) Y z in Ip, u and v must cover
only atoms in supp(y), i.e., deg(u),deg(v) < deg(y), and at least one of u and v, say v,
must have degree < deg(y). Hence, deg(v) < deg(y), so v < y, since y |jo ¥, and then
deg(u) < deg(y) (for otherwise deg(u) = deg(y) and then v < u, since then y ||o u). So
all 2 € I are of the form:

i =uv— (uAv)(uVv), (4.4)

where u and v have a unique join, and (u A v),(u V v) < y; or

i=uv—(uAv)(d_ z) (4.5)

vy

If 7 is of the form in equation (4.4), then, by degree considerations, no a;i will have
yy', y?, or (y')? as a summand.

For any u,v complements in [0, y], define

Juv :=uv-—-z:t:

T~y

(this is one of the canonical generators of I). Denote the set of all such pairs {u,v} by

G. If i is of the form in equation (4.5), a;i will have a summand yy’, y?, or (y')? only if
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i = gu and a; = cy or cy’ (for some ¢ € k), by degree considerations again. We may

rewrite equation (4.3) as

y'= Y. Cu¥uw + ¥+ Y ai,
{u,v}€G i€lo\G

where c,,,c,, € k. Since this equation takes place in k[P], and not Ap, we may equate

coefficients, first on yy’, then on y? and (y')?. By the above considerations, this yields

1 = Z cuu'l"c:w’

{u,v}€G
0 = Z Cuv)
{u,v}€G
and
0 = ) cCu
{uv}€G

a contradiction, so 6 ¢ (k[P]+)]. =

Lemma 4.3.3 If R is a complete intersection ring and R = B/J for some polynomial

ring B, then J is generated by a B-sequence.

Proof: See [Ku, p. 190] =

This next iemma is now what this section has been leading up to.

Lemma 4.3.4 If Ap is a complete intersection ring and y ||o y', then there is a minimal

generating set of I that is a regular sequence and contains 6 = yy'.

Proof: Since Ap = k{P)/I is a complete intersection ring, I is generated by a regular
sequence in k[P], by Lemma 4.3.3. But then there is another regular sequence generating

I that contains 8, by Lemma 4.3.2. =

4.4 Technical lemmas

These just turn out to be precisely what we will need later on.
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Figure 4-2: Lemma 4.4.1

Lemma 4.4.1 If

ecAy#0,z#y,ylly;
¢ 2 € mub(z,y) ezists; and
¢ 2’ € mub(z,y’) ezists (note that 2’ is not a duplication of z);

then z is not a multiple of z in Ap.

Proof: (See Figure 4-2.) In other words, we must show that in k[P], there is no p such
that zp = 2 (mod I) (p could be a polynomial. it does not need to correspond to an
element of P). Assume such a p exists. Since z, z, and I are homogeneous, we need only
consider the homogeneous part of p of degree deg(z) — deg(z). So we may as well assume
that deg(p) = deg(2) — deg(x) < deg(y) (since deg(z) = deg(y) + deg(z) — deg(z A ¥)).
Modulo I, p is a sum of chains, ¢;, with deg(c;) < deg(y), hence each ¢; is a single element
in P, and has rank 1(¢;) < r(y) = r(y').
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Thus, for each i, ¢; < y iff ¢; < ¥; hence ¢; < z iff ¢; < 2'. So, for each i, using

relations in I to express z¢; as a sum of chains of deg(z), i.e., elements of deg(z),

ze; = ai(z+2)+ 2 a;nz"
deg(z")=deg(2)
"#z,2
and
zp = a(z+2)+ > amnz",

deg(s"")=deg(z)
YRy

where a;,a;;»,a,a,» € k. But zp = z (mod I), so a = 1, and

0=2z+ > a2" (mod ),
deg(z"")=deg(z)
2 fz,z!

so a non-zero sum of elements of deg(z) isin I, =><. =8

Corollary 4.4.2 Ify || ¥’ and y > z, then y is not a multiple of z in Ap.

The following lemma is what puts everything together, although it is just some elemen-
tary arithmetic. It is for duplications what the simple proof for the simplicial complex
case is for eliminations. Unfortunately, with duplications, there are more exceptions,

which is why we need all the other lemmas.

Lemma 4.4.3 If Ap is a complete intersection ring, y o ¥, z # ¥,¥', and y'z € I, then
z is a multiple of y (modI).

Proof: By Lemma 4.3.4, generate I by a regv!sr sequence, S, containing § = yy’, and

let {¥,,...,¥,} be the rest of the regular sequence. Since y'z € I,

¥z = aoyy + ) ai¥;
=1
(all a; € k[P]). Multiplying through by y, _
y'z = aoyy'y+ ) (aiy)¥i,

=1

61



yy'(z —aey) = f:(aay)‘l'.-

=1

= 0 (modV¥,,...,¥,).
Since S is a regular sequence, yy’ is an NZD (mod ¥,,...,¥,,), and

t(z_aoy) = O(mod\I’l,...,‘I’m),

so, since ¥y,..., ¥, €1,

(z—aoy) = 0 (modI).

Corollary 4.4.4 If Ap is a complete intersection ring, and y |o y’, then there is no

z € P such that z # y,y’, and deg(z) = deg(y).

Proof: Assume otherwise; then, by minimality, z ||o y. By Lemma 4.2.2, y'z € I, so, by

Lemma 4.4.3, z is a multiple of ¥’ in Ap, contradicting z |lo ¥’. ®
g

4.5 Interactions of duplications and elminations

Finally, we start showing that in a complete intersection ring, duplications and elimina-

tions cannot share vertices.

Duplications

Proposition 4.5.1 If Ap is a complete intersection ring, = |lo ', and y || ¥’ (with

z,z',y,y" all distinct), then z Ay = 0.
Proof: Assume not: z Ay # 0.

Case 1: Both mub(z,y) and mub(z,y’) are non-empty, say z € mub(z,y), and 2’ €
mub(z,y’) (See Figure 4-3).
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Figure 4-3: Proposition 4.5.1, case 1 and case 2

Since z’ ||o = < 2, it follows that z’ and z have no upper bound, and z’z € I. By

Lemma 4.4.1, z is not a multiple of z in Ap, contradicting Lemma 4.4.3.

Case 2: One of mub(z,y) and mub(z,y’) is empty, say mub(z,y) = O (See Figure 4-3).

Then zy € I, so, by Lemma 4.4.3, y is a multiple of z’, and therefore deg(y) >

deg(z'). As a result, y must be greater than some element whose degree is deg(z').

Then, by Corollary 4.4.4, since z ||o ', y must be greater than one of z or z’. But

y # z, since mub(z,y) = @. So y > z', but then, by Corollary 4.4.2, y is not a

multiple of z/, contradicting our earlier assertion.

Corollary 4.5.2 If Ap is a complete intersection ring, then any duplication is minimal.

Corollary 4.5.3 If Ap is a complete intersection ring, then any two duplications have

no common vertices, i.e., if z || ' and y || y', then supp(z) Nsupp(y) = D unless y = x

ory==z'.
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Corollary 4.5.4 Giveny ||o y', vertez set S, SNdeg(y) # O, ihere is at most one z € P
such that

e deg(z) =S, and
o ifdeg(y) < S, theny < z.

Proof: Consider a minimal set S that is a counterexample. If deg(y) £ S, then this
means that there are two elements z, z’ with degree = S. By minimality of S, there is, for
each = € 0z, one element of P with degree = deg(z), so z ||o 2/, but since SNdeg(y) # 9,
this contradicts Lemma 4.5.1.

If deg(y) < S, then 2,2’ < y, and deg(z) = deg(z’). By minimality of S, there is,
for each ¢ € 0z, only one element of P with degree = deg(z), unless deg(y) > deg(z).
But in that case, y > z (since y,z € [ﬁ, z]), and there is oniy one element, =’ of P with

deg(z’) = deg(z) and y > z'. So, again, z ||o 2/, contradicting Lemma 4.5.1. =

Eliminations

Now we show that duplications cannot share vertices with eliminations.

Proposition 4.5.5 If Ap is a complete intersection ring, y || ¥, and D is an elimina-
tion, then deg(y) N deg(D) = 2.

Proof: (See Figure 4-4.) Assume not. By Corollary 4.5.2, y ||o ¥', so deg(D) £ deg(y),
and (deg(D))\(deg(y)) # @. Let z, be the unique element in D with deg(z) =
(deg(D))\(deg(y)); note that zp # 0. Let yo be the unique element in D with
deg(y) = (deg(y)) N (deg(D)); note that yo # 0.

Claim: There is no upper bound in P for yo and zo. Assume otherwise: let w be a
minimal upper bound of yo and 2o. Since deg(yo) N deg(2o0) = 9, deg(w) = " g(yo0)) U
(deg(20)) = deg(D). It will therefore suffice to show that dw = 3D, since D is an
elimination. By Corollary 4.5.4, for every u € @D, except possibly z; if 29 € 0D, there is
at most one clement v € P with deg(v) = deg(u), and v > y > yo if deg(u) > deg(y) >
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Figure 4-4: Proposition 4.5.5

deg(yo). We can apply Corollary 4.5.4 (with S = deg(u)) because (deg(u))N(deg(y)) # @
unless | (deg(D)) N (deg(y)) |= 1 and the vertex of D that u excludes is the one vertex
in (deg(D)) N (deg(y)), in which case deg(u) = deg(D)\(deg(y)) = deg(zo). So, for every
u € 8D, there is only one element of deg(u) that also covers yo and zp if deg(u) warrants
it. Thus 8w = 8D, and the claim is established.

Now, since y > o, it follows that y and 2o also have no upper bound, so yzo € I and,

by degree considerations, zo is not a multiple of 3, contradicting Lemma 4.4.3. ®

Finally we show that eliminations cannot share vertices with other eliminations. This
is not much more than an elaboration on the proof of Theorem 4.1.1, the simplicial

complex case.

Lemma 4.5.8 Let D and E be eliminations; assume S = {¥,,...,¥,} is a regular

sequence in k[P) generating I. Then there is another regular sequence S' generating I,

containing D = [I.eqppip) T and E = [121coupp(E) z'.

Proof: By Proposition 4.5.5, there is no duplication involving any of the vertices in
supp(D) or supp(E), 50 D = [N euuppp) % 30d E = [Ioequpp(ey ' are in I. Then by

Lemma 4.3.1 it suffices to show that (k[P])+{ does not contain any k-linear combination
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of D and E. Again, assume otherwise:

dD +eE = )_ ai,
i€l
where d, e € k; each a; is homogeneous of non-zero degree; and only finitely many a; are
non-zero, say a; # 0 for ¢ € I. As before, we may as well assume that every element of
I, is one of the canonical generators of I.

But row, looking at homogeneous components, we can restrict attention to the ho-
mogeneous component with the same degree as one of D or E, say D. So each relation in
Iy must only cover atoms in supp(D), and thus every relaticn is of the form uv, where u
and v are in D (since there are no duplications with any vertices in common with D), but
have no upper bound. But then, since duplications are “minimal” (i.e., D is a Boolean
algebra with only its top element missing), deg(uv) = deg(D), but then, if { = uv, it is

impossible for a; to have positive degree. =

Proposition 4.5.7 If Ap is a complete intersection ring, and D and E are distinct

eliminations, then supp(D) N supp(E) = 2.

Proof: By Lemma 4.5.6, D and E are part of a regular sequence, 50 [],¢uppyp) Z is an
NZD modulo [];reeupp(e) - But then, as in the proof simplicial complex case, Theo-

rem 4.1.1, supp(D) Nsupp(E) =0. =

Proof of main theorem

Finally, we can prove Theorem 4.2.1
Proof: (<=): This is easy since each of B,, B,.\i, and B, U1 isa complete intersection
(Ap = k[z1,...,Zp), k[Z1,. .., Za]/ (21 -+ - 2,), and k[zy,...,2,,1)/(1' =2y - - - £,), respec-
tively), Apxqg = Ap ® Aq for any simplicial posets P and @, and the direct product of
two complete intersection rings is easily seen to be a complete intersection again.

(=): Propositions 4.5.1, 4.5.5, and 4.5.7 show that no eliminations or duplications

can share vertices with one another. So partition the vertices by which elimination or
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duplication each one is part of, and also group together those vertices that are not in
any duplication or elimination. It is easy to see that the groupings into duplications,
eliminations, and others corresponds to the breakdown of the components of P given in

Theorem 4.2.1 (in reverse order). w
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Chapter 5

Free resolutions

In this chapter we solve two problems that do not necessarily seem related at first, but
that both involve computing invariants of minimal free resolutions of Ap as a k[V]-
module, where V' is the set of vertices of P. In both cases, this is a generalization of
work done by Hochster [Ho], who, using ideas from Reisner [Re], worked with simplicial
complexes.

We start by introducing a new basis that is especially useful when thinking about
Ap as a k[V}-module. Then, after reviewing the necessary background on free resolu-
tions, we find the Betti polynomial of Ap as a k[V]}-module. After that, we review the
background material for local cohomolcgy, and find the Hilbert function of the lncal co-
homology modules of Ap. In both cases, the solution involves splitting a chain complex
into subcomplexes even more finely in the simplicial poset case than was required in the
simplicial complex case. The resulting subcomplexes are then shown to be isomorphic
to cochain complexes of certain simplicial posets; the details of signs and dimensions are
left to a technical lemma at the end of the chapter. We conclude with an example of
each theorem.

Throughout, we assume that k is a field, fixed from the start; P is a simplicial poset

with vertices V = {z,,...,z,}; and S = k[z,,...,z,). Note that Ap is an S-module.
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5.1 Background

The first problem we solve in this chapter is to find the Betti polynomial of a minimal

free resolution of Ap over k[V], generalizing the following theorem:

Theorem 5.1.1 (Hochster [Ho, §5]) The Betti polynomial of k[A] as a k[V]-module
is

Ti(k[ALY) = S (T X)Bwi-i-1(Bw),

WCV z;eW

where Aw = {F e A: FCW}.

The second problem is to calculate the Hilbert series of the local cohomology of Ap,

generalizing the following theorem:

Theorem 5.1.2 (Hochster [St4, §I1.4]) The Hilbert series of the local cohomology
module of k[A] is

A7

F(H‘(k[A]),)\) = Z Bi—|F|—l(lkF; k) H

-1
Fea z,EF 1- ’\j

The proofs of both of these results rely upon the following idea:

Definition: Let K be a chain [cochain] complex, with boundary {coboundary] operator

d [6]. K is said to split into subcomplexes {K, : a € A} (for some index set A) if:
(l) K= @,,GAICO,

(ii) d [6] acts upon each K,

In both cases, we split a certain chain complex by the usual fine degree. But the
elements of this complex are not. just elements of k[A]; they are ordered pairs, which, for
the purposes of using the fine degree to split the complex, are treated as the numerators

and denominators, respectively, of a fraction. The subcomplexes are now identified by
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the (unique) fraction that has the specified degree of the subcomplex and is in “lowest
terms,” i.e., the numerator and the denominator have no common support (for Betti

polynomials) er minimal common support (for local cohomology).

5.2 A new basis for Ap

Both results in this chapter rely upon the following k-vector space basis of Ap.

Definition: Let P be a simpiicial poset with vertices V. Then define

Bo(P) :={yp:y € P, p € M(V), supp(p) C supp(y)}.

Proposition 5.2.1 By(P) is a k-vector space basis of Ap.

Proof: Recall (from the Introduction) that the standard basis of Ap is the set of (mono-
mials corresponding to) multichains ¢ = ¢; < ... < ¢ in P (so the corresponding
monomial is ¢;---¢ € Ap). Let y = ¢; and pu = [I;;‘l(l'[,':,..sg z;). It is clear that

supp(u) € supp(y), and ¢ = yu follows from the observation

w<z=w=z [[ z. (5.1)
tri<w
So By(P) contains the standard basis.
Further, every yu € By(P) is equal to (the monomial corresponding to) some multi-

chain ¢, as follows. Say u = [T, z{‘; then we may rewrite u as

-1
B = II( H 2,‘),

j=1 Ti€u,

where p; := {z; : a; > j} and ! := min{j : p; = @}. Let ¢; be the unique element in

[0,y] with supp(c;) = supp(u;) Then it is easy to see, by induction and equation (5.1)
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again, that yu = ﬂ;-=, c; where ¢; <... < ¢ is a multichainin P. =

5.3 Free resolutions

In this section, we collect the facts we need about free resolutions. Although proofs of
most of the statements may be found in various algebra texts such as [La], we mostly
follow the treatement of [Ho], which gives us just the results we need to start determining

the Betti polynomial of Ap.

Theorem 5.3.1 (Hilbert syzygy) Let M be a finitely-generated Z™-graded S-module,
S = k[z1,...,z,]. Then there is an ezact sequence, called a finite free resolution (or

FFR),
FO-MAM_ - - - -MEBEMEBM-0

of Z™-graded S-modules M;, with p; preserving degree, and h < n. We also often write
Fi= M,‘.

Proof: [La, §XVI.10.15]. =

Definition: A finite free resolution is minimal if equivalently

(i) for each ¢ > 0, p; maps the free generators of M; onto a minimal homogeneous basis

for Im(p;); or
(ii) for each > 1, Im(p;) C S+ Mi_;.

We call such a resoluticn a minimal free resolution (or MFR).

Definition: Fix a polynomial ring S. Let 0 —+ M, — -.- My — M — 0 be a2 minimal
free resolution of an S-module M over S. Then define the ith Betti number of M to
be .

Bi(M) := ranks(M;), .
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so M; has §; S-module generators, uy,...,us. Then also define the ith Betti polyno-
mial of M to be N
Ti(M,A) := 5 Adeslws),

=1

Remark. These are invariants of M (i.e., any MFR of M will yield the same Betti
polynomial. This will follow from torsion (defined below) being well-defined, and the

relation between the Betti polynomial and torsion, also given below.

Remark: This is the obvious generating function invariant of a free resolution. In
general, it is very difficult to produce a free resolution of M from scratch, so we often
settle for the Betti polynomial. In turn, the Betti polynomial can give a strong hint of
what an MFR of M is, by providing the degrees of the generators; often, in a particular

case, it is then easy to figure out the actual generators, and hence the resolution.

Definition: (see [La, §XVI1.3], for instance) f F:0 = M}, — --- = My - My > M —

0 is a free resolution of M, and N is another S-module, then
NRF:0-NQsM,—--- - NsM, = NQs My — 0
is a complex (i.e., @ = 0) and

Tor{ (N, M) := H(N ® F).

Proposition 5.3.2 Tor(N, M) = Tors(M, N).

Proof: See [La, §XVL.3], for instance. =
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Regard k as the S-module S/S,. Then Tor} (k, M) = Hi(k ®s F) =
H(2k@sM .- 2 k@s My 2 0)
(the maps are 0 by definition (ii) of MFR, since k = 5/5,)
=k Qs M,

which is a k-vector space with k-basis corresponding bijectively to the S-basis of the free
S-module M;. Further, this bijection preserves degree (k ®s M; is still Z™-graded), so
F(Tor¥(k, M), \) = Ti(M, )). Thus, we need only calculate Tor} (k, M).

We start by noting that Tor’(k, M) = Tor;(M,k), so that we may perform this

calculation by first finding a free resolution of k.

Definition: Let S = k[z,,...,z,], and let $™ = Su; @ -- - @ Su, be the free S-module
on n generators. The exterior algebra A(S™) becomes a free resolution of k, called the

Koszul complex:
K(z1,... 20 S):0 = AMS") B ... 5 A (S B S B k-0
with

r-1
de(tig Ao Aug, Ao Ay, ) = Z(—-l)’z;,(u.-o Ao AUy A A )
=0

(where * denotes omission) aud dp : z; — 0. (See [La, §XVIL.10].)

A simpler and more useful way of expressing the Koszul complex is as follows: Let
T be the simplicial complex 2¥, where V = {z,,...,z,}. Then K; = A*(S") is the free
S-module on the (n — i)-faces of L, where, if V\U = {l; < --- < l;}, then U corresponds
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to u,, A--- Auy. Then

W= ¥ (-1692U G {z;}),
Jiz,€V\U

where
a(1,U) :=#{t:t<j, z, € V\U}. (5.2)

5.4 Betti polynomials of simplicial posets

Now we apply the definitions and techniques of the previous section to simplicial posets,

and, following the general plan of [Ho], prove the following

Theorem §.4.1 If P is a simplicial poset on vertez set V = {z,,...,z,} and S = k[V],
then

Tor? (k, Ap) = P (Tor{k, Ap))v\1)s
TCV

and
(Tor?(k, Ap))qw\1) = H M ITI==1(P\T; k)

where e(V\T) := deg(V\T), and (Tor}(k, Ap)). is the e-graded piece in the normal fine

grading. Consequently,

Tor (k, Ap) = @ H™'TI=-1(P\T; k).
TCV

Corollary 5.4.2 In the MFR of Ap as a k[V]-module,
Ti(Ap,A) = 3 (IT X)Bwi-iza(Pw),

WCV z.eW

where Py is the simplicial subposet {y € P : supp(y) C W}.
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Proof: By definition of T; and Theorem 5.4.1,

Ti(Ap,)) = F(Torl(k,Ap),))

= Y Adim((Tor{(k, Ap)).)
€2

= Y (I wF-m- AT

TCV i:z,eV\T

= Y ( IT 2A™==(Pw),

WCV uz,eW

which yields the result, since homology over a field k just gives vector spaces, and then

H;(-) = H(-) by the usual vector space duality. =

Lemma 5.4.3 Ap is a finitely generated free S-module.

Proof: Use the basis By(P) from Section 5.2; as an S-module, then, Ap is just generated
by the elements of P, since any multichain is just the product of one element in P, and

any number of vertices, which arein S. =

Thus, we can apply Hilbert's syzygy theorem and find a minimal free resolution of

Ap over S. As noled above in the general case, we do not actually find the resolution

itself, but settle for Corollary 5.4.2, using the Koszul complex to calculate H;(Ap ®sK).
The rest of this section is devoted to the proof of Theorem 5.4.1.

So now we are looking at

Tor;s(Ap, k) = H.'(Ap ®s fC)
= Hi(0 — Ap®sA™(S™) "B ... = Ap @5 A(S™) '8! Ap ®5 S - 0).

Let £ := Ap ®s X; using By(P), a basis for L, is

B;:= {(ymU):y € P, p € M(V), supp(s) S supp(y), U € (n‘i i)}-
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Also, et B = U;B;. In this case, d: £; — L;_, is given by

d(y”9 U) = ;U("l)a(j'u)(y”zh vu {-’l'j}),

which, in terms of our basis, is

- ZU(—1)°‘f'”’(y(ﬂzj),U u{z;}) +
£
<y

ZU > (=100 p, U U {z5)). (5.3)
z,¢ v<:,z
z,Ly

Note that, for a given j, the second summation is empty if z; and y have no upper bound

in P.
Remark: We also attach to B a grading,

dego((yp,U)) := deg(yp) — deg(U).

Because of this, we think of (yu,U) as a fraction of sorts, with yu in the numerator and
U in the denominator. This fine grading subtracts deg(U) instead of adding deg(V\U)
(recall the precise definition of (yu,U) in terms of Ap ®s A'(S™)), so it differs from the

standard fine grading by a constant factor:

dego((yu, U)) = deg((yp,U)) — (1,...,1),

where deg((yu,U)) is the normal fine degree. Since the error term is constant, using
deg,(-) instead of the normal degree does not change the decomposition of £ into homo-

geneous subcomplexes, only the naming of these subcomplexes.
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Splitting into subcomplexes

We now split the complex £ into subcomplexes. In fact, we want to split £ as finely as
we can. It is clear that d must preserve our degy(-), and, in fact, this was all that d has
to preserve in the simplicial complex case.

But here we notice that not only does d preserve this degree while increasing the
degree of the “numerator”, but it also only sends basis elements featuring y € P to basis
elements featuring z € lky (in the simplicial complex case, of course, these two concepts
are identical, for in a simplicial complex, the degree of an element determines the element
precisely). So now we have a decomposition not just into fine grades of degree, but into
“extra-fine grades” of pairs: degree, and y € P. We want to capture that difference.

First, as with the simplicial complex case, we have to find those “irreducible” basis
elements that do not arise from applying d to another basis element. These elements will
index our subcomplexes. In the simplicial complex case, they could be specified entirely
by their degree; here we must also specify y.

Of course, not every y can be matched with every possible degree. In fact, as with the
simplicial complex case, the “irreducibles” can be characterized by having no common
support in the numerator and denominator (for much the same reasons), so if ¢ is the
degree of the subcomplex and yo is in the numerator of the “irreducible” indexing the
subcomplex, we will need supp(yo) = supp(€o4)- The need for the rest of the condit:ons
on up and ¢ should be clear.

We let E denote the set of all possible “extra-fine grades:”

E := {(yo,) : yo € P, €o € Z", supp(eo) = supp(yo), €0 2 (~1,...,-1)}.

Next, we find the correspondence between E and basis elements of £, with the fol-
lowing |
Definition: We define a map env : B — E (and then extend it to env : L — E) as

I>llows: for a given (yu,U) € B, find the unique (yo, €0) € E such that
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(i) eo = dego((yp,U)); and

(i) yo < y.

Proposition 5.4.4 The map env : L — E described above is well-defined.

Proof: This ¢ is clearly determined by part (i) of the definition, which, in turn, de-
termines supp(yp). But then yo is uniquely determined, since part (ii) of the definition
specifies that yo € [0,y] and supp(yo) = supp(eo;) < supp(eo) C supp(ys)\supp(/) C
supp(y). It is also clear that (yo,€0) € E, since ¢ > —deg(U) > (-1,...,—-1). ®

So now, if we define

L(yu,v) := the k-vector space spanned by (yu,U),

and

L) i= &) L(yuU)s
(vuU)EB
env(yu,U)=(10,c0)

each Ly, is in the ey-graded piece of L.

Lemma 5.4.5

TorS(Ap,¥) = @ Hi(Cune)-
(W!CO)EE

Further, then, the eg-graded piece of TOI‘;-S(AP, k) i3 @yy:(40.0)eE Hi( Ligorco))-

Proof: We already have Tor,-S(Ap,lc) = H;(L), so we must show that L splits into
D (vo.c0)E L(wo,0) 1-€-5 that d maps Ly, .,) into itself. First note that £ = @Ly, ) as
S-modules, since £ = ®L(y, v) and env is well-defined.

To show that d maps Ly, ) into itself; i.e., env(d(yu,U)) = env(yu,U), say that
env(yu,U) = (yo,€). Consider the definition of d, equation (5.3). Clearly, d preserves
degree (part (i) of the definition of env); and the first component of every basis element
composing d(yu,U) is either yu' or zu, where z > y > yo (part (ii) of the definition of

env). ®
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Irreducible elements

Definition: For every (yo,€0) € E, there is a unique (yopo,Uo) € B such that
env(yopo, Uo) = {yo,€0) and supp(yo) N Up = @. It is defined by Up := supp(eo-) and
deg(uo) = €0 — deg(yo) + deg(Us); this follows almost immediately from the definitions
of B and E.

Remark: The basis element (yopo, Us) is an “irreducible;” applying the boundary oper-
ator § to any basis element will not produce (yopo, Us) as a summand. Furthermore, this
characterizes the set of all (yopo,Us)’s. The following lemma recasts £ in terms of these

irreducibles.

Lemma 5.4.6 The complez L, ,) is isomorphic ito the complex

L'(m,eo):O—»Mu,,-{» @ Mu—sb---—{tMvﬁﬂ,

U1=|Uol+1
UpgCU

where each My has basis

Bl = {(y,U) : y=yo, supp(y)NT = G,

T U supp(y)\supp(y0) € U C T Usupp(y)}

with T := supp(eo_). The isomorphism maps (yu,U) to (y,U), and

8y, U) = 3 (-1, Uu{z; N+ X 3 (-0, U U {z;}),
i A

(where a is defined in equation (5.2)).

Proof: This is equivalent to showing that, for a fixed (yo,€0) € E, there is a bijection
between {(yu,U) € B : env(yp,U) = (yo,€)} and pairs (y,U) € By, that takes (yu,U)
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to (y,U).

Given (yp,U) € B, env(yp,U) = (yo, €0) it is immediate from the definition of env
that y > yo. Further, by part (i) of the definition of env, supp(y) N T = supp(eo,) N
supp(¢o-) = .

To show that T U supp(y)\supp(yo) C U, first note that

T = supp(€o-) = supp((dego(yp,U))-) C U.

Then, comparing (yu,U) to (yo, so, Uo), we see that z; & supp(yo) = supp(yopo) implies
that the jth compenent of £ = deg,(yope, o) is at most 0, so that if z; € supp(y), then
r; € U (otherwise, the jth component of ¢ = degy(yu, U) would be positive).

Similarly, to show U C T U supp(y), it is necessary and sufficient to show that
U\T C supp(y). Note that T = Uy, and then z; ¢ U, implies that the jth component of
€0 = degqy(yopo, Uo) is at least 0, so that if z; € U, then z; € supp(y) (otherwise, the jth
component of ¢g = degy(yu,U) would be negative).

Conversely, if (y,U) € By, then let x4 be the unique monomial such that degg,(u) =
€0 — deg(y) + deg(U). Then it is easy to see that env(yu,U) = (yo,€0). It remains to
show that u is properly defined (4 > 0) and that (yu,U) € B (i.e., supp(g) C supp(y)).

Since 0 < deg(po), supp(uo) < supp(yo) S supp(y), and deg(u/po) = (deg(U) —
deg(Us)) — (deg(y) — deg(yo)), it suffices to show that U\Us 2 supp(y)\supp(yo) (so
deg(p) > 0) and U\Up C supp(y) (so supp(ps) C supp(y)). But this is just the last
condition on By, rewritten supp(y)\supp(yo) C U\T C supp(y). ®

Proof of main theorem

Now we are ready to prove Theorem 5.4.1, by plugging Lemma 5.4.6 into Lemma 5.8.1,
which will be stated and proved in Section 5.8.
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Proof: Momentarily using ¢o-grading, we see from Lemmas 5.4.5 and 5.4.6 that

(Tor,-s(k, Ap))e = @ Hi(Lgo.c0)) & @ Hi(L (yo.e0))s

vo:(vo.€0)EE vo:(vo.c0)EE

which, by Lemma 5.8.1 with Uy = T’ = supp(eo_) and W = supp(yo), is
o @ I'{ﬂ—lT]—i—l(lkP\Tyo)

vo:(vo.e0)EE
W=supp(10)=0
~ f]"'lTl'i'l(lkp\TO) if (0,60) )
1o if (0,¢0) ¢ E

Now note that from the definition of env, @ = supp(yo) = supp(éoy), so T =
supp(€o_) = supp(es), and also that g > (—1,...,—1), so there is a bijection {eo :
(0,€0) € E} — 2V given by €o — T = supp(eo). Also note that lkp\TO = P\T. The result
then follows, by switching to normal grading: € = €0 + (1,...,1),50 0 < e < (1,...,1),
and supp(e) = V\T. =

5.5 Local cohomology

Definitions: (See [AM, Chapter 3] for a more detailed explanation). Let A be a com-
mutative ring, and let U C A. Define the multiplicative set generated by U to be the
multiplicative closure of U i.e., the smallest subset of A containing U that is closed under
multiplication. Now let M be an A-module. If U is a multiplicatively closed set, let My
(sometimes written U~! M) denote the module of fractions: M x U modulo the relations
{(m,u) = (m',u’) if t(um’ — u'm) = 0 for some t € U}, with the obvious addition and
multiplication. We will suggestively write (m,u) as m/u. We call the map ¢ : M — My,

¢ : m — m/1 the canonical map.

Definition: Fix a polynomial ring S = k[V], V = {z1,...,zs}. Then for M an S-
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module, define the cochain complex

K> M):08M23 [ Mo3 [ Mv—--—> [ MyBM -0
ve(y) ve(3) ve(als)

(where My := Mp, and U is the multiplicative set generated by U). To define the
coboundary maps 6,4, : My — Uu'e( ) My:, where V\U = {z;, < ... < zy,,_,}, first
let ¢, : N — N,,’ be the canonical map, v +— v/1. Then

n—a

Bua () 1= S (=1)7 4y, (w).

=1

It is easy to check that this coboundary map turns K(z*, M) into a cochain complex.

The ith local cohomology module of M is defined by

H(M) = H'(K(z>, M)).

See [St4, §1.6] for some interseting properties of the local cohomology module.

The goal of the rest of the chapter is to find the Hilbert series of the local cohomology
module of Ap, generalizing Theorem 5.1.2. As with the Betti polynomial in section 5.4,
we will find a complex to split, and where the simplicial complex case splits just along fine
degrees, here we split along pairs of elements in P and degrees. The only real difference,
once the language of the two problems is stripped away, is that here, instead of not
allowing the “numerator” and “denominator” to overlap, as with the Betti polynomials,
we require it. This still allows just as much freedom in picking the “numerator” once the

“denominator” has been fixed: namely, the complement of the “denominator.”
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Figure 5-1: Why divide by z¢?
5.6 A basis for (Ap)y

Before we do anything else with the local cohomology of M = Ap, we must decide on a

basis for My; say U = {z,...,z,}, then define

By:={2£ . yeP prveMy)

Tyv
supp(v) € U C supp(y), supp(p) C supp(y), supp(p) Nsupp(v) = @},

where, for any U C V,

Ty = H Ty.

€U
We also define B := Uycv Bu.

Part of the motivation of this definition is just to extend the basis By(P) from M =
Ap to My, while expressing the fractions canonically; but zy is required to be in the
denominator to ensure that the proposed basis element cannot be written as the sum of
other basis elements, as the following example shows.

Example: (See Figure 5-1.) Let U = »,. Then z; € M;,, but it is not a basis element.
Instead, we multiply by zy in the numerator and denominator, which then shows further
decomposition:

TiZ2 U1 W2

n=——==+=,
Z2 I2 x2
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and y,/z; and y3/z; are basis elements.

Proposition 5.8.1 By is a basis for My.

Proof: First we check that By spans My. Since M is spanned by

{yn:y € P, p € M(k[V]), supp(s) C supp(yj},
My is certainly spanned by

(2 yep premy),

supp(u) C supp(y), supp(v) C U, supp(p) N supp(v) = B}

(the last condition is not necesary, but it is helpful).

We partition U as follows:

U=UpUU,0U,0U,,

Up = (U\supp(y))\supp(v);
Uy = (U nNsupp(y))\supp(v};
(U\supp(y)) N supp(v);

Uy, = (UnNsupp(y))Nsupp(v).

&
I

Also let zp = zy,, T, = zv,, 2, = 7y,, and =, = ry,,. Note that r,z,, divides v, so

we may define v’ such that v = v'z,z,,. Then observe that

yB _ yeTer,2, _ _ (y2.%0)(p2y)
v vipz,z,  (V'z,zy)(Tozy)T,
(¥Zv\eupp(y)) (BTy)
zy(v'z,)

84



Now,

)
YTU\eupp(y) = Z:y.',

1=1

where supp(y:i) = supp(y) U U, so

Z (y.)(uzu) (5.4)

= zv(v'z,)

and, for each 1z,

e V'z, divides v, so supp(v'z,) C supp(v) € U, and supp(¢'z,) C supp(v) C
supp(y; € supp(y:);

e supp(pz,) C supp(u) U supp(y) = supp(y) C supp(¥:);

e U C supp(y:); and

supp(pzy) Nsupp(v'z,) C (supp(p) U supp(zy,) N supp(v)

= (supp(p) Nsupp{r)) U (supp(z,) N supp(+)) = O.

Thus, equation (5.4) expresses every element of a spanning set of My as a sum of elements
in By, so By spans My.

To show that By is linearly independent, assume that

Zk Yilhi —

=1 TUV

where k; € k, and (yiui)/(zvvi) € By. Let gi := [1;4,v; € M(U) and p{ := pip;. Note
that supp(p}) € U U supp(u;) C supp(yi). Then

0= k Yildi = k y'“'p' = k' i
§ Ty .Z; Tyvipi -'Cu'n.—l V;; yp.
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8o, in MUa
0= Z ki!liPﬁ’
=1
In other words,
=1
{for some £ € M(U). Now let p; = pi€, and note that supp(p;) C supp(p}) Usupp(£) C
SU S aupp(yi), so

0= }g_‘,ka(yape)

i=1

where each y;p; is a basis element of M, and therefore, each k; = 0. =

So now, if V\U = {z;;, < ... < z4,},

yu — 1 yuzy
6 2E Y 1) -1y
|U|+l(zuu) §( Y
= 3 (-1t _YEE
z,@U xUU{-"-)V

where a is defined in equation (5.2). In standard form, that is

afi YBT: aliUy___*H
Sui(EE) = T (-1 2EEL 4 55 (55)
| Tyv z, gU Zuu {3-}” z,@U v<s,z IU“{’:}” .
$l<9 z, Ly

It is easy to check that each summand in equation (5.5) is a basis element in Byyqz,} or

BUU(’J}‘

We conclude this section with an elementary, but useful, observation.
Lemma 5.6.2 Ifyu/zyv € B then (deg(yu/zuv)); < 0 iff z; € supp(v).

Proof: If z; € supp(v) C U, then (deg(zyv)); > 2. But supp(v) N supp(u) = @ and
(deg(y)); < 1 for any i, so (deg(yu)); < 1. Conversely, if (deg(yu/zyv)); < 0, then
zj € U C supp(y), so z; € supp(rv). =
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5.7 More extra-fine grading

Once we have the correct basis, we can find the Hilbert series of the local cohomology
modules, which is the goal of this section. The problem becomes quite similar to the
Betti polynomial problem, only some of the technical details become a little messier be-
cause the numerator and denominator are forced to overlap and because the denominator
corresponds to a multiset, not just a set.

In particular, the set E of all possible extra-fine grades becomes slightly less obvious.
The “irreducibles,” instead of being in “lowest terms” as in the Betti polynomials prob-
lem, satisfy supp(v) = U (as opposed to the more general supp{v) C U required of all
basis elements) because that is equivalent to yu/zyv not being produced by §, since this
condition means that no z; can be removed froin U without violating supp(v) € U. By
Lemma 5.6.2, essentially, this is also equivalent to there being no cancellation of degree
between the numerator and denominator, so supp(ye) = supp(¢)

More rigorously, we define

E := {(yo,€0) : yo € P, €o € Z", supp(eo) = supp(yo)},

and then show that this corresponds to the supp(v) = U condition. We do this by

finding the correspondence between E and basis elements of K(z*°, M). We again make

the following
Definition: We define a map env : B — E (and then extend it to env : K(z™, M) — E)
as follows: for a given yu/zyv € B, find the unique (yo,€0) € ~ such that

(1) €0 = deg(yp/zuv), and
(ii) yo < y-
Note that this time, ¢ is the normal fine degree.
Proposition 5.7.1 The map env: K(z*°, M) - E dcs‘cribed above is well-defined.
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Proof: This ¢ is clearly determined by part (i) of the definition, which, in turn, de-
termines supp(yo). But then yo is uniquely determined, since part (ii) of the definition
specifies that yo € [0,y) and supp(yo) = supp(eo) C supp(yu)\supp(zuv) C supp(y). ®
Let
K(2®, M)y c0) 1= @ K(z>, M)

= v yu/zyve
yu/zyv€EB
env(yu/zuv)=(wo.c0)

Note that each K(z*, M), ., is in the eo-graded piece of K(z*, M).

(VO-‘O
Lemma 5.7.2

HKE@™ M) = @ HKE M),
(vo.¢0)EE

Proof: We must show that K(z*, M) splits into @, .)ee K(z™, M) 0.0 1-€-5 that &
maps K(z*, M)(,.) into itself. First note that K(z*, M) = BK(z%, M) ()0.c0) 25 S-
modaules, since K(z*°, M) = @K (™, M),./z,. and env is well-defined.

To show that 6 maps K(z>, M), .., into itself; i.e., env(6(yu/zuv)) = env(yu/zyv),
say that env(ypu/zyv) = (yo,€). Consider the definition of 8, equation (5.5). Clearly,
6 preserves degree (part (i) of the definition of env); and the first component of every
basis element composing é(yu/zyv) is either yu' or zu, where z > y > yo (part (ii) of

the definition of env). ®

Irreducible elements

Once again, we look for the “irreducible elements” that cannot be produced by 6. It

takes more effort in this case, though.

Lemma 5.7.3 For every (yo,€0) € E, there is a unique youo/zy,v € B such that
env(yopo/Tu,v) = (Yo, €0), and supp(v) = Uy. Further, if env(yp/zyv') = (yo,¢€0) for

some other yu/zyv' € B, thea v' = v.

Proof: Let

Us := supp(e_)
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deg(po) := eo4 — deg(supp(eoy))
deg(vp) = e€o_

(A monomial is defined by its degree as long as that degree is positive, which clearly

holds for the definitions of both po and v above.) Then

deg(yopo/zu,v) = deg(yo) + deg(po) — deg(Uo) — deg(vo)
= deg(supp(eo)) + €04 — deg(supp(eo,)) — deg(supp(éo-)) — o

= €9,

so env(yopo/Zuv,¥) = (Yo, €0)-

Before showing uniqueness, we prove the second nart of the lemma. So assume
env(yu/zuv') = (yo,€o0) also; then deg(yu/zyv') = deg(yopo/ru,v), so supp(v') =
supp(v), by Lemma 5.6.2. Also,

deg(v') — deg(v) = deg(supp(y)\supp(yo)) + (deg(u) — deg(po)) — deg(U\Upb) (5.6)

(Uo C U since Uy = supp(vp) = supp(v) C U).

Assume that the jth component of deg(v’') —deg(v) is positive. Then z; € supp(v') =
supp(v) C supp(yo), so the jth component of deg(supp(y)\supp(yo)) = 0, and then
by equation (5.6), z; € supp(u), contradicting supp(u) N supp(v’') = @. So the jth
component of deg(v’') — deg(v) is not positive. Now assume that the jth component
of deg(v') — deg(v) is negative. Then z; € supp(v) C Up, so the jth component of
deg(U\Uo) = 0, and then by equation (5.6), z; € supp(uo), contradicting supp(uo) N
supp(v) = @. Thus deg(+’') — deg(v) =0, and v' = v.

Finally, assume that env(you/zuv') = (yo, €0), and U = supp(¢v'). Then, by the above

paragraph, v = v and U = supp(v’') = supp(v) = Up. Furthermore,

deg(u) = eo— deg(yo) + deg(U) + deg(v')
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= € — deg(yo) + deg(Uo) + deg(v)
= deg(po)

SO U = Y. B

We make the following simple observation.
Lemma 5.7.4 With yo, €9, Up, and v as above, Uy = supp(yo) iff 0 < 0.

Proof: If Uy = supp(ye), then supp(v) = Up = supp(yo) = supp(¢o), so by Lemma 5.6.2,
€0 < 0. Conversely, if ¢g < 0, then by Lemma 5.6.2, Uy = supp(v) = supp(€o) = supp(yo).

Irreducible elements in hand, we can give a new description of the components of £

again.

Lemma 5.7.5 The complez K(z®°, M)y, ,) is tsomorphic to the compler

Lo : 0= My, 2 @@ MyL. L My—0

WVi=|Uol+1
UsCU

where each My has basis

By :={(y,U) : y 2 yo, Uo Usupp(y)\supp(yo) € U € Uy U supp(y)}

with Up := supp(eo_). The isomorphism maps yu/zyv to (y,U). And

6(y,U) = Z (_l)a(j.U)(y,U U {zj}) + Z z (-l)a(j'u)(zau U {zj})
:,gU :,iU v<s,z
sy eV

(where a is defined in equation (5.2)).

Proof: This is equivalent to showing that for a fixed (yo,€0) € E, there is a bijection
between {yu/zyv € B : env(yp/zyv) = (yo,€0)} and pairs (y,U) € By, that takes
yu/zuv to (y,U).
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Given yu/zyv € B, env(yp/zuv) = (yo, €0) it is immediate from the definition of env
that y 2 yo.

To show that U U supp(y)\supp(yo) C U, first note that
Uo = supp(eo_) = supp((deg(yu/zuv))-) € U.

Then, comparing yu/zyv to yopo/zu,v, We see that r; & supp(yo) = supp(yopo) implies
that the jth component of ¢ = deg(yopo/zu,v) is at most 0, so that if z; € supp(y),
then z; € U (otherwise, the jth component of € = deg(yu/zyv) would be positive, since
supp(v) C U).

Similarly, to show U C U U supp(y), it is necessary and sufficient to show that
U\Uo, C supp(y). Note that z; € Uy (and supp(v) C Up) implies that the jth component
of € = deg(yopo/zu,v) is at least 0, so that if z; € U, then r; € supp(y) (otherwise, the
Jjth component of ¢ = deg(yu/zyv) would be negative).

Conversely, if (y,U) € By, then let u be the unique monomial such that deg(u) =
(€0 — deg(y) + deg(U))4+, and let v be the unique monomial such that deg(v) = (e —
deg(y) + deg(U))-. Then it is easy to see that env(yu/zyv) = (yo,€). It remains to
show that u and v are properly defined (x > 0, v > 0) and that yu/zyv € B. It is
immediate from their definitions that supp(u) N supp(v) = @ and that U C supp(y)
(since Up = supp(eo_) C supp(eo) = supp(yo) € supp(y)). It follows from youo/zu,v
being a basis element that v > 0 and supp(v) C Uy C U.

Now, 0 < deg(po), supp(so) < supp(yo) < supp(y), and

deg(u/pe) = (deg(p)— deg(v)) — (deg(uo) — deg(v))
= (€0 — deg(y) + deg(U)) — (e — deg(yo) + deg{Uo)
(deg(U) — deg(Uo)) — (deg(y) — deg(yo)),

so it suffices to show that U\U; 2 supp(y)\supp(yo) (so deg(u) = 0) and U\U, C
supp(y) (so supp(s) C supp(y). But this is just the last condition on By, rewritten
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supp(y)\supp(yo) € U\Uo C supp(y). ®

Main theorem

Theorem 5.7.6 If P is a simplicial poset on vertez set V = {z,,...,2,} and S = k[V],

then the Hilbert series of the local cohomology modules of Ap as an S-module is

A;‘ N
147

F(H'(Ap),A) = ¥ Bicetuo)-1(lkyo) ]

weP Jizy <y

Proof: Abstractly, we can consider the cochain complex L' ., to be a chain complex

with the same maps, but with the modules numbered in reverse. So then by Lemmas 5.7.2

and 5.7.5,

F(H'(Ap),)) := Ez dim((H'(K (2™, M)))e) A
©EL"

= Z dim((Hn_.'(K:(Ioo» M)))co)Acoa
EZ"
which is, using Lemma 5.8.1 with T = @ (and therefore W = supp(yo)\ls),
= ) A°dim( @ A IH-I-1(ky,)),

©€EZ w:i(ya.c)EE
supp(ypo)=Uo

which is, by Lemma 5.7.4,
= Z A\ Z ﬂ'n-r(w)—(n—i)—l(]kyo)

€00 <0€Z" vo:(vo.e0)EE

- Z A% Z B""‘W"(“""’“(lkyo)

<0  yo:supp(yo)=supp(co)

_ 2 ﬁ"'(m)"(lkyo) Z A©,

weP <6
supp{¢o )=supp(wo)

which then proves the result, by a standard elementary generating functions technique

and vector space duality again. ®
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supp y, —+

Figure 5-2: Lemma 5.8.1
5.8 Technical lemma

This is the technical lemma that lies at the base of both the results from this chapter.
It is almost intuitively clear except for the signs that have to be checked, and also the
dimension that everything lies in. It is similar to, but more complicated than (especially
in its generality), the equivalent steps in Hochster’s proofs of the simplicial complex case.

Once the poset P is fixed, there are three variables to this lemma: T, yo, and W.

When used in Theorem 5.4.1, W = supp(yo), and when used in Theorem 5.7.6, T = @.

Lemma 5.8.1 Given a simplicial poset P on a vertez set V = {z,,...,z,}, S = k[V],
M = Ap, which is an S-module. Also given a set of vertices T C V, yo € P\T (i.e., yo 2
z for every z € T'), and a set of vertices W C supp(yo). Let Uy = ((supp(yo))\W)UT.
(See the Venn diagram in Figure 5-2.)

Finally, also assume a complez

L:0-My,> @ MyS @ My . EMy—o
UpCU UgCU
\UI=|Do|+1 [U1=106]+2

of S-modules defined by:
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e each My is a free S-module with basis

By = {by,v) : ¥ € lkp\Tyo, Up U (supp(y)\supp(yo)) € U C Up U supp(y)},

where supp(-) is in the poset P, not P\T, so that U must contain the shaded region
in Figure 5-2, and is limited to that region and W (note that the second condition

on basis elements in By restricts y); and

o the boundary operator is defined by

§(byuy) = 3 (1D uupn + X X (=1)CDbuui ),

z¢U z,8U u<s,z
z,<y z,Ly

wh.re a(i,U) := #{t: t < j, z, € V\U}.

Then
0 ifW#£0

H(L)=3 .
{ Hn=ol-i=Y(lkpyryo) if W = 0

Proof: Let P’ be the sim, licial poset
P’ := (lkp\ry0) x 2¥

and number the vertices as follows:
e number (yo, z;) by 1; and
e number (y,0) by j if yo <z, ¥

Since W C supp(yo), every vertex of P’ is numbered distinctly.

Now, it is easy to see that the direct product of simplicial posets corresponds, topo-
logically, to the join, i.e., |P x @| = |P|*|Q)| for all simplicial posets P and Q. Therefore
|P’| is a cone with any vertex of W serving as the apex, unless W = @. It thus re-

mains to show that H;(£) = H"-1Ul--1(P*), We do this by showing that the diagram
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C"m-IUoI-i-l(PI) S, Cn—onl-i-Z(Pl)
1 19
M & My,

Figure 5-3: Relating chains of £ to cochains of P’

in Figure 5-3 commutes, where

and

So first we

8((bw.v)))

¢ : M; — IRl (p)

¢ : b(y.U) — (_1)-7(y.WnU)(y1 wn U)‘

vy, U0):= Y a(j,Uo).

z,eP’
IJS(V'U‘)

calculate

= (=1 @WVs(y W AU)
= (=1 T (=1l (2} U (W NU)) +
EIGP\T (_l)ﬁ(z,WnU;j)(z, wn U).]

y<s,2
S X (LU, (2 U (WD) 4+
it
Z Z: (__l)w(v.WﬂU)-e-ﬂ(z.WnU;J')(z’ wnuU)
:;ély} ﬂ<s’-z

(where, because of how we numbered the vertices in P’,

By, Ui") = #{t:t<?, z, € atom(P'), z, < (v',U’)}

#{t:t <, z, € (supp(y)\supp(yo)) UU'};
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and the change in conditions or: the summations is an easy consequence of the definitions

of U, Uy, W, and T).

But also,

#(6(5.)))

(3 (1) Dby poen+ 3 (=1 uoie,y)

z,gU z,€U y<s, =
zi<y r, Ly
z (—1)" WA= U)y W N (U U {z:}) +
z,gU
I.Sv
Z Z (__1)v(v.Wﬂ(UU{t,}))-a(j.U)(z, WnUu{z;}))"
z,gU V<s, z
T, Ly
3 (—1) ooy {2y U (W N 1)) +
z,gU
z, <y
Z Z (_1)v(v.WﬁU)-a(j.U)(z, wnu)

z,¢U y<s,z
z, Ly

(since z; € supp(y)\U C W, but z; & supp(y) 2 W).

So, to establish the lemma, it remains to show that

and

1y, WnU) + By, {z}u(WNU)i) = vy {z}u(WnU)) —ali,U) (57)

14, WnU)+B(z,WnU;j) = vy, WnU)-a(j,U). (5.8)

We prove equation (5.7); equation (5.8) is similar. By definition of v, equation (5.7) is

equivalent to

ﬂ(yy {I.‘} U (W n U)! t) = a(ia UO) - a(ia U)

= #{t:t<i, z, € (V\U)\(V\U)}
= #{t:t<i, z, € (U\Up)}. (5.9)
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P Pl

Figure 5-4: An example

But

By, {z:}u(WnU)i) =
#{t:t <1, . € (supp(y)\supp(yo)) U ({z:} U (W NU))}, (5.10)

and equation (5.7) follows, by comparing the right-hand sides of equations (5.9) and (5.10)
(see Figure 5-2). =

5.9 Examples

Consider the simplicial poset P from Figure 5-4. Its realization is two 2-simplices glued
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along two of their edges, and an extra edge attached to two of the vertices.

Betti polynomials

Consider first, its Betti polynomials, following the proof of Theorem 5.4.1. Two of its

irreducible basis elements are (y3z,,@) and {z1, {z3}) (there are, of course, infinitely

many such elements, but we only consider these two). The subcomplexes that they each

anchor, of extra-fine grades (y3,(2,0,1)) and (z,,(1,0,—1)) respectively, are shown in

Figure 5-5, with edges marking the boundary map. The resulting poset (sitting sideways)

s, as described in the proof of Lemma 5.8.1, kp\ryo x 2*"PP(w) where yo is y3 and z,,

respectively, and T is @ and z3, respectively. The copies of lkp\Ty0 are shown in bold.

Now, all the subcomplexes for which yo # 0 have no homology, so we only have to

consider irreducibles of the form (0,T), where T C V = {z1,z2,z3}. The result cornes

from the following table (W = V\T):

w

Bi(Pw)),where B#£0|i (I=|W|—i~1)

0

{z1}
{z2}
{za}
{z1, 22}
{z1,23}
{z2,z3}

{171 + L2, 1‘3}

Ba=1
contractible
contractible
contractible
Bi=1
contractitle
Br=1
B=1

0

Thus To(Ap, A) = 1 + A1 A3 + A3, and Ty(Ap, A) = A; Az A3, This is confirmed by the

free resolution

0 — Sv— Su; & Sus ® Suz — Ap — 0,

where u; — 1, uz — y;, u3 — yq, and v — T U3 — T,22T3u;.
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2 z1x12 JAxx)) 2
(% . {x D ) (2,% x5, {%,,%;,%5))
(2% (1)) (zlez-(x1 %, 1)
(7:%:0) (2%, (%)) Yok Ay 15 %)
(332,23, {x,}) (2550 ]) 2,5 %, , (X, 25,5, ))

(2211 X3, %;,%,})

CAREREN)
(y1x1 ’ {x1 vxz »xa })
(x,,{x,}) (5 {x2,x5})
Y2 Xy, {x1 1X5,X3})
(¥2.{%5,%:1)
Figure 5-5: subcomplexes for Betti polynomials

Ya X, [(x,%;) %y
z,x, [( XX, X3) X5
Y3 /(x3) %, 2, [(%,%3,) %,
2,x, [(x,x,%x,)x
2, 155, 22 (XX, X3) Xy

2
) 2% [(x,x,) o /x )
4 X X, X
yaxl//((xl)) zle2/(x1x2) 151 X3 1%2 X3
2,x, /(X 2
X. X, X
yax /1 2,7, /(x,) & ‘I’//( - ))
2. X X X, X
YaX, X3 [(x3) Tttt 22E12x3/(x1x2x3)
Z,X, X, [( X, X,)

Figure 5-6: subcomplexes for local cohomology
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Local cohomology

Now tonsider the local cohomology modules of Ap, following the proof of Theorem 5.7.6.
Again, there are infinitely many irreducible elements, but we only consider two, yaz,/1
and y3/z2. The subcomplexes that they each anchor, of extra-fine grades (ys, (2,0,1)) and
(y3, (1,0, —1)) respectively, are shown in Figure 5-6, with edges marking the coboundary
map. The resulting poset (sitting sideways) is, as described in the proof of Lemma 5.8.1,
lkpyo x 2°uPP()\lo where yo = y3 in both cases, and Uy = @ and z3, respectively. The

copies of lkpys are shown in bold.

Now, in this case, all the non-zero cohomology will arise when supp(yo) = Up, which

1s equivalent, by Lemma 5.7.4, to the normal fine grading being non-positive.
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