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Abstract

A toric variety is a complex algebraic variety on which (C*)" acts with finitely
many orbits, one of which is dense. It can be equivalently defined, topologically, as
the product of an n-dimensional polytope with an n-dimensional (real) torus modulo
certain identifications.These identifications are closely related to the geometry of the
underlying polytope. With this definition, a toric variety is a stratified pseudomani-
fold with a natural stratification in which each stratum corresponds to a skeleton of
the polytope.

The main result of this thesis is the construction of a chaiii complex for the inter-
section homology with twisted coefficients of a general toric variety. The construction
of the chain complex incorporates the combinatorial structure of the polytope as well
as the structure of the torus.

A decomposition of the toric variety is described and is used in defining the chain
complex. The subspaces in this decomposition are to a large extent transverse to the
strata, and are therefore well suited to support intersection homology chains. This
decomposition is dual to that used in various previous treatments of toric varieties
(e.g. [1]) in which the subspaces are unions of strata. The duality can be seen at the
level of the polytope, in that the subspaces in treatments such as in {1} correspond to
unions of faces of the polytope whereas the subspaces in the decomposition described
here correspond to subspaces of the polytope which are transverse to the skeleta.

A related result is the construction of a chain complex for the intersection ho-
mology with twisted coefficients of an n-fold product of 2-disks.

Thesis Supervisor: Robert MacPherson
Professor of Mathematics



Acknr :dgements

I am greatly indebted to my advisor, Bob MacPherson, for having suggested a prob-
lem so well suited to my mathematical tendencies, for instilling in me the confidence
that “visual geometry” is a legitimate form of higher mathematics, and for the vari-
ous times in which ne set me straight with subtle, almost imperceptible pushes in the
right direction.

I would like to thank Emmanuel Farjoun-Dror for being the friend, the mentor and
the role model that he has been to me since 1ay undergraduate days.

In my years at M.I.T. I have profitted immeasurably from numerous conversations
with many of my fellow graduate students. Special thanks to David Blanc, Paul
Bressler, Vic Reiner, Eric Babson, and above all Hal Sadofsky, whose keen mathe-
matical insights are overshadowed only by his patience, warmth and endless ability
to listen.

I have bad enlightening conversations with Marge Bayer, Jonathan Fine, and Phil
Hirschhorn. I thank them all.

And then there was my dear friend Martin Hardy. Were it not for the wonderful times
we shared in my first years at M.I.T., this thesis may have been completed sooner.

I would like to extend my thanks and deep appreciation to all of the staff in the Math-
ematics department, first and foremost, of course, the graduate administrator Phyllis
Ruby. I am sure that only she knows the full extent to which her presence has made
life so much more pleasant for each and every graduate student in the department.

[ doubt I would ever be able to thank my parents enough for all they have given me.
I would not be the person I am nor would I have come nearly so far without their
limitless love and support throughout my entire life.

Lastly, to my friend, companion, wife — Yael. I cannot imagine having gone through
this Ph.D. without you. The enrichment you have brought to me makes the rest of
life, outside of Mathematics, as fascinating and intriguing as that within.



Contents

1 Introduction

2 Preliminaries
2.1 Basicdefinitions. . . . . . . . . ... e e
22 Firstexamples. . . . . . . . .. ... ..

2.3 Some fundamental facts and observations about toric varieties .

3 Local coefficients and intersection homology
3.1 Localsystems . .. .. .. ... ... ... .. ... .. .. ... ...
3.2 Ordinary homology . . . . ... .. .. ... ... ... ........
3.3 Geometric chains with twisted coefficients . . . . ... ... ... ..
3.3.1 A (brief) review of the constant coefficient case . . .. .. ..
3.3.2 The twisted coefficient case . . . ... ... ... .......
3.4 Intersection homology . . ... .. .. ... ... .. ..........
3.4.1 The constant coefficientcase . . . . .. ... ..........
3.4.2 The twisted coeflicient case . .. ... .............
3.4.3 A useful lemma for computing intersection homology . . . . .
3.5 Local sytems on toric varieties . . . . . .. .. ... ..........

3.6 Combingand Coning . . . ... ... ... ... ............

36.1 Combing .. .... ... .. ... . ... ... ...
36.2 A Z-action . ... .. ... ... ...
363 Coning . ... ... . ... ...

4 The homology of a torus
4.1 A final note regarding CW-decompositions of the torus . . . . .. ..

5 The intersection homology of a product of disks
5.1 The intuitivedescription . . . . . ... ... ... ... ........

5.2 The formal construction . . .. .. .. ... .. ... .. .......

5.3 The maintheorem .. .. ... .....................
5.3.1 The filtrationof Y . . ... ... ... .. ... . ...,
5.4 A combinatorial description of allowability in D.(Y;£) . . .. .. ..

4

10
10
12
15

17
17
18
19
19
20
21
22
22
23
24
25
25
28
28

238
33



8 The bar resolution, The bar complex and the Eilenberg-Zilber the-

orem
6.1 Thebarresolution .. ..............00 ... ..
6.2 The non-homogeneous description . . . . . .. ... .. ........
6.3 Thebarcomplex ... ..... ... . ...
6.4 Normalization . . . . . . . . . . i it i i i e
6.5 Some general remarks about group-homology with local coefficients .
6.6 The Eilenberg-Zilber theorem . .. .. .. ... ... .........
6.7 The E-Z theoremand W, (Z") . ... ... .. ... ... .. .....
671 Themaps f,V,® ... .... ... ... ... .....

6.8 Properties of the maps pertaining to allowability . . . . . ... .. ..

6.9 A chain homotopy equivalence in dimension1 . .. ... ... .. ..
7 The homology of a torus revisited
7.1 The map from W.(Z";£) to CEW(T™ L) . . . . .. .. ... .. ...
7.2 The map from W.(Z% L) to Cu(T™ L) . . . v o oo it
7.2.1 The informal description . . . . . ... ... ... ... ....
7.2.2 The formal description . . . . ... .. ... ... ......
7.2.3 1 isaquasi-isomorphism . . . . .. ... ...
8 The main construction
81 Du(X;L). o v oo e
8.2 Allowability and the subcomplex ID.(X;L) . . ... ... ......
83 Themapy:ID.(X;L)—=IC(X;L) . .. ... ... .. ... ...
8.4 The proof that ¢ is a quasi-isomorphism . . . ... ... .......
84.1 Thefiltrations . . . . . . . . . . . ... ..o
842 Theproof ... .. ... .. ... . ... .. ... ... . ...

List of Figures

1 Cone complex K C R? an its dual polytope 7 . . . ..........
2  The toric variety associated to K (and P) from figure1 . .. .. ..

3  The unique toric varietyforn =1 . ... .. e e e e e e e e

5

58
39
59
60
61
61
61
64
65
66
69

72
72
73
73
74
76

78
78



S x 82 X 8 e 14
D*xD? and D*xD*xD?. .. ..., 15
Ci(=8") 30
T2 =Ci X Ca o e e e e e e e e e e e e 31
CEW(TZHL) o e 31
T3=Ci XCaXC3 . o o ittt et e e e e 32
The 2-facesof T3. . . . . . . . i i i i e e e 33
COW(T3HL) . o o e e 34
The subcomplex @ CP and Y =D?* xD?x D*C §?x S?x S% .. 36
Exampleof asimplexoc € @ . . . ... .. ... .. .. ... .. 37
The chains in D? and a sample boundary computation . . . . .. .. 40
Chains in D? x D? with o = the barycenterof P. . . ... ... .. 41
Chains in D? x D? of the form p(o xCk). . ... .. .. ... ... 42
Chains in D? x D? of the form p(o xCk). . . ... ... .. .. .. 43
Chains in D? x D? of the form p(oc xCk). . ... .. .. e 44
Chains in D? x D? of the form p(o xCk). . . . ... .. ... ... 45
Chains in D? x D? of the form p(o XxCk). . . . . . . . . oo oo v 46
Examples of boundaries. . . .. ..................... 47
The filtrationsof Y =D?x D? and Y=D*xD?*xD? . ... .. 50
The filtration of the polytope P from figure1 . . ... ... ... .. 83



1. Introduction

Toric varieties first arose in the context of algebraic geometry. They were defined in
1970 by Demazure [10] and in 1973 by Kempf, Knudesen and Mumford [11]. They
are algebraic varieties and are generalizations of both the affine spaces A™ and the
complex projective spaces P". Because of their structure, they served as interesting
examples on which one could illustrate many concepts of algebraic geometry such as:
linear systems, invertible sheaves, cohomology, resolution of singularities, as well as
the more recent theory of intersection homology. From the algebro-geometric point
of view, their main importance lay in the fact that many algebraic varieties embed
more naturally in a suitable toric variety than in P, and in that varieties frequently
are “locally” toroidal. '

Since then, toric varieties have shown up in a variety of fields ranging from differen-
tial geometry to the combinatorial theory of rational convex polytopes. In fact, many
prominent results about convex polytopes have relied almost entirely on the theory
of toric varieties for their proof.

In this context, the intersection homology of toric varieties has played a central role.
The most noteable example perhaps is the h-vector, an important combinatorial in-
variant of a convex polytope whose i** component is precisely equal to the i** Betti
number of the middle perversity intersection homology of the associated toric variety.
It was only throngh this link for example, that the non-negativity of the components

of the h-vector was proved, despite some 50 years of empirical evidence of this fact.

The middle perversity intersecticn homology IHT (X;Q) for a general toric variety
X was computed in the early 1980’s, independently by J.N. Bernstein, A.G. Kho-
vanski and R.D. MacPherson, and was published by Stanley [12] in 1987. These
computations were carried out in a seperate fashion for smooth toric varieties, and in
the passage to the singular case fairly involved methods of characteristic-p algebraic
geometry were used. As a result, the computations were abstract and somewhat im-
penetrable without a significant background in algebraic geometry. In addition, these
computations were done only for constant (rational) coefficients, and only for middle
perversity. In fact, the characteristic-p methods used cannot be generalized to other
perversities, and a full classification of the local coeflicient systems for which these
methods are valid is not known.

The main result of this thesis is the construction of a chain complex for the intersec-
tion homology with twisted coefficients I H#(X; L) of a toric variety X. The chain
complex is constructed is section 8 and is proved (theorem 8.7) to be quasi-isomorphic
to the intersection homology chain complex IC?(X; C).

The complex is infinitely generated and hence, in its present form, falls short of en-
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abling direct computation of IH?(X; £). It has however the following advantages :
() It relates the intersection homology of a toric variety to a very natural aigebraic
construction, namely the bar-complex of Z".

(22) It is explicitly constructed in a manner which is closely related to the structure
of the toric varicty and the chains have an explicit geometric interpretation.

(¢42) It is defined with no distinction between singular and non-singular toric varieties.
(zv) It is defined for a very general class of local systems, and

(v) It is defined for any perversity p.

A related result is presented in section 5. A chain complex is constructed which is
finitely generated but is nevertheless very similar in nature to the complex described
above. This complex is shown to compute the intersection homology with twisted
coefficients TH.(Y,0Y; L) where Y is an n-fold product of 2-dimensional disks and
is viewed (and stratified) as a “corner” of a smooth toric variety X.

The constructions of both of these complexes as well as the proofs run along similar
lines. In each case the toric variety is decomposed into subspaces {Xx} correspond-
ing to the cones K of the underlying cone complex (see section 2.1 for the relevant
definitions). A spectral sequence argument is used to show that it suffices to prove
the theorem locally for each subspace Xk.

These subspaces are “sufficiently transverse” to the singular strata so as to contain
all of the local intersection-homological information. In addition, for each K, Xg is
either the product with a circle of an analogous subspace in a toric variety of one
dimension lower, or the topological cone on the union of certain lower dimensional
sets X /. The associated chain complex is shown to posess the algebraic analogues
of these properties, and hence the construction lends itself nicely to an inductive proof.

Section 2 lays down the basic definitions and some fundamental facts concerning toric
varieties along with some examples.

Section 3 presents some background about local systems, about intersection homology
and about the two put together. In addition, a lemma is proved (lemma 3.14) which
facilitates the computation of intersection homology in certain settings. Section 3.6
deals with the intersection homology of the product of a space with a circle, and with
the intersection homology of a cone.

In section 4 a standard CW-decomposition of the n-torus is used to compute the
homology with twisted coefficients of the torus.



Section 6 deals with the bar cornplex of Z"*. The Eilenberg-Zilber theorem is stated in
this context using explicit maps defined by Eilenberg and Maclane in [9], and certain
properties concerning allowability are proved for the maps involved.

Section 7 proves that that the bar complex of Z", the cellular complex of section 4
and the complex of P.L. geometric chains on the n-torus (all with twisted coefficients)
are all quasi-isomorphic. |



2 Preliminaries

2.1 Basic definitions

Definition 2.1 Polyhedral cones: A rational polyhedral cene in R™ is a set
K = R2%,; 4+ R2%; + ... + R2%y, where v; € Z" Vi. (R2° denotes the set of non-
negative real numbers.) We say that K is spanned by {vi,...,vk}.

K is proper if it is not spanned by any proper subset of {v,...,vc}, and vy,..., vk
all lie strictly on one side of some hyperplane in R™.

A cone spanned by a (proper) subset of {v1,...,vs} which is contained in the topo-
logical boundary of K is a (proper) face of K.

The dimension of K is the dimension of the smallest subspace of R® containing K.
A k-dimensional cone K is simplicial if it is spanned by precisely k rays. If K is
simplicial then all of its faces are too.

A 1l-dimensional cone is called a ray. An n-dimensional cone is called a chamber.
For a ray K, the unique v = (2,...,2,) € Z" which spans K and for which the 2;’s
are coprime will be referred to as the coordinates of K. For a k-dimensional cone
K, we define the coordinate matrix of K to be the k x n matrix M(K) whose rows
are the coordinates of the spanning rays of K.

Definition 2.2 Cone Complez: A (rational polyhedral) cone complex K C R" iz
a partition of R™ into a finite number of proper rational polyhedral cones such that
the intersection of any two cones K; and KX is a face of both K; and K.

The graded poset of cones of K, graded by dimension and ordered by inclusion is called
the face lattice of K. The apex of all the cones (the origin of R") is considered as a
0-dimensional cone and it is a face of all the other cones.

The i-skeleton of K is K' = {K € K : dim(K) < ¢}

A cone complex is often referred to (elsewhere) as a complete fan.

Definition 2.3 The dual polyhedron: Let K C R"™ be a rational polyhedral cone
complex. Reversing the inclusions and the grading in the face lattice of K we obtain
the face lattice of an abstract polyhedron which can be realized in R" as a regular
(polyhedral) cell complex. Fix one such realization and denote it by P(K) or, when
no confusion can arise, simply P. P is called the dual polyhedron or the dual
polytope.

Note: P is homeomorphic to D", the closed unit ball in R", and its cells (which we
will also refer to as faces) are dually paired with the cones of K in complimentary
dimensions.

The 0-dimensional faces of P are called vertices,the 1-dimensional faces are called
edges and the codimension-1 faces are facets.

The i-skeleton of P is P* = {F : F is a face of P, dim(F) < i}.
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Remark 2.4 P can be explicitly constructed in a manner analogous to the “cell -
dual cell” construction in the original proof of Poincaré duality as follows :

Let S™! C R" be any sphere centered at the origin. Then K determines a polyhe-
dral cell decomposition of S®! by simply intersecting the sphere with the positive
dimensional cones of K. Denote the cell corresponding to a cone K by o, and let S
be this polyhedral sphere. Let S’ = 3d(S) be the barycentric subdivision of S.

For each K € K (dim(K) > 1), let D(o«) be the subcomplex of &' consisting of all
simplices whose vertices are barycenters of cells of S containing o,. Then the sets
D(o) partition &' into polyhedral cells dual to to the ox’s and hence to the (positive
dimensional) cones of K and for each K, dim(D(ok)) = n — dim(K). This completes
the construction of @P. Now simply take the the cone on & with apex at the origin
as the unique n-dimensional cell dual to the 0-dimensional cone.

Figure 1: Cone complex K C R? an its dual polytope P

In order to define a toric variety it is first necessary to describe a certain procedure
for colapsing an n-torus to a lower dimensional torus. Denote by 7" the n-torus
n

P — .

R"/Z™ = S' x ... x §" and consider the projection : R® £ R*/Z" = T". Let F be
a k-dimensional rational subspace of R™ (i.e. F has a basis in Z") and set ' = proj(F).
The rationality of F implies that F' is a compact k-dimensional subtorus of 7". The
class of affine k-planes in R™ which are parallel to F determines a class of subtori
“parallel” to F' in T". Denote by T"/ F' the space obtained from 7" by collapsing
each of these parallel subtori to a point. In the language of Lie groups, this amounts to
modding out the group 7" by the subgroup F', whence it is clear that 7"/ F = T"-*,
Note: If the subspace F is not rational, F is non-compact and the resulting quotient
space is not even Hausdorff.

Definition 2.5 Toric Variety: Let K be a cone complex in R™, and let P be the dual
polyhedron. For each cone K € K, let Fx denote the linear span of K in R". Set

11



X = P x T". The toric variety associated to X is obtained from X as follows :
for each z € P, {z} x T" is collapsed to {z} x (7"/Fk), where K is the cone dual
to the unique open cell of P containing z.

Figure 2: The toric variety associated to KX (and P) from figure 1

Remark 2.6 No (non-trivial) collapsing occurs over the interior of P.

We have a commuting diagram of projections :

. p
X

X

P

which we will refer to several times throughout this paper.

2.2 First examples

We describe now a certain class of examples of non-singular 2n-dimensional toric
varieties for n > 1. Despite their simplicity, the local structure of the toric varieties
in these exaples will come in handy in following sections. In fact, any non-sigular
toric variety is locally homeomorphic (in a P.L. stratum preserving way) to one of the
toric varieties in these examples.

Example 2.7 n = 1: There is only one cone complex K in R!. It has (0) as a
0-dimensional cone and the positive and negative rays emanating from (0) as 1-
dimensional cones.

12



P is a closed interval I (with 2 0-cells at the ends and a single 1-cell connecting
them).

X is a cylinder T x S, and since p simply collapses each end of the cylinder to a
point, X = £S* = §? (the 2-sphere). (See figure 3).

N
v
_—

Figure 3: n =1

Example 2.8 Let X C R? be the cone complex with 4 rays R,, ..., R4 having respec-
tive coordinates (1,0),{0,1),(—1,0),(0, —1), and whose chambers are the 4 quadrants
of RZ.

Pisasquare [, x I,and X = I; x I, x T2

In this example it is convenient to consider the torus as a product : T2 = ¢; X ¢,
where ¢; = proj(x-axis) and ¢; = proj(y-axis). The collapsing map p is the canonical
projection of 72 onto c; over points in dI; x I and the canonical projection onto ¢,
over points in I; x 0I,.

In view of this and rewriting X as (11 x e1) x ({2 x cz), we see that p collapses the c;
component to a point over the endpoints of I; and the ¢, component to a point over
the endpoints of I (hence the whole torus gets collapsed to a point over each of the
four vertices of the square).

Thus X = £S5 x S = 5% x S? (see figure 4).

Example 2.9 We now construct the higher dimensional analogue of the previous
examples. Let K be the cone complex in R* whose chambers are those cut out by the
coordinate hyperplanes, and whose lower dimensional cones are finite intersections of
chambers. The dual polytope P is an n-dimensional cube I; x ... x I,. As in the
previous example, X = P x T™ can be written as [17=1(Z; x ¢;). The collapsing map p

13



Figure 4: §% x S?

collapses each c; to a point when the I; coordinate is 0 or 1 (accordingly, over faces of
P of codimension > 1, when the /; coordinate is 0 or 1 for more than one j, all of the
associated c;’s are collapsed). Thus a seperate collapsing occurs at the ends of each
cylinder (I; x ¢;) and the resulting toric variety X is the n-fold product S% x...x S?
(See figure 5). '

-7’

{ Opposite faces
are identified)

Figure 5: S? x 52 x §?
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Finally, note that in L5, if we restrict the ¢ coordinate (coming from the interval)
to 0<t< %, then we obtain a 2-disk D?. Consequently, the restriction of the toric
varieties in these examples to the subspaces p~*([0,1] x ... x [0, 3]) iz a product of

2-disks D? x ... x D? (see figure 6).
{ Opposite faces
are identified)

0

Figure 6: D> x D* and D? x D? x D?

2.3 Some fundamental facts and observations about toric
varieties

Fact 2.10 A toric variety X is compact.

Proof : X is a quotient of the compact space X by a closed relation.

Fact 2.11 The action of (C*)" : For any toric variety X there is an action of (C*)"
on X with finitely many orbits, one of which is dense. In fact, the orbits are in one
to one correspondence with the cones of K (equivalently, with the faces of P).

Proof : p~1(int(P)) = int(D") x T = (C*)". In fact, by the construction it is clear
that for any k-face F of P, p~!(int(F)) = int(D*) x T* = (C*)*. Moreover, this
(C*)* is canonically isomorphic to the quotient (C*)"/(C*)"~* of the “big” (C*)" by
the appropriate subgroup. Thus the action of (C*)" extends to all of X. The orbits
of this action are precisely the sets p~!(int(F')) where F' ranges over all of the faces
of P. The orbit over the unique open n-face of P (namely, over the interior of P) is
dense in X.

Remark 2.12 It follows from the above that X is a compactification of (C*)"

15



Remark 2.13 Let F be a (closed) k-face of P. Upon close examination of how the
(C*)* over int(F) gets collapsed to (C*)* over the i-faces in OF we see that p~*(F) is
a 2k-dimensional toric variety.

The stratification of X : A toric variety X has a natural stratification with only
even dimensional strata :

XoCX2C...CXon-1) C Xone (1)

Where for each k, Xz = p~!(P*), and dim(Xa:) = 2k.
With this stratification X is a stratified pseudomanifold of (real) dimension 2n. (See
[2] for the precise definitions of stratified pseudomanifolds).

Fact 2.14 Let K be a cone complex and X the associated toric variety. Then:

(2) X is rationally nonsingular if and only if X is simplicial.

(22) X is integrally nonsingular (i.e. 2 smooth manifold) if and only if K is simplicial
and |det(M(K))| = 1 for every maximal dimensional cone K € K.

16



3. Local coefficients and intersection homology

In this section we describe some of the necessary fundamentals of homology with
twisted coeficients (a.k.a. local ceefficients). Section 3.2 is a brief discussion of or-
dinary homology with twisted coefficients. The case of intersection homology with
twisted coefficients is somewhat more complex. We expand on this in sections 3.3
and 3.4. Finally, in section 3.6, we present two fundamental lemmas - the combing
lemma and the coning lemma. The first deals with the intersection homology with
twisted coefficients of the product of a stratified pseudomanifold X with a circle S?,
and the second with the intersection homology, again with twisted coefficients, of the
cone ¢(X). In both cases, the appropriate homology is proved to be related to that
of X in a way that will be very useful in section 8 in the inductive step of the proof '
of the main theorem of this thesis.

3.1 Local systems

We will use a definition of a local system which is essentially that of [5] and [6]. The
only difference is that we require the fiber to be a vector space over Q.

Definition 3.1 Local system. Let X be a topological space and V a vector space
over Q. A local system £ on X with fibre V is a vector bundle over X whose fiber
over any point z € X, denoted V_, is isomorphic to V, along with isomorphisms
®, : V;, — V, for every pair of points z;,z2 € X and for every path w from z, to
z,. These maps are required to satisfy the following conditions :

(1) The map &, depends only on the path-homotopy class [w] of w.

(#2) If [w] € m(X, 7o) is the identitiy, then @, : V., — V,, is the identity.

(44%) If w is a path from z; to z; and v is a path from z; to z3 then ®.., = Puod, :
V2, — V., (here w * v denotes the path w followed by v from z, to z3).

Note that it follows from (#i) and (ii1) that if w™' denotes the path w traversed in
reverse, then ®,-1 = ®1.

Remark 3.2 It is a standard fact that any such local system £ (more precisely - any
isomorphism clzass of iocal systems) uniquely determines a representation of m (X, zo)
on V and vice-versa.

17



3.2 Ordinary homology

Detailed descriptions of homology with twisted coefficients in the simplicial category
as well as in the category of regular cell complexes can be found in [5] and [6]. We
review here some of the essential ideas in the simplicial category.

Let X be a topological space, triangulated by a simplicial complex K. To simplify
notation, we will not distinguish between X and K, nor will we distinguish between
a simplex ¢ € K and |o| C X. We assume all simplices are oriented, determining
well defined incidence numbers [o;7] = £1 whenever 7 is a face of o.

Let £ be a local system on X with fiber V.

For each simplex o, fix a designated point z,€0\ds (e.g. the barycenter of ), and
denote by V, the fiber V. . If 7 is a face of o, then since o is simply connected,
there is a canonical isomorphism @, ., : V, — V. determined by any path w in ¢
from z, to z,.

Definition 3.3 The simplicial chain complex with twisted coefficients. The
chain complex S.(X;L) of simplicial chains on X with coefficients in the local sys-
tem L is defined by :

S4(X; L) = formal finite sums Ea.- - 0;
i=1
where for each i, o; is a ¢-simplex and «; € V,,. Chains are added formally except
that a.0+B-0=(a+p)-0.
The boundary map 9, : Sy(X; L) = S,—1(X; L) is defined by

Ola-0) = Z [o:7]®s () - T

7 a face of o

and it is a standard result that 9,_100, = 0

Remark 3.4 One of the the most notable differences from a geometrical point of
view, between constant coefficient chains and twisted coefficient chains, is that twisted
coefficient chains have a “non-topological” boundary arising from the existence of the
monodromies in addition to the regular topological boundary. For example, in the
constant coeflicient case, any compact orientable n-dimensional smooth manifold M
has a fundamental class, ¢.e. in any triangulation of M the n-simplices may be oriented
in such a way so that their sum (each with coefficient 1) is a cycle. In the twisted
coefficient case this is not so, as can clearly be seen in the case of a circle S (or any
torus for that matter) with non-trivial local coefficient system, in all of the examples
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of section 4.

Thus a “topological cycle” (i.e. an oriented closed submanifold) might not support
any cycle in the P.L. geometric chain complex. (Note however that the support of a
P.L. geometric cycle is always without topological boundary).

Definition 3.5 homology with twisted coefficients. The homology of X with
coefficients in the local system L, denoted H.(X;L) is defined to be the homology
of the chain complex S.(X;L). Analogous definitions are given in [6] using cellular
chains and using singular chains, and it is proved that all these methods are equivalent.

Intersection homology is defined using P.L. geometric chains. There are some sub-
tieties involved in defining twisted coefficient geometric chains. We address these
issues first and then proceed to define intersection homology with twisted coefficients.

3.3 Geometric chains with twisted coefficients
3.3.1 A (brief) review of the constant coefficient case

Let X be a P.L. space. Let T be a triangulation of X which is compatible with the
P.L. structure of X. Denote by CT(X) the chain complex of simplicial chains of X
with respect to T'. The class of all such complexes on X is a directed system under

chain maps induced by refinements of triangulations. The P.L. geometric chain com-
plex C.(X) is defined to be the direct limit lim C[7(X).

T

One of the advantages of working with C.(X) is that one is not bound to a specific
triangulation of X, and can work with certain “elementary” chains which are more
general than simplices. These are oriented, P.L. “pieces” of the space, with mul-
tiplicities. Each such subspace £ is |c| (the support of ¢) for some simplicial chain
¢ € CT(X) (and consequently it is also equal to |¢/| whenever ¢’ corresponds to ¢
under some refinement T” of T). Thus for any coefficient a in our fixed coefficient
group, we may think of the chain a-¢ as the simplicial chain whose simplices are all of
those simplices in ¢ and all have the same coefficient a. Then one can use these chains
much the same as one uses simplices in a fixed triangulation. The boundary of such
a chain a - £ is, geometricaly, d|c|, possibly divided into several pieces, each of which
has coefficient ta. These notions are invariant under refinement of the triangulation,
and hence, for any oriented :-dimensional P.L. subspace £ of X and for any coefficient
a, the chains a - £ and 9(a - £) are well defined chains in C;(X).

The formal definition of the geometric chain complex as a direct limit might give the
appearance that it is a difficult complex to work with, In fact, due to the ability
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to define these elementary chains, C.(X) allows for much more flexibility than the
simplicial complex associated to a fixed triangulation.

3.3.2 The twisted coefficient case

Let T be a triangulation of X, and let ST(X; L) be the associated chain complex as in
definition 3.3. Let T be a refinement of T. Any simplex o’ € T” is carried by a unique
simplex ¢ € T, and since o is simply connected, there is a canonical identification
of the fibres V., and V; ,, mapping a € V., to some a' € V;_,. Thus there is a
canonical chain map from S7(X; L) to ST'(X;L) mappinga-a to Yo' o', where
the sum runs over all 6’ € T’ which are carried by o. Thus we can formally define :

Definition 3.8 . The geometric chain complex on X with coefficients in the local sys-
tem £, denoted C.(X; L) is the direct limit (under chain maps induced by refinement)
limST(X; £).

T

As in the constant coeflicient case, the formal definition of the geometric chain com-
plex is quite inconvenient to work with, and we would like to define certain “elemen-
tary chains” similar to those defined above. As it turns out, there are some obstacles
one must overcome if one wishes to maintain the freedom of not being bound to any
specific triangulation, and to continue to think of elementary chains as “P.L. sub-
spaces with a (single) coefficient attached”, out of which general chains are formed.
The obvious naive approach would be to mimick the costruction of section 3.2 and
definition 3.3, namely to take formal finite sums of geometric chains where to each
chain is attached a coefficient from the fiber over a designated interior point of the
chain. '

However, given a P.L.-subspace &, r¢ € int(€) and a € V,,, one encounters two
difficulties in attempting to define a chain a - { analogous to those above.

The first is that given a triangulation T of which £ is a subcomplex, and given two
simplices o and ¢’ € £ with respective designated interior points z, and z,, there is
no canonical identification of the fibers V., and V. , and therefore there is no way
to attach “the same” coefficient & to each of the simplices in £.

The second problem, which is in fact a consequence of the first, is that of remark 3.4.
Consequently, specifying a P.L. subspace and a single coefficient over some point in
its interior does not uniquely define the support of €.

Thus we define :
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Definition 3.7 Elementary chains. An elementary chain a-£ in Ci(X; £) consists
of :

(f) A k-dimensional P.L. subspace £ (the support of the chain).

(32) A (k-1)-dimesional P.L. subspace of £, denoted V¢, so that £ \ V¢ is simply
connected.

(222) A designated point z¢ € int(€\ VE).

(v) A coefficient a € V.

Let T be any triangulation of X in which both ¢ and V¢ are subcomplexes. Any
k-simplex o € £ has its interior in € \ V&, whence the fibre V, over the designated
point z, € int(o) is canonically isomorphic to V,, (by taking any path in £ \ V¢
connecting T, and z¢) and it is thus understood that the coefficient of o is the image

of a under this canonical isomorphism. since the same holds for any refinement 7" of
T, a- £ is a well defined element of Cx(X; L), and |0(a - €)| C |VE]| U J|).

3.4 Intersection homolegy

Definition 3.8 Perversity. A perversity is a vector

p= (p2,p3a'--spn)

satisfying :
() p2=0, and
(1) pi < piga <pi+1, for 2<i<n.
For each n there are 4 special perversities with various properties (which we will not
list here) which do not hold for general perversities. They are :
0-perversity :
0=(0,0,...,0),

lower and upper middle-perversities:
m=(0,0,1,1,2,...) and 7 =(0,1,1,2,2,...),
and total-perversity :

t=(2,3,...,n-2).

Let X be an n-dimensional stratified pseudomanifold and Let ¥ = X,,_; denote the
singular set. All triangulations of X in the following discussion are assumed to be
compatible with the P.L. structure, and with the stratification.

Fix a perversity p.
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3.4.1 The constant coefficient case
Definition 8.9 Ailowability. Let ¢ € C;(X). ¢ is allowable (w.r.t. perversity p) if

dim(|¢| N Xa-e) <t —c+ p,forevery 2<c < n. (2)

Note that for O-perversity, condition (2) states that a chain is allowable if and only
if it is transverse to all of the strata of X and for a general perversity p, each p; is a
measure of the extent to which chains are allowed to deviate from being transverse
to X,_;.

Definition 3.10 The intersection homology chain-complex for a given perver-.
sity p is defined to be the subcomplex

ICP(X) C C.(X)
consisting of all allowable chains with allowable boundaries. The perversity p will
henceforth be suppressed when the discussion applies to all perversities.

3.4.2 The twisted coefficient case

Given a local system £ on X, the geometric chain complex with twisted coefficients
C.(X; L) is defined as in definition 3.6 and we could restrict to allowable chains with
allowable boundaries to define the intersection homology chain complex with twisted
coefficients. However, note that if £ € C;(X; L) is allowable then, in particular,

dim(|¢| N E) < i—2 (3)

whence for any triangulation of £, all of the i-simplices as well as all of their (i — 1)-
faces have their interiors disjoint from X. Thus we need not require that £ be defined
over all of X, and in fact for intersection homology with twisted coefficients we require
the local systern £ to be defined only over the non-singular set X \ £. In so doing
we obtain a much larger and more interesting class of local systems. The intersection
homology chain complex with twisted coefficients is formally defined as follows :

Let £ be a local system on X \ .
Definition 3.11 C.(X;L). Let T be a triangulation of X. Set
CI(X; L) = {formal sums ¥, a, -0 | 0 € T, dim(o) = k,
dim(eNE)<k-1 and a, € V,}.
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Note: We do not (in fact - cannot) define an appropriate boundary map on Cr(X;L)
since for a general chain ¢ € C J(X; L), Of could consist in part of chains ¢’ which
are contained in . In particular, C7(X; L) is not a chain complex. Nevertheless, if
T' is a refinement of T, then there is a canonical map from CT(X; L) to CT'(X; L),
and thus we can

Define C.(X; L) to be the direct limit of the C7(X; £).

Note that although C.(X;L) is not a chain complex, any allowable chain (and in
particular, any allowable elementary chain) in C.(X; £) has a well defined boundary
(which nevertheless may be non allowable).

Definition 3.12 IC.?(X; L). Let p be a perversity. Define

ICH(X; L) = {€ € Ci(X; L)| € and O¢ are p-allowable}

Definition 3.13 THP(X; £). Define IH?(X; L) to be the homology of the complex
IC?(X; L).

3.4.3 A useful lemma for computing intersection homolegy

Lemma 3.14 Let D.(X;£) c C(X; L) and suppose that for each ¢, there is a finite
set of elementary geometric chains ¢},...,£, so that

Dy(X; L) = {}:% &lo; € Ve)
i=1
(where VC' is the fiber of £ over the designated interior point of ).

Suppose further that D,(X;L) is closed under 8. i.e. that 8(a - £}) € Doy (X; E)
whenever 9(a - ¢}) is defined. (In fact it is enough to require this only when & is
allowable).

For each ¢z, let

IDi(X; L) = Du(X;£) N ICH(X; £).
D.(X; L) can be decomposed as :
Di(X; £) = DA(X; £) ® DP(X; C)

where DA(X; £) = chains of the form ; ¢;-€} with all £}s allowable, and DE(X;0) =
chains of the form }_; a; - {' with all {‘ s bemg non- allowa.ble
Accordingly, the restriction

Bilpacx;cy : DX L) = Dica(X; L)
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decomposes as 94 @ 8® with Im (84) c DA,(X; L) and Im (3%) c DB, (X; L).

Then
I1Di(X; L) = ker(8?).

O

Why the lemmma is useful : The early developers of homology theory in their at-
tempts to compute what we now call the homology of a space tried to construct
generating sets of cycles and describe the equivalence relations (homologies) among
them. Finding the cycles was no easy task, nor was it easy to prove that one had
found all of the cycles and all of the homology relations.

The discovery of simplicial homology theory dramatically simplified the problem.
Namely, by cutting up the space into relatively simple pieces (simplices), and de-
scribing the realtions among them (the simplicial boundary), computing homology
is reduced to computing kernels, images and quotients (all finite dimensional if the
space is compact), tasks for which easy finite algorithms exist.

In the case of intersection homology one can frequently describe a finitely gener-
ated subcomplex D.(X) C C.(X) (resp. D.(X;L) C C.(X;L)) and prove that its
restriction to allowable chains with allowable boundaries in fact computes I H.(X)
(resp.I H.(X; £)). For example, in [3] it is shown that if a triangulation of X is fine
enough (e.g. the barycentric subdivision of any triangulation), then the associated
simplicial complex will do.

In such cases, it may be relatively easy to determine for each individual generator
(e.g. simplex) whether it is allowable or not, but significantly more difficult to explic-
itly compute the subcomplex ID.(X) (resp ID.(X;L)). Lemma 3.14 asserts that
the latter task can be “left to elementary linear algebra”.

Section 5 deals precisely with such a construction for the computation of the inter-
section homology of a product of disks (relative to the boundary).

3.5 Local sytems on toric varieties

For a toric variety X,
X\Z=int(P)xT"

which is homotopy equivalent to 7". Thus any local system on X \ £ uniquely deter-
mines (by restriction) a local system on 7" and any local system on 7" determines
(by trivial extension) a local system on X \ ¥ which is unique up to equivalence of
local systems.
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Equivalent local systems on any stratified pseudomanifold produce (canonically) iso-
morphic intersection homology grouys, and thus we may assume that any local system
L on a toric variety X is the trivial extension to X \ X of a local system on 7" whick,
for simplicity, we also denote by L.

Thus to specify a local system for intersection homology on a toric variety X it suf-
fices to specify a local system on T" or, in view of remark 3.2, a representation of
Z = m(T™, %) on V. Explicitly, we must specify:

(2) The fiber V,

(it) a base point to of T,

(%42) a basis {Cy,...,C,} of m(T™,¢,), and

(v) n commuting monodromies Ti,...,T, € Aut(V) corresponding (respectively)
to the C;’s.

3.6 Combing and Coning
3.6.1 Combing

Let X be a stratified pseudomanifold with strata {S,} and with base point z € X\ Z.
Let (S, s) denote a circle with base point s. S! x X is a pseudomanifold (stratified
with strata {S! x S,}). Let £’ be a local system with fibre V on {s} x (X \ £). Let
T € Aut(V) and let £” be the local system on S! with fibre V, = V and monodromy
T :V, = V, associated to one of the two generators of m,(S?,s). Also let s’ € S!
be a point “nearby” s and assume that £” is constant on some connected subset of
S? containing s and s’. Let £ be the (unique) local system on S' x X such that
Llyxx =L and Lsixzy = L".

Identify in the obvious way X and {s} x X and let « - (€,V€) € Ci(X,L') be an
elementary chain. Consider the “suspension” of « - £

susp(a - £) € Ciya(S' x X; L)
which is defined to be the chain « - ¢’ satisfying :
(i) € = S' x ¢,
(1) V& = (' x V) U {s} x ¢,
(iii) Te = (8', Ie).

(Note that we are identifying the fibers over {s} x z¢ and {s'} x z¢).

5usp(a - £) is an elementary chain in Cit1(S* x X; £).
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For any z € X, denote by T : V(o) = V(,,z) the monodromy corresponding to the
path which goes once around $* x {z} (in the direction of the orientation of S n,

Remark 3.15
With ¢ and «a as above,

O(Fusp(e - €)) = (Tz, ~ I)(@) - £ — 5u3H((a - £)).
A simple dimension check gives :

Lemma 3.18
3usp(a - §) is allowable <= a-¢ is.

Combining remark 3.15 with lemma 3.16 we have :

Corollary 3.17
a. 3usp maps IC,(X; L') to IC.41(S! x X; L), and
b. The composition

IC.(X; L) =B ICua(S' x X; £) <5 IC.ia(S* x X, {5} x X; C) (4)
is a chain map (g is the obvious quotient map).

In [4] it is proved that a map analogous to the suspension map defined above induces
an isomorphism
TH.(X) =5 THZ% (R x X) (5)

for any sratified pseudomanifold X, where I HP™ denotes the Borel-Moore intersec-
tion homology (in which geometric chains are not required to have compact support).

The name combing is derived from the method of proof of (5). A cycle ; in R x X
is “straightened out” by a process similar to combing a head of hair. The chain is
cut transversely with {t} x X for some suitably chosen ¢ € R, and the intersection is
extended (“combed left and right”) giving a chain of the form R x €ky-

A close examination of the proof of (5) shows that it carries over in its entirety when
the local system £’ on X is introduced and extended trivially to a local system on
R x X which we denote by R x £, and we obtain an isomorphism

TH.X; £') 24 THE%(R x X;R x L), (6)

However, the homology groups on the right hand side of (6) are canonically isomor-
phic to TH.41(S" x X, {s} x X; L) proving
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Lemma 3.18 The combing lemma. ¢-3u3p induces an isomorphism

TH.(X; L) =5 TH.1(S* x X, {3} x X; L).

Corollary 3.19
Let ID.({s} x X;L') be a subcompiex of IC.({s} x X;L’) and suppose that the

inclusion

i: ID.({s} x X;L') — IC.({s} x X; L")
induces an isomorphism on homology. _
Then the inclusion of the subcomplex ID.({s} x X;L') ®3usp(ID.({s} x X;L'))
into IC.(S* x X; £) induces an isomorphism on homology. (Note that by remark 3.15
the direct sum is in fact a subcomplex).

Proof: The proof follows from a simple spectral sequence argument by filtering both
complexes as

IC.({s} x X; L") C IC.(S* x X; L)

and

ID.({s} x X; L") C ID.({s} x X; L") @ susp(I D.({s} x X; L))

and noting that the hypothesis on ID,({s} x X;L') combined with the combing
lemma imply that the inclusion ¢ induces an isomorphism on the E! terms of the
spectral sequences corresponding to these filtrations. m)

Using the monodromies T as defined above for every point z € X, we obtain a chain
map

Ty : IC.({s} x X; L) — IC.({s} x X; L').

which maps an elementary chain a-{ to Ty (o) -¢.

(It is easy to verify that Ty is in fact a chain map and that it preserves allowability
since it does not change the support of a chain).

Denoting the induced map on homology by 7. we have :

Corollary 3.20 Forall k>0

TH(S* xX;L) = coker((T. —1I): IHx(X;L') = IH(X;L'))
@ ker((T.—1I):ITHe((X;L') = THe1(X;L')).
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3.8.2 A Z-action

As a final remark concerning the combing lemma we note that with all the definitions
as above, there is a Z-action on each fiber V. for any z € X given by

z-a = (T;)*(a). (7)

This induces a Z-a-tion on elementary chains and consequently on IC,({s} x X; ¢’ )-
We shall refer to this Z-action in later sections after addressing certain issues con-
cerning resolutions of Z over Z[Z"] in section 6.

3.6.3 Coning

Let Y be an (m — 1)-dimensional stratified pseudomanifold and let c(Y) denote the
topological cone on Y. Define a map

coning : IC(Y) — w+1(c(Y))

which maps a chain ¢ = Lag-§ to Tag-c(f) where () denotes the cone on €.
Let 5 be a perversity. In (4] it is proved that coning(p) € I C.1(Y) if and only if
dim(y¥) >m ~p,, or Yisan (m—p, — 1)-dimensional cycle. It is then proved that
the composition

IC; 120 (Y) 5 IC.in(c(Y)) L ICu i (e(Y), Y) (8)

induces an isomorphism on homology, where q i3 the obvious quotient map, r =
M —Pm —1and 7+ > k is the truncation operator defined for any chain complex C,
and non negative integer k by :

C; if i>k
(Crenk)i = { thei-cyclesof C. if ;— k (9)
0 it i<k

Once again, the assertion (and proof) continue to hold when a local system is intro-
duced. Explicitly -

Lemma 3.21 The coning lemma. Let X be an {m - 1)-dimensional stratified
pseudomanifold, £’ . local system on X\Z and L is its trivial extension to c(X)\c(Z).
Let p be a perversity and set r = m — Pm — 1. then the composition

[Crezr(X; L) T ICu1(e(X); £) % ICupa(e(X), X £) (10)

induces an isomorphism on homology.
0
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4 The homology of a torus

In this section we look at ( literally...) a specific CW-decomposition of the n-torus
T™ for n = 1,2 and 3. We construct in each case the associated chain complex with
local coefficients, and from these we are able to deduce the form of the analogous
chair complex for arbitrary n which we denote by ce¥(T™:C) .

The discussion in this section is not rigorous but rather is meant as a description of an
intuitive, geometric approach to a computation of homology with local coefficients.
The complex CSW (T™; L) is precizely the Koszul complex for 4.(Z", £) = H.(T", £).
Section 7.1 describes an explicit chain-homotopy equivalence between CEW(T™; L)
and the bar complex W(Z"; £).

Fix n > 0 and let
proj :R" — R /" =T"
be the canonical projection.
For any 1 <i < n let ¢; = (0,0,...,1,0,...,0) (1 in the ith position) and let C;
denote the directed linear path in R™ ftcm the origin to e;. Set C; = proj ((f.-).
For any set J = {j1,...,5%} € {0,1,...,n} (k2> 1), denote

CJ=C,-, X...XCJ'.,

and let C¢ = proj(Z™) be the base point of the torus.

We think of the torus 7" as the unit cube in R® with opposite faces identified. The
images (under the identification) of these pairs of faces constitute the cells in a stan-
dard CW-decomposition of the torus. The closures of these cells are precisely the
sets C; described above. Consequently, the corresponding chain complex will have
one copy of V corresponding to each C;. We denote each such copy of V by V;, .,
to indicate which cell it is associated to.

Note that the C;’s (1 < ¢ < n) form a basis of m,(7™",Cp).

Let £ be a local system with fiber V on the torus, and for each 1 <t < n, let
T; € Aut(V) be the monedromy ‘around’ C;.

n = 1; The homology of a circle.
In figure 7 the 1-torus C, is shown both as an interval with the endpoints identified
and as a circle.

WOLOG, we may assume that the local system is constant away from the checkered
area since the space with the checkered area removed.is simply-connected (in fact
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Figure 7: C; (= S')

- contractible). Thus we assume that the monodromy T) occurs only when passing
througi this area.
There are only two cells, and therefore

Vv if i=0,1
v otherwise.

Ce¥(Ci; L) = {

The only nontrivial boundary map is 8,, and it is clear from the picture that
G(v)=Tiv—v, VYveV,.
Thus CE¥(Cy; L) has the form

n=2.
In figure 8 we represent the 2-torus 72 = C; x C; by a square with opposite faces
identified.

Once again we may assume that £ is constant away from the gray strips, and that
the monodromies occur only when passing through the gray strips as in the figure.
Note that each of the 1-cells has the same siructure as the 1-torus in the previous
case (but each with a different monodromy). Again by counting the cells we have :

Vv if 1=2:0,2
C¥(Cy xCy;L)={ VOV if i=1
0 otherwise.
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Figure 8: T* =C, x C;

0, is computed seperately for each of the l-cells precisely as in the 1-dimensional
example above, whereas for any v € V,,

%(v) = (—(Tav ~v), Tiv - v)

where the negative sign in the first component is due to orientations.
Thus CEW(T?; L) is as shown in figure 9.

3 0
l

,,_\ g_,

Figure 9: CSW (T2, L). V, denotes the copy of V associated to the cell [ljesC; (for
all J C {1,2}).

31



n=3.

The analogous picture of the 3-torus is shown in figure 10.
Lv

Figure 10: T3 =C; xC3 xC3

Note that each of the 2-cells is equivalent (up to a change in the monodromies) to
the 2-dimensional example above as seen in figure 11.

Thus, by considerations similar to those in the previous example, we obtain the
complex CEW(T3; L) (figure 12).

Remark 4.1 Note that 73 = 7?2 x C3. Furthermore, each cell in 73 is either of the
form
CJ X C.

or of the form

CJ XC3

for some cell C; in T?. Algebraically this fact can be seen in the chain complex
C.(T?3; L), as it consists of two copies of C.(T?; £) with one shifted up by 1 in degree.
In the language of section 3.6 we can simply state that

CoW(T™; L) = C2Y(T% Llm) @ susf(CZY (T L))

The general case.
From these examples one is led to the construction of CEW (T™; L) for general n,
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Figure 11: The 2-faces of T3.

namely - C€¥(T™; L) has the form of an exterior algebra on n generators so that for
each 0 <k <n,
(T L)= P Vi

JCc{1,...n}
=k

and the boundary maps for each J = {j;,...,Jx} are given by

& = f:(_n‘a,{

where

Furthermore,

CoW(T™ L) = CE¥ (T Llgn-1) @ SUSH(CTY (T Llzo). (11)

4.1 A final note regarding CW-decompositions of the torus

The e;’s from the beginning of the section which determined the basis of m(7™,Cs)
can be replaced by any other basis (ej,...,e;) of Z", thus determining a different
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Figure 12: CS%(T3; L)

basis {C},...,C.} of m(T™,Cs), a different set of monodromies 17,...,T, and a
different cell decomposition of the torus, all of which form a different representation
of the same torus with the same local system.

For example - any simplicial n-dimensional cone K in a cone complex X C R" for
which | det(M(K))| = 1, determines such a representation.
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5 The intersection homology of a preduct of disks

In example 2.9 we described a cone complex whose associated toric variety X is an
n-fold product of 2-spheres £5! x ... x £S? (Recall that £S? denotes S! x [0,1]/ ~,
where (z,0) ~ (z',0) and (z,1) ~ (z',1), Vz,z' € S'), and for which the underlying
polytope P was an n-cube. We later proved that the inverse image (under p) of a
neighborhood of a vertex of P is homeomorphic to an n-fold product of 2-disks Y,
and inherits a natural stratification as a subspace of X. In this section we use this
construction, along with the chain complex of section 4 to construct a chain complex
which computes the intersection homology with twisted coefficients of a product of
disks (relative to the boundary;.

We begin with an intuitive description, since the fundamental geometric ideas of this
construction are quite simple, whereas when done formally, the beauty of the intuitive
forest is somewhat obscured by the denseness of the trees of rigor.

5.1 The intuitive description

Let v be the given vertex of the cube P. Let @ be the closed star of v in the
barycentric subdivision of P. The face structure of the cone dual to v induces a
cell structure on the n-torus 7". Corresponding to this cell structure, we obtain,
using the methods of section 4, a chain complex which computes the homology of the
n-torus. The product of this chain complex with the simplicial complex @ yields
a geometric chain complex on @ x 7" . Each chain { in this complex projects to a
geometric chain p(£) in Y and thus the whole chain complex projects to a geometric
chain complex on Y. The restriction of the projected complex to allowable chains
with allowable boundaries is shown to compute the desired intersection homology.

The combinatorial nature of this construction enables us to give a combinatorial
description of the entire chain complex, as well as a combinatorial algorithm for
determining allowability of each chain.

5.2 The formal construction

Denote £(-)S! = {[(z,t)] € £S' : t < }}. T()S! is the cone ¢S = D? (the
closed 2-disk). Set X DY = Z()S! x ... x £(-)S! (n terms). Y is stratified in the
obvious way, namely Y2 = Y N X3. If each disk is stratified with one 0-stratum
(at the apex of the cone) and one 2-stratum, then this stratification of Y is simply
the natural product stratification.

The interior of the “non-singular” part of Y, Y \ Y3..2 is a complex n-torus. Thus,
as is the case for the toric variety X, a local system £ for intersection homology
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on Y consists of a local system on the torus, namely of a vector space V over @,
and n commuting monodromies: Ti,...,Tn, € Aut(V). Each 7} is the monodromy
“around” the boundary of the itk disk.

Recall that the underlying polytope P is an n-cube Iy x...x I, ,where Vj, I; = [0,1].
Set I{) =[0,1], and set @ =[I%,/{". Then Y =p~(Q).

For each j, we denote by D; the disk p~1({0} x {0} x ... x I}') X ...x {0}) and
by C; its boundary p~!(0,0,...,3,0,...,0). Thus in fact Y = Dy x ... x Dy, and
“the torus in the middle” is C; x ... x C,.

We use the following convention for indexing k-fold subproducts of any of the various
n-fold products mentioned above : Let [n] denote the set {1,...,n} &nd let J C [n].
Then I; denotes the product [I;c; I; and likewise for all other products. We denote
by J¢ the complement of J, [n]\ J.

We index 0-fold products by 8. Thus Iy = ") = the point (0,0,...,0) which we
denote by v, and Dy = p~!(v) = Cy = “the” base point of Cinj=T".

Note that over points in I; , Cpn) gets collapsed to Cin)/Cse which is canonically
isomorphic to Cj.

Figure 13: n=3: QCP and Y=D% x D? x D? C 8% x §% x §?

For any J C [n], let £; = L|c, and let C°W(Cy;L;) be the chain complex for
the homology of the torus Cj, as in section 4. Denote the associated boundary
maps of this complex by 87. Recall that the k-chains in this complex have the form
Y(ak - Ck) where ax € V and K runs over all the subsets of J of order k.

Let sd(P) be the barycentric subdivision of P, suitably oriented, and let [o,0] €
{0,1,—1} denote the appropriate incidence number for two simplices o,0’ € sd(P).
Q is triangulated by a subcomplex of sd(P), and we shall henceforth identify it with
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thig gubcomplex.

Each m-dimensionnl simplex 0 € Q@ corresponds to & flag of faces of P of the form
I, C I, c...C I;. ,whete JoC.h C . Cdm (_Z,[n]

Set J(0) = Im-

Note : If o € Q corresponds to the flag Jo C JyC ..o C Jm, then do is
made up of the simplices 0%y ,o™ where o = 8 corresponds to the flag
Jo C ... CJix clipnC--C Jo.. Thus for all i< m, J(d') = J(o) = Im: and
correspondinglys if J(o) = (n], then o™ is the only face of o which is contained in
P (see figure 14).

Figure 14: @ e Q@ corresponds to the flag Is C I, CIp2an = It

Next we define 2 geometric chain complex (with twisted coefficients) on QxTH
which we will then project down to Y.

Deﬁnit’;onhs.l Denote ¥ = @ X ™.

Define D.(Y; L) C C.(Y; L) to be the product of the simplicial complex € with the
CW -complex C¥(Cra}s L).

Explicitly - Let o be 2 simplex in @ and K C(n). Let { =0 % Ck-

By intentional abuse of notation, if K = {t1,--- LK) then for 1 £J < \K|, denote
& (Ck) = Cy % ... % Cit X Cijr X -+ % C\Kb»
and denote the (K | —1)-skeleton of Ck by

Ko
acx = U #(Cx)-

=1

Set £ = (8o xCx U 7% aCx).

A

MNote : £ is @ codimension-1 subspace of ¢ and E\ﬁ' is contractible and hence
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is simply connected. Thus if ¥V, = V,‘ is the fiber of £ over some designated point
zg € é\éandae V;, then the chain o .§ € C.(Y,L) is unambigously defined.

Di(Y; L) consists of all sums of chains a -€ where £ = ¢ x Cx and dim(o) + |K| = .
INa-§) isa local-coefficient geometric chain whose support is in §'. In fact, if

§ =a-Ck € Di(Y;L) then

m IK|

8(é) = Y [oia'la- (0 x Ck) +DX_(-1)V'(Tja—a) - (¢ x #(Ck)).  (12)
= | & ,
"Owhﬁc;lr" boundary boundary attributed to the local syztem

Thus 8(€) € Di_y(Y; L), so that D.(¥;L) is a chain complex.

Now, with £ and £ as above, set § = p(¢) and ¢ = p(€'). € is a codimension-1
subspace of £ and £ \ ¢’ is contractible.

If J(¢) # [n] (i.e. ¢ C P) then § C Y3,_2 and hence is not allowable. Otherwise,
E\E CY\ Y32, and thus z¢ = p(z¢) € Y \ Yza..2 whence Ve = V;, is defined, so
that for @ € V¢ we can define unambiguously the chain a - £. (Here V¢ denotes the
fiber of £ over z¢). Thus, for any £ = p(o x Ck), a-£ is defined whenever J(o) = [n],
even though ¢ might not be allowable.

Note that in order for a chain § = p(oc x Ck) to be allowable we must have that
dim(é N Y2n-2) < dim(§) — 2, which implies in particular :

(i) J(2) = [nl, and

(it) dim(p(e™ x Ck)) < dim(o x Ck).

Note that (1) = 8(€) N p(int(e™) x Ck)) = 0.

On the other hand, p : (£, £\ (6™ x Ck)) — (£, &\ p(o™ x Ck)) is a relative
homemorphism. Combining this observation with the above remarks and with (12),
we see that if £ is allowable, then

m-1 IK| v
8(0) = X loiole 5o’ x O) + L (-1 (T = ) 6o x #(Cr),  (13)

and since for each of the simplices o* in this formula, as well as for o, J(o') = J(o) =
[n], 9(¢) is well defined.

Definition 5.2 ID,(Y;L). Define D.(Y;L) = pu(D.(Y; L)) C Cu(Y; L).
Define ID.(Y; L) to be the subcomplex D.(Y;L) N IC.(Y;L). thus, ID.(Y;L) is
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the chain complex whese k-chains are of the form
=2 ¢
¢
where each £ is a k-chain of the form § = p(o x Ck), and V¢, a¢ € V,. In particular,

¥ € IC,(Y; L) = £ is allowable (V).

The diagrams on the following pages show all of the chains of the form p(o x Ck)
forn =1 and n = 2, followed by some examples of boundaries. The indicated
allowability /non-allowability is with respect to middle perversity.
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Figure 15: Top : The chains in D?* (n = 1).

computation.
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Figure 22: Examples of boundaries.

47



We can now state the main theorem of this section :

5.3 The main theorem

Theorem 5.3 The inclusion i: ID.(Y;L) — IC.(Y; L) induces an isomorphism
iu: Ho(ID.(Y,3Y)) = IH.(Y,dY;L).

Proof: We describe a filtration of Y by subspaces which are dual in a cc «in sense
to the strata of Y. Corresponding to this filtration we filter the two chain complexes
ID.(Y; L) and IC.(Y; L) so that i preserves the filirations.Then we set up the spec-
tral sequences corresponding to these two filtered complexes, and prove that ¢ induces
an isomorphism on the E! terms, and hence by the spectral sequence comparison the-
orem, it induces an isomorphism on the homologies of the two complexes.

5.3.1 The filtration of Y

We define a filtration of Y by closed subspaces YO C Y' C Y2C...C Y". Recall
first that Q = [1},[0,1]. Let @* C Q be the set of points of Q for which at lcast

n — k of the coordinates are equal to 1. Now set Y* = p~1(Q*). Thus we have :

Y = ) xCyx...xC,
Ve UCi x...xCicy x Di x Cigq X ... x Cn

=1
Y? U Cix...oxDijy xCiy1 x...x Dy x ... x Cq

0<i1<izsn

Y* = Dy xDyx...xD,.
We further decompose each Y* as follows : for K C [n] and ¢ € [n], set

. D; if ick
B("K)={c.- if ig K

Set .
Yk = HB(:', K).
=1
Then
Y = U Yx. (14)
KCln), IK|=k
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Also, for any K C [n], set

K ={JCK : |J|=|K|-1}. (15)
Then
Yk = U Y (16)
K'edK
and thus we denote
Yk =Yok. (17)

Remark 5.4 Note that
YN Y1 = Ysx.

Corresponding to this decomposition of Y* we define a similar decomposition of Q*
by setting

QK={(tht21-°'ytn)€Q: t6=%7 V‘EKC} (18)
So that VK, Yk =p~'(Qk),and Q*= [J Qk. (See figure 23).
KC[n), |Kl=k

The filtration of the chain complex IC.(Y;L) is defined by
P € IC.(Y¥, L) < ¢ € IC.(Y;L) and supp(f) C Y*. (19)

IC.(Yk; L) is defined analagously.

ID,(Y*; L) and I1D.(Yk; L) are defined to be the respective subcomplexes ID.(Y; )N
IC.(Y*; L) and ID.(Y;L)NIC.(Yk;L).

It is worth noting that if ¢ = X a¢ - £ € IDi(Y; L), then

¥ € ID;(Y*; L) (resp. IDi(Yk; L) ) ¢ VE, p(€) C Q* (resp. Qk).

In particular, since each ¢ is of the form § = p(c x Ck), this is equivalent to saying

that o € QF (resp. Qk).
Thus we obtain the filtrations

IC.(Y®) c IC.(YY) C...C IC.Y™). (20)

and
ID.(Y®) Cc ID.(Y') C...CID.(Y"). (21)
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{ Opposite faces
are identified)

<

0
Y -C(3]

Yoy

Y= Y=Y

Figure 23: The filtrationsof Y’ = D?*x D? (top) and Y = D?xD?xD? (bottom).

Note that for all K C {1,2}, Yk = Yk x Ca.
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Now let Y = Dy x ... x D,,, with the above filtration. We must prove that for each
k, t induces an isomorphism

i Ho(ID,(Y*, Y*1;£)) = [H.(Y*, Y*1, 0). (22)
Remark 5.5 For any two subsets K, K3 C [n],
YK; n YK: = YK;ﬂKQ-

Also, if K, and K; are two different subsets of [n] of order k < n then |K; N K;| <
k—1.
It follows that

Yk, N Yk, C Y51,

Therefore for any &£ < n

IH(Y*, Y450 = @ IH(Yk, Yk NY*10),
KcC[n]||K|=k

and by remark 5.4

TH(Y*, YY) = @ IH.(Yk,Yox; L)
KC[n),|K|=k

Moreover, the analogous decomposition holds on the level of the chain complexes
IC.(Y*,Y*"1; L) and ID.(Y*, Y*'; L), and the map i preserves these decomposi-
tions. Therefore, to prove (22) it is enough to show that for any K C [n], ¢ induces
an isomorphism

tal H.(ID.(YK,YaK);ﬁ) — IH.(YK,YM(;[-). (23)
The proof of the theorem is by induction on n. The case n = 1 is an easy application
of lemma 3.18 to the complex CS%¥(Ci; L) of section 4. There are orly two subsets
9, {1} € [1]. The assertion holds since
Y? =Yy =Gy, ID.(Y% L) = C¥(Cy; L), and
Y! =Yy = D? = ¢(Y°).
So let n > 1 and let K C [n] with |K| = &.

We distinguish three cases :

szgag I H k=!!l

Y? = Yy is simply the n-torus C; X ... x Cn, which does not meet the singular strata
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at all, and Yk =0. ID.(Y? L) is the CW chain complex for the torus 7", as in
section 4 and i is the natural inclusion into C.(7"; £) and hence is an isomorphism
on homology.

Case 2 :0<k<n.
Let K C [n] be a subset of order k. WOLOG we may assume that K = [k] =

{1,2,...,k} C[n—-1]C[n],so that Yx =Dy x D2 x ... X Dg X Cg41 X ... X Ci.

Set
Y’=D1 XDgX...XD"_l

and let Q' = [17= I; be the underlying “corner” of the (n — 1)-polytope over which -

Y’ is defined. Correspondingly, denote by §' the collapsing map from @' x7"~! to Y'.

By identifying in the obvious way Dy x Dy X ... X Dp_y with Dy x Dy x ... x Dn_y X Cy
we may assume that

Y CY,
and by definition

Y =Y xC..

Also, by identifying Q' with Q' x {}}, we may assume that Q' is a subcomplex of Q.
Moreover, under this identification and since K C [n - 1] :

Qx = Qx
and in fact for every L C K

Qr = QL.
Note also that with these conventions we may view p': @' x T"~! — Y’ as a restric-
tionof p: @ xT" =Y.
Finally, identify 77! with 7"! x Cy and let £’ = L|rn-1.
Recall that Yx is obtained from Qx x T" by collapsing certain subtori Cy C T" over
certain faces of Q. However for any such C; which gets collapsed, J C [n — 1], and

hence each such Cj is in fact a subtorus of 7!, and Y is obtained from Q' x 77!
by collapsing the same C; s over the same faces of Qx (= @¥)-

Thus we have shown :

Proposition 5.8 For any L C K, Y, =Y} x C, and in particular
Y=Yy xCn and Yok = Yyx x Ch. (24)

Furthermore, the equalities in (24) hold as stratified spaces i.e. the strata of Yk are
precisely the products of the strata of Y with C,.
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Recall equation (11) of section 4 :
CEY(T™; L) = CE¥(T™; Llrn-1) ® FTSH(CEW (T™1; L] 701).
This implies by the definition of D.(Y; L) that
D.(Yk; £) = Du(Yii £') @ swsp(D.(Yi; L)), (25)
(where Yk = $~'(Yk) and Y = =1 (Y%)).
Lemma 5.7
(¢) Ca is not collapsed over any of the faces of @'.

(1) For any J C [n] set

J,_{J if ngJ
"1 J\{n} if neJ

Then for any ¢ € Q' ,and for any J C [n],

p(o x Cj) is allowable <= p'(o x C,.) is allowable.

Proof:

(%) Cy, is only collapsed over points (t,,...,%,) of @ in which t,, = 0, whereas for any
point in @', t, = %

(2) This follows proposition 5.6 and from the fact that C; = Cp» x C,. o

Corollary 5.8
ID.(Yk; L) = ID.(Yk; L) ® 5usp(I D.(Yi; £')),
and in fact, by restriction,
ID.(Ysx; L) = ID.(Yok; £') ® 3usp(ID.(Ypk; £)),
whence

ID.(Yk,Yok; £) = ID.(Yk, Yoxi L') @ Susp(ID.(Yk, Yaki £'))-
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Now by the inductive hypothesis, the inclusion
ID.(Yk, Yo; L) = IC(Yk, Yoii L)

induces an isomorphism on homology, and thus combining corollary 5.8 and the corol-
lary of the combing lemma (cor 3.19) the proof of this case is complete.

e3d:k=n.

Remark 5.8 Note that the filtrations and the further decompositions of section 5.3.1
restrict to the subspace Y"~! C Y and hence the two chain complexes I D, and IC.
restrict (as filtered complexes) to Y"1, as do the associated spectral sequences. By
the previous two cases, (23) holds for any K C [n} with |K| < n — 1. Tt follows that
: ID.(Y™Y; L|yn-1) — IC.(Y™!; L|yn-1) induces an isomorphism

it Ho(IDL(Y™Y; Clyns)) 2 TH.(Y™; Clynns). (26)

Now note that Y = Y™ = ¢(Y"1).

Let o € Q™! correspond to the flag I, C ... C I;,,. Notethat o € @"!' = Jo # 0.
Let c(o) € Q" (= Q) be the simplex corresponding to theflag Iy C I, C ... C I,.
¢(o) is in fact the topological cone on o with apex = the vertex v = Iy. WOLOG We
may assume that the simplices in Y are oriented in such a way so that [¢(c); ¢(0”)] =
[0; 0']. Note also that J(c(o)) = J(o) = Jm.

Consider the map coning defined in section 3.21.
Proposition 5.10 .

(¢) coning maps ID;.>.(Y""; L) to ID.;1(Y; L).
(i¢) The composition

IDT-Zn(Yﬂ—l;AC) co_:lirz’ ID_+1(Y; £) _q_’ I-D--H(Y, Yn-l : c)

is a chain isomorphism.
(i41) The following diagram commutes

IDyusn(Y™ L) =0 [D (Y, Y™ 0)
1i geconing 1.- (27)

IC;u3a(Y* L) —— IC.u(Y, Y"1 L)
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Proof:
(i) By definition, coning maps § = L a;-p(0i X Ck;) to ¥ ai-p(c(ai) x Ck,) , which
is in 1D.41(Y) if (and only if) £ € ID;.5.(Y"1; L).

(¢4) goconing is a chain map and is clearly injective. Thus it suffices to show that it
is surjective too.

Any m-simplex ¢ € Q which is not contained in Q"' (except for the unique 0-sirnplex
corresponding to the flag Iy) has the form c(o’) for some (m — 1)-simplex ¢’ € @"~'.
Leti > n and let ¢ € ID;1(Y,Y";L). ¢ is represented by a chain ¥ = ¥; ;-§;,
where for each j, §; = p(o; x Ck;) and so that for each ;:

(a) & € Y™, and

() &; is allowable (whence in particular , o; # v).

These two conditions imply that for each j, o; = ¢(o]) for some o € @ !, and
hence that §; = c(£) where & = p(a} x Ck;), and since §; is allowable, £ is too (an
elementary fact about coning). *

Thus 3 € Im(coning) and goconing is surjective.

(#i1) This is clear since the maps i are inclusions and the upper map coning is the
restriction of the lower map coning.

We have shown that both horizontal maps induce isomorphisms on homology.
Now, by remark 5.9, i: ID.(Y" ;L) — IC.(Y""!; L) induces an isomorphism on

homology, whence its restriction ID;.>n(Y"Y; L) — ICr.5a(Y"'; L), which is
the vertical map on the left, also induces an isomorphism on homology. '

Thus the vertical map on the right induces an isomorphism on homology, and the

case k =n is complete and along with it - the entire proof.
O

5.4 A combinatorial description of allowability in D,(Y; L)

Let € = p(0 x Cx) € D.(Y; L) where 0 € @ and K C [n].
Suppose that ¢ is an m-dimensional simplex corresponding to the flag of faces of P:

Il Cc...Ccl,,_,

with
JoCch...CJ-lg[n].- (28)
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Let S; be the stratum over I, (i.e. p~!(1},)), and note that
dim(S.-) = 2dim(IJ.-) = 2|J.'|. (29)

We describe a combinatorial formula for the allowability of £ in terms of m, K, and

the J;’s.

Recall that J¢ = [n]\ J, and that Cj. is the subtorus of Cjg) = 7™ which gets collapsed
over every point of 1.

Foreach0<i<m-1, set J| =J_,_;.
Dual to the flag (28) is the flag :

JyCcJiC...CJp_1 € [n) (30)

Now, over every point of I, C;e gets collapsed to a point and hence Ck gets collapsed
to
Cx [Cknuey & Cr\(knig) = Cknu;

which is a torus of dimension |K N J;|.
Also,
dim(e N 1;) =1.

It follows that
dim(éN S;) =i+ |KNJ.

Let p be a perversity, and to avoid long indices denote p; by p(z).
The allowability condition states that £ is allowable if and only if for each ¢,

dim(¢ N S;) < dim(¢) — codim(S;) + p(codim(S;)). (31)
By (29), codim(S;) = 2n — 2|J;| = 2|J§|.
Thus, ¢ is allowable if and only if for ea<a ¢,
i+|KNJi| < (m+|K]|)-2|J7| + (2| 57])

L=4
|K| - K N Ji| 24— m+2|J7] - p(2|J71)

L4
|K N J7| 2 (2)97] = 5(2157]) = (m —1).

Now since this must hold for ali 0 <i < m — 1, we may replace all i's by m — 1 -
to obtain :
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£ is allowable if and only if forall 0 <i<m —1,
|K N Ji| = 215 - p(21;]) - i - 1. (32)

Finally, note that for # = middle-perversity, p(2c) = ¢ —1, whence 2|J]| — 5(2|J;]) =
|J7i+1 and thus we hava :

¢ is allowable w.r.t. middle-perversity if and only iffor all 0 <t <m — 1,

|K 0 g 2 1] - (33)
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6 The bar resclution, The bar complex and the
Eilenberg-Zilber theorem

In section 5 we constructed a subcomplex of IC.(Y; L) which computes the relative
intersection homology I H.(Y,0Y; L) where Y was an n-fold product of 2-disks, and £
was a local system. The space Y was viewed as a “corner” of a smooth toric variety X
which in this case was taken to be the n-fold product S x ... x $*. The construction
involved tensoring the (relative) simplicial complex of the barycentric subdivision
of the underlying corner of the polytope P, with the chain complex obtained from
a suitable CW-decomposition of the n-torus. The restriction of this complex to
allowable chains with allowable boundaries was shown to compute I H.(Y,3Y; L).

A naive attempt to construct a global chain complex which would compute I H.(X; £)
for a general toric variety X would be to tensor the relative simplicial complex of the
barycentric subdivision of the entire polytope S.(sdP,dP) with such a CW-complex
of the torus, and then restrict to the allowable subcomplex. This, unfortunately,
does not work since any one such CW-decompositior of the torus, although it car-
ries all the Intersection-homological information of one “corner” of X is simply not
fine enough to contain all of the Intersection-homological information at other cor-
ners. Thus, if this approach is to be followed, the CW-complex of a given corner
must be replaced by a larger complex on the torus. This complex must be large
enough so as to contain in a natural way, as a subcomplex, each of the cells in each
of the local CW-complexes . To this end we use the bar compiez obtained from the
bar resolution of A (with local coeflicients), where A is a free abelian group of rank n.

In this section we discuss certain aspects of free resolutions of Z over Z[A] as related
to our construction, in particular - the bar resolution, and their relation to the iocal
coefficient homology of a torus. We then describe an explicit chain homotopy equiva-
lence between the bar resolution of Z" and the tensor product of of the bar resolutions
of Z*! and Z and prove certain properties of the maps involved which will be used
later on in proving that certain maps (which will be defined in terms of these maps)
preserve allowability.

Since we deal only with free abelian groups, we use additive notation as opposed
to the standard multiplicative notation commonly used in the homology theory of
general groups. For detailed descriptions and proofs of the standard results see (7).
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6.1 The bar resolution

Let A denote a free abelian group of rank .

Definition 6.1 W,(A). For all k > 0, let Wy (A) be the free abelian group generated
by the ordered (k + 1)-tuples (2o, 21,...,2x), where Vk, z;, € A.
Define 3; : Wi(A) = Wi_1(A) by

Ou(20y 21, - - -y 20) = i(—l)“ih

where )
di(20y 21y - - -y 2k) = (20 - =3 Zim1y Zidly« -+ s Zk)-

Define the augmentation ¢: Wo(A) = Z by : €(20) =1, Vzo € A.
Wi(A) is a free module over Z[.A] where the A action is given by :

z-(20,21y---2k) = (2 + 20,2+ 21,..., 2+ ).

So defined, W,(.A) is a free resolution of Z over Z[A].

We refer to the generators of W,(.A4) as simplices and call the z;’s vertices.

We say that (zo,...,zx) is (strongly) degenerate if z; = z; for some ¢ # j.

We say that (zo,...,2x) is weakly degenerate if the dimension of the affine span of
{20,-..,2k} i8 less than k.

6.2 The non-homogeneous description

It is often convenient to describe the Z-generators of W.(.A) in the form :
20[21|22| e |2k]

where zo is the initial vertex and for i > 0, z; is the “vector” from the (i—1)* vertex to

the the i** vertex. In other words, zo[21|22|. . . |2k] denotes the simplex whose vertices
are (zo,2z0+21,-..,20+-..+ 2). This is known as the non-homogeneous description
of W.(A).

For i > 0, we call the z;’s edges. 3
In this description, the boundary map 9y : Wi(A) — Wi_1(A) is given by :
k

8 = Y_(~1)'d;, where

=0
. (Zo+21)[23l...|2k] 1=0
di(zolz1]...|2x)) = { 2olz1l...|2i + zisal - - - 2] 1<i<k-1
Zo[Z]' s IZk_]] . t=k
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The A-action simply translates the initial vertex namely :
z-(20[z1]...1zx])) = (z + z0)[za] . . . |2a).

In this description, a simplex is degenerate if one of the z;’s is equal to 0, and weakly
degenerate if {zi,...,2:} are linearly dependent (over R).

6.3 The bar complex

Let V be a (left) A-module (in cur case a rational vector space on which A acts
by automorphisms). Then for each k, V ® Wy(A) is an A-module with A acting
diagonally on the tensor product, namely

z-(a® zo[z1]za] .. . |2x])) = (2 - @) ® (2 + 20)[21]23a] . . - | 2] (34)

Definition 6.2 The bar complex. The bar complex of A with coefficients in a
local system £ (with fiber V), denoted W.(4; L) is the chain complex obtained from
V ® W.(A) by modding out by the A-action.

Equivalently it can be defined as :

Wi(A; L) = V @14 Wi(A),
with associated boundary homomorphism :
Ok = Iy ®i4) Ok
(Iv denotes the identity on V).

The bar complex can be described more explicitly as follows :
Wi(A; £) consists of finite sums of elements of the form

a® [z1]za]. .. |z)

where a € V and z; € A for each i. )
The boundary homomorphism 8 : Wi.(A; £) — Wi_1(A; L) is given by

a(a ® [Zﬂzzl cee lzk]) = -a@® [Zgl ces Izk] (35)
k-1
+ E(_l)ia®[zl|---lzi+Z.'+1|...|zk]

+ (—l)ka ® [21|22] - - - |2k-1]-

Fact 6.3 With boundary homomorphism as above, W.(A; £) is a chain complex, and
H,(W.(A; L)) = H(T™; L).
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6.4 Normalization

In the bar resolution, as well as in the bar complex, the degenerate chains (sums of
simplices which are (strongly) degenerate) form a subcomplex called the degenerate
complex. The quotient of the bar complex by the degenerate subcomplex is called
the normalized bar compler. The projection onto the normalized complex is a quasi-
isomorphism (induces an isomorphism on homology).

6.5 Some general remarks about group-homology with local
coefficients

Given a group G, a G-module V and any free (projective) resolution F. of Z over
Z[G), the homology of G with coefficients in V is defined as in definition 6.2 as the
homology of the chain complex cbtained by modding out F, ® V by the diagonal G
action. (It is a standard result that the homology is independent of the resolution
F.).

The quotient obtained by modding out by the G action is denoted (F ® V)g.

If there is a short exact sequence 0 — G, -+ G — G; — 0 (in particular if
G, and G, are subgroups of G such that G = G, x G3) then (F ® V)¢ can be
computed in two steps, (see [7] ) by first dividing out by the action of G), and then
dividing out by the induced action of G2 on the quotient :

(F®V)e =((F®Va)a- (36)

We shall use this fact in section 8.

The operator (.)g which takes any G-module to its quotient modulo the G action is
called the co-invariants fuctor.

6.6 The Eilenberg-Zilber theorem

The following are two fundamental facts from the theory of the homology of groups :

Fact 8.4 Uniqueness of resolutions. Let G be a group. Then any two free (or
projective) resolutions of Z over Z|[G] are chain homotopy equivalent.

Fact 6.5 Let G’ and G” be groups, and let G = G' x G". Let F, and F be irce
resolutions of Z over Z[G'] and Z[G") (respectively).
Set F. = (F'® F").. Then F. is a free resolution of Z over Z[G].
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Coroliary 6.8 W,(Z) ® W.(Z"!) is a free resolution of Z over Z[Z"] and it is chain
homotopy equivalent to W,(Z").

We will rely heavily on thie last fact in the proof of the major result of this thesis.
However, we will need to prove that the homotopy equivalences (as well as the homo-
topy itself) preserve certain subcomplexes and for this we will need explicit formulas.
Such fomulas were given by Eilenberg and MacLane in [9]. In order to exploit these
maps for our needs, we first need to describe the bar resolution as a simplicial abelian
group and to recall some background from [8].

Definition 8.7 Let k > 0. Define degeneracy operators s; : Wi(A) = Wi41(A) for
all 0 <:<kby:

si(zolz1]. .. |2k]) = zo[z1] . . . |2 O |ziga | . . - 2]

In the homogeneous descrition this amounts to duplicating the i** vertex.

Fact 6.8 With these degeneracy operators, and the face operators d; defined in sec-
tion 6.2, W,(A) is a simplicial abelian group.

Definition 6.9 In (8] the authors define for any two simplicial abelian groups K and L,
a simplicial abelian group K x L by :

(K x L), = K, ® L,

The generators of K x L are denoted k x { (for k € K, l € L).
The face and degeneracy operators are applied componentwise, namely :

di(k x 1) € di(k) x d;(1), and

si(k x 1) & si(k) x si(1).

Remark 6.10 As for any simpliial abelian group, X x L is a chain complex with
boundary map 9 = Y (—1)'d;.

The following definitions and theorems (through section 6.7.1) appear in [8] in the
general context of simplicial abelian groups.

Let p and g be non negative integers.
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Definition 6.11 Simplicial operators. A simplicial operator S, ) in the category
of simplicial abelian groups is an operator which for every simplicial abelian group
G, maps G, to G, homomorphically, and which is natural with respect to simplicial
maps (a simplicial map is a degree 0 homomorphism which commutes with all face
and degeneracy operators).

Definition 6.12 Monotonic simplicial operators. A monotonic simplicial op-
erator (in the category of simplicial abelian groups) is an operator M, ), natural
with respect to simplicial maps, which for any simplicial abelian group G maps G,
homomorphically to G, and which can be written {uniquely) as

M=8.',....8.',dj‘...dj“ (37)
with

p>t4>...>41 20, 0<jii<...<in <gq, andg—-t+r=p. (38)

Theorem 8.13 . Any simplicial operator S can be uniquely expressed as a sum of
monotonic simplicial operators.

Definition 8.14 Derived operators. Let M be a monotonic simplicial operator
say
M= 8.‘,...8.‘,(1," ...dj'.

The derived operator is defined to be

M' = Si;41--- 3.'|+1dj.+1 ‘e dj1+l- (39)

Thus for any simplicial abelian group G, M’ maps Gp41 to Ggia.
Let S be any simplicial operator. If S is expressed in its canonical form as a sum of
monotonic operators:

S=2Mh

then we define the derived operator :
§'=3 M.

Definition 6.15 Frontal operators. A monotonic simplicial operator M is frontal
if in its canonical form (37), j¢ > 0. A general simplicial operator is frontal if it is a
sum of frontal monotonic operators.

Note: Any derived operator is frontal.
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Theorem 8.18 Eilenberg-Zilber. Let K and L be simplicial abelian groups.
There are maps

f
K xL = K®L (40)
and a degree +1 map
®:(KxL)— (K xL)pr (41)
satisfying (modulo degeneracies):
(i) foV =1.

() Vof = 8® + ®8. (Recall that K x L and K ® L are chain complexes).

In addition, each of the maps takes degenerate chains to degenerate chains and hence
they induce maps on the normalized resolutions. On the normalized resolutions, (%)
and (i¢) hold precisely.

We describe the explicit formulas for f, V and & as pertaining to our setting in 6.7.1
below.

6.7 The E-Z theorem and W,(Z")

We shall henceforth consider only the normalized bar resolution and bar complex.
To avoid overly cumbersome notation we use the same notation for the normalized
complexes as we had used up to now for the general complexes

Lemma 68.17 Let Z" be decomposed as Z @ Z"~!. Then W,(Z") is cancnically iso-
morphic with W,(Z) x W,(Z*!).

Proof: Vz € Z*, write z = (2/,2"), where z' € Z and 2" € Z"~'. Then make the
identification:

zolz1. .. |zk] = zolz1]. . |2k] ® zg[21] - - - |2K], (42)
which is clearly a bijection, and it is trivial to verify that the face and degeneracy
operations are preserved under this identification.

Thus we have a chain homotopy equivalence as in theorem 6.16 :

W.(z") # W.(Z) @ Wa(Z"). (43)
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We now give an explicit description of the maps involved as in [9].

8.7.1 The maps f, V, &

f:
The map f is the Alexander Whitney map. It is defined in general on K x L (where
K and L are any simplicial abelian groups) by f(ar ® &) =

k-1
sl...skak®b;,+E(-l)'s.-.,.l...ska,, ® 3.-_1...sob,,+(—l)kak®so...sk_1 bx.

=1

Explicitly in our setting, let w = zo[z1]...|zx] € W.(Z"), and for each i, let z; =
(z!,2"), where 2! € Z and z € Z""}. Set

folw) = [ 1@ 2401 120)
fw) = el @ (D ekl 1], for 1Si< k-1,

j=0
k
filw) = zlz]...|2]® (Z% z)[ 1.
Define
f=fo—f+...4(-)fi. (44)
v:

Denote by [m] the set {0,1,...,m}. Let p and q be non negative integers s.t. p+¢ =

m+1. A (p,q) — shuffle (u,v) of [m] is a partition of [m] into two disjoint sets
p={t,....,pp}and v ={vy,...,0}

sothat p) <...<pp and 1 <... <y,

V : Wp(Z) ® Wo(Z™") = Wpa(Z7)
is the “shuffle product™ defined by:
V(w, ®wy) = 3 (1)) (s,, ... Wh) X (Sup -+ Sy Wg )y (45)
(uw)

where ,
e(w) & Y= (i = 1)
=1
is the signature of the shuffle (4,v) and the summation in (45) runs over all (p,q)
shuffles.
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Remark 6.18

(i) In (45) the summand corresponding to a given pair (s, v) is the (p + ¢)-simplex
whose edges are the edges of w' and of w”, “shuffled” so that the edges of u' are in
positions ,...,v, and the edges of w" are in positions p1,...,p,.

(i5) In the context of (criented) simplicial complexes, equation (45) gives a (standard)
way of triangulating the product AP x A? of a p-simplex with a g-simplex, so that
with this triangulation,

(AP x A%) = JAP x AT + (—1)P AP x A°.
Set
h=Vef
and note that ho(zo[ ]) = 20[ ].

h is a simplicial operator, whence its derived operator b’ is defined.

®:
®, : Wo(Z*) — Wy41(Z") is defined by induction as a natural homomorphism as
follows:

& =0, )

and assuming ®,_1 : W,_1(Z") — W,(Z") is defined for g > 0, set

®y(w,) = —@;-1(“%) + h'so(wy)- (46)

Note: Since 4’ and @' are frontal, we conclude by induction that & is frontal.

6.8 Properties of the maps pertaining to allowability

In this sectivn we prove certain properties of the maps f, V and @ which will be
used later on in proving that allowability is preserved by certain maps based on these
maps.

Definition 6.19 Intersection number. Let F be a linear subspace of R", and let

w= Zo[le cee Iz;,] € W,,(Z")
Define the intersection number of w with F :

wlFr = #{ {z1,--,z}NF }.

i.e. w|F = the number of edges of w parallel to F.
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Theorem 6.20 Let 7" = Z ® 2™ and correspondingly let R® = R @ R"~'. Let
F C R™! be a linear subspace.

(i) Let w € Wi(Z") be a k-simplex, and let f(w) = T(w} ® w}').
Then for each 2,
w! non-degenerate = w;|F 2 w|r.

(1) Let ' ® " € W.(Z)® W.(Z"") (where w’' and w" are simplices), and let
V(@ w") =YL wi.
Then for each ¢,

wilr 2 W"|p.

Note : as a corollary of (i) and (i5), Vof preserves (or increases) intersection num-
bers with any subspace F € "~ (modulo degeneracies).

(iii) Let w € Wi(Z") be a simplex and let ®(w) = L aw; (a; € Z, V2).

Then for each i for which a; # 0 and w; is non degenerate,

wilr 2 w|p.

Proof:
(i) Let w = zo[21|. .. |zx] € Wi(Z"), and for each j, let z; = (2}, 2}). Since F C R,

5 €F & ;=0 < 2] =2z (foreachy).
Now for any 0 < i < k, w! = zj[z}]...|z]] and W = z5[z};]... 2], and thus

w! is non-degenerate <« z;#0 for 1<j<i
& z;@F for 1<57<1
&  all the edges of w; which are in F are also edges of w;'.

(¢2) This is clear since by the definition of V, each of the edges of w” is an edge of
each of the w;’s.

The proof of (ii):

Definition 8.21 Define the join of a vertex with a simplex by :
In the homogeneous description :

zo * (21,22, .-, 2k) = (205 215+ -+ 5 2k)
and in the non-homogeneous description :

20 * z1|za| - - - |zx) = zo[z1 — 20]za].- - - |z) (47)
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or
2o % (20 + 21)[za] - . - |za) = 20[2a|22] . . . | 2] (48)

Lemma 6.22 Let M be a monotonic operator and let w € W,(Z") and z € Z.
Then
M'(z % w) =2z * M(w).

Proof: The proof is immediate from the definition of derived operators.

Now with M,w, z as above, set M(zo[z1]...|zk]) = Zo[Z1|. .. |Zm]-
Lemma 6.23 If M is frontal then %, = 2.

Proof: This follows immediately from the fact that in the canonical form of M, do
does not appear.

Corollary 6.24 Let M : W,(Z") — W,(Z") be a frontal monotonic operator and let

F C R" be a linear subspace. If M preserves (or increases) the intersection number
of every simplex with F then so does M’ : Wp4,(Z™) — Wi (Z27).

Proof: Let z[z1]...|zp41] € Wp4a(Z"). In view of definition 6.21 and lemmas 6.22
and 6.23 we have

M'(20[z1]. .- |zp41]) = M'(z0 * (20 + 21)[22]. . . |2p41])
= Zp ¥ M( (Zo+21)[22|...|2p+1])
20 * (20 + z1)[22] . . - |2p41]

= z[z|a]... |zpH]

Now since M preserves intersection numbers with F' we have

#{ {E,,...,2H1}0F} 2#{ {zg,...,z,,H}nF}

and therefore #{ {z1,%2,...,2p1} N F} 2 #{{z1,22,..., 211} 0 F}.

Corollary 6.25 Since any simplicial operator S is a sum of monotonic operators,
corollary 6.24 holds on each summand of S.

Proposition 6.28 h’'s, preserves (or increases) intersection numbers with F (for any

FCRM).
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Proof: Let zofz]...|zx) € Wi(Z").

h'so(zo[z1] . . - |24])

h'(20[0 fz1]... [z])
h’(ZO * Zo[zll ces |zk])
zo * h(zo[z1]. .. |2])

h preserves the intersection numbers with F' and joining with a vertex certainly does
too.

We can now prove (tif).

Corollary 8.27 Recall that
d’c(“’o) = _@;—1(‘%) + ”30(“’4)

and let F C R""!. Assume ®,_, preserves (or increases) intersection numbers with
F. Then by corollary 6.25, ®;_, preserves (or increases) intersection numbers with F
since & is frontal. Combining this with proposition 6.26, and noting that the assertion
holds for ®, = 0 (and for ®; = hjse) completes the proof.

6.9 A chain homotopy equivalence in dimension 1

In this section we describe another (smaller) resolution of Z over Z[Z] and an explicit
chain homotopy equivalence with W, (Z).

Definition 6.28 Any CW decomposition of S* induces a CW decomposition of its
universal cover R, and the cellular chain complex of the induced complex is a free
resolution of Z over Z[Z] (see [7] for the details). The open cells “upstairs” are simply
the connected components of the inverse images (under the covering map) of the cells
downstairs.

Let CC%(S!) denote the CW decompoesition of S consisting of a single 0-cell and a
single 1-cell. In the induced complex upstairs which we denote by CCW (S"), the 0-cells
are the integral points of R and the 1-cells are the line segments {(z,2 + 1) : 2z € Z}.
We now describe an explicit chain homotopy equivalence

W.(2) —f,—- CTW(81). (49)

In degrees i > 1 both maps are 0.
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degree O:

CSW(S!) is generated by {z: z € Z}.
Wo(Z) is generated by {2 ] : z € Z}.
go and 1o are the obvious bijections.

degree 1: '
C'?W(S') is generated by {(2,z+1):z € Z}
Wi(Z) is generated by {zo[z1] : 20,21 € Z}.
Define
m(z,z+1) = z[1]

and
21-1
Y (zo+i,z0+i+1) if ;>0
rd
|;1nl--l
—Z (Zo+21+t',20+21+2‘+1) if21<0
=0

0 if21=0

91(zo[z1]) = ¢

\

Remark 6.29 If z; < 0 then g;(20[z1]) = —g1( (20 + 21)[|21]])-
Proposition 6.30 g and 5 are chain maps.

Proof: In degree 0 it is conipletely trivial whereas in degree 1 it is an easy verification.
Proposition 6.31 gonp = I.

Proof: Simply plug in to the definitions.

Proposition 8.32 There is a degree +1 homotopy ¥ : W,(Z) — W.;1(Z) such that

0V + V0 = nog — I. (50)

Proof: In degree 0, nog = I. W,(Z) is both acyclic (since R is contractibie) and
free and hence the existence of ¥ is guaranteed by the Acyclic Models Theorem. We
describe ¥ explicitly in degrees 0 and 1 nonetheless :

Set

Wo = 0, and
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' "Z-l'zo[im ifzy>0
i=1
1(zo[n]) = ¢ 1l

Uazol)) = | —Z (z0 + 21)[8] 1] ifz) <9

. 0 ifzy =0

Remark 6.33 As was the case for the map g, if 2; < 0, then
¥1(20[z1]) = —=¥1( (20 + 21)[—21))-

Degree 0: (50) holds trivially.
Degree 1: First, suppose z; > 0. Then

21 -1

neg(zolz1]) = g (20 + 9)[1].
Also, Wo@ = 0 (since ¥o = 0).
Now,

(U (zolz])) = a(z: wlil1])
= 3 ((zo+i){1] = 2oli + 1] + 2[i])

=1

= (‘gl(zo +1)[1 ]) + zo[ 1] — zo[z1]
= "z_: (20 + 1)[1] —20[z1)

=0

—

noy(lezx])

Now note that from remarks 6.29 and 6.33 it follows that (50) holds when z; < 0 too.
When 2z, = 0, everything is 0.
Note: COW(S1) is also a resolution of Z over Z[Z]. Z acts by translation namely :

Zo-z=2z9+2z and z-(z,2+1)=(20+ 2,20+ z +1).

Finally note that the maps ¢ and 5 are maps of Z-modules.
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7. The homology of a torus revisited

We formally construct the chain cemplex of section 4 and use the results of the
previous sections to prove that it does in fact compute the homology with twisted
coefficients of a torus. We do so by constructing an explicit chain-homotopy equiva-
lence which we will make heavy use of in section 8. Then we define a chain map from
the bar complex of Z" to the P.L.-geometric chain complex of the torus (both with
local coefficients) and prove that it too is a quasi-isomorphism. This map will also
play an important role in section 8.

7.1 The map from W,(Z" L) to CEW(T™; L)

By composition of the chain-homotopy equivalence (43) with that of section 6.9, we
obtain a chain-homotopy equivalence

__:; ! CEW(S') @ W.(Z™") (51)

on

W.(Z")

and by repeated application of the same, we obtain a chain-homotopy equivalence

w.(Z") C¥(5Y)®...® CEW(S") (52)

n times

In both cases the composition from right to left and back is equal to the identity.

Z" acts on CE¥(5') @ . . ® CCW(S1) componentwise namely for z = (ay,...,an) €
7" and ¢, ®...® ca € CO¥(SY) ®...® CTW(SY),

z2:(0®...0c)=a,c1®...Q0 8, Cn. (53)

The maps G and T are maps of Z"-modules (i.e. preserve the Z" action) and hence
for any Z"-module V, we have
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Theorem 7.1 There is a chain homotopy equivalence

I n G no___
V Qaam) Wo(Z7) f'%:—%—“];, V @z ( ?ic.cw(sl)) (54)

a

Now note that the complex on the left is W,(Z"; £) and the complex on the right is
precisely the complex CE% (T™; £) constructed in section 4.

7.2 The map from W,(Z"; L) to C.(T"; L)
In this section we define a chain map
v: W, (2" L) = C.(T™ L)

where W, denotes the normalized bar complex and C. denotes the complex of P.L.-
geometric chains. We will later prove that it induces an issmporphism on homology.

In formally defining this map there is an abundance of technical details which need
to be taken care of. In the process the fairly intuitive geometric idea behind the
definition is somewhat obscured. Thus before plunging into the formal haze, we give
an informal intuitive description of the map.

7.2.1 The informal description

Let Co be the standard unit cube in the positive n-tant of R", minus its faces which
do not contain the origin. Cp is a fundamental domain for the n-torus, and R" is
partitionad into the sets

{C,=z+C:z€l"}.

Let ¢ C R" be a k-simplex and let a € V be a coefficient. Denote by o, the
intersection of o with each set C,. For each z for which o, is k-dimensional, translate
(the closure of) o, over to Cp and “adjust” the coefficient by replacing a with (-z)-a.
Finally - project the sum of these chains down to the torus.

Now, for any a € V and nondegenerate wy = zo[z1]...|2k), map a ® wp € W.(ZI"; L)
to the image under the procedure described above of the simplex o € R" whose
vertices are those of wy, with coefficient a.
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7.2.2 The formal description
First :

Definition 7.2 Let C:(R") denote the complex of compactly supported P.L.-geometric
chains on R". Define a map

$: Wi(Z") - CI(R")

as follows :

Let wy = 2zo[21]. .. |2x]) € Wa(Z).

If wy is not weakly degenerate (and hence not strongly degenerate), then define
P(wx) to be the oriented simplex in R™ whose vertices are the vertices of wi (namely
(20,20 + 21,...,20 + 21 + ... + z)), with the orientation induced by this ordering of
the vertices.

Otherwise set (wi) = 0.

Proposition 7.8 ¥ is a chain map.

Proof: By the definition of W,(Z") it is clear that if w, is not weakly degenerate
then
(?) none of the summands in dwy are weakly degenerate.

(i1) $(Bun) = D(P(wr))-
Thus we have only to show the following

Lemma 7.4 If wy is degenerate (i.e. dim(spang{z,...,2}) < k) then $(wi) = 0.

Proof: Let wi = zo[z1]...|z:]) € Wi(Z") be degenrate and assume first that
dim(spang{z,...,2x}) = k - 1.

Let A be the standard k-simplex in R¥, and let ¢; = (0,...,1,0,...,0) be the it*
vertex of A. Denote the i-skeleton of A by A' fori =0...k.

Consider the linear map
l:A—R"

defined by mapping each ¢; to zo + ... + z;.
Let S.(A) be the simplicial chain complex of A. Then ! induces a chain map

lg : S.(A) = C(RY)
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and it is clear that
(1) lg(A) = P(ws) and
(i) la(A*) = P(Bun).

Remark 7.5 The following observation about P.L. geometric chains was made in [2]
and somewhat more elaborately in [4):

If X is a P.L. space and B C A C X are P.L. subspaces with dim(A4) = k and
dim(B) = k — 1, then denoting by Ci(A, B) the set of k-dimensional P.L. geometric
chains on X which are supported on A and whose boundaries are supported on B,

one has :
Ci(A,B) = H,.(A, B).

Now let A C R" be the support of l4(A) (and of Y(wk)) and for 0 < i < k let A* be
the support of lx(A').
There is a commutative diagram :

Z = H (A, AF-Y) —l'—-v Hi(A, AF-1)
la " 13 (55)
Hi_, (Ak-l, 0) —_— Hk-l(Ak_lv 0)

where the vertical maps are the connecting homomorphisms from the long exact se-
quences of the appropriate triples.

Our assertion now reduces to the claim that the image of the generator 1 € Hy(A, A%
under lyod is 0. This follows from the commutativity of the diagram and from the
observation that since dim(A) = k-1, A= A*! and thus Hi(A, A*-!) = 0.

Finally if dim(spang{21,...,2:}) < k-2, then all faces of w; are degenerate too and
hence 1(0wi) = 0 by definition. 0

Now note the following two remarks concerning CS(R™) :

Remark 7.8
(1) The action (by translation) of Z"* on C:(R"™) makes the latter a free Z"-module.
(i3) Given any (locally finite) triangulation T” of R”, there is a refinement 7' of 7 and
a triangulation T of the n torus 7™ so that with these triangulations the covering
map
proj :R* - T"

is simplicial.
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Corollary 7.7 It follows from (ii) that proj induces a chain map
projy : CIR™) — C.(T").

Corollary 7.8 In view of (ii) above, and since ¢ preserves the Z™ action, there is a
chain map

I @zpm) p:V Qa(an) Wo(Z™) = V Qqpan CI(R"). (56)
In (56) the complex on the left is W,(Z"; £) and
Proposition 7.9 The complexon the right can be canonically identified with C.(T", ).
Proof: For any chain in V ®gzn) C5(R"), choose a representative
Y ai®ci € V@ CIR™)

and a fine enough triangulation T so that :

(1) All of the ¢;’s are simplices of T supported on the unit cube in R" and

(11) There is a triangulation T' of T" so that the map proj is simplicial.

Then by applying I ® proj we obtain a chain in C.(T", £).

By a similar process (in reverse) it is easy to see that any chain in C.(7", L) can be
obtained in this way. a

With these comments we can define :
Definition 7.10 The definition of ¥.
¥ = (I ®apam proj) o (I ®zpan) ¥) : Wo(Z" L) — C.(T", L).

7.2.3 1 is a quasi-isomorphism

Theorem 7.11 The map ¢ : W.(Z";£) — C.(T"; £) is a quasi-isomorphism.

Proof: Consider the following diagram :

r

CEW(T™; L) W.(Z"; L)

\
C.(T™ L)
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where i can be considered a natural inclusion since each cell in CE% (T™") is an ele-
- mentary chain (the interior of a cell is contractible and hence simply connected).

Proposition 7.12 The diagram commutes.

Proof: This follows from the second part of remark 6.18, since the image under oI’
of any chain in CSW(T™; £) is simply a subdivision of its image under i.

It is an elementary fact that for a smooth manifold equipped with a CW-decomposition,
the inclusion of the cellular chain complex into the compiex of P.L.-geometric chains
induces an isomorphism on homology.

Finally, I is a chain-homotopy equivalence and hence a quasi-isomorphism and the
proof is thus complete. O
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8 The main construction

Let K C R" be a cone coimplex with dual polytope P, and let X denote the associated
toric variety. Recall the diagram from section 2.1 :

-~

. P

X X
P

Let £ = p~!(9P) denote the “singular set”.

Let 'V be a rational vector space. A local system (with fiber V) for intersection ho-

mology of X consists of a V-bundle over X \ ¥ = int(P) x T™. Any such bundle is

uniquely determined (up to equivalence of bundles) by its restriction to {z} x T™,

where z is some fixed point in int(P), for example the barycenter of P.

So, let £ be a local system on int(P) x 7" and assume WOLOG that it is the trivial

extension to int(P) x T" of a local system (which we also denote by £) on { (P)}xTn
where b(P) denotes the barycenter of P.

For any z € X \ X, denote by V. the fiber of £ over z.

8.1 D,(X;L)

Let P’ = 3d(P) denote the barycentric subdivision of P. Let S.(P') denote the
simplicial chain complex of P’, and let S,(8P’) be its restriction to P. Denote by
£%(P) the relative chain complex S.(P',5P"). S%(P) is generated by the collection
. simplices

{0 € P'| 0 0P’} = {0 € P’ | The barycenter of P is a vertex of o).

Each simplex ¢ € S)(P) corresponds to an increasing chain of faces of P ending in
the unique n-dimensional face, and hence, dually, it corresponds to a flag of cones

K,.CKoCKiC... CKpy =K,

where K_; denotes the unique 0-dimensional cone and m = dim(a).
We say that o is carried by K, as well as by any cone K of which K, is a face.
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Setting F; = spang(K;), o determines a partial flag of subspaces in R" :
{0JcRhCRAC...CFaa.
Denote this flag by FL(o).

Definition 8.1 Let W,(Z"; £) be the normalized bar complex. Define a chain com-
plex
D.(X; L) = S2(P) @ W.(Z*; L).
8.2 Allowability and the subcomplex ID.(X; L)
Definition 8.2 Let p be a perversity and let @ = [z1]...|zx] € W.(Z") and ¢ €
S2AP).
For each F; in FL(o), set
A = 2dim(F;) - p(2dim(F;)) — ¢ - 1.

w is allowable over o if for each F; in FL(a),

wlp.. 2 A,‘. (57)
(Recall that w|F, is defined to be #{ {z1,...,2¢} N F}}).
Tn the special case of p = middle perversity, $(2dim(F;)) = dim(F;) — 1, and thus

(57) takes on the simpler form :

w|r, 2 dim(F;) —i.

Definition 8.3 Allowability in D.(X;L£). A chain
Y 0i ® (ai ®wi) € Du(X; L)

is allowable if and only if for each i for which «a; # 0, w; is allowable over a;.

Definition 8.4 Define I D.(X; L) to be the subcomplex of D.(X; £) consisting of all
allowable chains with allowable boundaries.

8.3 The map ¢:ID,(X;L) — IC.(X; L)

We define a map ) )
¢:DJX; L) = Cu(X; L)
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which preserves allowability and which commutes with the boundary homomorphism
when restricted to allowable chains, and hence it induces a chain map

¢ : IDJ(X; L) — IC.(X; L).

The main theorem of this thesis is that the map ¢ is a quasi-isomorphism (i.e. in-
duces an isomorphism on homology).

Let ¥ : W.(Z% L) — C.(T™; L) be the map defined in section 7.2. The map ¢ is
defined to be the composition 300, of the maps ¢y, p; defined below.
Set

v1 =10y : D.(X; L) — S2AP) ® C.(T"; L).

Note that ¢, is a chain map.

Now define the map ; : S2(P)® C.(T™; L) — D.(X;L) as follows.
Let o € S2(P) and let a®£ € C.(T™; L) be an elementary chain, with a € Vg, for
some designated point z¢ € int(§). Let z, be some (any) interior point of o, and set

y =p({zs} x {z¢}).

Now (p(o x £),p(@(o x £)) ) is an elementary chain in X, and by our assumptions
on L, we can consider a to be in V.

Define

p2(0 ®(a®E)) = a jlo x £) € Cu(X; L),
and set
P = Paopy.

Proposition 8.5 ¢ maps allowable chains to allowable chains.

Proof: Let 0®(a®w) € Dpmyi(X; L) be allowable with w = [z1]...|z] and dim(o) =
m. Let o correspond to the flag of cones

K,L.CKieCK,C...CKp;.

For each 0 < i < m — 1, denote: The face of P dual to K; by K 7; the stratum dual
to K; by S7; the subspace in FL(¢) corresponding to K; by F; and the dimension of
K (and of F;) by d;. Note that the S}’s are precisely the strata which ¢(o ® (a Qw))
meets.

If w is degenerate then (o ® (a ® w)) = 0 and there is nothing to prove. Otherwise,
the k-simplex in R" whose vertices are {0,2,,2) + 22,...,21+ 22 + ... + 2} spans a
k-plane U which satisfies

dmUNF) >\, VF.cFL(o) (58)

80



because of the allowability condition on w. Let
proj :R" - R"/Z"=T"
be the projection. For each 0 < i < m — 1, let 7; be the (d;-dimensional) subtorus
. =proj(Fi)CcT"

and set
Ty = proj(U).

dim(ry) = k, and in view of (58) we have that

dim(rpN7)2 A, for 0<i<m-—1. (59)

By definition, (o ® (a ® w)) is supported on an (m + k)-dimensional P.L.-subset of
the (m + k)-dimensional P.L.-subspace p(o x 7,) and thus it suffices to prove that
the latter is allowable.

For each i, the torus 7; is collapsed to a point over every point in K. Thus, in view
of (59) we have '
dim(p({z} x 7)) < k- X\

for every point r € K, and therefore
dim(p(o x 7y) N S;) < dim(e N K) + k — A,
But o N K is simply the simplex of sd(P) corresponding to the flag of faces of P :
K, ,CK, ,C...CK;
which is a simplex of dimension (m — 1) ~ i. Thus we have

dim(p(e x ) NS7) < ((m—1)—1) + (k- X\) (60)
= m+k-X\-i-1
m + k — 2d; + p(2d;).

On the other hand, the allowability condition is :

p(o x 1y) is allowable &

dim(p(e x 75) N 5}) < dim(p(c x 7)) —codim(57) + p(codim(S7)).  (61)
m+k ‘

81



Now since S; is dual to K;, its dimension is 2(n — d;), whence its codimension is 2d;.
Thus the right hand side of inequality (61) is m + k — 2d; + p(2d;), and thus

p(o x 7y) is allowable <= dim(p(o x 7,) N S7) < m + k —2d; + p(2d;)  (62)
and the right hand side holds by (60). o

Corollary 8.8 The restrictior of ¢ to allowable chains with allowable boundaries
gives a chain map

¢ : ID(X; L) — IC.(X; L).

The main theorem of this thesis is :

Theorem 8.7 ¢ is a quasi-isomorphism.

8.4 ‘The proof that ¢ is a quasi-isomorphism

We filter the toric variety X by inverse images of a filtration of the underlying polytope
P. Correspondingly we filter the two chain complexes ID.(X; L) and IC.(X; L) in
such a way so that the map ¢ is filtration preserving. Consequently it induces a map
of spectral sequences from the spectral sequence corresponding to the filtered complex
1D.(X; L) to that of IC,(X;L). We prove that the induced map is an isomorphism
on the E' terms and therefore by the spectral sequence comparison theorem, it follows
that ¢ induces an isomorphism on homology.

8.4.1 The filtrations
The filtration of P .

The cone complex K incuces a filtration of P

P°cP'c...cP" (63)
as follows :
Let K € K. Set
Pk = U lol
ocarriedby K

(where |o| denotes the topological closure of 7), and for all 0 < k < n set

Pt = | Px.
K:dim(K)=k
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Also set
Pox = ) lol

o carried by K

pt
’po @
Figure 24: The filtration of the polytope P from figure 1
The filtration of X .
Set

Xk = p~}(Ph).
We will also refer to the sets
Xk = p-l('PK) VKek

and
Xox =p~'(Pox) VK e€K.
Note that
Xk = U Xk.
K:dim(K)=k

Corresponding to the filtration of P, the following subcomplexes of S(P) are defined
in the obvious way :

S%(Px), SAPak), SS(P*). (64)

To simplify notation, we abbreviate the the first two complexes : S2(K) = SJ(Pk)
and S%(0K) = S%(Psk)- In addition various relative complexes are defined such as

S2(Px,Pax) = S2(Pk)/S2(Pox) (65)
etc.
The filtrations of the chain complexes .
The filtration of X
X°cX!'c...cX"=X (66)
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induces a filtration of IC.(X; L) :
IC.(X% L) c IC(XYL) C ... C IC(X™ L) = IC.(X; L). (67)

For any of the subcomplexes of S(P) as in (64) and (65) we define the ~ssociated
subcomplex of ID,(X; L) as in the following example :

ID.(Xk; £) € 1D.(X; £) 0 (SUK) ® W(Z"; £)). (68)

Note that if K is a face of K3 then ID.(Xk,; £) C ID.(Xk,; £).
We thus obtain the filtration of 1D.(X; L) :

ID.(X% L) C IDJX'; L) C ... C IDJX™ L) = ID.(X; C). (69)

8.4.2 The proof

To prove theorem 8.7 we must show that ¢ induces an isomorphism

@o : Ho(ID(X*, X*Y; £)) = H (IC.(X*, X*1; L)) = TH.(XE, X4 0). (70)

Now note that by the definition of a cone complex, for any two k-dimensional cones
K, # K,, the intersection K; N K is a proper face of each. It follows that

Xk, N Xk, C Xk-1,

Therefore,
ID.(X*, Xk-1 L) = @ ID.(Xk,Xx NX51: L).
K:dim(K)=k

But note that
XN Xk = Xok.

Thus, in order to show that (70) holds it suffices to prove

Proposition 8.8 For any cone K € K, ¢ induces an isomorphism
@. : H(ID.(Xk,Xok; L)) — IE.(Xx,Xsk; L) (1)

Thus the proof of the main theorem is reduced to proving proposition 8.8. The rest
of this section is devoted to this proof.

Proof: The proof is by induction on n = dim(K') = dime(X). The base case n =1
follows from the follewing lemma which we will use in the inductive step as well.
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Lemma 8.9 Let £ C R" be a cone complex and let K € K be a cone. then (71)
holds if either of the following two conditions holds :

(1) dim(K) = ©

(i¢) dim(K) = n aad (71) holds for all K’ C 9K.

proof of lemma 8.9:
(1) X° = 7", and it does not meet any of the singular strata. Thus the assertion is
precisely that of theorem 7.11.

(i1) Let K be n-dimensional.

Fact 8.10
Xk = e(Xok) (72)

where for any sratified pseudomanifold Y, ¢(Y) denotes the topological cune on Y,
stratified by the cones on the strata of Y, along with the apex of the cone as an
additional 0-dimensional stratum.

Thus we have as in the coning lemma (3.21) a quasi-isomorphism goconing:
ICru3r(Xok; £) T IC.41(Xk; £) =5 ICs11(Xk, Kok L)
where ¢ is the quotient map, 7 is the truncation operator defined in 3.6.3 and
r = dim(Xk) — p(dim(Xk)) — 1 = 2n - p(2n) - L.

Note that if p = middle-perversity, then r =n.

We define an analogous chain map on ID.(Xsk; L) as follows:

Let 0 € S°(K) be a simplex which is not in S2(0K). Then o = ¢(o’) for some
o' € S%(OK), where the ‘apex’ of the cone is K* = the vertex of P dual to K. The
composition

S?(aK) — -+1(K) — ._H(K,BK)

o —  c(o) [e(o)]

is clearly a chain-isomorphism.
Consequently, we define

D.(Xsk; L) coning Dini(Xk; £) 2 Dopr(Xk, Xox: L)

a®(a®uw) — c(0)@(a@w) — [(o)®(aBw)]

and again the composition is a chain-isomerphism.
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Proposition 8.11

_ o ® (a®w) € D,(Xsk; £) is allowable
c{o)®(a®w) € Diy1(Xk; L) is allowable ¢ { and
t1>r

Proof: Let w = [z1]...|z:] and let & be an m-simplex with m 4 k = i. Let
FL(C) = Foc ...C Fm-l-

Then
FL(c(e))=FaC...C Fny C F,, = R".

In order for ¢(¢) ® (a ® w) to be allowable we must have that
wlp, > Aj

forall 0 < j <m. For j <m —1 this holds if and only if ¢ ® (a ® w) is allowable.
For j = m it holds if and only if

k= #{{z1,...,z} OR"} > A,

ie.iffandonlyif ¢t = m+k 2 m+An = m+(2n—-p(2n)-m-1) = r. 0

Corollary 8.12 The composition

ID, > (Xok; L) DN ID.y1(Xk; £) = ID.yy(Xk, Xok; £) (73)
is defined and is a quasi-isomorphism. o

Finally, there is a commutative diagram

goconing

Ithzr(XOK; £) E— IDn-H(xK’ X3K; £)
e | [ (74)
qoconing
IC‘I’:Z'(XGK; [’) — IC--H (XK, xaK; c)
in which the horizontal maps are quasi-isomorphisms by the previous discussion.
As for the map on the left, it is a quasi-isomorphism for the following reason : If we
restrict the spectral sequences to the subspace Xyx, the hypothesis in (it) is precisely
stating that (71) holds for all K’ C 9K, and hence that ¢ induces an isomorphism
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on, the E! terms of the restricted spectral sequences. Thus by the spectral sequence
comparison theorem, the restricted map

¢ : ID.(Xsk; £) — IC.(Xax; £)

is a quasi-isomorphism. Applying the truncation operator 7 does not change this.

Corollary 8.18 The map on the right has no choice but to be a quasi-isomorphism
as well.

O(lemma 8.9)

Corollary 8.14 (of lemma 8.9). Proposition 8.8 holds if dim(X) = 1.

Proof: There is only one cone comlex in R!. It has only 0 and 1-dimersional (i.e.
n-dimensional) cones and hence both parts of lemma 8.9 apply. a

We proceed by induction on n, s suppose that proposition 8.8 holds for all cone com-
plexes of dimension < n — 1, and let X C R" be an n-dimensional cone complex, P
the dual polytope, X the associated toric variety, and £ an appropriate local system
with fiber V.

Let KeKk.

Case 1: dim(K) = 0. In this case, (71) holds by part () of lemma 8.9.

Case 2: 1 < dim(K) < n — 1. This is the difficult case. The proof immediately
follows the case dim(K) = n.

Case 3: dim(K) = n. As a consequence of case 1 and case 2, part (:1) of lemma 8.9
applies and (71) holds.

The proof of case 2.

Loosely speaking, the proof goes as follows : To use the inductive hypothesis, we
“factor out” a circle from the space Xx. As an algebraic analogue, we use the results
of section 7 about the Eilenberg-Zilber theorem to algebraically “factor out a circle”
from I D,(X; L) allowing us to express the latter complex in terms of a related com-
plex corresponding to a toric variety of one lower dimension. Finally we apply the
combing lemma to complete the proof.
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So, let K € K be a k-dimensional cone with 1 < k <n —1, and set F =spangK.
Then F N Z" is a k-dimensional sublattice of Z™.

Choose a basis {z;,...,2s} C Z" of this sublattice and complete it to a basis
{z1,...,2) of 2.

Set
™! = spang{z1,...,2n-1}

and

Z = spanz{z.},
whence

I"=Za 7™
Correspondingly we have the decompositions :

Rn - R e Rn-l
and

Tn - Sl x T"-l.

Accordingly, set
L' = Llgyurn-r and L" = Lsiy

where s and t are respective base points of S! and of 7"-!.

K is a k-dimensional rational polyhedral cone in R"~!. Completing it arbitrarily to
a cone complex K’ C R"~! we have the associated toric variety X' which is (n ~ 1)-
dimensional (over C), and for which :

() P’ can be constructed so that Py = Px and Pj, = Psi (see remark 2.4).
(11) Xk = S x X}, and
(m) Xox = St x x

Furthermore,

(iv) S2(K), SYBK), and S2(K,8K) are the same for both spaces, and
(v) For any o € SJ(K), the condition of aliowability over o is essentially identical in
D.(X; L) and in D.(X’; £') since FL(s) C R,
By the inductive hypothesis we have that
¢ ID(Xi¢, Xpg; L) = IC.(X, Xpk; £) (75)

is a quasi-isomorphism. (We use cp to denote the map ¢ from theorem 8.7 for the
toric variety X').
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As in (51) in section 7, we compose the chain-homotopy equivalence (43) of section
6.7 with that of section 6.9, to obtain a chain-homotopy equivalence

w.(Z") ._%"_j'_ CTW(S1) @ W.(Z™). (76)

By tensoring with S°(K,8K) on both sides and rearranging the terms on the right
(using the cummutativity of the tensor product) we have a chain homotopy equva-
lence

6,

SJ(K,0K) ® W.(1") CEW(S") ® (SUK,8K)® W.(Z™")).  (77)

2

Where ©; = rearranges(I @ (gof)) and
0, = (I ® (Ven))ounrearrange.

Remark 8.15

(4) Since all the maps involved are the identity on the S2(K,8K) component, all the
properties pertaining to allowability (section 6.8) continue to hold independently of
this component.

(i%) Considering each S?(K,5K) as a trivial Z"-module on the left hand side and as
a trivial Z"'-module on the righ* hand side, both sides are complexes of Z"-modules
and the maps preserve the Z"-action.

Recall that the Z™-action on the right is the following :

For z = (2",2') (with z” € Z and 2’ € Z"77),

z-(c®(0®w) = (2" ¢)® (0 ® (2" w)).

Corollary 8.16 Tensoring both sides of (77) over Z[Z"] with V we have a chain-
homotopy equivalence

(78)

V @apan) (S2K,0K) ® W.(17))

64

V @y (CEW(SY) ® (SU(K,0K) @ Wo(Z™71)) ).
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Where O3 = Iy @276 and O, = Iy ®a(z=) O3.

Now note that the complex on the left is isomorphic to bo(xx,xe,f;c) (by re-
arranging the terms and since SJ(K,dK) is a trivial Z"-module), whereas for the
complex on the right we have, in view of the remarks in section 6.5 and the description
of the Z"-action :

Propagsition 8.17

V ®apan) (CEW(S') @ (S°(K,8K) @ W.(T*1)) ) =

[V ® (CE¥(5") ® (SUK,0K) ® W.(Z")) ) |an

[[V®(CT¥(S!) ® (SUK,BK) ® Wa(Z")) ) |anai]a

= [CEW(S") ® (V @apan-1) (SUK, 0K) ® Wo(Z™))) Iz

% [CW(S") @ (SAK,0K) ® (V ®apan—y Wo(Z™1))) e
= CEW(S") @y (S(K,0K) @ W.(2"; L)
= C?W(Sl)®z[1] D-(xlkl SK;C')

where []g denotes the co-invariants functor as described in section 6.5,

Proof: The first two equalities follow from (36) in section 6.5.

The two isomorphisms which follow are simply a rearrangement of terms, after using
the fact that CEW(S) and S2(K,dK) are both trivial modules over Z"~!. The final
two equalities hold by the definitions of W.(Z"~!; £’) and of D.(X%, X4 L), a

For the sake of clarity we state once again the final homotopy equivalence :

O3

bs(xlﬁ xak; E) - o)

CEW(S1) @qpa) Do(X'e, Xiyse: L1). (79)

4

and note that the Z-action on D, (X, sk L') is

z- (0@ (a®uw)) =0®((z-a) @w).
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We now show that (79) continues to hold when the complexes D.(Xk, Xgx; £) and
D.(X%, ax’c) are restricted to their respective subcomplexes 1D.(Xx,Xsg; L)
and ID (x OK' L' )

First note that the chain complex CSW(S?) ®u(z) D.(X, X% L') can be described
explicitly as follows :
Let co and ¢, denote respective representatives of the Z-orbits in CSW(S!) and
CEW(S'), which we can identify with the cells of CCW(S‘) (the complex “down-
stairs”). Then for any k > 0, the k-chains of CC¥ (S ') ®apa) Do(XY, X5x; £') all have
the form

O+ ® Y (80)

where 7, € Di(X%,X5x; L) and v € Dioi (X5, X55; L)
The boundary homomorphism is given by :

B(co®N+c1®Y-1)=c0®M+co® (1 Yozt ~ Yke1) — €1 ® ey (81)

(where 1 is not the identity but rather the generator of Z).

Remark 8.18 The following two remarks follow from theorem 6.20 and from part
() of remark 8.15.

(i) Let £ € D,‘(xK,xax;c) be allowable and let ©3(€) = co ® 7 + ¢ ® Yx—1. then
Y& and q5_, are allowable.

(¢2) Conversely, if vx and vk, are allowable then ©4(co ® ve) and O4{c; @ vx_;) are
both allowable.

Proposition 8.19 Let £ € IDy(Xk,Xok; L) and let ©3(€) = co ® W + €1 @ Ye-1.
Then i, yx-1 € ID.(Xk,Xsk; L).

Proof: By remark 8.18 both +; and 4, are allowable. Thus we have only to show
that their respective boundaries are too.
By (81)

9(03(£)) = o ® (B1k + 1 - Mh=1 ~ We=1) — €1 ® k-
Now, ©; is a chain map. Thus 3(6s(£)) = ©3(9(€)) and since £ € IDy(Xx, Xok; L),
9(£) is allowable. It then follows from part (i) of remark 8.18, that &v,_; is allowable
as well as Oy + (1 - k=1 — Y1)
Now to see that dv; is allowable note that y;_, was allowable to begin with, and
therefore 1 - 4;_, is allowable since the Z-action only affects the coefficients and in
particular it does not introduce any new non-zero coefficients. Thus the chain ( =
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(1. Yk-1 — 74-1) ie allowable, and since A + ¢ is allowable, it follows that @y is
allowable too. 0
Conversely we have

Proposition 8.20 Let y € ID. (X%, X5k: £'). Then both ©4(co®7) and 84(ci ®7)
are in I Du(Xk, Xok; L).

Proof: This follows immediately from part (ii) of remark 8.18 and from the fact that
O, is a chain map. o

Corollary 8.21 Restricting O3 and 6, there is a chain-homotopy equivalence :

O3 _—
ID-(xl\')xOK;L) C‘CW(SI) ®l[l] ID.(X’ y 'GK;E')' (82)
4
with
63094 = I

Proof: It remains only to be shown that the homotopy, which we denote by
A: DXk, Xok; L) = Dop1(Xx, Xoxi £)

maps ID.(Xk,Xsk; L) to IDus1(Xk,Xsk; £).

In part (i) of theorem 6.20 it was shown that the “original” homotopy @ : W.(ZI") —
W.,1(Z") preserves itersection numbers with any subspace F* C R"-!. The homotopy
A was derived from ® by various operations which do not affect this property (e.g.
tensoring with various identity maps) and since the allowability in D.(Xk, Xok; L) is
determined by intersection numbers with subspaces of R"-!, it follows that A preserves
allowability. A is not a chain map so this does not immediately imply that d(A(£))
is allowable whenever 9(£) is allowable, however note that

A(A(£)) = ©4005(€) — £ — A(9(£))

since A is a homotopy between ©4063 and I, and each of the summands on the right

is allowable when ¢ € ID.(Xk,Xak; £L).
(W]

The final step.

The following proposition completes the proof :
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Proposition 8.22 There is a commutative diagram

. 6,
ng(sl) ®z[a] ID-(x;(o 'ax: C') I’D.,(XK, KXok L)

J ¢

IC(X), Xpk; L) @ Susp(IC. (XY, X} L) —e IC.(Xk,X5k; L)

and the maps i, j, 6, are all quasi-isomorphisms.

Recall that Xx = S x X/.

Proof of proposition 8.22:
©, is a chain-homotopy equivalence and hence a quasi-isomorphism.
1 is a quasi-isomorphism by the corollary of the combing lemma (corollary 3.19).

The map j: Recall that by the inductive hypothesis, the map
@ ID(Xj, Xpp; L) :—s IC.(Xk, X}k: L)
is a quasi-isomorphism. Thus, in view of the description (80), we define

i(Co®m+c @) e (¢'(m), 3838(¢' (12-1)).

It is not immediate that j is a chain map. The subtle point is that it is not
clear that j commutes with the respective Z-actions on I D.(X%,X}5x: L) and on
1C(X, Xpk; L') (where the Z-action on the latter is the one described in section
3.6.2). However the commutativity of the diagram (which we prove next) will imply
that j is a chain map since .0, is a chain map as the composition of chain maps,
and i is simply an inclusion.

A careful examination of the reason given in proposition 7.12 for why the diagram
of section 7.2.3 commutes shows that, the same reasoning holds here namely that the
(simplicial) image under .8, of any chain in CEV(S') @iz ID.(X, Xpx; L) is
simply a subdivision of its image under ioj.

Proposition 8.23 j is a quasi-isomorphism.
Proof: For simplicity, denote

D. = ID.(X},Xy: L") .
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and

C. = IC(Xi, Xoi L.

Then for each k, the degree k chain group in CC¥(S') @qpz) I Do(Xlk, Xbye; L) is
cancnically isomorphic to
Dy & Dy

while the degree k chain group in [fC.(X), Xpx; L) @ Susp(ICa(X, Xji; L)) is
canonically isomorphic to

Ce ®Ci,y.

Correspondingly, the map j in degree k can be written as :
Ik = Ph D Py
Thus, by filtering the two complexes respectively as

D. - D. @ D‘+|

and
C- C Co $ Co+l
and using the fact that ¢’ is a quasi-isomorphism, a simple spectral sequence argument
(as in corollary 3.19) implies that j is in fact a quasi-isomorphism. Oprop. 8.23
Oprop. 8.22
Corollary 8.24
¢ : ID,(Xx,Xox; L) = IC.(Xk,Xsk; L)
is a quasi-isomorphism.
(m]
Oprop. 8.8
Othm. 8.7
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